Web of Science[™]

Research © Assistant

Sign In 🗸

Register

You are accessing a free view of the Web of Science

Learn More

Lipase and soy protein ads... Lipase and soy protein adsorption by silica nanoparticles to preparation cro...

Lipase and soy protein adsorption by silica nanoparticles to preparation cross-linked enzyme aggregates for hydrolysis soybean phospholipids

By Qian, JQ (Qian, Junqing); Yin, JL (Yin, Junlan); Wang, LT (Wang,

Longteng); Gu, GX (Gu, Guoxiu); Zhao, XH (Zhao, Xiaohua)

View Web of Science ResearcherID and ORCID (provided by

Clarivate)

Source FOOD CHEMISTRY

Volume: 493 Part: 4

DOI: 10.1016/j.foodchem.2025.146126

Article Number 146126

Published NOV 30 2025

Indexed 2025-09-11

Document Type Article

Abstract In order to improve the hydrolysis performance of cross-linked

enzyme aggregates and the defects of the smaller particles affecting the reuse, the lipase added soybean protein, silica nanoparticles as adsorption carrier preparation lipase cross-linked aggregates were studied. The prepared cross-linked

enzyme aggregates showed lipase activity recovery of 94.34 f 0.81 %, and particle size reached about 1100 nm, which is favorable

for reuse. The thermal stability is significantly improved, the half-life of lipase activity at 65 degrees C is 5.2 times of free lipase. The lipase cross-linked aggregates were applied to hydrolyze soybean phospholipids in two-phase system consisting of n-hexane and water for 8 h, Hydrolysis rate of 125.1 f 1.2 % and hydrolysis speed of 2.57 f 0.05 g/h, which was 3.5 times of free lipase. This study provides a technical basis for new stratagem of preparation cross-linked enzyme aggregates with silica nanoparticles as carrier and soybean protein as cross-linking additive, and application of lipase for hydrolysis of soybean phospholipids.

Keywords

Author Keywords: Lipase; Soybean protein; Silica nanoparticles; Cross-

linked enzyme aggregates; Soybean phospholipids

Keywords Plus: MAGNETIC NANOPARTICLES; A(1)-CATALYZED HYDROLYSIS; IMMOBILIZED LIPASE; BETA-GALACTOSIDASE; CLEAS; PHOSPHATIDYLCHOLINE; STABILITY; SUPPORT; REUSABILITY; LINKING

Addresses

¹ Zhejiang Univ Technol, Coll Pharmaceut Sci, Hangzhou

310000, Peoples R China

Categories/ Classification Research Areas: Chemistry; Food Science & Technology; Nutrition

& Dietetics

Web of Science Categories

Chemistry, Applied; Food Science & Technology; Nutrition & Dietetics

+ See more data fields

Citation Network

Use in Web of Science

In Web of Science Core Collection

2

2

0 Citations

Last 180 Days

Since 2013

65

Cited References

This record is from:

Web of Science Core Collection

 Science Citation Index Expanded (SCI-EXPANDED)

Suggest a correction

If you would like to improve the quality of the data in this record, please <u>Suggest a correction</u>

○ Clarivate

© 2025 Clarivate. All rights reserved.

Legal	Training	Cookie	Accessibility
Center	Portal	Policy	Help
Privacy	Product	การตั้งค่า	Terms of
Statement	Support	คุกกี้	Use
Copyright	Newsletter	Data	
Notice		Correction	

Follow Us

