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Abstract— The IEEE 802.11be (Wi-Fi 7) standard
introduces Multi-Link Operation (MLO) to enhance network
efficiency by enabling simultaneous data transmission across
multiple frequency bands. However, optimal link selection in
dynamic wireless environments remains a significant challenge
due to fluctuating signal conditions, interference, and the impact
of antenna radiation patterns. Traditional heuristic-based
approaches often fail to adapt effectively to these variations,
leading to suboptimal performance. This paper proposes an
intelligent Multi-Link selection framework based on
Reinforcement Learning (RL), incorporating radiation pattern
awareness to enhance decision-making. The proposed model
leverages both omnidirectional and directional beamforming
characteristics to dynamically select the most efficient link,
considering real-time network conditions such as signal
strength, interference, and spatial coverage. By integrating
radiation pattern information into the RL training process, the
system optimizes link selection while minimizing latency and
improving throughput. Simulation results demonstrate that the
proposed RL-based approach can select links based on various
factors and dynamically choose the optimal link in real-time.
This study highlights the potential of RL-driven Multi-Link
selection strategies in advancing next-generation Wi-Fi
networks and adaptive wireless communication systems.

Keywords— Multi-Link Operation, reinforcement learning,
wireless networks

1. INTRODUCTION

Wireless communication is a cornerstone of modern
networks, supporting applications such as high-definition
video streaming, industrial automation, and the Healthcare
Internet of Things (H-IoT) [1]. As user demands increase,
networks must provide higher data rates, lower latency, and
reliable connectivity. To meet these challenges, the IEEE
802.11be standard, commonly known as Wi-Fi 7, introduces
Multi-Link Operation (MLO), a key innovation that enables
devices to simultaneously utilize multiple frequency bands to
enhance throughput and minimize latency. MLO allows a
wireless station (STA) to establish concurrent connections
with an access point (AP) across 2.4 GHz, 5 GHz, and 6 GHz
bands, supporting parallel data transmission over multiple
channels and improving network congestion and transmission
reliability. The MLO process requires simultaneous data
acquisition and transmission (STR), which introduces a link
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selection challenge [2]. Furthermore, addressing parallel
backoffs can mitigate the latency issue [3]-[6]. The radiation
pattern significantly affects network performance when data
is transmitted simultaneously. Specifically, it impacts the
hidden node problem [7] and interference [8], [9], which in
turn degrade communication efficiency. This degradation
results in increased delay and reduced throughput, making it
essential to consider the impact of radiation patterns on link
selection. To address this challenge, Reinforcement Learning
(RL) has emerged as a powerful approach for optimizing
dynamic link selection. RL enables adaptive decision-making
by assigning rewards and penalties based on network
conditions. Recent research has demonstrated the
effectiveness of RL in wireless communication by enhancing
network efficiency and reducing interference [10], [11].
Additionally, antenna radiation characteristics have been
considered in multi-link transmission, as demonstrated by
[12], which developed a 2x2 MIMO antenna to support multi-
link applications. Furthermore, [13] proposed a PHY and
MAC layer analysis model to improve overall Wi-Fi 7
performance.

This paper proposes an RL-based Multi-Link selection
framework that incorporates radiation pattern awareness to
improve Wi-Fi 7 network performance. Unlike traditional
heuristic approaches, the proposed RL model dynamically
selects the most suitable multi-link configuration by analyzing
RSSI, Signal-to-Noise Ratio (SNR), interference levels,
throughput variations, and antenna radiation characteristics.
The proposed RL-based model continuously learns and adapts
to varying network conditions, ensuring optimal link selection
and improved network efficiency.

This paper is organized into five sections. Section II
presents the channel model used for Multi-Link Operation,
including path loss modeling, small-scale fading effects,
interference modeling, and the impact of radiation patterns on
link performance. Section III describes the RL framework,
state-action-reward formulation, and the selected RL
algorithms. Section IV details the simulation setup and
performance evaluation, comparing the proposed RL-based
Multi-Link. Section V concludes the paper by summarizing
key findings and suggesting future research directions.
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II. CHANNEL MODEL

The performance of wireless communication systems is
largely influenced by the characteristics of the wireless
channel like radiation pattern in Fig.1. In the context of MLO
in IEEE 802.11be (Wi-Fi 7), the effectiveness of
simultaneous data transmission across multiple frequency
bands depends on several factors, including path loss, fading,
interference, and antenna radiation patterns. This section
presents the channel model used to evaluate the MLO system,
with particular attention given to the impact of each factor on
link performance.

A. Path Loss Model

Path loss refers to the reduction in signal strength as the
transmitted signal travels through space. In wireless
communication systems, path loss is influenced by the
distance between the AP and STA, as well as the environment
(e.g., urban, indoor, or rural settings). To model path loss, the
log-distance path loss model is commonly used, given by the
following equation:

PL(d)=&o+10nlogdi (1)

0
where P, (d) is the path loss at distance d,

P,  isthe reference path loss at d,,

n is the path loss exponent,

d is the distance between the AP and STA,
d,  isthe reference distance.

For the Wi-Fi 7 network operating in the 2.4 GHz, 5 GHz,
and 6 GHz bands, the path loss exponent is assumed to be
different for each frequency band due to varying signal
attenuation characteristics. Higher frequencies, such as 6
GHz, typically suffer from greater path loss compared to 2.4
GHz and 5 GHz.

B. Fading Model

Fading is caused by the interference of multiple signal
paths, leading to variations in signal strength over time or
space. Small-scale fading is particularly important in wireless
communication, as it can cause rapid fluctuations in signal
quality due to factors like multipath propagation and
shadowing. The Rayleigh fading model is often used to model
fading in environments with no line-of-sight (NLOS), while
the Rician fading model is applied in line-of-sight (LOS)
scenarios. In our model, Rayleigh fading is assumed to
represent the fading effect for the wireless links between AP
and STA, as the environment is typically non-line-of-sight in
many urban or indoor scenarios.

C. Interference Model

Interference arises from multiple transmitters operating on
Interference plays a critical role in determining the quality of
wireless communication systems, especially in MLO
environments where multiple links operate concurrently
across different frequency bands. In these systems,
interference typically arises from external sources or other
transmissions within the same environment, which can cause
signal degradation and loss of data. In our model, interference
is calculated based on the radiation pattern and signal strength
of the transmission. For omnidirectional transmission,
interference is randomly generated between 0 and 10 dB,
simulating external sources of interference. For directional
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Fig.1. The radiation pattern for Multi-Link Operation (MLO).
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Fig. 2. The MLO with AP and STA environment.

beamforming, interference is calculated using the gain of the
antenna, which is influenced by the beam width and beam
angle. The interference value increases with the antenna's
gain, as higher gain often leads to more focused transmission,
thus increasing the potential for interference in adjacent
regions. The impact of interference on the signal quality is
evaluated through the signal-to-interference-plus-noise ratio
(SINR). SINR is a crucial parameter in wireless
communication, as it determines the quality of the received
signal relative to interference and noise. In this model,
interference is treated as a factor that reduces SINR, thereby
negatively affecting throughput and latency. Mathematically,
the SINR for each link is computed as:

RSSIT

Interference + Noise

SINR =

)

where  RSS/ is the received signal strength,

Interference is the interference caused by other
transmissions in the environment (dB),

Noise is the background noise level (dBm).

The Interference for each frequency band (5 GHz and 6
GHz) is considered independently. Interference values are
generated dynamically based on the radiation patterns and
signal conditions of the system, simulating real-world
environments where interference levels vary depending on
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factors like user mobility, distance from AP, and obstructions.
The interference model is thus essential for simulating
realistic wireless environments and for optimizing the
performance of the proposed RL framework.

D. Throughput

Throughput is a key performance metric that measures the
actual rate of successful data transmission in a wireless
communication system. In the context of MLO and the IEEE
802.11be (Wi-Fi 7) standard, throughput is particularly
important because it determines the system's ability to handle
high data rates and multiple simultaneous transmissions
across different frequency bands. In this model, throughput is
calculated for both the 5 GHz and 6 GHz bands, as well as for
the overall system when using MLO, which combines the
throughput from both frequency bands to provide enhanced
data rates. The total throughput is the sum of the individual
throughputs from each link, considering the simultaneous use
of multiple links. The throughput for each link is estimated
using the Shannon Capacity Formula, which defines the
theoretical upper bound of the data transmission rate in a
communication channel with a given Signal-to-Noise Ratio
(SNR). The formula is expressed as:

C = Blog, (1+ SNR) 3)

where C  is the channel capacity or throughput,

B is the bandwidth of the channel,
SNR is the signal-to-noise ratio (in linear scale).
For Wi-Fi 7, the system operates on a bandwidth of 160
MHz for each frequency band (5 GHz and 6 GHz). The
throughput for each frequency band is calculated as:

SNR
T:Blog2[1+10 10 j (4)

The SNR is obtained from the previous step, and B
represents the bandwidth, which is 160 MHz for 5 GHz and 6
GHz channels. The total throughput for MLO is calculated by
summing the individual throughputs from the 5 GHz and 6
GHz links:

To = Tson: + Toon: (%)

This combined throughput allows for higher data rates and
better utilization of available spectrum, enabling the system to
handle more data while reducing latency compared to single-
link operation following Fig.2. In addition to the basic
throughput calculation, throughput efficiency is also affected
by factors such as interference, latency, and signal
degradation. The presence of interference, as modeled in the
previous section, can lower the effective throughput by
reducing the SINR, which directly impacts the data rate that
can be achieved on each link. To evaluate the system's
efficiency, we also calculate the percentage increase in
throughput when using MLO as compared to using a single
frequency band (5 GHz or 6 GHz). This allows us to assess
the benefits of multi-link operation in improving the overall
network performance.

III. REINFORCEMENT LEARNING MODEL

The Reinforcement Learning (RL) model is designed to
optimize the link selection process in MLO for Wi-Fi 7 (IEEE
802.11be). The goal is for the RL agent to dynamically select
the best link configuration, whether using 5 GHz, 6 GHz, or
MLO, based on real-time network conditions such as RSSI,
SNR, latency, throughput, and interference.
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A. Reinforcement Learning Framework

The RL framework follows a Markov Decision Process
(MDP), where the state, action, and reward are defined to
guide the agent in selecting the optimal link configuration.
The system’s state S includes real-time network parameters,
and the agent’s goal is to choose an action A that maximizes
the long-term reward R.

e State (S): Includes network conditions such as RSSI,
SNR, latency, throughput, and interference for both 5
GHz and 6 GHz links.

e Action (A): The RL agent chooses between three
actions: 5 GHz, 6 GHz, or MLO (multi-link operation
using both 5 GHz and 6 GHz bands).

e Reward (R): The reward is computed based on the
throughput, latency, and interference of the selected
action. The reward function aims to maximize
throughput while minimizing latency and interference.

B. RL Algorithm Selection

The RL-based AP-STA Link Selection uses a
straightforward approach where the agent observes the
network state (e.g., RSSI, SNR, throughput, interference) and
selects the best link between 6 GHz or MLO. The RL model
evaluates the current state and chooses an action based on
predefined thresholds, optimizing the selection process. The
model is trained iteratively with a reward function based on
throughput and latency, allowing it to adapt to dynamic
network conditions until convergence is reached.

Pseudocode for RL-based AP-STA Link Selection
1. Initialize:
- Set up AP and STA positions in a 2D space.
- Define network parameters (RSSI, SNR, Throughput).
- Define action space {6GHz, MLO}.
2. For each STA:
- Observe state: (RSSI, SNR, Throughput, Interference).
- Use RL model to select action:
- If SNR and Throughput for 6GHz > Threshold —
Choose 6GHz.
- Otherwise, choose MLO.
3. Update RL Model:
- Apply reward function based on throughput and
latency.
- Train model iteratively.

4. Repeat until convergence.

IV. RESULT AND DISCUSSION

The results of this study present an in-depth analysis of
the throughput performance in Wi-Fi 7 (IEEE 802.11be)
Multi-Link Operation (MLO), incorporating reinforcement
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learning (RL) for dynamic link selection, considering the
impact of antenna radiation patterns. Figure 3 compares the
single throughput performance between the 5 GHz and 6 GHz
bands. The throughput of the 6 GHz band outperforms the 5
GHz band in all AP-STA pairs, primarily due to its higher
bandwidth capacity. However, in the presence of obstacles,
the 5 GHz band showed better performance compared to the
6 GHz band, as it is less susceptible to signal degradation.
Figure 4 highlights the throughput performance when both 5
GHz and 6 GHz bands are used in MLO mode. The
throughput increase is significant, with an improvement of up
to 98.79% for the 5 GHz band and 101.55% for the 6 GHz
band, demonstrating the advantages of combining both
frequency bands. The RL-based link selection, as shown in
Figure 5, dynamically adapts to varying network conditions.
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The algorithm selects the 6 GHz band for AP1 and STAI,
while other AP-STA pairs utilize MLO. The RL agent's
decision-making process considers key factors such as path
loss, distance, and interference. For example, when
interference is high or when signal strength is suboptimal for
a single frequency band, the RL model opts for MLO to
mitigate performance degradation and optimize throughput.

V. CONCLUSION

In this paper, we proposed an intelligent Multi-Link
Operation (MLO) framework for Wi-Fi 7 (IEEE 802.11be)
using Reinforcement Learning (RL) with radiation pattern
awareness for optimized link selection. The results show that
MLO significantly improves throughput by up to 101.55%
compared to single-band operation. This enhancement is due
to the combined use of both 5 GHz and 6 GHz bands,
improving spectrum utilization and reducing latency. The
RL-based model adapts to dynamic network conditions,
selecting the optimal link configuration in real time, thus
enhancing overall network efficiency.
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