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Abstract
This study presents a comprehensive analysis of infectious disease dynamics through mathematical modeling and optimal

control strategies. The primary objective is to derive insights into disease transmission by employing a model structured on

integer and Caputo fractional order derivatives (CFOD). Initially, we establish the feasible region and confirm the

boundedness of the model. Subsequently, the disease-free equilibrium (DFE) points and the basic reproduction number

(R0) are analytically determined. Using fixed point theory, we rigorously prove theoretical results relevant to the model. To

approximate solutions, we apply the Modified Euler’s Method (MEM), which demonstrates the model’s capacity to

simulate disease dynamics with increased realism. Finally, optimal control analysis reveals that an integrated application of

all four control strategies significantly reduces the infected population, thus enhancing the recovery rate.

Keywords Caputo fractional order derivative � Equilibrium points � Infectious disease modeling � Modified Euler’s

Method � Optimal control strategies

Introduction

Humanity suffers from infectious diseases, which are both

harmful and destructive. Sadly, millions of individuals die

each year as a result of various sorts of those kind of dis-

eases. The above point emphasises the necessity for more

research on cognition and disease control. There are many

unanswered concerns about how infectious diseases prop-

agate. For instance, How much population will be com-

pletely impacted and hence need medication? How long

will the population be affected by the epidemic? What can

be done in the event of an infectious disease? Is it possible

that the vaccination technique would minimise the occur-

rence and intensity of an epidemic? Infectious disease

mathematical models are now used in public health deci-

sion-making. Modeling in epidemiology is extremely

important since it may provide answers to the above con-

cerns, as well as understand the fundamental process that

regulates illness development and propose specific solu-

tions for disease control. In order to understand and provide

practical approaches for predicting and controlling the

dynamics of infectious disease, mathematical modelling is

critical (Hethcote 2000). Many researchers have built

mathematical models to look at infectious disease trans-

mission patterns and control mechanisms during the last

few decades (Ahmed and El-Saka 2017; Chen and Li 2017;

Lee et al. 2017; Kim et al. 2016; Thomas et al. 2022; Jose

et al. 2022, 2023; Tahir et al. 2019; Wang and Chen 2022).

Infectious diseases are caused by harmful microorgan-

isms such as bacteria, viruses, fungi, or parasites, which

can travel directly or indirectly between people. Some of

& Raja Ramachandran

rajarchm2012@gmail.com

Sayooj Aby Jose

sayooaby999@gmail.com

Jirawattanapanit Anuwat

anuwat.j@pkru.ac.th

Jinde Cao

jdcao@seu.edu.cn

Ravi P. Agarwal

agarwalr@fit.edu

1 Phuket Rajabhat University, Phuket, Thailand

2 Alagappa University, Karaikudi, India

3 Lebanese American University, Beirut, Lebanon

4 Southeast University, Nanjing, China

5 Florida Institute of Technology, Melbourne, USA

123

Modeling Earth Systems and Environment          (2025) 11:229 
https://doi.org/10.1007/s40808-025-02394-z(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s40808-025-02394-z&amp;domain=pdf
https://doi.org/10.1007/s40808-025-02394-z


the most well-known infectious illnesses are influenza, TB,

malaria, dengue fever, and more recent outbreaks such as

COVID-19. Researchers have classified infectious illnesses

over time based on how they are transferred-airborne,

waterborne, vector-borne, or sexually transmitted. Each

form of infection has its own transmission patterns, hence

mathematical modeling is an important tool for under-

standing and limiting disease spread (Fantaye 2022; Fan-

taye et al. 2022; Khan et al. 2021; Nelson et al. 2024).

Vaccination, quarantine, better sanitation, and medical

interventions have all been used throughout history to slow

the spread of infectious diseases. Modern epidemiology

combines traditional approaches with data-driven compu-

tational models to improve forecast accuracy and public

health responsiveness. This work expands on these funda-

mental epidemiological ideas by using fractional-order

derivatives to increase disease transmission model

accuracy.

Mathematical models that use an integer-order system of

ODEs have been shown to be useful in understanding the

structure of biological processes. Fractional-order models

are chosen due to their ability to capture long-term

dependencies and memory effects, which are crucial in

infectious disease dynamics. Unlike classical integer-order

models that assume instantaneous transitions, fractional

derivatives allow for a more realistic representation of

disease progression, incorporating the influence of past

states on future dynamics. This approach provides deeper

insights into the spread and control of infectious diseases

and offers a more flexible and adaptable framework for

modeling different epidemic scenarios (Teklu et al. 2024;

Teklu 2024a; Fantaye and Birhanu 2023; Fantaye 2024).

Panigoro et al. (2025) studied a two-predator, one-prey

system with intra- and inter-specific competition using

Caputo fractional derivatives, establishing stability condi-

tions and identifying bifurcation behaviors. Herdicho et al.

(2025) developed a COVID-19 model incorporating

symptom severity, demonstrating improved accuracy over

integer-order models and optimizing hospital resource

allocation. Shamil et al. (2014) analyzed COVID-19

transmission in Thailand, integrating fractional derivatives

to capture long-term memory effects and recommending

mitigation strategies. Jose et al. (2024) introduced a frac-

tional-order chickenpox model, validating its applicability

through numerical simulations. These studies underscore

the effectiveness of Caputo fractional derivatives in cap-

turing complex dynamics across biological and ecological

systems, improving predictive accuracy and informing

decision-making. Fractional derivative operators on math-

ematical modeling are investigated by numerous publica-

tions and the dynamical behaviour of various pandemics

have been extensively discussed under different circum-

stances (Khaminsou et al. 2021; Pinto and Carvalho 2017;

Podlubny 1998; Zafar et al. 2017). Differential equations

with a CFOD have been utilised to examine and analyse the

transmission patterns of numerous infectious diseases

(Carvalho et al. 2018; Sweilam et al. 2020; Tamilalagan

et al. 2021). In Vargas-De-Léon (2015), the author

explored uniform asymptotic stability of various primary

epidemic models and the renowned Ross vector-borne

diseases in Caputo sense using Volterra type Lyapunov

functions.

In recent years, optimal control theory has been widely

used in epidemiology to develop effective intervention

techniques that reduce disease burden while making opti-

mum use of existing resources. Optimal control is finding

the most effective intervention measures-such as vaccina-

tion, quarantine, treatment, and awareness campaigns-for

lowering infection rates and mitigating the effects of out-

breaks (Teklu and Yohannes 2024; Teklu 2024b; Agusto

and Khan 2018; Shen et al. 2021). This technique enables

policymakers to assess different alternatives and select the

most cost-effective and impactful solutions. Mathemati-

cally, optimum control issues are defined as minimizing an

objective function (for example, the number of infected

persons, economic expenses, or a mix of both). The model

includes constraints such as limited medical resources and

logistical practicality. The Pontryagin Maximum Principle

(PMP) is often used to establish required conditions for

optimality, allowing researchers to identify how treatments

should be deployed over time to get the greatest potential

outcomes.

Unexpected infectious illness outbreaks have a variety

of economic consequences on a worldwide scale. The first

noticeable impact, for example, could be preventative and

restraint actions adopted by governments with few

resources. Optimal control theory is defined as a branch of

mathematical optimization interested in controlling a

dynamical system in order to minimise or maximise an

objective function over time. Optimal control strategies act

as a crucial role during the invasion phase for the powerful

use of few resources. In mathematical models of Ebola,

Zika, HIV, and TB, the theory of optimal control has been

utilized often (Area et al. 2018; Silva et al. 2017; Silva and

Torres 2018). The view of infectious models is linked to

the view of control methods like education campaigns

(Castilho 2006), resource allocation (Ball and Becker

2006), and vaccination (Brandeau et al. 2003).

The purpose of this study is to propose and study a more

accurate mathematical model of the transmission of

infectious diseases based on integer and CFOD. We

investigated the optimal control problem associated with

our given model. We numerically investigated the

dynamical system in relation to parameter values associ-

ated with the model. The final portion includes some

interesting observations based on our numerical analysis.
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This paper’s remaining sections are arranged as follows:

The mathematical model that describes the dynamics of

infectious disease transmission is formulated in Sect. 2 and

includes both integer-order and Caputo fractional-order

variants. In order to identify the critical parameters

affecting the spread of illness, we examine the model’s

basic characteristics in Sect. 3, including equilibrium

points, stability analysis using the Routh–Hurwitz criterion,

and sensitivity analysis. In order to improve the accuracy

of epidemic forecasts and provide a more realistic depic-

tion of disease dynamics, Sect. 4 presents the fractional-

order version of the model utilizing Caputo derivatives.

Using the Pontryagin Maximum Principle, we create an

ideal control plan in Sect. 5 to reduce infection rates

through hospitalization, treatment, and prevention.

Numerical simulations employing the Modified Euler’s

Method are presented in Sect. 6 to support theoretical

conclusions and show how fractional-order derivatives

affect the course of illness. The main findings are finally

outlined in Section 7, which also makes recommendations

for future study approaches, such as incorporating

stochastic effects and validating data from real-world

scenarios.

Model framework: integer order model

The model addressed in this paper is a modification to the

transmission dynamics of infectious disease model. The

susceptible, exposed, symptomatic infected, asymptomatic

infected, hospitalised, and recovered populations are con-

sidered in a TSTETITATHTR compartmental model. The

model’s transmission flow is depicted in the diagram below

(Fig. 1).

This model is not disease-specific; rather, it reflects a

basic framework for infectious diseases. Acute infectious

diseases with an exposed (latent) period prior to symptom

onset are a good fit for the framework. However, adjust-

ments to the model structure and parameter values would

be necessary for realistic depiction of illnesses with distinct

transmission methods or long-term progression features.

Based on the nature of the disease and the immune

system’s reaction, people may either develop symptoms

(TI) or stay asymptomatic (TA) following the exposure

period (TE). While asymptomatic people may still aid in

the spread of disease, symptomatic people show clinical

indicators. This study assumes a fixed categorization post-

exposure, meaning that once individuals are classified, they

stay in their respective groups until they recover. However,

if needed, transitions between these groups might be

included in future additions.

We formulate the following model,

dTSðtÞ
dt

¼A� pTSðtÞ
�
TIðtÞ þ jTAðtÞ

�
þ mTEðtÞ � #TSðtÞ

dTEðtÞ
dt

¼pTSðtÞ
�
TIðtÞ þ jTAðtÞ

�
� ðrþ mþ #ÞTEðtÞ

dTIðtÞ
dt

¼grTEðtÞ � ðw1 þ #þ #1 þ n1ÞTIðtÞ

dTAðtÞ
dt

¼ð1� gÞrTEðtÞ � ðw2 þ #þ #2 þ n2ÞTAðtÞ

dTHðtÞ
dt

¼n1TIðtÞ þ n2TAðtÞ � ðw3 þ #ÞTHðtÞ

dTRðtÞ
dt

¼w1TIðtÞ þ w2TAðtÞ þ w3THðtÞ � #TRðtÞ

ð1Þ

The initial conditions of the system are,

TSð0Þ ¼ TS0 ; TEð0Þ ¼ TE0
; TIð0Þ ¼ TI0 ; TAð0Þ ¼ TA0

; THð0Þ
¼ TH0

; TRð0Þ ¼ TR0
:

Here, N is total population, divided into

TSðtÞ; TEðtÞ; TIðtÞ; TAðtÞ; THðtÞ and TRðtÞ at time t. The

recruitment rate is denoted by A. Let p ¼ p1 þ p2, where
p1 is the rate of virus transmission from direct contact from

living organism and p2 is the rate of virus transmission

from indirect contact or nonliving organism. Contact rates

from the asymptomatic to the susceptible population is

denoted by j. An exposed individual’s incubation period is

Fig. 1 Schematic diagram for

the transmission dynamics of

infectious disease
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denoted by r, and the proportion of the population exposed

which becomes symptomatic afterwards the incubation

period is denoted by g leaving ð1� gÞ population asymp-

tomatic. The precaution and natural immunity is denoted

by m. w1, w2 and w3 denotes the recovery date of symp-

tomatic, asymptomatic and hospitalized individuals

respectively. n1 is the proportion of being hospitalized

from symptomatic and n2 is the proportion of being hos-

pitalized from asymptomatic. Natural death rate is #

whereas #1 and #2 are mortality rates of the symptomatic,

and asymptomatic populations respectively. Table 1 pro-

vides a summary of the parameters and variables used in

the model, along with their descriptions and units.

Existence and uniqueness of solution

Theorem 2.1 Consider ‘ 2 Rþ. The dynamical system (1)

admits a unique solution on interval ð0; ‘Þ for initial con-
ditions satisfying

TSð0Þ[ 0; TEð0Þ[ 0; TIð0Þ[ 0; TAð0Þ[ 0; THð0Þ
[ 0; TRð0Þ[ 0.

Proof Let, hðtÞ ¼ ðTS; TE; TI ; TA; ; TH ; TRÞT , then (1)

become
dh
dt

¼ UðhðtÞÞ ¼ ðu1; u2; u3; u4; u5; u6ÞT . Suppose

the initial condition hð0Þ ¼ ðTSð0Þ; TEð0Þ; TI
ð0Þ; TAð0Þ; THð0Þ; TRð0ÞÞT [ 0. When the Jacobian

J
�
UðhðtÞÞ

�
is computed and examined, the RHS of (1),

namely U and its Jacobian, is continuous for t[ 0. As a

result, on R6
þ, U satisfies a Lipschitz condition. Picard-

Lindelof theorem proves the existence and uniqueness of a

solution for a certain time interval ð0; ‘Þ. h

Theorem 2.2 (Positivity of solution) With non-negative

initial data, the state variables TS; TE; TI ; TA; TH ; TR of (1)

remain non-negative for every t[ 0:

Proof Let TSð0Þ ¼ TS0 [ 0. From the first equation of (1),

dTS
dt

� �
�
p
�
TIðtÞ þ jTAðtÞ

�
þ #

�
TSðtÞ

and integration, TSðtÞ� TS0e
�ð#tþbÞ [ 0 for all t[ 0; b ¼

R t

0

�
TIð.Þ � jTAð.Þ

�
d..

Similarly we get

TEðtÞ� TE0
e�ðrþmþ#Þt [ 0

TIðtÞ� TI0e
�ðw1þ#þ#1þn1Þt [ 0

TAðtÞ� TA0
e�ðw2þ#þ#2þn2Þt [ 0

THðtÞ� TH0
e�ðw3þ#Þt [ 0

TRðtÞ� TR0
e�ð#Þt [ 0

therefore, proved non-negativity of the remaining state

variables. h

Boundedness of solution

Theorem 2.3 The integer order model (1) has solutions

bounded within invariant region given by D ¼
�
ðTS;TE; TI ; TA; TH ; TRÞ 2 R6

þ j 0� TS;

TE; TI ; TA; TH ; TR �
A

#

�
.

Proof We have NðtÞ ¼ TS þ TE þ TI þ TA þ TH þ TR.

Then
dN

dt
�A� #NðtÞ. Consider the initial valued problem

Table 1 Model variables and

parameters
Symbol Description Unit

A Recruitment rate of susceptible individuals per day

p Disease transmission rate per day

# Natural death rate per day

r Disease progression rate of infectious of exposed individuals per day

g Proportion of infectious individuals that are showing symptoms per day

w1 Recovery rate of symptomatic individuals recovering per day

w2 Recovery rate of asymptomatic individuals recovering per day

w3 Recovery rate of hospitalized individuals recovering per day

n1 Hospitalization rate of symptomatic individuals per day

n2 Hospitalization rate of asymptomatic individuals per day

m Precaution and natural immunity rate per day

j Contact rates from the asymptomatic to the susceptible population per day

#1 Death rate of symptomatic individuals per day

#2 Death rate of asymptomatic individuals per day
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N
0 ðtÞ�A� #NðtÞ;Nð0Þ ¼ N0 and comparison theorem

(McNabb 1986),

NðtÞ�N0e
�#t þ A

#
ð1� e�#tÞ

and consequently lim supt!1 NðtÞ� A

#
. h

Local stability

The newly infected persons that emerges from any sick

persons in a totally susceptible population is expected to be

specified by R0, the basic reproduction number. R0 is also

not a rate, as it is a dimensionless quantity with units of

time�1. The Disease Free Equilibrium (DFE) of an epi-

demic system is locally asymptotically stable if R0\1

holds (If the initial circumstances of the variables

TS; TE; TI ; TA; TH and TR are surroundings of the DFE, the

disease is eradicated from the individuals). If there is an

outbreak in the community, the discovery of situations that

may provide R0\1 has significant public health implica-

tions. System (1) admits a single DFE point D� ¼

ðT�
S ; T

�
E; T

�
I ; T

�
A; T

�
H ; T

�
RÞ ¼ ðA

#
; 0; 0; 0; 0; 0Þ in the absence of

disease. To establish the existence and uniqueness of an

Endemic Equilibrium (EE)

DH ¼ ðTH

S ; T
H

E ; T
H

I ; T
H

A ; T
H

H ; T
H

R Þ, we first compute the

system’s fundamental reproductive number R0 of system

(1) using the Next-Matrix generation approach (Driessche

and Watmough 2002).

F ¼
pTSðtÞ

�
TIðtÞ þ jTAðtÞ

�

0

0

0

B@

1

CAandN ¼

ðrþ mþ #ÞTEðtÞ
ðw1 þ #þ #1 þ n1ÞTIðtÞ � grTEðtÞ

ðw2 þ #þ #2 þ n2ÞTAðtÞ � ð1� gÞrTEðtÞ

0

B@

1

CA

Here we get

= ¼
0

Ap
#

Agp
#

0 0 0

0 0 0

0

BB@

1

CCAand

@ ¼
ðrþ mþ #Þ 0 0

�gr ðw1 þ #þ #1 þ n1Þ 0

�ð1� gÞr 0 ðw2 þ #þ #2 þ n2Þ

0

B@

1

CA

Now, using TE; TI and TA from system (1), compute the

fundamental reproductive ratio R0 using the next-genera-

tion matrix approach. The next-generation matrix is made

up of the matrices = and @�1, where the matrix = repre-

sents the rate of transmission of infection in these cate-

gories and the matrix @ describes all other transmissions

between them. R0 is obtained as follows,

R0 ¼ q

ð=@�1Þ ¼
Apr

�
gðw2 þ #þ #2 þ n2Þ þ ð1� gÞjðw1 þ #þ #1 þ n1Þ

	

#ðrþ mþ #Þðw1 þ #þ #1 þ n1Þðw2 þ #þ #2 þ n2Þ
¼ R01 þR02

where,

R01 ¼
Aprg

#ðrþ mþ #Þðw1 þ #þ #1 þ n1Þ
;

R02 ¼
Aprð1� gÞj

#ðrþ mþ #Þðw2 þ #þ #2 þ n2Þ
:

system (1) admits DH ¼ ðTH

S ; T
H

E ; T
H

I ; T
H

A ; T
H

H ; T
H

R Þ as a

unique endemic equilibrium point, where

where,

TH

S ¼ A

#R0

TH

E ¼ A

�
1� 1

R0

�
N

TH

I ¼ gr
ðw1 þ #þ #1 þ n1Þ

TH

E

TH

A ¼ ð1� gÞr
ðw2 þ #þ #2 þ n2Þ

TH

E

TH

H ¼ N 1

N 2

TH

E

TH

R ¼
N 2

�
grw1ðw2 þ #þ #2 þ n2Þ þ w2ð1� gÞrðw1 þ #þ #1 þ n1Þ

�
þN 1

�
#ðw1 þ #þ #1 þ n1Þðw2 þ #þ #2 þ n2Þ

�

N 2#ðw1 þ #þ #1 þ n1Þðw2 þ #þ #2 þ n2Þ
TH

E
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N ¼
�

1

ðrþ mþ #þ mÞ

�

N 1 ¼n1grðw2 þ #þ #2 þ n2Þ þ n2ð1� gÞrðw1 þ #þ #1 þ n1Þ
N 2 ¼ðw3 þ #Þðw1 þ #þ #1 þ n1Þðw2 þ #þ #2 þ n2Þ

Clearly, it is evident that if R0\1, then (1) doesn’t take

any positive endemic equilibrium. Thus, we require

R0 [ 1, to ensure the existence and positivity of the

endemic equilibrium point.

Theorem 2.4 If R0\1, then the disease-free equilibrium

D� of system (1) is asymptotically stable on D.

Proof The Jacobian matrix of system (1) is given by,

Then we figure out the Jacobian matrix at D� as,

It can be seen that the matrix J D1
has the eigenvalues,

�#;�ðw3 þ #Þ;�#. The rest of the four eigenvalues of the

Jacobian matrix J D1
can computed from the following

equation:

k3 þL1k
2 þL2kþL3 ¼ 0

L1 ¼ ðl1 þ l2 þ l3Þ;L2 ¼ ð1�R01Þl1l2 þ ð1�R02Þl1l3 þ l2l3ð Þ;
L3 ¼ 1�R0ð Þl1l2l3
l1 ¼ rþ mþ #ð Þ; l2 ¼ w1 þ #þ #1 þ n1ð Þ; l3 ¼ w2 þ #þ #2 þ n2ð Þ

Now, L1L2 �L3 ¼ ðl1 þ l2 þ l3Þ


ð1�R01Þl1l2

þð1�R02Þl1l3
�
þ l22l3 þ l2l

2
3 þR0l1l2l3 [ 0

Since all li [ 0, where i ¼ 1; 2; 3, from the above we

can easily seen that Li [ 0, where i ¼ 1; 2; 3, only if

R1\1. Hence by Routh Hurwitz’s theorem we can says

that the D1 is locally asymptotically stable if R1\1. h

Theorem 2.5 Assume that R0 [ 1; then, the unique DH of

system (1) is asymptotically stable on D.

Proof The Jacobian matrix of (1) at DH defined as,

J ¼

�p
�
TI þ jTA

�
� # m �pTS �pjTS 0 0

p
�
TI þ jTA

�
�ðrþ mþ #Þ pTS pjTS 0 0

0 gr �ðw1 þ #þ #1 þ n1Þ 0 0 0

0 ð1� gÞr 0 �ðw2 þ #þ #2 þ n2Þ 0 0

0 0 n1 n2 �ðw3 þ #Þ 0

0 0 w1 w2 w3 �#

0

BBBBBBBB@

1

CCCCCCCCA

ð2Þ

J D� ¼

�# m
�pA
#

�pjA
#

0 0

0 �ðrþ mþ #Þ pA
#

pjA
#

0 0

0 gr �ðw1 þ #þ #1Þ 0 0 0

0 ð1� gÞr 0 �ðw2 þ #þ #2Þ 0 0

0 0 n1 n2 �ðw3 þ #Þ 0

0 0 w1 w2 w3 �#

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA
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J DH ¼

�G � # m
�pA
#R0

�pjA
#R0

0 0

G �ðrþ mþ #Þ pA
#R0

pjA
#R0

0 0

0 gr �ðw1 þ #þ #1 þ n1Þ 0 0 0

0 ð1� gÞr 0 �ðw2 þ #þ #2 þ n2Þ 0 0

0 0 n1 n2 �ðw3 þ #Þ 0

0 0 w1 w2 w3 �#

0

BBBBBBBBBBBB@

1

CCCCCCCCCCCCA

where G ¼ ðR0 � 1ÞN#ðrþ mþ #Þ It can be seen that the

matrix J DH
has the eigenvalue, �# The rest of the four

eigenvalues of the Jacobian matrix J DH can computed

from the following equation:

k4þL1k
3þL2k

2þL3kþL4¼0

L1¼ðGþ#þ l1þ l2þ l3Þ;L2¼ððGþ#Þðl1þ l2þ l3Þ

þð1�R01

R0

Þl1l2þð1�R02

R0

Þl1l3þ l2l3þmGÞ;

L3¼ðGþ#Þ
�
l1l2þ l1l3þ l2l3

�

þ l2

�
mG� l1R01

R0

�
þ l3

�
mG� l1R02

R0

�
;L4¼Gl2l3ðmþ l1Þ

l1¼ðrþmþ#Þ;l2¼ðw1þ#þ#1Þ;l3¼ðw2þ#þ#2Þ

Now, L1L2 �L3 [ 0;L1ðL2L3 �L1L4Þ[ 0

Since all li [ 0, where i ¼ 1; 2; 3, from the above we

can easily seen that Li [ 0, where i ¼ 1; 2; 3; 4, only if

R1 [ 1. Hence by Routh Hurwitz’s theorem we can says

that the the unique endemic equilibrium DH of system (1)

is asymptotically stable on D. h

Theorem 2.6 If R0\1, then the disease-free equilibrium

D� of system (1) is globally asymptotically stable on D.

Proof The Lyapunov function is defined as:

VðTE; TI ; TAÞ ¼ c1TE þ c2TI þ c3TA:

Taking the time derivative:

dV

dt
¼ c1

dTE
dt

þ c2
dTI
dt

þ c3
dTA
dt

:

Substituting the system equations:

dTE
dt

¼ pTSðTI þ jTAÞ � ðrþ mþ #ÞTE;
dTI
dt

¼ grTE � ðw1 þ #þ #1 þ n1ÞTI ;
dT

dt
¼ ð1� gÞrTE � ðw2 þ #þ #2 þ n2ÞTA:

At the disease-free equilibrium, TS ¼ A
#, so:

dV

dt
¼c1

A

#
pðTI þ jTAÞ � ðrþ mþ #ÞTE

� �

þ c2 grTE � ðw1 þ #þ #1 þ n1ÞTIð Þ
þ c3 ð1� gÞrTE � ðw2 þ #þ #2 þ n2ÞTAð Þ

To cancel terms, we set:

c2 ¼
c1pA

#ðw1 þ #þ #1 þ n1Þ

c3 ¼
c1pAj

#ðw2 þ #þ #2 þ n2Þ
:

Substituting these into dV
dt :

dV

dt
¼ �c1ðrþ mþ #ÞTE

þ c1pA
#

TE
gr

w1 þ #þ #1 þ n1
þ j

ð1� gÞr
w2 þ #þ #2 þ n2

� �

From the definition:

R0 ¼
Apr

#ðrþ mþ #Þðw1 þ #þ #1 þ n1Þðw2 þ #þ #2 þ n2Þ
� gðw2 þ #þ #2 þ n2Þ þ ð1� gÞjðw1 þ #þ #1 þ n1Þ½ �:

Rewriting the term in brackets:

pA
#

gr
w1 þ #þ #1 þ n1

þ j
ð1� gÞr

w2 þ #þ #2 þ n2

� �
¼ ðrþ mþ #ÞR0:

Thus,

dV

dt
¼ c1TEðrþ mþ #ÞðR0 � 1Þ:

If R0\1, then dV
dt � 0. The only time dV

dt ¼ 0 is when

TE ¼ 0, implying TI ¼ 0; TA ¼ 0. Applying LaSalle’s

Invariance Principle, the system converges to the disease-

free equilibrium (DFE). Thus, proving global stability

when R0\1. h

Sensitivity analysis

This section employs the theory of sensitivity analysis to

establish the importance of the generic parameters identi-

fied in R0. Furthermore, parameter values derived from
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valid assumptions are used to generate both numerical and

analytic values of R0. The dynamics follow the model if

and only if the generated analytic expressions can be uti-

lized to give insight on how to regulate the model’s start in

various locations. Here R0 is the threshold value since

reducing it below unity is regarded to be the most effective

way of controlling and stopping disease spread. The sen-

sitivity index technique identifies the most sensitive

parameters of the model. Those with a positive sign are

highl sensitive to increasing R0, while those with a nega-

tive sign are less sensitive to decreasing R0, and the

remaining is neutrally sensitive (with zero relative sensi-

tivity). For more information, see Chitnis et al. (2008).

This analysis deals with the investigation of R0 sensitivity

to each parameters.

^R0

[ ¼ oR0

o[
� [

R0

for [ represents all the basic parameters and

R0 ¼
Apr

�
gðw2 þ #þ #2 þ n2Þ þ ð1� gÞjðw1 þ #þ #1 þ n1Þ

	

#ðrþ mþ #Þðw1 þ #þ #1 þ n1Þðw2 þ #þ #2 þ n2Þ
then

^R0

A ¼ 1

^R0
p ¼ 1

^R0
g ¼

1

1þ jðw1 þ #þ #1 þ n1Þ
gðw2 þ #þ #2 þ n2 � jðw1 þ #þ #1 þ n1Þ

^R0

w1
¼

�gw1ðw2 þ #þ #2 þ n2Þ
ðw1 þ #þ #1 þ n1Þ



gðw2 þ #þ #2 þ n2Þ þ ð1� gÞjðw1 þ #þ #1 þ n1Þ

�

^R0

w2
¼

�ð1� gÞjw2ðw1 þ #þ #1 þ n1Þ
ðw2 þ #þ #2 þ n2Þ



gðw2 þ #þ #2 þ n2Þ þ ð1� gÞjðw1 þ #þ #1 þ n1Þ

�

^R0

#1
¼

�g#1ðw2 þ #þ #2 þ n2Þ
ðw1 þ #þ #1 þ n1Þ



gðw2 þ #þ #2 þ n2Þ þ ð1� gÞjðw1 þ #þ #1 þ n1Þ

�

^R0

#2
¼

ð1� gÞj#2ðw1 þ #þ #1 þ n1Þ
ðw2 þ #þ #2 þ n2Þ



gðw2 þ #þ #2 þ n2Þ þ ð1� gÞjðw1 þ #þ #1 þ n1Þ

�

^R0

n1
¼

�gn1ðw2 þ #þ #2 þ n2Þ
ðw1 þ #þ #1 þ n1Þ



gðw2 þ #þ #2 þ n2Þ þ ð1� gÞjðw1 þ #þ #1 þ n1Þ

�

^R0

n2
¼

ð1� gÞjn2ðw1 þ #þ #1 þ n1Þ
ðw2 þ #þ #2 þ n2Þ



gðw2 þ #þ #2 þ n2Þ þ ð1� gÞjðw1 þ #þ #1 þ n1Þ

�

^R0
m ¼

�m
ðrþ mþ #Þ
^R0
r ¼
mþ #

ðrþ mþ #Þ
^R0

# ¼

#

�
ðgþ ð1� gÞjÞ

gðw2 þ #þ #2 þ n2Þ þ ð1� gÞjðw1 þ #þ #1 þ n1Þ
� B

bB

�

where

B ¼ðrþ mþ #Þðw1 þ #þ #1 þ n1Þðw2

þ #þ #2 þ n2Þ þ #ðw1 þ #þ #1 þ n1Þðw2 þ #þ #2 þ n2Þ
þ #ðrþ mþ #Þðw2 þ #þ #2 þ n2Þ
þ #ðrþ mþ #Þðw1 þ #þ #1 þ n1Þ

bB ¼#ðrþ mþ #Þðw1 þ #þ #1 þ n1Þðw2 þ #þ #2 þ n2Þ

We can observe that some of the parameters have positive

relationships and some others have negative relationships.

A negative relationship indicates that increasing the value

of this parameter helps to diminish the severity of the

infection. A positive connection indicates that increasing

the value of that parameters will have a significant impact

Table 2 Numerical sensitivity index values for (R0)

Parameter Sensitivity index value

SA 1.0000

Sp 1.0000

Sg 0.2528

Sw1
�0.2249

Sw2
�0.2632

S#1
�0.0026

S#2
0.0239

Sn1 �0.0312

Sn2 �0.4539

Sm �0.9994

Sr 0.9995

S# – 1

Fig. 2 Sensitivity index diagram
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on the frequency with which the ailment spreads. The

sensitivity indices are presented in Table 2, and the cor-

responding plots are shown in Fig. 2.

From the computed sensitivity indices, we observe that

some parameters have a positive relationship with R0,

while others have a negative relationship.

Positive Sensitivity Indices: Parameters such as A, p, r
g and increase the basic reproduction number R0, meaning

that higher values of these parameters lead to a greater

spread of the disease. This suggests that controlling

infection transmission p and reducing the exposed-to-in-

fected progression rate r are critical in disease mitigation.

Negative Sensitivity Indices: Parameters like n1, n2, m,
#, and f2 negatively affect R0, meaning that increasing

these values reduces the severity of the infection. For

instance, higher recovery rates (n1; n2), help lower disease

prevalence, while natural immunity m and natural death rate
# also play roles in reducing transmission.

The most influential parameters in disease control are

those with sensitivity indices close to 1 or – 1, such as p, r,
m and #. This means interventions targeting these param-

eters will be the most effective in reducing disease spread.

The sensitivity plots Fig. 2 visually represent the impact

of each parameter on R0 Bars above zero (positive indices)

indicate parameters that increaseR0 when their values rise.

Bars below zero (negative indices) represent parameters

that help reduce R0 when increased. This highlights that

effective intervention strategies should focus on reducing

transmission rate p and progression rate r, while enhancing
recovery rates ðn1; n2Þ, and immunity m.

Model framework: fractional order model

The goal of this part is to create a mathematical model of

infectious disease with CFOD in order to investigate its

existence and numerical outcomes. As a result of the pre-

vious work, we looked at the model (1) by taking fractional

order derivative for the considered equations. The quali-

tative theory of the existence of a solution to the consider

model utilising a fixed point technique is the subject of our

research. In addition, we establish feasibility and solution

bounds. We devised a numerical approach to give the

model under consideration a graphical representation of the

result. Let us use Caputo fractional differential equations to

formulate the TSTETITATHTR compartmental model in a

fractional order framework.

c
t0
Da

t TSðtÞ ¼A� pTSðtÞ
�
TIðtÞ þ jTAðtÞ

�
þ mTEðtÞ � #TSðtÞ

c
t0
Da

t TEðtÞ ¼pTSðtÞ
�
TIðtÞ þ jTAðtÞ

�
� ðrþ mþ #ÞTEðtÞ

c
t0
Da

t TIðtÞ ¼grTEðtÞ � ðw1 þ #þ #1 þ n1ÞTIðtÞ
c
t0
Da

t TAðtÞ ¼ð1� gÞrTEðtÞ � ðw2 þ #þ #2 þ n2ÞTAðtÞ
c
t0
Da

t THðtÞ ¼n1TIðtÞ þ n2TAðtÞ � ðw3 þ #ÞTHðtÞ
c
t0
Da

t TRðtÞ ¼w1TIðtÞ þ w2TAðtÞ þ w3THðtÞ � #TRðtÞ
ð3Þ

where 0\a� 1, and c
t0
Da

t is the notation due to Caputo

fractional derivative, t0 � 0 is the initial time (it is assumed

that t0 ¼ 0).

Qualitative properties of solution

Here, we look at how well-posed the fractional order model

is mathematically and biologically. We show that the

CFOD’s solution is bounded and positive as long as a

positive initial condition is specified. We also demonstrate

the solution to the modified model’s existence and

uniqueness.

Let HðtÞ ¼ ðTS; TE; TI ; TA; TH ; TRÞT and Kðt;HðtÞÞ ¼
ðWiÞT ; i ¼ 1; 2; . . .; 6 where

W1 ¼A� pTSðtÞ
�
TIðtÞ þ jTAðtÞ

�
þ mTEðtÞ � #TSðtÞ

W2 ¼pTSðtÞ
�
TIðtÞ þ jTAðtÞ

�
� ðrþ mþ #ÞTEðtÞ

W3 ¼grTEðtÞ � ðw1 þ #þ #1 þ n1ÞTIðtÞ
W4 ¼ð1� gÞrTEðtÞ � ðw2 þ #þ #2 þ n2ÞTAðtÞ
W5 ¼n1TIðtÞ þ n2TAðtÞ � ðw3 þ #ÞTHðtÞ
W6 ¼w1TIðtÞ þ w2TAðtÞ þ w3THðtÞ � #TRðtÞ

The dynamical system (3) becomes

c
t0
Da

tHðtÞ ¼ Kðt;HðtÞÞ; Hð0Þ ¼ H0 � 0; t 2 ½0; f �; a 2 ð0; 1�
ð4Þ

Here Hð0Þ� 0 is to be depicted component-wise.

Model(3), which is similar to fractional differential equa-

tion (4), its integral representation is

HðtÞ ¼ H0 þ J a
0þKðt;HðtÞÞ

¼ H0 þ
1

CðaÞ

Z t

0

ðt � .Þa�1Kð.;Hð.ÞÞd.
ð5Þ

For analysing model (3), let l ¼ Cð½0; f �;RÞ represents the
Banach space of all continuous functions from [0, f] to R

with the norm

kHkl ¼ sup
t2½0;f �

ðjHðtÞjÞ

where

Modeling Earth Systems and Environment          (2025) 11:229 Page 9 of 28   229 

123



jHðtÞj ¼ jTSðtÞj þ jTEðtÞj þ jTIðtÞj þ jTAðtÞj þ jTHðtÞj
þ jTRðtÞj

. Specify that TS; TE; TI ; TA; TH ; TR 2 Cð½0; f �;RÞ. Addi-

tionally, we define the operator G : l ! l by

ðGHÞðtÞ ¼ H0 þ
1

CðaÞ

Z t

0

ðt � .Þa�1Kð.;Hð.ÞÞd. ð6Þ

The continuity of K is obvious implies G is well-defined.

Positivity and boundedness of solution

The solution of the CFOD’s model is found to be positive

and bounded at all times in order for it to be biologically

well-posed. The sequel establishes these characteristics.

Theorem 4.1 The set

D ¼
�
ðTS; TE; TI ; TA; TRÞ 2 R5

þj0� TS; TE; TI ;TA; TR �
A

#

�

is a positively invariant and the attraction region for

system (3).

Proof Let NðtÞ ¼ TS þ TE þ TI þ TA þ TR.

Then c
t0
Da

t NðtÞ�A� #NðtÞ. Using Laplace transform,

NðtÞ�AtaEa;aþ1 �#tað Þ þ Nð0ÞEa;1 �#tað Þ

� A

#
1� Ea;1 �#tað Þ
� �

þ Nð0ÞEa;1 �#tað Þ

Since Ea;1ð�#taÞ 2 ½0; 1� and Nð0Þ� A

#
, we get NðtÞ� A

#
.

Thus, D is a positively invariant set, and all initial solutions

remain in D for all t[ 0. h

Existence of unique and uniformly
stable solution

Theorem 4.2 Let bHðtÞ ¼ ð bTS; bTE; bTI ; bTA; bTRÞT . The func-

tion Kðt;HðtÞÞ ¼ ðwiÞ
T ; i ¼ 1; 2; . . .; 6 defined above

satisfies

Kðt;HðtÞÞ �K t; bHðtÞ
� ���

���
l
�xkH� bHkl

for some x[ 0

Proof By the first set of K, notice that
��w1ðt;HðtÞÞ � w1ðt; bHðtÞÞ

��

¼
��� p

�
TSðtÞTIðtÞ � bTSðtÞ bTIðtÞ

�

� pj
�
TSðtÞTAðtÞ � bTSðtÞ bTAðtÞ

�
þ m

�
TEðtÞ � bTEðtÞ

�

� #
�
TSðtÞ � bTSðtÞ

���

� p
��TSðtÞTIðtÞ � bTSðtÞ bTIðtÞ

��

þ pj
��TSðtÞTAðtÞ � bTSðtÞ bTAðtÞ

��þ m
��TEðtÞ � bTEðtÞ

��

þ #
��TSðtÞ � bTSðtÞ

��

�
�
#þ p

��TIðtÞ
��

þ pj
��TAðtÞ

�����TSðtÞ � bTSðtÞ
��þ m

��TEðtÞ � bTEðtÞ
��

þ p
�� bTSðtÞ

����TIðtÞ � bTIðtÞ
��

þ pj
�� bTSðtÞ

����TAðtÞ
� bTAðtÞ

��

�x1

���TSðtÞ � bTSðtÞ
��þ

��TEðtÞ � bTEðtÞ
��þ

��TIðtÞ

� bTIðtÞ
��þ

��TAðtÞ � bTAðtÞ
��þ

��TRðtÞ � bTRðtÞ
��
�

where,

x1 ¼
�
#þ m

�
þ max

t2½0;f �

�
p
��TIðtÞ

��þ pj
��TAðtÞ

��

þ p
�� bTSðtÞ

��þ pj
�� bTSðtÞ

��
�

Similarly,

��W2ðt;HðtÞÞ �W2ðt; bHðtÞÞ
��

�x2

���TSðtÞ � bTSðtÞ
��þ

��TEðtÞ � bTEðtÞ
��

þ
��TIðtÞ � bTIðtÞ

��þ
��TAðtÞ � bTAðtÞ

��
�

��W3ðt;HðtÞÞ �W3ðt; bHðtÞÞ
��

�x3

���TEðtÞ � bTEðtÞ
��þ

��TIðtÞ � bTIðtÞ
��
�

��W4ðt;HðtÞÞ �W4ðt; bHðtÞÞ
��

�x4

���TEðtÞ � bTEðtÞ
��þ

��TAðtÞ � bTAðtÞ
��
�

��W5ðt;HðtÞÞ �W5ðt; bHðtÞÞ
��

�x5

���TIðtÞ � bTIðtÞ
��þ

��TAðtÞ � bTAðtÞ
��þ

��THðtÞ � bTHðtÞ
��
�

��W6ðt;HðtÞÞ �W6ðt; bHðtÞÞ
��

�x6

���TIðtÞ � bTIðtÞ
��

þ
��TAðtÞ � bTAðtÞ

��þ
��THðtÞ � bTHðtÞ

��þ
��TRðtÞ � bTRðtÞ

��
�

where,
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x2 ¼
�
rþ mþ #

�

þ max
t2½0;f �

�
p
��TIðtÞ

��þ pj
��TAðtÞ

��þ p
�� bTSðtÞ

��þ pj
�� bTSðtÞ

��
�

x3 ¼
�
grþ w1 þ #þ #1 þ n1

�
; x4 ¼ jð1� gÞjr

þ w2 þ #þ #2 þ n2;

x5 ¼n1 þ n2 þ w3 þ #; x6 ¼ w1 þ w2 þ w3 þ #

Then,

kKðt;HðtÞÞ �Kðt; bHðtÞÞkl ¼

sup
t2½0;f �

X6

k¼1

��wkðt;HðtÞÞ � wkðt; bHðtÞÞ
��

�xkH� bHkl
where x ¼ x1 þ x2 þ x3 þ x4 þ x5 h

Theorem 4.3 Let Theorem 4.2 holds and N ¼ f a

CðaÞ. If

Nx\1 then there exists a unique solution of model (3) on

[0, f] which is uniformly Lyapunov stable.

Proof The function K : ½0; f � � R6
þ ! R6

þ is obviously

continuous on its domain. As a result of Lin (2007), the

existence of solution to (3) follows.

The Principle of Banach contraction mapping on

operator G defined in (6) is used for uniqueness. We prove

that G is contraction and self map. From definition,

supt2½0;f �
��Kð.; 0Þ

�� ¼ A. Define Z[

��H0

��þ Nf a

1� Nx
and a

closed convex set QZ ¼
�
H 2 l :

��H
��
l
�Z

�
. It suffices

to show that GQZ 	 QZ for self map property. So, let

H 2 QZ , then

kGHkl ¼ sup
t2½0;f �

���H0 þ
1

CðaÞ

Z t

0

ðt � .Þa�1Kð.;Hð.ÞÞd.
��
�

�
��H0

��þ 1

CðaÞ sup
t2½0;f �

�Z t

0

ðt � .Þa�1

���Kð.;Hð.ÞÞ �Kð.; 0Þ
��þ

��Kð.; 0Þ
��
�
d.

�

�
��H0

��þ 1

CðaÞ sup
t2½0;f �

�Z t

0

ðt � .Þa�1

���Kð.;Hð.ÞÞ �Kð.; 0Þ
��
l
þ
��Kð.; 0Þ

��
l

�
d.

�

�
��H0

��þ
xkHkl þ A

CðaÞ sup
t2½0;f �

�Z t

0

ðt � .Þa�1d.

�

�
��H0

��þ xZ þ A

CðaÞ sup
t2½0;f �

�Z t

0

ðt � .Þa�1d.

�

¼
��H0

��þ xZ þ A

CðaÞ f a

¼
��H0

��þ NðxZ þ AÞ
�Z

Therefore GH 	 QZ . Hence G is a self-map. Now we claim

that G is a contraction. Consider H and bH 2 l satisfy (4).

From Theorem 4.2 we get,

Fig. 3 Schematic Diagram for

the Optimal Control Dynamics

of Disease
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��GH� G bH
��
l
¼

sup
t2½0;f �

���GHðtÞ � G bHðtÞ
��
�

¼ 1

CðaÞ sup
t2½0;f �

�Z t

0

ðt � .Þa�1
��Kð.;Hð.ÞÞ �Kð.; bHð.ÞÞ

��d.
�

� x
CðaÞ sup

t2½0;f �

�Z t

0

ðt � .Þa�1
��Hð.Þ � bHð.Þ

��d.
�

�Nx
��Hð.Þ � bHð.Þ

��
l

Thus if Nx\1 then G is a contraction mapping, then by the

principle of Banach contraction mapping, G has a unique

fixed point on [0, f] which is solution of (3). From El-

Sayed (2010) the solution is Uniformly Lyapunov stable.h

Optimal control

Motivated by the work of Baba and Bilgehan (2021),

research has utilized fractional-order mathematical models

with optimal control strategies to understand and mitigate

the spread of infectious diseases. These studies emphasize

the effectiveness of combining preventive measures, such

as awareness campaigns, and treatment protocols to reduce

disease transmission and improve public health outcomes.

We enhance our model in this part by including four time-

dependent control measures, namely c1; c2; c3 and c4. Let
us define a control function c ¼ ðc1; c2; c3; c4Þ, where c1 is

the control for the variation in the behaviour of the sus-

ceptible and exposed population by following all health

care measures and suggestions. c2 refers to the application

of all pretreatments to an infected individual, whether

exposed or latent, c3 is a control feature that increases the

potency of treatment for both symptomatic and

asymptomatic patients and c4 is the control for the variation
in the behaviour of hospitalized class who gets extra

attention and care. The model’s optimal control dynamics

is depicted in the diagram below (see Fig. 3).

c
t0
Da

t TSðtÞ ¼A� ð1� c2ÞpTSðtÞ
�
TIðtÞ

þ jTAðtÞ
�
þ mTEðtÞ � ð#þ c1ÞTSðtÞ

c
t0
Da

t TEðtÞ ¼ð1� c2ÞpTSðtÞ
�
TIðtÞ

þ jTAðtÞ
�
� ðrþ mþ #þ c1ÞTEðtÞ

c
t0
Da

t TIðtÞ ¼grTEðtÞ � ðw1 þ #þ #1

þ n1 þ c3ÞTIðtÞ
c
t0
Da

t TAðtÞ ¼ð1� gÞrTEðtÞ � ðw2 þ #þ #2 þ n2 þ c3ÞTAðtÞ
c
t0
Da

t THðtÞ ¼n1TIðtÞ þ n2TAðtÞ � ðw3 þ #þ c4ÞTHðtÞ
c
t0
Da

t TRðtÞ ¼ðw1 þ c3ÞTIðtÞ þ ðw2 þ c3ÞTAðtÞ
þ c1TSðtÞ þ c1TEðtÞ þ ðw3 þ c4ÞTHðtÞ � #TRðtÞ

ð7Þ

To analyse the state model (7), the optimal control problem

(OCP) is established along-with the set of acceptable con-

trol function

- ¼
�
ðc1; c2; c3; c4Þjci : ½0; tf �

! ½0;1Þ Lebesgue measurable, i ¼ 1; 2; 3; 4
�

. Then we define an objective functional,

J ðc1; c2; c3; c4Þ ¼
Z tf

0

�
C1TEðtÞ þ C2TIðtÞ þ C3TAðtÞ

þ 1

2

�
c1c

2
1 þ c2c

2
2 þ c3c

2
3 þ c4c

2
4

��
dt

ð8Þ

where the positive weights Ci : i ¼ 1; 2; 3, and ci : i ¼
1; 2; 3; 4 are used to balance the control factors. Our goal is

to reduce the infected human populations at the cost of

Fig. 4 Dynamical behaviour of

susceptible class at various

fractional order of a
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reducing control c1; c2; c3; c4: Consequently, we find an

optimal control cH1 ; c
H

2 ; c
H

3 ; c
H

4 , such that

J ðcH1 ; cH2 ; cH3 ; cH4 Þ ¼ min
c1;c2;c3;c4�

J ðc1; c2; c3; c4Þjc1; c2; c3; c4 2 -

� ð9Þ

The necessary conditions that must be satisfied by an

optimal control can be derived from the Pontryagin’s

Minimum Principle (PMP). This principle converts (7) and

(3) into a problem of point-wise minimizing a Hamiltonian

M corresponds to ðc1; c2; c3; c4Þ stated as follows:

M ¼ C1TE þ C2TI þ C3TA

þ 1

2

�
c1c

2
1 þ c2c

2
2 þ c3c

2
3

þ c4c
2
4

�
þ fTS

�
A� ð1� c2ÞpTSðtÞ

�
TIðtÞ þ jTAðtÞ

�

þ mTEðtÞ � ð#þ c1ÞTSðtÞ
�
þ fTE

�
ð1� c2ÞpTSðtÞ

�
TIðtÞ

þ jTAðtÞ
�
� ðrþ mþ #þ c1ÞTEðtÞ

�

þ fTI

�
grTEðtÞ � ðw1 þ #þ #1

þ n1 þ c3ÞTIðtÞ
�

þ fTA

�
ð1� gÞrTEðtÞ � ðw2 þ #þ #2 þ n2 þ c3ÞTAðtÞ

�

þ fTH

�
n1TIðtÞ þ n2TAðtÞ � ðw3 þ #

þ c4ÞTHðtÞ
�
þ fTR

�
ðw1 þ c3ÞTIðtÞ þ ðw2 þ c3ÞTAðtÞ þ c1TSðtÞ

þ c1TEðtÞ þ ðw3 þ c4ÞTHðtÞ � #TRðtÞ
�

Where, fTS ; fTE ; fTI ; fTA ; fTH and fTR are adjoint variables or

co-state variables

oM

oTS
¼ fTS

�
ð1� c2Þp

�
TIðtÞ

þ jTAðtÞ
�
þ #þ c1

�
� fTE

�
ð1� c2Þp

�
TIðtÞ þ jTAðtÞ

�
�
� fTRc1

oM

oTE
¼ �C1 � fTSmþ fTEðrþ mþ #þ c1Þ

� fTIgr� fTAð1� gÞr� fTRc1
oM

oTI
¼ �C2 þ fTSð1� c2ÞpTS

� fTEð1� c2ÞpTS þ fTI ðw1 þ #þ #1

þ n1 þ c3Þ � n1fTH � ðw1 þ c3ÞfTR
oM

oTA
¼ �C3 þ fTSð1� c2Þp

jTS � fTEð1� c2ÞpjTS þ fTA
ðw2 þ #þ #2 þ n2 þ c3Þ � n2fTH � ðw2 þ c3ÞfTR
oM

oTH
¼ fTH ðw3 þ #þ c4Þ

� fTRðw3 þ c4Þ
oM

oTR
¼ fTR#

ð10Þ

The transversality conditions are

fTSðtf Þ ¼ fTEðtf Þ ¼ fTIðtf Þ ¼ fTAðtf Þ ¼ fTHðtf Þ ¼ fTRðtf Þ ¼ 0

. On the interior of the control set, where

0\ci\1; for i ¼ 1; 2; 3; 4:

oM

oc1
¼ c1c1 � fTSTS � fTETE þ fTRTS þ fTRTE ¼ 0

oM

oc2
¼ c2c2 þ fTSpTSðTI þ jTAÞ � fTEpTSðTI þ jTAÞ ¼ 0

oM

oc3
¼ c3c3 � fTATA � fTITI þ fTRTI þ fTRTA ¼ 0

oM

oc4
¼ c4c4 � fTHTH þ fTRTH ¼ 0

From where,

c1 ¼
TSðfTS � fTRÞ þ TEðfTE � fTRÞ

c1

c2 ¼
pTSðTI þ jTAÞðfTE � fTSÞ

c2

c3 ¼
TAðfTA � fTRÞ þ TIðfTI � fTRÞ

c3

c4 ¼
THðfTH � fTRÞ

c4

Theorem 5.1 The control parameters ðcH1 ; cH2 ; cH3 ; cH4 Þ, that
minimizes J ðc1; c2; c3; c4Þ over - are given by:
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cH1 ¼ max

�
0;min



1;
TSðfTS � fTRÞ þ TEðfTE � fTRÞ

c1

��

cH2 ¼ max

�
0;min



1;
pTSðTI þ jTAÞðfTE � fTSÞ

c2

��

cH3 ¼ max

�
0;min



1;
TAðfTA � fTRÞ þ TIðfTI � fTRÞ

c3

�
�

cH4 ¼ max

�
0;min



1;
THðfTH � fTRÞ

c4

��

ð11Þ

where fTS ; fTE ; fTI ; fTA and fTR are adjoint variables.

Transversality conditions are

fTSðtf Þ ¼ fTEðtf Þ ¼ fTIðtf Þ ¼ fTAðtf Þ ¼ fTRðtf Þ ¼ 0.

cH1 ¼
0 if c1 � 0

c1 if 0\c1\1

1 if c1 � 1

8
><

>:
; cH2 ¼

0 if c2 � 0

c2 if 0\c2\1

1 if c2 � 1

8
><

>:

cH3 ¼
0 if c3 � 0

c3 if 0\c3\1

1 if c3 � 1

8
><

>:
; cH4 ¼

0 if c3 � 0

c4 if 0\c4\1

1 if c4 � 1

8
><

>:

Proof The existence of an optimal solution with the cor-

responding optimal control result can be derived from the

convexity of integrand of J corresponds to control c1; c2
and c3, a priori boundedness of the state solutions, and the

Lipschitz property of the state system corresponds to the

state variables. Using PMP,

c
t0
Da

t fTS ¼
oM

oTS
; c
t0
Da

t fTE

¼ oM

oTE
; c
t0
Da

t fTI ¼
oM

oTI
; c
t0
Da

t fTA ¼ oM

oTA
;

c
t0
Da

t fTH ¼ oM

oTH
; c
t0
Da

t fTR ¼
oM

oTR
;

ð12Þ

With fTSðtf Þ ¼ fTEðtf Þ ¼ fTIðtf Þ ¼ fTAðtf Þ ¼ fTHðtf Þ ¼ fTRðtf Þ ¼ 0.

The optimality conditions is derived by differentiating

Hamiltonian M corresponds to the control variables c1; c2
and c3,

oM

oc1
¼ 0;

oM

oc2
¼ 0;

oM

oc3
¼ 0;

oM

oc4
¼ 0 ð13Þ

The adjoint system (10) and transversality conditions is

derived by solving (11), whereas optimal control pair (12)

is followed by optimality condition (13). h

Numerical algorithm and discussion

We must assess approximate solutions of the model (3)

under CFOD in this section of the article. The numerical

simulations are then obtained using the described method.

To do this, we use the CFOD to create a numerical tech-

nique for simulating our model (3). The fractional-order

differential equations in this study are approximated using

the Modified Euler’s Method (MEM). This approach was

selected because of its effectiveness in handling fractional-

order systems and its computing efficiency. When it comes

to capturing the long-term memory effects that are typical

of fractional-order models, MEM is very helpful.

Fig. 5 Dynamical behaviour of

exposed class at various

fractional order of a
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General algorithm

For our examined model (3), we expand Euler’s numerical

technique. The above-mentioned model may be written as

follows:

c
t0
Da

t TSðtÞ ¼ WðTS; TE; TI ; TA; TH ; TRÞ
¼ A� pTSðtÞ

�
TIðtÞ þ jTAðtÞ

�
þ mTEðtÞ � #TSðtÞ

c
t0
Da

t TEðtÞ ¼ WðTS; TE; TI ; TA; TH ; TRÞ
¼ pTSðtÞ

�
TIðtÞ þ jTAðtÞ

�
� ðrþ mþ #ÞTEðtÞ

c
t0
Da

t TIðtÞ ¼ WðTS; TE; TI ;TA; TH ; TRÞ
¼ grTEðtÞ � ðw1 þ #þ #1 þ n1ÞTIðtÞ
c
t0
Da

t TAðtÞ ¼ WðTS; TE;TI ; TA; TH ; TRÞ
¼ ð1� gÞrTEðtÞ � ðw2 þ #þ #2 þ n2ÞTAðtÞ
c
t0
Da

t THðtÞ ¼
WðTS; TE; TI ; TA;TH ; TRÞ ¼ n1TIðtÞ þ n2TAðtÞ
�ðw3 þ #ÞTHðtÞ
c
t0
Da

t TRðtÞ
¼WðTS; TE; TI ; TA;TH ; TRÞ ¼ w1TIðtÞ
þ w2TAðtÞ þ w3THðtÞ � #TRðtÞ

ð14Þ

Let } be the solution interval for (14). We subdivide the

interval } into p subintervals ½tf ; tfþ1� with uniform width

h ¼ T

m
via using the nodes tf ¼ fh, for f ¼ 0; 1; . . .;m. Let

TSðtÞ; TEðtÞ; TIðtÞ; TAðtÞ; THðtÞ; TRðtÞ;ct0D
a
t TSðtÞ;ct0D

a
t TEðtÞ;ct0

Da
t TIðtÞ;ct0 Da

t TAðtÞ;ct0 D
a
t THðtÞ;ct0 D

a
t TRðtÞ, up to higher order

are continuous on }. To expression for t1 has become as

expressed below by doing MEM about t0¼0 in the con-

sidered model (14) provided value k for each t.

TSðt1Þ ¼TSðt0Þ þWðTSðt0Þ; TEðt0Þ; TIðt0Þ; TAðt0Þ;

THðt0Þ; TRðt0ÞÞ
ta

Cðaþ 1Þ þ
c
t0
D2a

t TSðtÞjt¼k

t2a

Cð2aþ 1Þ
TEðt1Þ ¼TEðt0Þ þWðTSðt0Þ; TEðt0Þ; TIðt0Þ; TAðt0Þ;

THðt0Þ; TRðt0ÞÞ
ta

Cðaþ 1Þ þ
c
t0
D2a

t TEðtÞjt¼k

t2a

Cð2aþ 1Þ
TIðt1Þ ¼TIðt0Þ þWðTSðt0Þ; TEðt0Þ; TIðt0Þ; TAðt0Þ;

THðt0Þ; TRðt0ÞÞ
ta

Cðaþ 1Þ þ
c
t0
D2a

t TIðtÞjt¼k

t2a

Cð2aþ 1Þ
TAðt1Þ ¼TAðt0Þ þWðTSðt0Þ; TEðt0Þ; TIðt0Þ; TAðt0Þ;

THðt0Þ; TRðt0ÞÞ
ta

Cðaþ 1Þ þ
c
t0
D2a

t TAðtÞjt¼k

t2a

Cð2aþ 1Þ
THðt1Þ ¼THðt0Þ þWðTSðt0Þ; TEðt0Þ; TIðt0Þ; TAðt0Þ;

THðt0Þ; TRðt0ÞÞ
ta

Cðaþ 1Þ þ
c
t0
D2a

t THðtÞjt¼k

t2a

Cð2aþ 1Þ
TRðt1Þ ¼TRðt0Þ þWðTSðt0Þ; TEðt0Þ; TIðt0Þ; TAðt0Þ; THðt0Þ; TRðt0ÞÞ

ta

Cðaþ 1Þ þ
c
t0
D2a

t TRðtÞjt¼k

t2a

Cð2aþ 1Þ
ð15Þ

If we choose a small enough step size h, ignore the second-

order term involving h2a and obtain the following results

from (15):
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Fig. 6 Dynamical behaviour of

symptomatic infected class at

various fractional order of a
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Fig. 7 Dynamical behaviour of

asymptomatic infected class at

various fractional order of a
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Fig. 8 Dynamical behaviour of

hospitalized class at various

fractional order of a
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Fig. 10 The contour plot of R0 in terms of m and w1
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Fig. 11 The contour plot of R0 in terms of g and w1
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Fig. 12 The contour plot of R0 in terms of r and w1
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Fig. 13 The contour plot of R0 in terms of p and w1
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Fig. 15 The contour plot of R0 in terms of g and w2
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TSðt1Þ ¼TSðt0Þ þWðTSðt0Þ; TEðt0Þ; TIðt0Þ;

TAðt0Þ; THðt0Þ; TRðt0ÞÞ
ta

Cðaþ 1Þ
TEðt1Þ ¼TEðt0Þ þWðTSðt0Þ; TEðt0Þ; TIðt0Þ;

TAðt0Þ; THðt0Þ; TRðt0ÞÞ
ta

Cðaþ 1Þ
TIðt1Þ ¼TIðt0Þ þWðTSðt0Þ; TEðt0Þ; TIðt0Þ;

TAðt0Þ; THðt0Þ; TRðt0ÞÞ
ta

Cðaþ 1Þ
TAðt1Þ ¼TAðt0Þ þWðTSðt0Þ; TEðt0Þ; TIðt0Þ;

TAðt0Þ; THðt0Þ; TRðt0ÞÞ
ta

Cðaþ 1Þ
THðt1Þ ¼THðt0Þ þWðTSðt0Þ; TEðt0Þ; TIðt0Þ;

TAðt0Þ; THðt0Þ; TRðt0ÞÞ
ta

Cðaþ 1Þ
TRðt1Þ ¼TRðt0Þ þWðTSðt0Þ; TEðt0Þ; TIðt0Þ;

TAðt0Þ; THðt0Þ; TRðt0ÞÞ
ta

Cðaþ 1Þ

ð16Þ

In the same way, a general formula is established at tfþ1 ¼
tf þ h as follows:
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Fig. 16 The contour plot of R0 in terms of r and w6
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Fig. 19 Impact of m on exposed class
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Fig. 20 Impact of m on symptomatic infected class

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

1400

1600

Time t (Days)

A
sy

m
pt

om
at

ic
 In

fe
ct

ed
 C

la
ss

� =0

 =0.2

�
�
 =0.4

� =0.6

� =0.8

� =1

Fig. 21 Impact of m on asymptomatic infected class
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Fig. 22 Impact on Strategy I in susceptible class
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Fig. 23 Impact on Strategy I in exposed class
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Fig. 24 Impact on Strategy I in symptomatic infected class
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Fig. 25 Impact on Strategy I in asymptomatic infected class
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Fig. 26 Impact on Strategy I in hospitalized class
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Fig. 27 Impact on Strategy I in recovered class
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Fig. 28 Impact on Strategy II in susceptible class
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Fig. 30 Impact on Strategy II in symptomatic infected class
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Fig. 31 Impact on Strategy II in asymptomatic infected class
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Fig. 32 Impact on Strategy II in hospitalized class
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Fig. 33 Impact on Strategy II in recovered class
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Fig. 34 Impact on Strategy III in susceptible class
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Fig. 35 Impact on Strategy III in exposed class
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Fig. 36 Impact on Strategy III in symptomatic infected class
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Fig. 37 Impact on Strategy III in asymptomatic infected class
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Fig. 38 Impact on Strategy III in hospitalized class
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Fig. 39 Impact on Strategy III in recovered class
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Fig. 40 Impact on Strategy IV in susceptible class
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Fig. 41 Impact on Strategy IV in exposed class
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Fig. 42 Impact on Strategy IV in symptomatic infected class
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Fig. 43 Impact on Strategy IV in asymptomatic infected class
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Fig. 44 Impact on Strategy IV in hospitalized class
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Fig. 45 Impact on Strategy IV in recovered class
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Fig. 46 Impact on Strategy V in susceptible class
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Fig. 47 Impact on Strategy V in exposed class
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Fig. 48 Impact on Strategy V in symptomatic infected class
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Fig. 49 Impact on Strategy V in asymptomatic infected class
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Fig. 50 Impact on Strategy V in hospitalized class
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Fig. 51 Impact on Strategy V in recovered class
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TSðtfþ1Þ ¼TSðtf Þ þWðTSðtf Þ; TEðtf Þ; TIðtf Þ;

TAðtf Þ; THðtf Þ; TRðtf ÞÞ
ta

Cðaþ 1Þ
TEðtfþ1Þ ¼TEðtf Þ þWðTSðtf Þ; TEðtf Þ; TIðtf Þ;

TAðtf Þ; THðtf Þ; TRðtf ÞÞ
ta

Cðaþ 1Þ
TIðtfþ1Þ ¼TIðtf Þ þWðTSðtf Þ; TEðtf Þ; TIðtf Þ;

TAðtf Þ; THðtf Þ; TRðtf ÞÞ
ta

Cðaþ 1Þ
TAðtfþ1Þ ¼TAðtf Þ þWðTSðtf Þ; TEðtf Þ; TIðtf Þ;

TAðtf Þ; THðtf Þ; TRðtf ÞÞ
ta

Cðaþ 1Þ
THðtfþ1Þ ¼THðtf Þ þWðTSðtf Þ; TEðtf Þ; TIðtf Þ;

TAðtf Þ; THðtf Þ; TRðtf ÞÞ
ta

Cðaþ 1Þ
TRðtfþ1Þ ¼TRðtf Þ þWðTSðtf Þ; TEðtf Þ; TIðtf Þ;

TAðtf Þ; THðtf Þ; TRðtf ÞÞ
ta

Cðaþ 1Þ

ð17Þ

where f ¼ 0; 1; . . .;m� 1

Numerical interpretation and analysis

The following diagram shows the numerical results for the

model in discussion. To achieve this, we employ the

numerical simulation scheme we have chosen. Let us give

some proper values to the parameters in the model they are:

A ¼ 100; p ¼ 0:0045; r ¼ 0:0001923; g ¼ 0:0080;w2 ¼
0:0414; # ¼ 0:000037563; #2 ¼ 0:0037563; n2 ¼ 0:0714;

n1 ¼ 0:05; #1 ¼ 0:0042310; w1 ¼ 0:36;w3 ¼ 0:05; m ¼
0:3563; j ¼ 0:0065 and the initial conditions are TSð0Þ ¼
2662194; TEð0Þ ¼ 50;TIð0Þ ¼ 20; TAð0Þ ¼ 30; THð0Þ ¼ 0;

TRð0Þ ¼ 0. Since this study does not focus on a specific

disease, the parameter values are chosen based on rea-

sonable assumptions to demonstrate the flexibility of the

model. These assumed values allow us to analyze the

model’s behavior under different conditions. The model is

designed to be adaptable, enabling researchers to adjust

parameters according to real-world data for specific dis-

eases in future studies.

Figures 4, 5, 6, 7, 8 and 9, show graphical representa-

tions for various values of a. In Figs. 4, 5, 6, 7, 8 and 9, we

use Matlab to create an algorithm to simulate the findings.

As a decreases, the system exhibits stronger memory

effects, leading to slower transitions between compart-

ments, which prolongs infection and recovery times.

Conversely, higher a results in a behavior closer to integer-

order models, where transitions occur more rapidly, lead-

ing to faster infection spread and recovery rates. These

results emphasize how fractional-order derivatives capture

realistic delays and memory effects in disease dynamics,

making them a valuable tool for infectious disease

modeling.

Interpretation of Contour Plots

Fig. 10, 11, 12, 13, 14, 15, 16 and Fig. 17 shows a contour

plot depicting the dynamics of R0 in terms of m; g; r; p;w1

and w2. Figures 10, 11, 12, 13 indicate how these variables

affect the recovery rate of symptomatic infected people

whereas 14 - Fig. 17 show the link between the rate of

recovery of asymptomatic infected people and m; g; r; p in

R0.

Impact of Precaution and natural Immunity

In this concept, precaution and natural immunity play a

significant role. We may also boost our immunity by

changing our diet behaviors and doing some yoga. So, as

illustrated in Figs. 18, 19, 20 and 21, we are determining

the efficacy of m in susceptible, exposed, symptomatic, and

asymptomatic infected classes. In order to reduce the

complexity we fix a ¼ 1.

Optimal control strategies

We define four separate control functions in our model. We

may create five possible techniques to reduce the infection

using these four controls, which are discussed below.

Strategy

I:

c1 [ 0; c2 ¼ c3 ¼ c4 ¼ 0: Implementing c1
and not implementing c2; c3; c4.

Strategy

II:

c2 [ 0; c1 ¼ c3 ¼ c4 ¼ 0: Implementing c2
and not implementing c1; c3; c4.

Strategy

III:

c3 [ 0; c1 ¼ c2 ¼ c4 ¼ 0: Implementing c3
and not implementing c1; c2; c4.

Strategy

IV:

c4 [ 0; c1 ¼ c2 ¼ c3 ¼ 0: Implementing c4
and not implementing c1; c2; c3.

Strategy

V:

c1 [ 0; c2 [ 0; c3 [ 0; c4 [ 0: Implementing

all control.

• Strategy I: c1 [ 0; c2 ¼ c3 ¼ c4 ¼ 0: Figs. 22, 23, 24,

25, 26 and 27 shows the impact of c1 in each

compartment. c1 consists of measures taken to prevent

those in the community who are uninfected yet

susceptible to the epidemic. These may include mea-

sures such as spreading awareness to the public about

the disease on how the disease is spread from person to

person, practices individuals have to follow to prevent

themselves from getting infected and continuous mon-

itoring of the susceptible class to identify symptoms of

Modeling Earth Systems and Environment          (2025) 11:229 Page 25 of 28   229 

123



infection through tools such as health checkups and lab

tests.

• Strategy II: c2 [ 0; c1 ¼ c3 ¼ c4 ¼ 0: Figs. 28, 29, 30,

31, 32 and 33 depicts the impact of c2 in each

compartment. c2 are the strategies adopted towards

those of the susceptible class who have been exposed to

the infection, to prevent further outbreak if they are

infected. This includes affirming through scientific

methods that the person is indeed infected after getting

exposed, suggesting practices to prevent further spread

from them such as self or institutional quarantines if the

disease is contagious or providing them with safe

environments where these individuals won’t come in

contact with the disease any more.

• Strategy III: c3 [ 0; c1 ¼ c2 ¼ c4 ¼ 0: Figs. 34, 35,

36, 37, 38 and 39 illustrates the impact of c3 in each

compartment. c3 are measures adopted towards infected

persons to prevent them from further spreading the

epidemic and also aiding them in getting cured. These

measures implies to those who are infected but are

asymptomatic or show mild symptoms which doesn’t

require specialised treatment at the moment. Control

measures such as contact tracing to identify those who

got exposed to their infection, continuous monitoring to

know if infected individuals are showing symptoms or

that their symptoms are getting worse are adopted.

• Strategy IV: c4 [ 0; c1 ¼ c2 ¼ c3 ¼ 0: Fig. 40, 41, 42,

43, 44 and 45 shows the impact of c4 in each

compartment. c4 are measures applied to those who

are infected but require hospital care specialised

treatment. The aim of this strategy is to do what’s

required to bring the disease under control and get them

cured with the help of hospital treatment.

• Strategy V: c1 [ 0; c2 [ 0 c3 [ 0 c4 [ 0: Figs. 46, 47,

48, 49, 50 and 51 shows the impact of combination of

all the controls together in each compartment.

Carefully observing the graphs, we understood that

strategy V has the highest impact in all the classes.

Strategies I and II do not have much impact in symptomatic

classes whereas strategy III has a novel impact in symp-

tomatic class. Strategy IV has greater impact in hospital-

ized and recovery classes. From these, it is understood that

each control has a vital role in all compartments. So we

used all the four controls in strategy V inorder to have the

benefits of all the four controls. Therefore, strategy V has

positive impact in all compartments contributing reduction

in infection class and hence establishes higher recovery

rate.

Conclusion and future directions

In this study, we developed and analyzed a fractional-order

mathematical model to enhance our understanding of

infectious disease dynamics. By incorporating Caputo

fractional-order derivatives (CFODs), the model offers a

more accurate depiction of disease transmission, account-

ing for memory effects and long-term dependencies often

neglected by traditional integer-order models. Through

nonlinear analysis, we established the feasibility and

boundedness of the solutions and computed the basic

reproductive number (R0) to evaluate disease persistence.

The existence and uniqueness of solutions were demon-

strated using fixed-point theory, ensuring the model’s

mathematical robustness. To validate our theoretical find-

ings, we applied the strong Euler numerical method to

approximate solutions and used Matlab-based simulations

to visualize disease dynamics. A sensitivity analysis was

conducted to assess the importance of the key parameters

identified in R0. Observing the results, we found that

Strategy V had the most significant impact across all

classes. Strategies I and II showed minimal effects on the

symptomatic classes, whereas Strategy III exhibited a

notable influence on the symptomatic group. Strategy IV

had a substantial impact on the hospitalized and recovery

classes. These findings indicate that each control strategy

plays a crucial role across different compartments. Con-

sequently, we combined all four controls into Strategy V,

leveraging the advantages of each, which led to a positive

impact across all compartments. This comprehensive

approach contributed to a reduction in the infected class

and an increase in the recovery rate, thus optimizing the

overall disease control strategy.

Future research will focus on extending this model by

incorporating real-world epidemiological data to validate

its predictive capabilities and improve its applicability to

specific infectious diseases. Additionally, we aim to con-

duct a bifurcation analysis to explore how changes in key

parameters influence the transition between disease-free

and endemic states. Another important direction is the

integration of optimal control strategies to design effective

intervention measures for disease mitigation. Furthermore,

comparing the fractional-order model with classical inte-

ger-order models will help highlight the advantages of

fractional derivatives in capturing realistic disease

dynamics. Lastly, we plan to investigate generalized frac-

tional operators, such as the Caputo-Fabrizio and Atan-

gana-Baleanu derivatives, to assess their impact on
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infectious disease modeling. These extensions will enhance

the model’s theoretical foundation and provide practical

insights for epidemic control and public health decision-

making.
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