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This paper investigates the bifurcation problem in a fractional-order delayed food chain model
that incorporates a fear effect. We observe that the fractional order significantly impacts the
delayed system, influencing its stability in the presence of fear. Both the fractional order and
the fear effect play crucial roles in determining the system’s stability. Furthermore, we observe
stability switching induced by the fear effect while keeping the delay fixed. We identify the
stability condition of the proposed model and precisely establish bifurcation points by utilizing
delay as a bifurcation parameter. The system exhibits robust stability performance with smaller
control parameters, and Hopf bifurcation arises as the control parameter surpasses a critical
value. Additionally, through theoretical analysis and numerical simulations, we investigate the
effects of fractional order, the fear effect, and time delay on the system’s stability.
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1. Introduction

The mathematical representation of predator–prey
dynamics is a cornerstone in theoretical ecology and
biomathematics, reflecting the intricate interplay
between species in ecosystems [Brauer & Castillo-
Chavez, 2012; Britton, 2003]. This relationship not
only underpins the structure of food chains, webs,
and biochemical networks but also serves as a
vital tool for understanding population dynamics,

disease outbreaks, and control strategies [Hethcote,
2000; Neuhauser, 2001]. Researchers have exten-
sively studied the impact of fear within predator–
prey models in recent literature, exploring its effects
on population dynamics and stability [Vinoth et al.,
2021b; Vinoth et al., 2023; Kumbhakar et al.,
2024]. The prey reproduction process is affected by
direct predation and also, due to the behavior and
physiology of prey. These forms of behavioral and
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physiological modification are related to the fear of
prey by its predators, and it is long-lasting com-
pared to direct predation. For instance, wolves in
the Greater Yellowstone Ecosystem have an impact
on elks’ reproductive physiology [Creel et al., 2007].
Additionally, the scared prey species instinctively
forage less, which slows their growth rate and forces
them to fall back to survival strategies like hunger.
Birds have anti-predator defenses in response to the
sound of predators [Creel et al., 2007; Cresswell,
2011]. Further, Kumar and Kumari [2020] delved
into the influence of multiple fear effects within
food chain models, uncovering a range of complex
dynamics resulting from the presence or absence of
fear.

In nature, the effect of one species on another
is not always immediate. For instance, the prey
is not immediately available after birth; it takes
time to mature (maturation delay). Additionally,
when a predator eats prey, the conversion of energy
and its influence on the increase of predator pop-
ulation take time (gestation delay) [Vinoth et al.,
2021a; Dubey & Kumar, 2019]. Prey–predator mod-
els with time delays have seen a substantial increase
in interest during the last three decades, primarily
due to their propensity to induce bifurcation phe-
nomena and facilitate multiple stability-switching
behaviors. A compelling example of this lies in
the stability and Hopf bifurcation analysis con-
ducted on stage-structured prey–predator models
with gestation delays, as demonstrated by [Bandy-
opadhyay & Banerjee, 2006]. Furthermore, Upad-
hyay and Agrawal [2016] introduced gestation time
lag into a predator–prey model featuring a general-
ized predator, alongside incorporating the interac-
tion term in the Beddington–DeAngelis functional
form. Their findings revealed that the model under
consideration exhibited Hopf bifurcation, particu-
larly for larger values of time delay, with stabil-
ity analysis facilitated through the center manifold
theorem. Similar investigations into the dynamics
of predator–prey systems under time delay condi-
tions have been undertaken in other studies [Xiao &
Chen, 2001; Xu, 2011; Kuang, 1993; Islam et al.,
2023]. Consequently, delving into the impact of time
delays on these models is crucial for accurately
capturing their dynamical properties, given their
reliance on past system information. Many of these
investigations have centered around examining the
existence and stability of equilibrium points within
integer-order predator–prey models.

In natural ecosystems, prey species often
require time to assess the risk of predation after
detecting chemical or vocal cues [Ripple & Beschta,
2004; Pal et al., 2019; Laundré et al., 2001;
Pal et al., 2024]. Unlike immediate reactions,
this assessment process involves a delay before
the prey’s fear of predation affects its behavior.
Therefore, it is essential to modify the predator–
prey model to accommodate this fear response
delay. This adjustment acknowledges the temporal
dynamics inherent in predator–prey interactions,
where the fear response of prey species evolves grad-
ually over time rather than immediately impact-
ing population dynamics [Panday et al., 2020].
By incorporating this delay, we aim to depict the
nuanced dynamics of predator–prey relationships
more accurately, reflecting the complex interplay
between perception, assessment, and response to
predation risk in natural ecosystems.

Fractional calculus is a widely used technique
in many different domains, including neural net-
works, illness treatment, and optimum design. It
has proven to be particularly effective in charac-
terizing the memory and heredity features of dif-
ferent materials and processes [Laskin, 2000; Fan
et al., 2018; Naik et al., 2020]. Elsadany and
Matouk [2015] earlier highlighted the close relation-
ship between fractional-order differential equations
and fractals. Natural systems with memory, which
are found in the majority of biological systems, are
connected to fractional-order equations [Du et al.,
2013]. Furthermore, fractals, which are abundant in
biological systems, are strongly connected to them.
Fractional-time-order derivatives have been shown
to have enormous relevance in practical mathe-
matics in recent years [Rasooli Berardehi et al.,
2023; Taheri et al., 2023; Roohi et al., 2023a]. With
time delays, fractional-order predator–prey models
have gained substantial interest from researchers
in recent years, and several important results have
been made in this area. In an effort to contribute
to the expanding research in this field, Zhao et al.
[2021] examined the effects of numerous time delays
in a fractional-order predator model. The study of
synchronization of fractional-order neural networks
with time delay using dynamic-free adaptive sliding
mode control has been investigated by [Roohi et al.,
2023b]. Furthermore, some recent literature studies
about similar usage of the problems of fractional-
order dynamics and about Caputo-type fractional-
order derivatives for similar scientific problem can
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be found in multiple works such as [Wang et al.,
2022; Al-Raeei, 2021; Sabarathinam et al., 2023].
This trend underscores the recognition of frac-
tional calculus as a valuable framework for under-
standing complex dynamics in ecological systems,
offering insights that extend beyond traditional
integer-order models.

In [Panja, 2019; Das & Samanta, 2020; Ali-
dousti & Mostafavi Ghahfarokhi, 2019; Qi & Zhao,
2022; Cui & Zhao, 2024; Huang et al., 2023], lim-
ited research has been dedicated to exploring the
dynamics of delayed fractional-order food chain
models incorporating fear and time delay. In this
study, we extend the investigation to incorporate
fractional order and time delay into an integer-
order food chain model previously examined by
[Kumar & Kumari, 2020]. The existing literature
lacks precision regarding the dynamics of such sys-
tems. It is more realistic to analyze the dynamics
of delayed food-chain model with time delay, con-
sidering the innate biological distinctions between
prey and predator populations. Specifically, there
is still much to learn about bifurcation events in
fractional-order predator–prey systems with tempo-
ral delays. Therefore, studying the dynamic behav-
iors of fractional-order systems with different delays
is essential. The time delay considered in our study
is similar to that of delay considered in the model
in [Panday et al., 2020]. In the following ways, our
model differs from the model examined in earlier
research. The chaotic food chain model describes
the interaction of prey, specialist predators and
top specialist predators studied by [Rai & Upad-
hyay, 2004]. Kumar and Kumari [2020] extended
the model studied by [Rai & Upadhyay, 2004] in
the presence of fear effect in both prey and special-
ist predators. The predator–prey model with fear
in the prey growth term and time delay in the
fear term have been explored in [Panday et al.,
2020]. The predator prey model consists of imma-
ture and mature predators with time delay studied
by [Huang et al., 2018]. They considered feedback
time delay and time delay in virtue of the gestation
of the mature predator.

Motivated by these considerations, we extended
the model studied in [Kumar & Kumari, 2020] with
time delay similar to that of in [Panday et al., 2020]
and explored stability, bifurcation in the fractional-
order dynamics. This work’s main contributions are
summed up as follows: (1) Examining bifurcation
phenomena in a fractional-order food chain model

that takes fear into account. (2) Using time delay as
a bifurcation parameter, deriving bifurcation con-
ditions. (3) Putting forward a framework for the
investigation of two fear effects with time delay in
the fractional-order food chain model.

This paper is arranged as follows. Section 2
presents definitions and the construction of the
model. The stability analysis of all potential equilib-
rium points is discussed in Sec. 3. Section 4 investi-
gates the conditions for the existence of Hopf bifur-
cation in the fractional-order delayed food chain
model. Numerical examples illustrating the intri-
cate dynamics of the model are given in Sec. 5.
Finally, Sec. 6 concludes by highlighting the ecolog-
ical significance of the analytical findings.

2. Preliminaries

This section introduces fundamental definitions and
establishes the formulation of the fractional-order
delayed food chain model considered in our study.

Definition 2.1. The Caputo fractional-order
derivative is given by

Dαf(t) =
1

Γ(κ− α)

∫ t

0
(t− λ)κ−α−1f (κ)(α)dt,

where κ − 1 < α ≤ κ ∈ Z+, Γ(·) is the Gamma
function. Γ(λ) =

∫∞
0 tλ−1e−tdt.

Using Laplace transform, we provide

L{Dαf(t) : λ} = λαF (λ)−
κ−1∑
j=0

λα−i−1f (j)(0),

κ− 1 < α ≤ κ ∈ Z+.

If f j = 0, j = 1, 2, . . . , n, then L{Dαf(t);λ} =
λαF (λ).

Lemma 1. The linear fractional-order systems
involving multiple variables are expressed as

Dα1Y1(t) = m11Y1(t) +m12Y2(t)

+ · · ·+m1nYn(t),

Dα2Y2(t) = m21Y1(t) +m22Y2(t)

+ · · ·+m2nYn(t),

...

DαnYn(t) = mn1Y1(t) +mn2Y2(t)

+ · · ·+mnnYn(t),

(1)
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where αi ∈ (0, 2] (i = 1, 2, . . . , n). If αi is the
lowest common multiple of the denominators ξj of
εi, where αi = εi

ξi
, (εi, ξi) = 1, εi, ξi ∈ Z+, for

i = 1, 2, . . . , n. It is given by

∆(λ) =


λα1 −m11 −m12 · · · −m1n

−m21 λα2 −m22 · · · −m2n

...
...

. . .
...

−mn1 −mn2 · · · λαn −mnn

.
(2)

Thus, in the Lyapunov sense, if all roots λ of the
equation det(∆(λ)) = 0 satisfy |arg(λ)| > αiπ/2,
then the zero solution of model (1) is globally
asymptotically stable.

2.1. Problem formulation

The food chain model, as explored in [Kumar &
Kumari, 2020], elucidates the dynamic interplay
among prey, middle predators, and top predators,
incorporating fear responses in both prey and mid-
dle predators. This model is represented as follows:

dx

dt
= r0x

1

1 + ρ1y
− δx− β

K
x2 − a1xy

b1 + x
,

dy

dt
=
c1a1xy

b1 + x

1

1 + ρ2z
− a2yz

b2 + y
− d1y,

dz

dt
=
c2a2yz

b2 + y
− d2z.

(3)

Here, x, y, and z denote the populations of prey,
middle predators, and top predators at time t,
respectively. In the absence of middle and top
predators, prey growth follows logistic growth
dynamics governed by dx

dt = rx(1 − x
K ), where

r = r0 − δ represents the intrinsic growth rate, and
r0, δ, K, and β denote the growth rate, death rate,
carrying capacity of the prey and death rate due to
the intraspecific competition, respectively. Conver-
sion rates of prey to predator for species y and z
are denoted by c1 and c2, while the death rates for
species y and z are represented by d1 and d2, respec-
tively. The terms a1xy

b1+x
and a2xy

b2+x
describe the Holling

type II interactions between species, where ai and
bi (i = 1, 2) parameterize the saturating functional
response. Specifically, bi represents the prey pop-
ulation level at which the predation rate per unit
prey is half of its maximum value. The terms 1

1+ρ1y

and 1
1+ρ2z

account for fear effects, with ρi (i = 1, 2)

denoting the strength of fear in prey and middle
predators, respectively. For further details regard-
ing the biological assumptions underlying the con-
sideration of fear effects, see Appendix A.

To incorporate fractional-order dynamics, we
extend model (3) proposed by [Kumar & Kumari,
2020] by employing Caputo-type fractional-order
derivatives instead of normal integer-order deriva-
tives. The resulting model is expressed as

C
0D

α1
T x =

r0x

1 + ρ1y(t− τ)
− δx− β

K
x2 − a1xy

b1 + x
,

C
0D

α2
T y =

c1a1xy

b1 + x

1

1 + ρ2z
− a2yz

b2 + y
− d1y,

C
0D

α3
T z =

c2a2yz

b2 + y
− d2z.

(4)

Here, the initial conditions x(0) = ψ1(t) > 0,
y(0) = ψ2(t) > 0, and z(0) = ψ3(t) > 0 are defined
for t ∈ [−τ, 0], where ψ(t) is a smooth function. The
notation C

0D
αi
t (for i = 1, 2, 3) represents the Caputo

fractional derivative with fractional order αi (0 <
αi < 1). For simplicity, we denote C

0D
αi
T = Dαi and

σ = β
K for further analysis. The parameter τ signi-

fies the time lag involved in prey assessing the risk
of predation following the detection of chemical or
audio cues, introducing a delayed response between
prey population increase and predator threat per-
ception. The model accounts for this delayed cost
of fear [Kumar & Kumari, 2020]. The state space
of model (4) is constrained to the positive cone
R3
+ = (x, y, z) ∈ R : x ≥ 0, y ≥ 0, z ≥ 0.

3. Existence of Equilibria

In this section, we focus on the existence and sta-
bility analysis of the interior equilibrium point of
model (4). Since, the time delay and fractional
order does not influence the number and values of
equilibria, the equilibria for model (4) is similar
to the model studied in [Kumar & Kumari, 2020],
which is calculated by solving the following nonlin-
ear equations:

r0
1 + ρ1y∗

− δ − σx∗ − a1y
∗

b1 + x∗
= 0,

c1a1x
∗

b1 + x∗
1

1 + ρ2z∗
− a2z

∗

b2 + y∗
− d1 = 0,

c2a2y
∗

b2 + y∗
− d2 = 0.

(5)
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Let us assume E∗(x∗, y∗, z∗) be the arbitrary coex-
isting equilibrium points for model (4), which
denotes the coexistence of all three species. Here,
y∗ = b2d2

a2c2−d2 and x∗ is obtained by solving the fol-
lowing equation:

σx∗2 +

(
σb1 −

r0
1 + ρ1y∗

+ δ

)
x∗

+

(
δ − r0

1 + ρ1y∗

)
b1 = 0 (6)

and z∗ is obtained by solving

a2ρ2
b+ y∗

z∗2 +

(
a2

b+ y∗
+ d1ρ2

)
z∗

+

(
d1 −

c1a1x
∗

b1 + x∗

)
= 0. (7)

From the aforementioned equations, it is evident
that the following requirements must be met for the
coexistence equilibrium point to exist:

(H1) a2c2 > d2, x∗ >
d1b1

c1a1 − d1
,

δ <
r0

1 + ρ1y∗
and σb1 + δ >

r0
1 + ρ1y∗

.

The roots of the equations are difficult to determine
analytically, hence in the explanation that follows,
we determine numerically in the numerical section.

4. Stability and Hopf Bifurcation

In this section, we deliver the detailed analytical
expressions needed to study the stability and Hopf
bifurcation analysis for model (4). In an integer-
order system, the limit set of a trajectory is a solu-
tion; but, in a fractional-order case, it could not be
[Tavazoei et al., 2009]. Tavazoei [2010] and Tava-
zoei and Haeri [2009], respectively, claimed that
fractional-order systems do not have periodic orbits
and gave an example of a system whose solutions
are nonperiodic but converge to periodic signals.
According to [Abdelouahab et al., 2012], the Hopf
bifurcation produces a limit cycle that draws in
nearby solutions rather than being a solution of a
fractional system. For similar studies on discussions
about periodicity in fractional-order systems, see
[Podlubny, 1998; Yazdani & Salarieh, 2011; Danca,
2021]. Similarly, we are concerned with the trajec-
tory’s end state in this study, the limit cycle that
emerges through a Hopf bifurcation draws in nearby
solutions rather than being a solution of a frac-
tional system. The linearized model for model (4)

is obtained by giving a small perturbation to the
coexisting equilibrium point E∗ and keeping the
perturbation variable as same for our convenience.
Making use of the transformation x(t) = x(t)− x∗,
y(t) = y(t)−y∗, and z(t) = z(t)−z∗, then model (4)
becomes

Dα1x(t) = p11x(t) + p12y(t) + p15y(t− τ),

Dα2y(t) = p21x(t) + p22y(t) + p23z(t),

Dα3z(t) = p32y(t),

(8)

which is of the form

DαiX = AX(t) + BX (t− τ), i = 1, 2, 3,

where

A =

p11 p12 0

p21 p22 p23

0 p32 0

, B =

0 p15 0

0 0 0

0 0 0

,
(9)

where

p11 = −σx∗ +
a1b1y

∗

(b1 + x∗)2
, p12 = − a1x

∗

b1 + x∗
,

p15 = − r0ρ1x
∗

(1 + ρ1y∗)2
, p21 =

a1b1c1y
∗

(b1 + x∗)2(1 + ρ2z∗)
,

p23 = − a2y
∗

b2 + y∗
− a1c1ρ2x

∗y∗

(1 + ρ2z∗)2(b1 + x∗)
,

p22 =
a2y
∗z∗

(b2 + y∗)2
, p32 =

a2b2c2z
∗

(b2 + y∗)2
.

Suppose, for the incommensurate fractional-
order model (8), the characteristic equation is
det(∆(λ)) = 0, where ∆(λ) = λαiI −A−Be−λτ .

Therefore, the characteristic equation is given
by

det(λαiI −A−Be−λτ ) = 0, (10)

which is difficult to solve since it is a fractional-order
equation. The characteristic polynomial is given by

M1(λ) +M2(λ)e−λτ = 0, (11)

where

M1(λ) = λα1+α2+α3 − p11λα2+α3 − p22λα1+α3

− p12p21λα3 + p11p22λ
α3 − p23p32λα1

+ p11p23p32,

M2(λ) = −p15p21λα3 .
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Let us take τ = 0, Eq. (11) becomes

λα1+α2+α3 − p11λα2+α3 − p22λα1+α3

− p12p21λα3 − p15p21λα3 + p11p22λ
α3

− p23p32λα1 + p11p23p32 = 0.

If all the λi in (12) obeys |arg(λi)| > απ
2 , thus,

employing Lemma 1, we can quickly determine
that E∗ of model (4) is asymptotically stable when
τ = 0.

We have the following assumption:

(H2)
u1v1 + u2v2
v21 + v22

6= 0,

in order to present our main results, where
u1, u2, v1, v2 are described in Eq. (19).

For the commensurate fractional-order,
model (4) is considered by taking α1 = α2 =
α3 = α. Therefore, the characteristic polynomial is
given by

M3(λ) +M4(λ)e−λτ = 0, (12)

where

M1(λ) = λ3α − p11λ2α − p22λ2α − p12p21λα

+ p11p22λ
α − p23p32λα + p11p23p32,

M2(λ) = −p15p21λα.

These derivations for finding the characteristic
equation are similar to the calculation for all types
of three-dimensional fractional-order models with
one time delay.

Theorem 1. Model (4) is asymptotically stable if
and only if the real parts of the roots to the charac-
teristic equation (12) are negative.

Label M r
j ,M

i
j as the real and imaginary parts

Mj(s)(j − 1, 2). If λ = ω(cos π2 + i sin π
2 ), ω > 0 is

a purely imaginary root of the characteristic equa-
tion, then we have{

M r
2 cosωτ +M i

2 sinωτ = −M r
1,

M i
2 cosωτ −M r

2 sinωτ = −M i
1.

(13)

From the above equation, we have
cosωτ = −g1(ω)

g3(ω)
,

sinωτ = −g2(ω)

g3(ω)
,

where

g1(ω) = M r
1M

r
2 +M i

1M
i
2,

g2(ω) = M r
1M

i
2 +M r

2M
i
1,

g3(ω) = (M r
2)

2 + (M i
2)

2.

It follows that

g21(ω) + g22(ω)− g23(ω) = 0. (14)

In terms of cosωτ = −g1(ω)
g3(ω)

, we get

τ
(k)
0 =

1

ω0

[
arccos

(
−g1(ω0)

g3(ω0)

)
+ 2kπ

]
, (15)

where k = 0, 1, 2, . . . , and ω0 is the positive root of
Eq. (14). Define the bifurcation point

τ0 = min{τ (k)0 }, k = 0, 1, 2, . . . , (16)

where τ0 is defined earlier.
Similarly, we can prove this for commensurate

fractional order.

Lemma 2. Let λ(τ) = ξ(τ) + iω1(τ) be the root of
Eq. (11) near τ = τj satisfying ξ(τj) = 0, ω(τj) =
ω0, then the transversality condition to hold is given
as follows:

<
[
dλ

dτ

]
(ω=ω0,τ=τ0)

6= 0. (17)

Proof. On differentiating Eq. (11), we have

U ′1(λ)
dλ

dτ
+ U ′2(λ)e−λτ

dλ

dτ

+U2(λ)e−λτ
(
−λ− τ dλ

dτ

)
= 0.

As a result,

dλ

dτ
=
u(λ)

v(λ)
, (18)

where

u(λ) = λU2(λ)e−λτ ,

v(λ) = U ′1(λ) + [U ′2(λ)− τU2(λ)]e−λτ .

Let u1, u2 be the real and imaginary parts of u(λ),
respectively. v1, v2 are the real and imaginary parts
of v(λ), respectively.

From Eq. (18), we get

<
[
dλ

dτ

]∣∣∣∣
(ω=ω0,τ=τ0)

=
u1v1 + u2v2
v21 + v22

, (19)
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where

u1 = ω0(U
r
2 sinω0τ0 − U i2 cosω0τ0),

u2 = ω0(U
r
2 cosω0τ0 + U i2 sinω0τ0),

v1 = U ′r1 + (U ′r2 − τ0U r2) cosω0τ0

+ (U ′i2 − τ0U i2) sinω0τ0,

v2 = U ′i1 + (U ′i2 − τ0U i2) cosω0τ0

+ (U ′r2 − τ0U r2) sinω0τ0. �

Upon assuming that (H2) holds, then the
model (4) satisfies the transversality condition (17).
Using Lemmas 1 and 2, we can conclude our results
in the following theorem:

Theorem 2. Using (H1) and (H2), state the fol-
lowing results:

• If E∗ is asymptotically stable for τ = 0, then E∗

of the fractional-order model (4) is asymptotically
stable when τ = [0, τ0).

• If E∗ is asymptotically stable for τ = 0, then
model (4) exhibits a Hopf bifurcation near E∗

when τ = τ0, i.e. the branch of periodic orbits
starts emerging from the E∗ when τ = τ0.

5. Numerical Simulations

In this section, we delve into the exploration of
model (4) to substantiate our analytical findings.

All simulations are carried out in Julia software
with Predictor–Corrector algorithm for the delayed
fractional-order differential equation. We begin by
meticulously selecting parameters from [Kumar &
Kumari, 2020], which are enumerated as follows:

r0 = 2, ρ1 = 0.1, ρ2 = 0.1,

δ = 0.01, σ = 0.05,

a1 = 1, b1 = 10, c1 = 2, a2 = 1.5,

b2 = 10, d1 = 1, c2 = 1, d2 = 0.7.

(20)

The initial condition is chosen as (20, 5, 10) for
all simulations and step size is taken as 0.01. In
the absence of fear parameters (ρ1 = 0, ρ2 = 0)
and under the assumption α1 = α2 = α3 = 1,
model (4) manifests an interior equilibrium point
E∗(35.9953, 8.75, 7.06466). Trajectories around this
equilibrium point exhibit chaotic behavior, vividly
illustrated in Fig. 1.

Moving forward, by setting a fractional order of
α = 0.9 and r0 = 4, model (4) converges to an inte-
rior equilibrium point E∗(46.3043, 8.75, 6.75831).
Nearby trajectories portray asymptotically stable
dynamics, particularly under a high strength of fear
in prey growth (ρ1 = 0.07), alongside a choice of
ρ1 = 0.01 for the middle predator’s fear strength,
as evidenced in the time series and phase portrait
depicted in Fig. 2. Conversely, for a smaller ρ1 =
0.04, model (4) settles at an interior equilibrium

(a) (b)

(c) (d)

Fig. 1. (a)–(c) The time evaluation of prey, middle predator, and top predator and (d) the phase portrait for model (4) when
ρ1 = 0, ρ2 = 0, τ = 0, and considering α1 = α2 = α3 = 1 shows chaotic dynamics.
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(a) (b)

(c) (d)

Fig. 2. (a)–(c) The time evaluation of prey, predator, and top predator and (d) the phase portrait for model (4) when
ρ1 = 0.07, ρ2 = 0.01, r0 = 4, τ = 0, α1 = α2 = α3 = 0.9, and all other parameters are given in (20).

point E∗(56.4247, 8.75, 7.29287), showcasing peri-
odic behavior, as illustrated in Fig. 3.

To illuminate the impact of prey fear in
model (4), we construct a bifurcation diagram
(Fig. 4). This visual elucidates a transition from
periodic to stable dynamics with a gradual reduc-
tion in the fear term ρ1 within the range (0, 0.9).

Furthermore, to underscore the significance of fear’s
effect on the middle predator in model (4), we set
ρ1 = 0.01 and plot the bifurcation diagram for
ρ2 within the range (0, 0.1) (Fig. 5). This analysis
reveals that model (4) experiences stable dynamics
via Hopf bifurcation as ρ2 decreases gradually from
the periodic orbit.

(a) (b)

(c) (d)

Fig. 3. (a)–(c) The time evaluation of prey, predator, and top predator and (d) the phase portrait for model (4) when
ρ1 = 0.04, ρ2 = 0.01, r0 = 4, τ = 0, α1 = α2 = α3 = 0.9, and all other parameters are given in (20).
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(a) (b) (c)

Fig. 4. The bifurcation diagram for model (4) with ρ1 ∈ (0, 0.9), ρ2 = 0.01, r0 = 4, τ = 0, α1 = α2 = α3 = 0.9, and all other
parameters are given in (20).

(a) (b) (c)

Fig. 5. The bifurcation diagram for model (4) with ρ1 = 0.01, ρ2 ∈ (0, 0.1), r0 = 4, τ = 0, α1 = α2 = α3 = 0.9, and all other
parameters are given in (20).

Moreover, to validate the role of memory
effect in model (4)’s complex dynamics, we con-
sider an interior equilibrium point E∗(71.2083, 8.75,
7.82973). The bifurcation diagram with respect to
the fractional-order parameter within the range
(0.8, 1.0) is illustrated in Fig. 6. It’s apparent that
model (4) undergoes chaotic dynamics via Hopf
bifurcation as α increases. In order to show the sen-
sitivity of model (4), the time plot is depicted in
Fig. 7 to show the sensitivity of model with respect
to different orders α = 0.99, 0.97, 0.95, 0.93, 0.91.
For α = 0.99, it is chaotic, for α = 0.97, it is
periodic, and for α = 0.91, it is asymptotic behav-
ior. Similarly, time series is plotted in Fig. 8 for dif-
ferent initial conditions, the parameters are taken in

such a way as chaotic. It clearly reveals that the tra-
jectories diverge when time increases, i.e. model (4)
is sensitive to the initial conditions.

Subsequently, with α = 1, ρ1 = 0.1, ρ2 =
0.1, model (4) converges to an interior equilibrium
point E∗(38.887, 8.75, 2.90712). Utilizing (14), we
determine ω0 = 0.494991, and through (15), we
ascertain the critical time delay for the birth of
Hopf bifurcation as τ0 = 1.24275. Additionally, the
transversality condition (17) holds. The bifurca-
tion diagram in Fig. 9 demonstrates that model (4)
undergoes a Hopf bifurcation at the critical time
delay τ0 = 1.24275. As previously stated, an exact
periodic solution is not possible for the Caupto-type
fractional-order nonlinear system. However, some

(a) (b) (c)

Fig. 6. The bifurcation diagram for model (4) with ρ1 = 0.01, ρ2 = 0.01, r0 = 4, τ = 0, α1 = α2 = α3 ∈ (0.8, 1.0).
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(a) (b) (c)

Fig. 7. Sensitivity of model (4) with respect to different order parameters α = 0.99, 0.97, 0.95, 0.93, 0.91.

(a) (b) (c)

Fig. 8. Sensitivity of model (4) with respect to different initial conditions x0 = 20(red), x0 = 20 + 10−5(blue), y0 = 10, and
z0 = 5.

recent research articles [Čermák & Nechvátal, 2018;
Lin et al., 2017; Wang et al., 2013] indicate the exis-
tence of an asymptotically periodic solution for a
fractional-order system. In other words, such a solu-
tion oscillates close to a periodic function when time
increases. However, this periodic function is not a
solution to the system.

Lastly, with α = 1, ρ1 = 0.1, ρ2 = 0.1, and α =
0.95, model (4) converges to an interior equilibrium
point E∗(38.887, 8.75, 2.90712). Employing (14), we
derive ω = 0.492533, and via (15), we determine
the critical time delay for the emergence of Hopf
bifurcation as τ0 = 2.38723. The transversality
condition (17) remains valid. The asymptotically

stable time series for τ = 2 is displayed in Fig. 10,
and the periodic orbits for τ = 3 are show-
cased in Fig. 11. Consequently, using Theorem 2,
we deduce that the interior equilibrium point of
model (4) is asymptotically stable for τ ∈ (0, τ0]
and undergoes a Hopf bifurcation at the critical
time delay τ0 = 2.38723. Next, in order to show
the effect of the fractional-order parameter α with
fear parameters, the comparison plot is plotted
by choosing α = 1, 0.95 for the Hopf bifurcation
points with respect to ρ1 and ρ2 in Fig. 12. It
is clear that the stable region expends by choos-
ing the fractional order α = 0.95 when compared
to α = 1.

(a) (b) (c)

Fig. 9. The bifurcation diagram for model (4) with ρ1 = 0.1, ρ2 = 0.1, r0 = 4, α1 = α2 = α3 = 1, τ ∈ (0.5, 1.5).
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(a) (b)

(c) (d)

Fig. 10. (a)–(c) The time evaluation of prey, middle predator, and top predator and (d) the phase portrait for model (4)
when ρ1 = 0.1, ρ2 = 0.1, r0 = 4, τ = 2, α1 = α2 = α3 = 0.95.

Remark 5.1. The short-term recurrent and robust
chaos in the food chain model, which consists of
prey, middle predator, and top predator, was stud-
ied by [Rai & Upadhyay, 2004]. The consideration
of fear effects in prey and middle predators with-
out time delay in the food chain model by [Rai &
Upadhyay, 2004] has been explored by the authors
in [Kumar & Kumari, 2020]. They reveal that for
a low cost of fear, the system remains chaotic,

while an increase in the fear factor leads to sta-
bility and further leads to population extinction
for a large cost of fear. The authors in [Panday
et al., 2020] considered time delay in the fear func-
tion in a two-species model and explored how the
considered model undergoes Hopf bifurcation for
larger time delays. They also demonstrated that
time delay in the model induces bistable behav-
ior, i.e. the existence of both stable and unstable

(a) (b)

(c) (d)

Fig. 11. (a)–(c) The time evaluation of prey, predator, and top predator and (d) the phase portrait for model (4) when
ρ1 = 0.1, ρ2 = 0.1, r0 = 4, τ = 3, α1 = α2 = α3 = 0.95.
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(a) (b)

Fig. 12. The Hopf bifurcation points for α = 1, 0.95 with respect to ρ1 and τ in (a) and ρ2 and τ in (b), respectively. The
interior equilibrium point E∗ is locally asymptotically stable for the region below the points and periodic for the region above
the points.

periodic orbits. Panja [2019] attempted to study
stability and Hopf bifurcation by considering frac-
tional order for the model studied by [Rai & Upad-
hyay, 2004] and showed the existence of periodic
and chaotic dynamics with respect to the fractional
order. In this study, we explore the effect of con-
sidering both fractional order and time delay in the
food chain model studied in [Kumar & Kumari,
2020]. We investigate the intricate dynamics in
terms of bifurcation behavior with respect to fear,
fractional order, and time delay parameters. We
showed that the considered model changes from
periodic to stable dynamics for larger fear. Further,
changes from stable to periodic orbits on increas-
ing the time delay. Also, we revealed the occur-
rence of period doubling as a route to chaos for the
fractional-order parameter.

Remark 5.2. We have varied the fear effects, time
delay, and fractional-order parameters and showed
how the model is sensitive to the parameter in terms
of stability and bifurcation behavior. Also, for the
model in a chaotic state, the sensitivity to the initial
condition is discussed with the help of how the tra-
jectory moves away for a larger time with small vari-
ation in the initial condition. The trajectories of the
model simulated above may slightly vary because
of numerical error caused to memory effect by both
time delay and fractional order. Also, this memory
effect causes high computational time for plotting
bifurcation diagrams and stimulating models for a
larger time.

6. Conclusion

Our study provides detailed insights into the com-
plex dynamics governing predator–prey interactions.

Our research covers a wide range of occurrences,
each of which clarifies a distinct aspect of eco-
logical interactions and the underlying processes.
Primarily, studying asymptotically stable behav-
ior reveals the remarkable protection and balance
attained in food chain ecosystems. This stability
behavior explores the long-term survival of a species
and explores the complex balancing between prey
and predator populations that occurs naturally. It
represents both the flexibility of organisms and the
complex web of interactions that supports biodi-
versity. Second, the beginnings of periodic behav-
ior provide evidence for the cyclic fluctuations in
the population. We can also find a different mean-
ing for the present results: in many cases, the nat-
ural conditions provide useful information. (a) A
lot of the periodic phenomena that we can observe
in the world. The periodic dynamics in the popu-
lation fluctuation are one of the dynamic charac-
teristics of the ecosystem. It is due to the seasonal
variations and other environmental circumstances.
(b) Furthermore, our investigation reveals chaotic
dynamics in the population, which is sensitive to
the initial condition. The presence of chaos ques-
tions the traditional methods for predicting future
populations and highlights the need to study proba-
bilistic techniques to understand the population by
showing complex behavior. The sensitivity analysis
shows how the small fluctuation in the population
reacts to the future population trends.

Finding an explanation in some instances could
require a deep understanding of the dynamics of
model subjected to various environmental situa-
tions. In addition, our model gains realism by con-
sidering the time delay in the prey’s fear term,
which reflects the delay in biological processes.
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Zanette et al. [2011] experimentally investigated
that the fear of predation risk can reduce the repro-
duction of song sparrow even in the absence of
direct killing. The recognition of intricate dynamics
highlights the significance of integrating authentic
temporal lags into ecological models, offering per-
spectives on the dynamics of predator–prey interac-
tions in more authentic settings. Finally, investigat-
ing fractional-order dynamics unveils the complex
interaction between predator–prey dynamics and
memory effects. Fractional-order derivatives con-
tribute to our knowledge of ecological processes
by capturing the impact of previous conditions
on current population dynamics and providing
fresh insights into how memory shapes ecosystem
dynamics.

Additionally, our model may be widely applied
to explain the dynamics of populations in real life
in a variety of predator–prey systems. For instance,
the model may be applied to simulate the dynam-
ics of predator–prey interactions in aquatic systems,
forestry systems, environments with patches, and
habitats with spatial organization. Also, it helps in
preventing ecological collapse, providing guidelines
for conservation policy makers, early identification
of ecological crisis, and decision-making process.
This type of model approach can also addressed by
machine learning framework by proper training of
parameters [Dubois et al., 2020; Wang et al., 2024].

In conclusion, our study offers a comprehensive
glimpse into the multifaceted nature of predator–
prey interactions, encompassing stability, periodic-
ity, chaos, temporal dynamics, and memory effects.
These insights deepen our understanding of ecolog-
ical dynamics, providing valuable perspectives for
conservation efforts, ecosystem management, and
the preservation of biodiversity in a rapidly chang-
ing world. But this model can be refined further.
We can consider the Allee effect and different func-
tional responses to make them more and more
realistic.
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Laundré, J. W., Hernández, L. & Altendorf, K. B. [2001]
“Wolves, elk, and bison: Reestablishing the ‘landscape
of fear’ in Yellowstone National Park, USA,” Can. J.
Zool. 79, 1401–1409.

Lin, X., Liao, B. & Zeng, C. [2017] “The onset of chaos
via asymptotically period-doubling cascade in frac-
tional order Lorenz system,” Int. J. Bifurcation and
Chaos 27, 1750207.

Naik, P. A., Zu, J. & Owolabi, K. M. [2020] “Modeling
the mechanics of viral kinetics under immune control
during primary infection of HIV-1 with treatment in
fractional order,” Physica A 545, 123816.

Neuhauser, C. [2001] “Mathematical challenges in spatial
ecology,” Notices AMS 48, 1304–1314.

Pal, S., Pal, N., Samanta, S. & Chattopadhyay, J. [2019]
“Fear effect in prey and hunting cooperation among
predators in a Leslie–Gower model,” Math. Biosci.
Eng. 16, 5146.

Pal, S., Karmakar, S., Pal, S., Pal, N., Misra, A. K. &
Chattopadhyay, J. [2024] “Impact of fear and group
defense on the dynamics of a predator–prey system,”
Int. J. Bifurcation and Chaos 34, 2450019.

Panday, P., Samanta, S., Pal, N. & Chattopadhyay, J.
[2020] “Delay induced multiple stability switch and
chaos in a predator–prey model with fear effect,”
Math. Comput. Simul. 172, 134–158.

Panja, P. [2019] “Stability and dynamics of a fractional-
order three-species predator–prey model,” Theory
Biosci. 138, 251–259.

Podlubny, I. [1998] Fractional Differential Equations
(Academic Press, NY).

Qi, H. & Zhao, W. [2022] “Stability and bifurcation anal-
ysis of a fractional-order food chain model with two
time delays,” J. Math. 2022, 5313931.

Rai, V. & Upadhyay, R. K. [2004] “Chaotic population
dynamics and biology of the top-predator,” Chaos
Solit. Fract. 21, 1195–1204.

Rasooli Berardehi, Z., Zhang, C., Taheri, M., Roohi,
M. & Khooban, M. H. [2023] “A fuzzy control strat-
egy to synchronize fractional-order nonlinear systems
including input saturation,” Int. J. Intell. Syst. 2023,
1550256.

Ripple, W. J. & Beschta, R. L. [2004] “Wolves and the
ecology of fear: Can predation risk structure ecosys-
tems?” BioScience 54, 755–766.

Roohi, M., Mirzajani, S. & Basse-O’Connor, A. [2023a]
“A no-chatter single-input finite-time PID sliding
mode control technique for stabilization of a class of
4D chaotic fractional-order laser systems,” Mathemat-
ics 11, 4463.

Roohi, M., Zhang, C., Taheri, M. & Basse-O’Connor, A.
[2023b] “Synchronization of fractional-order delayed
neural networks using dynamic-free adaptive sliding
mode control,” Fractal Fract. 7, 682.

Sabarathinam, S., Papov, V., Wang, Z.-P., Vadivel,
R. & Gunasekaran, N. [2023] “Dynamics analysis and
fractional-order nonlinearity system via memristor-
based Chua oscillator,” Pramana 97, 107.

Taheri, M., Chen, Y., Zhang, C., Berardehi, Z. R.,
Roohi, M. & Khooban, M. H. [2023] “A finite-time
sliding mode control technique for synchronization
chaotic fractional-order laser systems with applica-
tion on encryption of color images,” Optik 285,
170948.

Tavazoei, M. S. & Haeri, M. [2009] “A proof for non exis-
tence of periodic solutions in time invariant fractional
order systems,” Automatica 45, 1886–1890.

Tavazoei, M. S., Haeri, M., Attari, M., Bolouki, S. &
Siami, M. [2009] “More details on analysis of
fractional-order Van der Pol oscillator,” J. Vib. Con-
trol 15, 803–819.

Tavazoei, M. S. [2010] “A note on fractional-order
derivatives of periodic functions,” Automatica 46,
945–948.

Upadhyay, R. K. & Agrawal, R. [2016] “Dynamics and
responses of a predator–prey system with competitive
interference and time delay,” Nonlin. Dyn. 83, 821–
837.

2550079-14

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 Z
er

ic
 N

jit
ac

ke
 o

n 
04

/1
1/

25
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



April 5, 2025 17:56 WSPC/S0218-1274 IJBC 2550079

Dynamics and Bifurcation in a Food Chain Model

Vinoth, S., Sivasamy, R., Sathiyanathan, K., Rajchakit,
G., Hammachukiattikul, P., Vadivel, R. & Gunaseka-
ran, N. [2021a] “Dynamical analysis of a delayed food
chain model with additive Allee effect,” Adv. Diff.
Eqs. 2021, 54.

Vinoth, S., Sivasamy, R., Sathiyanathan, K., Unyong, B.,
Rajchakit, G., Vadivel, R. & Gunasekaran, N. [2021b]
“The dynamics of a Leslie type predator–prey model
with fear and Allee effect,” Adv. Diff. Eqs. 2021, 338.

Vinoth, S., Vadivel, R., Hu, N. T., Chen, C. S. &
Gunasekaran, N. [2023] “Bifurcation analysis in a
harvested modified Leslie–Gower model incorporated
with the fear factor and prey refuge,” Mathematics
11, 3118.

Wang, J., Fec, M., Zhou, Y. et al. [2013] “Nonexistence
of periodic solutions and asymptotically periodic solu-
tions for fractional differential equations,” Commun.
Nonlin. Sci. Numer. Simul. 18, 246–256.

Wang, W., Wang, G., Ying, J., Liu, G. & Liang, Y. [2022]
“Dynamics of a fractional-order voltage-controlled
locally active memristor,” Pramana 96, 109.

Wang, X., Feng, J., Xu, Y. & Kurths, J. [2024] “Deep
learning-based state prediction of the Lorenz system
with control parameters,” Chaos 34, 033108.

Xiao, Y. & Chen, L. [2001] “Modeling and analysis of a
predator–prey model with disease in the prey,” Math.
Biosci. 171, 59–82.

Xu, R. [2011] “Global dynamics of a predator–prey
model with time delay and stage structure for the
prey,” Nonlin. Anal.: Real World Appl. 12, 2151–
2162.

Yazdani, M. & Salarieh, H. [2011] “On the existence of
periodic solutions in time-invariant fractional order
systems,” Automatica 47, 1834–1837.

Zanette, L. Y., White, A. F., Allen, M. C. & Clinchy, M.
[2011] “Perceived predation risk reduces the number
of offspring songbirds produce per year,” Science 334,
1398–1401.

Zhao, L., Huang, C. & Cao, J. [2021] “Dynamics of
fractional-order predator–prey model incorporating
two delays,” Fractals 29, 2150014.

Appendix A

For the fear function f(ρ, v) = 1
1+ρv , the following

assumptions hold:

(1) f(0, v) = 1: if there is no anti-predator behav-
iors, then the birth rate of prey remains
unchanged.

(2) f(ρ, 0) = 1: there is no reduction in prey popu-
lation in the absence of anti-predator behaviors.

(3) limρ→∞ f(ρ, v) = 0: if anti-predator behaviors
are very large, the prey reproduction declines
and becomes zero.

(4) limv→∞ f(ρ, v) = 0: if ρ > 0 and predator
population is high, then the prey reproduction
declines and becomes zero.

(5) ∂f(ρ,v)
∂ρ < 0: the reproduction of prey decreases

with the increase of anti-predator behaviors.

(6) ∂f(ρ,v)
∂v < 0: the reproduction of prey decreases

with the increase of predator populations.
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