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Abstract: In this paper, a recurrent intermittent control (RIC) for the synchronization of fractional-order chaotic neural networks
(FOCNNs) is proposed in view of the extended dissipativity-based approach. Successively, standard linear matrix inequalites (LMIs)-
based extended dissipative criteria are derived through differential inclusions and inequality mechanisms. Several sufficient conditions
are obtained to ensure the synchronization of FOCNNs. Furthermore, RIC is generated to solve the synchronization problem for the
considered FOCNNs. Based on the piecewise Lyapunov functional, this paper derives a exponentially stable criterion in connection with
linear matrix inequalities using the Matlab toolbox. Extended dissipativity can be employed to precisely define L2–L∞, H∞, passivity,
and (Q, S ,R)-ϑ dissipative performance. This is achieved by modifying the weighting matrices to achieve the desired performance level.
The successful application of the stability criterion that was planned is demonstrated by the outcomes of the simulation.
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1. Introduction

In the past decades, neural networks (NNs) have been
attracting significant interest from academics in recent
decades due to their numerous uses in signal processing,
pattern recognition, secure communication, and other
related domains [1–4]. Unlike integer-order calculus,
fractional-order (FO) calculus offers an invaluable resource
for better characterizing memories and inheritance in a
variety of materials and processes. Consequently, fractional
calculus offers the important benefit of more accurately
understanding a broad spectrum of instances in numerous

fields and it also broadens the concept of mathematical
differentiation and integration from an integer order to
an arbitrary order [5–7]. Because they possess memory
and non locality, fractional calculus algorithms have been
used extensively in artificial NNs over the past few
years [6–9]. The researchers of [10, 11] used feedback
control methodologies to tackle the matter of stability and
stabilization problems for fractional-order neural networks
(FOCNNs). The usage of FOCNNs has been emphasized
in [12], which relies on discontinuous systems with
indefinite Lyapunov-Krasovskii functionals.

Synchronization, a group of dynamic behaviors, was
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initially introduced to chaotic systems by Pecora and Carroll
in 1990 [13]. Since then, it has become significant
in numerous fields such as information processing,
engineering, pattern recognition, and communication
security [14–17]. The synchronization of nonlinear dynamic
systems has been highly regarded by researchers across
various disciplines. The examination of synchronization
in FOCNNs has recently acquired significant attention
and evolved into a prominent area of research. This is
primarily the result of the wide range of potential uses in
information science [17, 18]. The fundamental impression
of synchronization control is that one system employs a
viable controller to achieve synchronization with another
autonomous system. The advancement of studies has
led to the utilization of multiple control methodologies in
synchronization analysis, including adaptive control [19],
quantized control [20], intermittent control (IC) [21], and
pinning control [22]. The synchronization dynamics of
FOCNNs have become a popular area of research. In this
paper, we utilize a recurrent intermittent controller (RIC) in
order to stabilize the FOCNNs under consideration. The
time domain of interest is split into two distinct types of
time intervals: the control interval and the rest interval. The
exorbitant expenses linked to the complete monitoring of
state measurements over time render continuous feedback
methods of control, including control systems, impractical.
Discontinuous methods of control, such as impulsive control
(where the control inputs are activated at discrete times)
and IC (where the control inputs are triggered at specific
intervals), have earned the admiration of scholars by
virtue of their broad investigations and many potential
applications [23–26]. In the study conducted by [27],
the authors investigated the synchronization of FOCNNs
with reaction-diffusion terms using IC as a method. The
researchers in [26] examined the synchronization of FO
memristive recurrent NNs using RIC. Recently, the study of
feedback and periodic IC-based finite-time synchronization
of FOCNNs has been explored in [24].

Real dynamical systems frequently have unexpected
behaviors due to a variety of factors, including linear
approximation, modeling errors, and external disturbances,
which further degrade the system. The problem of analyzing
the effectiveness of a system with disturbance attenuation

has been resolved through various methods [28–30]. Here,
we discuss a few techniques, including H∞, L2–L∞, mixed
H∞, passivity, and (Q, S ,R)-ϑ dissipative performances.
Extended dissipativity is a brand-new performance metric
that in [31] established. All of the aforementioned
performances are included in the expanded dissipativity
notion by appropriately altering the weighting matrices.
An extensive amount of research has been carried out on
extended dissipativity analysis and control problems for a
variety of different kinds of integer-order NNs and has been
studied in recent works in the literature [32–36]. With
regard to FOCNNS with uncertainty, [37] addressed the
issue of extended dissipativity analysis. As far as the author
knows, there have been no studies that have examined the
synchronization criteria for FOCNNs via RIC in view of the
extended dissipative approach.

Inspired by the preceding discussion, this article centers
its attention on synchronization analysis and extended
dissipativity approach for FOCNNs with RIC. The key
contributions are outlined as follows:

(i) The investigation of FOCNNs has demonstrated
synchronization for extended dissipativity, contributing to
their dynamical characteristics and potential applications in
various domains.

(ii) We formulate the RIC specifically for the periodic
aspect of the slave system. This controller ensures the
desired performance of the error system and offers a novel
methodology for examining various categories of extended
dissipative conditions.

(iii) By utilizing fractional-order inequalities, a suitable
Lyapunov function, and various analytical techniques,
sufficient criteria have been obtained in the form of linear
matrix inequalities (LMIs) to ensure the exponentially
stablity of the considered FOCNNs. Additionally, an
extended dissipativity criterion has been derived. This
approach provides a novel perspective for examining
performance levels such as L2–L∞, H∞, passivity, and
(Q, S ,R)-ϑ dissipativity.

(iv) The formulation of LMIs, which is a method that
may be effectively executed through the use of the Matlab
LMI toolbox, is ultimately what establishes the required
conditions for FOCNNs. In order to validate the theoretical
outputs, an illustrative case is utilized. Finally, the examples
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serve to substantiate the accessibility and practicability of
the solutions that were derived.

Remark 1.1. In this work, we have studied a detailed

characterization and visualization of chaotic behavior

through phase portraits and time series analysis. In

contrast, [21, 25] concentrated on synchronization in

fractional-order complex and memristive neural networks

using intermittent and periodic intermittent control

strategies, without exploring the chaotic dynamics of

these systems. Similarly, [38] employed piecewise

Lyapunov functions for intermittent control to synchronize

fractional-order neural networks, primarily addressing

synchronization rather than chaotic behavior. Meanwhile,

the authors of [6] addressed the mean square asymptotic

stability of discrete-time fractional-order stochastic neural

networks with multiple time-varying delays, focusing on

stability under stochastic influences rather than chaos.

This paper uniquely contributes to the field by providing a

comprehensive understanding and visualization of chaos

in FOCNNs with an extended dissipative approach, which

is not the primary focus of the other works, and outlines a

path for future bifurcation analysis to further understand

the complex dynamics of such systems.

Notation
For the purpose of this work, the following notations will

be utilized:
(i) In the n-dimensional Euclidean space, the symbol Rn

represents the collection of real numbers, encompassing the
entire space.
(ii) The notation λmax(A) denotes the largest eigenvalue
of a real matrix A, while λmin(A) indicates the smallest
eigenvalue. These values offer a thorough understanding of
the spectral properties of the matrix A.
(iii) A matrix P is considered to be positive definite, written
as P > 0, if and only if the quadratic form xT Px produces
a positive value for all non zero vectors x. This feature is
a fundamental concept in linear algebra and has important
applications.
(iv) In a matrix, the symmetric term is represented by
notation ∗.
(v) Integers are represented by the Z.
(vi) Natural numbers are represented by N.
(vii) The notation C1[a, b] represents the collection of

functions that have continuous first derivatives on the closed
interval [a, b]. On the other hand, C[a, b] encompasses
functions that are continuous on the same interval. These
notations provide a mathematical framework for studying
various degrees of differentiability and continuity in function
spaces.

2. Problem formulation and preliminaries

In this section, we present some definitions, and lemmas,
and recall the well-known results of fractional differential
equations.

Definition 2.1. [39] Let the fractional integral of order α

describe the integral of a function x(t) concerning time t,

which is referred to

C
t0 D−αt x(t) =

1
Γ(α)

∫ t

t0
(t − s)α−1x(s)ds,

where t ≥ t0 and α > 0, and Γ(·) is the Gamma function.

Definition 2.2. [39] Let the Caputo fractional derivative be

defined as the fractional derivative of order α for a function

x(t) as follows:

C
t0 Dαt x(t) =t0 D−(n−α)

t

( dn

dtn x(t)
)

=
1

Γ(n − α)

∫ t

t0
(t − s)n−α−1x(n)(τ)dτ,

where n − 1 < α < n and n ∈ Z+. Specifically, when n = 1
and 0 < α < 1, the Caputo fractional derivative is defined

as:

C
t0 Dαt =t0 D−(1−α)

t

( d
dt

x(t)
)

=
1

Γ(1 − α)

∫ t

t0

x′(τ)
(t − τ)α

dτ.

According to the definitions above, the integral derivative
focuses on the nearby points of a function to calculate
its derivative, while fractional derivatives, especially when
using the Caputo approach, incorporate information from
the entire course of a function, making them memory-
dependent. The Caputo approach has the advantage of
retaining the same format of the initial conditions as integer-
order differential equations. It also gives a derivative of
zero for constants. Therefore, it is a powerful tool for
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modeling complex systems with memory, such as FOCNNs.
The notation Dα is chosen as the Caputo operator for the
fractional derivative C

a Dαt .
Consider the drive NNs, which incorporate FOCNNs

utilizing the Caputo fractional-order derivative

C
a Dαt x(t) = −Ax(t) + Bg(x(t)),

ẑ(t) = Cx(t), (2.1)

with a range of 0 < α < 1; the notation C
0 Dαt represents the

Caputo fractional derivative of order α. The state vector is
represented by

x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn.

The resulting output vector is represented by ẑ ∈ Rn.
Additional characterization of the influence of the system’s
dynamics is provided by the positive diagonal matrix A,
which is written as

A = diag{a1, a2, . . . , an}.

The connection weight matrix is B. In addition, the neuron
activation function is expressed as

g(x(t)) = [g1(x1(t)), g2(x2(t)), . . . , gn(xn(t))]T ∈ Rn.

For FOCNNs (2.1), the corresponding response NNs are
considered to be

C
a Dαt y(t) = −Ay(t) + Bg(y(t)) + Dω(t) + u(t),

z̃(t) = Cy(t), (2.2)

where
y(t) = [y1(t), y2(t), . . . , yn(t)]T ∈ Rn

is the state vector, z̃ in Rn is the output vector, ω(t) ∈ Rq

is the disturbance associated with L2[0,∞), D is the known
matrix, and u(t) ∈ Rn is the control input.

Assumption 2.1. For all x, y ∈ R, x , y, the neuron

activation functions gi(·), i = 1, 2, . . . , n, satisfy the

following conditions:

l−i ≤
gi(x) − gi(y)

x − y
≤ l+i ,

where l+i , l
−
i , and i = 1, 2, . . . , n are constants.

Assumption 2.2. The known real symmetric matrices Ψ̃1–

Ψ̃4 satisfy the following conditions:

1) Ψ̃1 = Ψ̃
T
1 ≤ 0, Ψ̃3 = Ψ̃

T
3 > 0, Ψ̃4 = Ψ̃

T
4 ≥ 0,

2) (||Ψ̃1|| + ||Ψ̃2||) · ||Ψ̃4|| = 0.

We assume thatϖ(t) and z(t) are the synchronization error
between the drive system (2.1) and the response system (2.2)
by specifying that

ϖ(t) = y(t) − x(t)

and
z(t) = z̃(t) − ẑ(t).

C
a Dαt ϖ(t) = −Aϖ(t) + B f (ϖ(t)) + Dω(t) + u(t),

z(t) = Cϖ(t),
(2.3)

where
f (ϖ(t)) = g(y(t)) − g(x(t)).

Assumption 2.1 states that

f (0) = 0

and fi(ϖi(t)) fulfills the condition

l−i ≤
fi(ϖi(t))
ϖi(t)

≤ l+i , ∀ϖi(t) = 0, i = 1, 2, . . . , n, (2.4)

where l−i and l+i (for i = 1, 2, . . . , n) are constants.
To facilitate synchronization between the drive

system (2.1) and the response system (2.2), consider
the following RIC, denoted by u(t)

u(t) =
{

Kϖ(t), kT ≤ t < kT + ε,

0, kT + ε ≤ t < (k + 1)T.
(2.5)

This control mechanism is designed to play an important
role in the two systems (2.1) and (2.2). A compact form
for the error system (2.3) can be utilized as follows:

C
a Dαt ϖ(t) = −Aiϖ(t) + B f (ϖ(t)) + Dω(t), (i = 1, 2),

z(t) = Cϖ(t), (2.6)

where,

A1 = A + K, A2 = A, a = kT and a = kT + ε.
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Definition 2.3. [31] The FOCNNs (2.3) are described as

extended dissipative NNs if Assumption 2.2 is fulfilled for

the input matrices Ψ̃1–Ψ̃4. The following inequality applies

if there are any T f ≥ 0 and any ω(t):∫ T f

0
J(t)dt ≥ sup

0≤t≤T f

zT (t)Ψ̃4z(t), 0 ≤ t ≤ T f , (2.7)

where,

J(t) = zT (t)Ψ̃1z(t) + 2zT (t)Ψ̃2ω(t) + ωT (t)Ψ̃3ω(t).

Definition 2.4. [40] The system (2.6) is said to be

exponentially stable with a convergence rate b > 0 if a

positive constant a exists such that

∥x(t)∥ ≤ ae−b(t−t0)∥x(t0)∥, ∀t ≥ t0.

Lemma 2.1. [41] Assume that ϖ(t) ∈ Rn represents a

vector of continuous and differentiable functions. For all

time instances t ≥ t0, with t0 denoting a predetermined

initial time, and for any 0 < α ≤ 1, the following inequality

is satisfied:

1
2

C
t0 Dαt (ϖT (t)Pϖ(t)) ≤ ϖT (t)PC

t0 Dαt ϖ(t).

Lemma 2.2. [38] Given a functionV(t) in C1[b, c), if

C
b Dαt V(t) ≤ λV(t),

where 0 < α < 1, b ≥ 0, c < +∞, and λ is a constant, then

the inequality

V(t) ≤ V(b) exp
( λ

Γ(α + 1)
(t − b)α

)
holds.

Remark 2.1. The definition of extended dissipativity
for FOCNNs is obtained by transforming Definition 2.3,
as shown in (2.7). This conceptual framework offers
a generalization of well-established performance indices
through the strategic specification of weighting matrices
Ψ̃i (i = 1, 2, 3, 4). To further explain this idea, different
performance index instances can be created by properly
configuring the weighting matrices. Some examples include
the following:

(1) To achieve H∞ performance, the weighting matrices are
set as follows: Ψ̃1 = −I, Ψ̃2 = 0, Ψ̃3 = ϑ

2I, and Ψ̃4 = 0.
Consequently, (2.7) transforms into the representation
of H∞ performance.

(2) For L2–L∞ performance, the weighting matrices are
configured as: Ψ̃1 = 0, Ψ̃2 = 0, Ψ̃3 = ϑ

2I, and Ψ̃4 = I.
This configuration of matrices transforms (2.7) into the
expression of L2–L∞ performance.

(3) Setting the weighting matrices as follows achieves
passivity performance: Ψ̃1 = 0, Ψ̃2 = I, Ψ̃3 = ϑI,
and Ψ̃4 = 0. In this case, (2.7) simplifies to represent
passivity performance.

(4) To express (Q, S ,R)-ϑ dissipativity performance, the
weighting matrices are defined as Ψ̃1 = Q, Ψ̃2 = S ,
Ψ̃3 = R − ϑI, and Ψ̃4 = 0. Subsequently, (2.7)
characterizes (Q, S ,R)-ϑ dissipativity performance.

These configurations show how the extended dissipativity
framework can be customized to define performance metrics
that meet different systems’ requirements.

3. Main results

In this section, we establish a synchronization problem
for a class of FOCNNs explored by designing RIC with
an extended dissipativity criterion. To facilitate a more
comprehensive discussion, we introduce the following
notation:

L1 = diag{l+1 , l
+
2 , . . . , l

+
n },

L2 = diag{l−1 , l
−
2 , . . . , l

−
n },

L = diag{max{|l+1 |, |l
−
1 |},max{|l+2 |, |l

−
2 |}, . . . ,max{|l+n |, |l

−
n |}}

= diag{l1, l2, . . . , ln}.

Theorem 3.1. Assume that Assumption 2.1 holds. For the

given scalars α > 0, δ1 > 0, δ2 > 0, β > 0, and ϑ > 0
and the gain K > 0, the matrices are Ψ̃1, Ψ̃2, Ψ̃3, and Ψ̃4,

satisfying Assumption 2.2. If there are the positive definite

matrices

P1 = PT
1 > 0, P2 = PT

2 0,

and the diagonal matrices

M1 ≥ 0, M2 ≥ 0, W1 ≥ 0, W2 ≥ 0,
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the FOCNNs of (2.1) will exponentially synchronize with the

FOCNNs of (2.2) with an extended dissipative approach

with RIC (2.5) such that the following inequality holds:

Σ1 =


ϕ11 ϕ12 ϕ13

∗ ϕ22 0
∗ ∗ ϕ33

 < 0, (3.1)

Σ2 =


ϕ11 ϕ12 ϕ13

∗ ϕ22 0
∗ ∗ ϕ33

 < 0, (3.2)

−Pi CT Ψ̃4

∗ −Ψ̃4

 ≤ 0, i = 1, 2, (3.3)

∆1ε
α − ∆2(T − ε)α − 2 ln β > 0, (3.4)

and

β = sup
1≤i, j≤2

λmin(Pi)
λmax(P j)

,

ϕ11 = −P1A − AT PT
1 + P1K + KT PT

1 + δ1P1

− 2L1M1L2 + LW1L − Ψ̃1,

ϕ12 = P1B + L1W1 + L2W1, ϕ13 = P1D − Ψ̃2,

ϕ22 = −2W2 − M2, ϕ33 = −Ψ̃3,

ϕ11 = −P2A − AP2 + δ2P2 − 2L1M2L2 + LW2L,

ϕ12 = P2B + L1W2 + L2W2, ϕ13 = P2D − Ψ̃2,

ϕ22 = −2W2 − M2, ϕ33 = −Ψ̃3.

Proof. Choose the Lyapunov candidate as follows:

V(ϖ(t)) =
{

V1(ϖ(t)), kT ≤ t < kT + ε,

V2(ϖ(t)), kT + ε ≤ t < (k + 1)T,
(3.5)

where

V1(ϖ(t)) = ϖT (t)P1ϖ(t)

and

V2(ϖ(t)) = ϖT (t)P2ϖ(t),

Vi(ϖ(t)) ≤ βV j(ϖ(t)),

where i, j ∈ {1, 2} and

β = sup
1≤i, j≤2

λmin(Pi)
λmax(P j)

.

Thus, for i = 1, 2, we have

inf
i={1,2}

λmin(Pi)||ϖ(t)||2 ≤ V(ϖ(t))

≤ sup
i={1,2}

λmax(Pi)||ϖ(t)||2.
(3.6)

Considering Assumption 2.1 and (2.6), we can derive

0 ≤ −2
n∑

j=1

mi j( f j(ϖ j(t)) − l+jϖ j(t))( f j(ϖ j(t)) − l−jϖ j(t))

= − 2( f (ϖ(t)) − L1ϖ(t))T Mi( f (ϖ(t)) − L2ϖ(t)) (3.7)

and

0 ≤ −
n∑

j=1

wi j( f j(ϖ j(t)) + l jϖ j(t))( f j(ϖ j(t)) − l jϖ j(t))

= −[ f T (ϖ(t))Wi f (ϖ(t)) −ϖT (t)LWiLϖ(t)], (3.8)

where

Wi = diag{wi1,wi2, ...,win} ≥ 0,

Mi = diag{mi1,mi2, ...,min} ≥ 0, i = 1, 2.

According to Lemma 2.1, when

kT ≤ t ≤ kT + ε, k = 0, 1, 2, . . .

and i = 1, we take the derivative on V(ϖ(t)) and get the
following:

C
kT Dαt V(ϖ(t)) =C

kT Dαt (ϖT (t)P1ϖ(t))

≤2ϖT (t)P1
C
kT Dαt ϖ(t)

=2ϖT (t)P1[(K − A)ϖ(t)

+ B f (ϖ(t)) + Dω(t)].

(3.9)

By applying (3.7) and (3.8) with i = 1, we obtain the
following:

C
kT Dαt V(ϖ(t)) ≤ϖT (t)[−P1A − AT PT

1 + P1K + KT PT
1 ]ϖ(t)

+ 2ϖT (t)P1B f (ϖ(t)) + 2ϖT (t)P1Dω(t)

− 2( f (ϖ(t)) − L1ϖ(t))T M1( f (ϖ(t)) − L2ϖ(t))

− ( f T (ϖ(t))W1 f (ϖ(t)) −ϖT (t)LW1ϖ(t)

= − δ1V(ϖ(t)) + δ1ϖT (t)Pϖ(t) +ϖT (t)[−P1A

− AP1 + P1K + KT P1]ϖ + 2ϖT (t)P1B f (ϖ(t))

+ 2ϖT (t)P1Dω(t) − 2( f (ϖ(t)) − L1ϖ(t))T

M1( f (ϖ(t)) − L2ϖ(t)) − ( f T (ϖ(t))W1 f (ϖ(t))

−ϖT (t)LW1Lϖ(t),
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From the above, the following inequality holds:

C
kT Dαt V(ϖ(t)) − J(t) ≤ −δ1V(ϖ(t)) + ξT (t)Σ1ξ(t)

≤ −δ1V(ϖ(t)), (3.10)

where

ξ(t) =


ϖ(t)

f (ϖ(t))
ω(t)

 .
Consequently

C
kT Dαt V(ϖ(t)) ≤ −δ1V(ϖ(t)), kT ≤ t ≤ kT + ε. (3.11)

According to Lemma 2.2, within the time interval

kT ≤ t ≤ kT + ε

for any k ∈ N, it can be inferred that

V(ϖ(t)) ≤ V(ϖ(kT ))exp
(
∆1.(t − kT )α

)
. (3.12)

Similary, when

kT + ε ≤ t ≤ (k + 1)T,

k = 0, 1, 2, . . . and i = 2.
By Lemma 2.1, for any ϖ(t) ∈ Rn, we have

C
kT+εD

α
t V(ϖ(t)) =C

kT+εD
α
t (ϖT (t)P2ϖ(t))

≤2ϖT (t)P2
C
kT+εD

α
t ϖ(t) (3.13)

=2ϖT (t)P2[−Aϖ(t) + B f (ϖ(t)) + Dω(t)].

According to (3.2), by using (3.7) and (3.8) with i = 2, we
can get

C
kT+εD

α
t V(ϖ(t)) ≤ϖT (t)[−P2A − AT PT

2 ]ϖ(t) + 2ϖT (t)P2B

× f (ϖ(t)) + 2ϖT (t)P2Dω(t) − 2( f (ϖ(t))

− L1ϖ(t))T M2( f (ϖ(t)) − L2ϖ(t))

− ( f T (ϖ(t))W2 f (ϖ(t)) −ϖT (t)LW2ϖ(t)

=δ2V(ϖ(t)) − δ2ϖT (t)P2ϖ(t) +ϖT (t)

(−P2A − AP2)ϖ(t) + 2ϖT (t)P2B f (ϖ(t))

+ 2ϖT (t)P2Dω(t) − 2( f (ϖ(t)) − L1ϖ(t))T

M2( f (ϖ(t)) − L2ϖ(t))

− ( f T (ϖ(t))W2 f (ϖ(t)) −ϖT (t)LW2Lϖ(t).

From the above results, the following inequality holds:

C
kT+εD

α
t V(ϖ(t)) − J(t) ≤ δ2V(ϖ(t)) + ξT (t)Σ2ξ(t)

≤ δ2V(ϖ(t)). (3.14)

Thus, we have

C
kT+εD

α
t V(ϖ(t)) ≤ δ2V(ϖ(t)),

kT + ε ≤ t < (k + 1)T.
(3.15)

By Lemma 2.2, it is implied that within the interval

KT + ε ≤ t < (k + 1)T

for any k ∈ N, the following holds:

V(ϖ(t)) ≤ V(ϖ(kT + ϵ))exp
(
∆2.(t − kT − ε)α

)
. (3.16)

Thus, by inequalities (3.12) and (3.16), we can get
V(ϖ(kT )+) andV(ϖ(kT )−) from

Vi(ϖ(kT )) ≤ βV jϖ(kT )

for k ∈ N, near the instant t = kT . Thus, we obtain

V(ϖ(kT )+) = ϖT ((kT )+)P1ϖ(kT )+

= ϖT (kT )P1ϖ(kT )

≤ βϖT (kT )P2ϖ(kT )

= βϖT ((kT )−)P2ϖ((kT )−)),

V(ϖ(kT )+) ≤ βV(ϖ(kT )−).

(3.17)

Similarly, we can consider

t = kT + ε,

and we can then get

V(ϖ(kT + ε)+) ≤ βV(ϖ(kT + ε)−). (3.18)

Therefore, according to the equations above, for any k ≥ 1,
for

kT ≤ t < kT + ε,

we obtain

V(ϖ(t)) ≤ V(ϖ(t))exp(∆1(t − kT )α)

=V(ϖ(kT )+))exp(∆1(t − kT )α)
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≤βV(ϖ(kT )−))exp(∆1(t − kT )α) (3.19)

≤V(ϖ(0))exp(−k∆1ε
α + k∆2(T − ε)α

+ 2k ln β) × exp(∆1(t − kT )α),

where
∆1 =

−δ1
Γ(α + 1

and
∆2 =

δ2
Γ(α + 1

and for
kT + ε ≤ t < (k + 1)T,

and

V(ϖ(t)) ≤ V(ϖ(kT + ε))exp(∆2(t − kT − ε)α)

= V(ϖ(kT + ε)+))exp(∆2(t − kT − ε)α)

≤ βV(ϖ(kT + ε)−))exp(∆2(t − kT − ε)α)

≤ V(ϖ(0))exp(−(k + 1)∆1ε
α + k∆2(T − ε)α

+ (2k + 1)lnβ)exp(∆2(t − kT − ε)α), (3.20)

Thus, from (3.4) and (3.19), one can see that for k ≥ 1, when
kT ≤ t < kT + ε,

V(ϖ(t)) ≤ V(ϖ(0))exp(−k∆1ε
α + k∆2(T − ε)α + 2k ln β)

× exp(∆1(t − kT )α)

≤ V(ϖ(0))exp(k(∆1ε
α + ∆2(T − ε)α + 2 ln β))

≤ V(ϖ(0))exp(
∆1ε

α + ∆2(T − ε)α + 2lnβ
T

(t − ε))

≤ V(ϖ(0))exp(−γ(t − ε)), (3.21)

where
γ =
∆1ε

α − ∆2(T − ε)α − 2lnβ
T

.

By (3.4) and (3.20), when

kT + ε ≤ t < (k + 1)T,

we can get

V(ϖ(t)) ≤V(ϖ(0))exp(−(k + 1)∆1ε
α + k∆2(T − ε)α

+ (2k + 1) ln β)exp(∆2(t − kT − ε)α)

≤V(ϖ(0))exp((k + 1)∆1ε
α + k∆2(T − ε)α

+ 2(k + 1) ln β)exp(∆2(T − ε)α)

=V(ϖ(0))exp((k + 1)
(
∆1ε

α + ∆2(T − ε)α + 2lnβ
)
)

≤V(ϖ(0))exp(
∆1ε

α + ∆2(T − ε)α + 2 ln β
T

t)

≤V(ϖ(0))exp(
∆1ε

α + ∆2(T − ε)α + 2 ln β
T

(t − ε))

≤V(ϖ(0))exp(−γ(t − ε)). (3.22)

Examining (3.15)–(3.18), it becomes apparent that in the
case of k = 0, the conditions hold for 0 ≤ t < ε,

V(ϖ(t)) ≤ V(ϖ(0))exp
(
∆1tα
)
≤ V(ϖ(0)), (3.23)

and for ε ≤ t < T,

V(ϖ(t)) ≤βV(ϖ(0))exp
(
∆2(t − ε)α

)
≤V(ϖ(0))exp(γε).

(3.24)

Therefore, it can be deduced that the stated inequalities are
applicable for any k ∈ N.

Therefore from the inequality (3.21) holds, t ≥ 0 for the
interval kT ≤ t ≤ kT + ε:

V(ϖ(t) ≤ V(ϖ(0))exp(−γ(t − ε)). (3.25)

This exponential decay property holds for any natural
number k. Now consider a non-negative integer k∗ such
that k∗T ≤ t < (k∗T + ε), equivalent to k in the established
inequality. The conclusion is reached by generalizing this
exponential decay property for any t within the interval
k∗T ≤ t < (k∗T + ε)

V(ϖ(t) ≤ V(ϖ(0))exp(−γ(t − ε)). (3.26)

Similarly, from the inequality from (3.22) for the interval
k∗T ≤ t < (k∗ + 1)T + ε

V(ϖ(t)) ≤ V(ϖ(0))exp(−γ(t − ε)). (3.27)

From the (3.26) and (3.27) with the help of (3.5), we have

||ϖ(t)|| ≤

√
supi={1,2} λmax(Pi)

infi={1,2} λmin(Pi)
||ϖ(0)||exp(−γ̂(t − ε)),

(3.28)

where,

γ̂ =
∆1ε

α − ∆2(T − ε)α − 2 ln β
2T

.

On the basis of Definition 2.4, it can be concluded that the
error system exhibits exponential stability. Next, we have to
prove the extended dissipation.

Mathematical Modelling and Control Volume 5, Issue 1, 31–47.



39

From the error system (2.6), the intermittent control over
the intervals

kT ≤ t ≤ kT + ε,

and

kT + ε ≤ t ≤ (k + 1)T

is exponentially stable with

Σi < 0, i = 1, 2.

It is evident that under the conditions (3.1)–(3.4) holds,
according to the Lyapunov stability theory. Then from the
inequalities (3.10) and (3.14), we can conclude that

C
a Dαt V(ϖ(t)) − J(t) ≤ 0

for the intervals

kT ≤ t ≤ kT + ε

and

kT + ε ≤ t ≤ (k + 1)T.

This implies the existence of a sufficiently small scalar
ν > 0,

C
a Dαt V(ϖ(t)) − J(t) ≤ −ν||ϖ(t)||2. (3.29)

The inequalities (3.10) and (3.14) collectively establish the
following evident relations:

V(ϖ(t)) = ϖT (t)Piϖ(t)

and

J(t) ≥ C
a Dαt V(ϖ(t)). (3.30)

Now, by performing the integration of both sides of (3.30)
over the interval from 0 to T f , we arrive at the following
inequalities based on the definitions provided:∫ T f

0
J(t)dt ≥ C

a D−1
T f

(
C
a DαT f

V(ϖ(t))
)

= C
a D−(1−α)

T f
V(ϖ(t)) − C

a D−(1−α)
T f

V(ϖ(0)).

(3.31)

Since

V(ϖ(0)) = 0,

we have

C
a D−(1−α)

T f
V(ϖ(0)) =

1
Γ(1 − α)

∫ T f

0
(T f − s)−αV(ϖ(0))ds

=V(ϖ(0)
T 1−α

f

Γ(2 − α)
= 0.

By fractional integration, we get

C
a D−(1−α)

T f
V(ϖ(t)) ≥ 0.

Thus, we have ∫ T f

0
J(t)dt ≥ 0. (3.32)

According to Assumption 2.2, the Definition 2.3 and the
matrices Ψ̃1–Ψ̃4, the inequality that follows is valid:∫ T f

0
J(t)dt − sup

0≤t≤T f

{
zT (t)Ψ̃4z(t)

}
≥ 0. (3.33)

Assumption 2.2 specifies the criteria for extended
dissipativity as follows:

(i) When the H∞ performance, passivity, and strictly
(Q, S ,R)-ϑ dissipativity conditions are met, Ψ̃4 equals zero∫ T f

0
J(t)dt = sup

0≤t≤T f

zT (s)Ψ̃4z(s)

for any T f ≥ 0.
(ii) When Ψ̃4 > 0, we obtain Ψ̃1 = 0, Ψ̃2 = 0, and Ψ̃3 > 0

from Assumption 2.2. Then it can be shown that∫ t

0
J(s)ds ≥ V(ϖ(t)) > 0, (3.34)

and for any t ≥ 0, T f ≥ 0, T f ≥ t, 0 ≤ t ≤ T f , for all
t ∈ [0,T f ], we have∫ T f

0
J(s)ds >

∫ t

0
J(s)ds ≥ ϖT (t)Piϖ(t) > 0.

From (3.3), we get

zT (t)Ψ̃4z(t) = ϖT (t)CT Ψ̃4Cϖ(t). (3.35)

Using these inequalities, we get∫ T f

0
J(s)ds ≥ ϖT (t)Piϖ(t) ≥ ϖT (t)CT Ψ̃4Cϖ(t). (3.36)
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This ultimately leads to inequality∫ T f

0
J(t)dt − sup

0≤t≤T f

zT (t)Ψ̃4z(t) ≥ 0, (3.37)

the conditions in Definition 2.3 are satisfied, it is reasonable
to conclude that the FOCNNs (2.3) are extended dissipative.

This completes the proof. □

Theorem 3.2. Assuming that Assumption 2.1 is valid, and

considering the scalars α > 0, δ1 > 0, and δ2 > 0,

with the matrices Ψ̃1–Ψ̃4 satisfying Assumption 2.2, the

synchronization of the drive system (2.1) and response

system (2.2) under RIC (2.5) is established with

K = P−1
1 Q.

This synchronization holds true if we have the matrices

P1 = PT
1 > 0, P2 = PT

2 > 0,

diagonal matrices

M1 ≥ 0, M2 ≥ 0, W1 ≥ 0 and W2 ≥ 0,

along with any matrix Q and a scalar β > 0, satisfying the

following inequalities:

Σ1 =


ϕ̂11 ϕ12 ϕ13

∗ ϕ22 0
∗ ∗ ϕ33

 < 0, (3.38)

Σ2 =


ϕ11 ϕ12 ϕ13

∗ ϕ22 0
∗ ∗ ϕ33

 < 0, (3.39)

−Pi CT Ψ̃4

∗ −Ψ̃4

 ≤ 0, i = 1, 2, (3.40)

∆1ε
α − ∆2(T − ε)α − 2 ln β > 0, (3.41)

where,

β = sup
1≤i, j≤2

λmin(Pi)
λmax(P j)

,

ϕ̂11 = −P1A − AT PT
1 + Q + QT + δ1P1

− 2L1M1L2 + LW1L − Ψ̃1,

ϕ12 = P1B + L1W1 + L2W1, ϕ13 = P1D − Ψ̃2,

ϕ22 = −2W2 − M2, ϕ33 = −Ψ̃3,

ϕ11 = −P2A − AP2 + δ2P2 − 2L1M2L2 + LW2L,

ϕ12 = P2B + L1W2 + L2W2, ϕ13 = P2D − Ψ̃2,

ϕ22 = −2W2 − M2, ϕ33 = −Ψ̃3.

Proof. Applying a similar proof technique as employed in
Theorem 3.1, we can derive the desired LMIs given by
Eqs (3.38)–(3.41). □

Remark 3.1. Within most existing literature on the stability

analysis of FOCNNs, this paper takes a unique approach to

addressing exponentially stable and extended dissipativity.

Instead of computing the integer-order derivative of the

Lyapunov functional, we directly compute the fractional

derivative of the proposed functional. This approach

allows us to utilize the system’s trajectory information more

effectively. Note that for the Caputo derivative, the initial

point is at 0. While some values of V(ϖ(t)) are negative,

these values are restricted to the initial value range of the

fractional differential equation. Therefore, these negative

values do not impact the theoretical results.

Remark 3.2. In the error system (2.3), only the first node

is actively controlled, and the control scheme implemented

by the controller (2.5) follows a periodic pattern. Within

each period, the timeline is divided into two segments: the

operational phase

kT ≤ t < kT + ϵ

and the resting phase

kT + ϵ ≤ t < (k + 1)T.

During the operational phase, the controller exerts control

over the dynamic network described in (2.5), while

remaining inactive during the resting phase. As a result

of this periodic, intermittent control strategy, it becomes

evident that the overall cost of control is effective.

4. Numerical example

In this section, we present numerical examples to
demonstrate the effectiveness and practical implications of
our results. These examples illustrate the performance
and robustness of the proposed methods in different
scenarios, complement the analytical aspects, and provide
a comprehensive understanding of the synchronization
approach.

Mathematical Modelling and Control Volume 5, Issue 1, 31–47.



41

Example 4.1. Consider the FOCNNS (2.3), which have the

following fractional-order α = 0.9, and take the parameters

below:

A =

 4.5 0

0 4.5

 ,
B =

 1.2 0

−0.05 1

 ,
C =

 −0.4 −0.1

0.2 −0.03

 ,
D =

 0.1 0

0 0.5

 .
Define the activation functions as

f (ϖ(t)) = tanh(2ϖ(t)),

where L1 is a diagonal matrix with 0 elements and L2 is

a diagonal matrix with entries of 2. The disturbance input

vector is ω(t) = sin t. Additionally, two scalar values are

introduced: δ1 = 5 and δ2 = 6. To assess the extended

dissipative requirements for FOCNNs, we systematically

explore the criteria of L2 – L∞ performance, passivity,

H∞ performance, and (Q, S ,R)–ϑ dissipativity in successive

sections. Using these defined values, we compute the LMIs

with a standard MATLAB LMI toolbox. The extended

dissipative analysis of the system (2.3) incorporates the

effectiveness of the weighting matrices Ψ̃1–Ψ̃4, leading to

the determination of ϑ = 0.5. This exploration demonstrates

the practical application of the proposed synchronization

approach, linking theory with numerical demonstrations.

Using specific values and standard tools makes the results

clear and easy to replicate.

4.1. L2 − L∞ performance

Ψ̃1 = 0, Ψ̃2 = 0, Ψ̃3 = ϑI, and Ψ̃4 = I.

By applying the specified parameters, we can obtain the
resulting gain by solving the LMIs of Theorem 3.2, utilizing
the conventional MATLAB LMI toolbox.

K =

0.0564 0.0005

0.0060 0.0447

 .

4.2. H∞ performance

Ψ̃1 = −I, Ψ̃2 = 0, Ψ̃3 = ϑI, and Ψ̃4 = 0.

Estimating the LMIs in Theorem 3.2 is straightforward, and
the resulting gain matrix is as follows:

K =

0.0230 0

0 −0.3750

 .
4.3. Passivity performance

Let us establish the following matrices:

Ψ̃1 = 0, Ψ̃2 = I, Ψ̃3 = ϑI, and Ψ̃4 = 0.

With these matrices, the analysis of system (2.3) focuses on
evaluating its passivity performance. In order to assess the
feasibility of Theorem 3.2, we calculate the resulting benefit
using the MATLAB LMI toolbox in the following manner,

K =

0.0583 0.0018

0.0077 0.1078

 .
4.4. (Q, S ,R)-ϑ dissipativity

Consider the matrices

Ψ̃1 = Q, Ψ̃2 = S , Ψ̃3 = R − ϑI, and Ψ̃4 = 0,

where

Q =

−1 0
0 −1

 ,
S =

0.3 0
0.4 0.25

 ,
R =

0.3 0
0 0.3

 .
Similarly, by solving the LMIs of Theorem 3.2 and applying
the aforementioned parameters, the resultant gain matrices
are as follows:

K =

 0.0518 −0.0000

−0.0003 0.0422

 .
Figure 1 shows the oscillation of the state variables x(t) and
y(t) in the error system of (2.3). The system evolves with
time without controlling input.
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Figure 1. Numerically computed time series of
the error system (2.3) of the variables x(t) and y(t)
with respect to time.

Further, the existence of the limitation of oscillation with
respect to the fractional order α is demonstrated. Figure 2
shows the fractional order in the range of

α ∈ [0.75, 1.0].

The calculation obtains the maximum of the time series x(t)
is observed (Poincaré cross-section; for periodic oscillation,
we will get only one point). The fractional order varied in
the x-axis and the maximum of the oscillations in the y-axis.
The red colour shows the maxima of the oscillations.

Figure 2. Numerically computed responses: x-
axis: fractional derivative α; y-axis: maxima of
the variable x(t).

From this figure, until

α = 0.78

oscillation exists. If we tune the fractional order, further the
system goes to a fixed point. No oscillation will exist after
that. This is clearly visualized by the red line approaching
zero.

Figure 3, illustrates the synchronization dynamics among
the variables x1(t), x2(t), y1(t), and y2(t). Additionally, it
displays the error dynamics between the drive and response
systems, denoted as ϖ1(t) and ϖ2(t). The error systems
are calculated in the L2–L∞ performance matrix. Similarly,
other performances, such as H∞, passivity performance
and (Q, S ,R)-ϑ dissipativity, are calculated and plotted
individually in Figure 4.

Figure 3. Top panel: numerically computed time
series of the master and slave systems (2.3) of the
variables x1,2(t) and y1,2(t) with respect to time;
bottom panel: error system ϖ1(t), ϖ2(t) (L2–L∞
performance.
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Figure 4. Numerically computed error system
matrix of (a) H∞; (b) passivity performance; (c)
(Q, S ,R)-ϑ dissipativity performance.

Example 4.2. On the basis of (2.1), the drive FOCNNs are

represented as follows:

C
a Dαt x(t) = −Ax(t) + Bg(x(t)), (4.1)

where

A =


1 0 0

0 1 0

0 0 1

 ,

B =


2 −1.2 0

1.8 1.71 1.15

−4.75 0 1.1

 ,
with

α = 0.96, δ1 = 8 and δ2 = 12.

The activation functions are defined as:

g(x(t)) = tanh(1.5x(t)).

The function g(x(t)) satisfies Assumption 2.1 with

L = diag{1.5, 1.5, 1.5}.

The initial value for the drive system is

x0 = [−1.5, 2,−0.8]T .

On the basis of Eq (4.1), the response system can be
described as follows:

C
a Dαt y(t) = −Ay(t) + Bg(y(t)) + Dω(t) + u(t), (4.2)

where

D =


−0.1 0 −0.1

0.2 0.5 −0.1

0.7 −0.2 −0.5

 .
Moreover, the noise disturbance is modeled as

ω(t) = e−0.1t sin(t).

The system (4.1) is computed using a fractional algorithm
with fixed initial conditions as (−1.5, 2.0,−0.8). The
system exhibits a chaotic attractor, as visually represented
in Figure 5 in various projections. In Figure 5, the
phase portraits and time evolution distinctly demonstrate
the existence of chaotic oscillations. Notice that chaotic
oscillation obtained here without control input.

Figure 5. Numerically computed phase diagrams
in the x1(t) − x2(t), x1(t) − x3(t), and x2(t) − x3(t),
planes and the time series x1(t), x2(t), x3(t) of the
system (4.1).

In Figure 6, we present (a) three-dimensional phase
diagrams of chaotic oscillation and Poincaré detection of
the x1(max) variable, accompanied by its power spectrum.
The Poincaré red circled dot is not periodic, and it confirms
the presence of chaotic oscillations. Similarly, the power
spectrum shows a broad band, which confirms the presence
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of chaotic oscillations. The power spectrum was computed
using MATLAB with a sampling frequency of

Fs = 1/T.

Figure 6. Numerically computed (a) three-
dimensional phase diagrams in the x1(t) − x2(t) −
x3(t) plane; (b) Poincare detection of the x(t)
variable; (c) single-sided spectrum of the original
signal (x(t)) variable.

The controller u(t) is specified as an RIC, as indicated
in (2.5). Upon employing a suitable LMI solver to obtain
a feasible numerical solution, the calculated value for β
is 2.940. Following this, the derivation of the control gain
matrix K is accomplished as outlined below:

K =


3.8873 0.0175 −0.4834

0.0447 1.8274 0.1295

−0.3861 0.1326 1.6198

 .

Similarly, for Example 2, the synchronization between the
master and slave variables of x(t), y(t) and z(t) is shown in
Figure 7; in the bottom panel, the error between the variables
is calculated and plotted in a different color.

Figure 7. Numerically computed synchronization
time series of the master and slave systems’
x(t), y(t), z(t) variables and (bottom) the error
system (4.2) of the variables x(t), y(t), and z(t)
with respect to time.

Remark 4.1. If we analyze the expressions for the

convergence times T in (3.41) in Theorem 3.2, a significant

difference emerges in the role of the control parameter β.

This parameter exhibits variation among distinct control

strategies, impacting the associated convergence times T

as described in (3.41). A consistent observation across

all intermittent control methods is that an augmentation in

the value of β corresponds to a reduction in the inequality

presented in (3.41), leading to expedited convergence rates.

5. Conclusions

This research investigates the synchronization challenges
of FOCNNs with extended dissipativity performance.
The integration of IC principles is employed to achieve
synchronization by exerting control over the involved
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nodes. The essential conditions for achieving exponential
stability in the error system, when utilizing a designed
controller, are derived. These conditions are expressed in
terms of LMIs through the construction of an appropriate
Lyapunov functional. By incorporating the proposed
stability criterion, a new set of conditions is derived, which
prove to be sufficient for addressing issues related to L2–
L∞, H∞, passivity, and (Q, S ,R)-ϑ dissipative performance
analyses. Finally, the effectiveness of the proposed strategy
is validated through numerical illustrations. In the future
work, the proposed method will be extended to more general
multi-agent systems with actuator saturation, switching
topologies, or network attack.
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