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Abstract: The present research investigates the global asymptotic stability of bidirectional
associative memory (BAM) neural networks using distinct sufficient conditions. The primary
objective of this study is to establish new generalized criteria for the global asymptotic
robust stability of time-delayed BAM neural networks at the equilibrium point, utilizing
the Frobenius norm and the positive symmetrical approach. The new sufficient conditions
are derived with the help of the Lyapunov–Krasovskii functional and the Frobenius norm,
which are important in deep learning for a variety of reasons. The derived conditions are not
influenced by the system parameter delays of the BAM neural network. Finally, a numerical
example is provided to demonstrate the effectiveness of the proposed conclusions regarding
network parameters.

Keywords: asymptotic robust stability; bidirectional associative memory neural networks;
connection weight interval matrices; Lyapunov–Krasovskii functional; time delay

1. Introduction
Neural networks (NNs) are used in engineering to solve problems such as signal pro-

cessing, pattern recognition, and combinatorial optimization. Several neural network (NN)
models exist, including bidirectional associative memory (BAM) NNs, Cohen–Grossberg
NNs, cellular NNs, recurrent NNs, and Hopfield NNs [1–3]. However, one common chal-
lenge in the development and hardware implementation of NNs is the imprecision of the
NN parameters; for example, parameters on NN circuits are bound to vary. Despite the
ability to analyze the associated ranges and limitations of these parameters, estimation
errors occur during the NN design process when examining critical data such as neuron
firing rate, synaptic connection strength, and signal transmission latency. As a result, an
effective NN model must possess specified features. The equilibria and stability dynamics
of this NN are essential to the design of a neural system that aims to solve the specified task.
In this context, it should be highlighted that different dynamical NNs displaying the desired
dynamics may be needed to handle different challenges. To solve an optimization-related
problem, for instance, we should create an NN model that has a single, globally stable
equilibrium point for each external constant input. The value of this particular equilibrium
point must not be reliant on the initial conditions of the neuronal states which are discussed
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by many researchers in [4–7]. In addition, certain resilience characteristics must be present
in an effective NN model. The study of the global stability of synaptic connection matrices
in NNs leads to the theory of the interval matrix. Furthermore, a single equilibrium point
is the most important component in the modification of the NN analysis. Dynamical NN
models rely largely on many-equilibrium-point stability analysis. Various stability anal-
ysis methods have been explored, such as global asymptotic stability, complete stability,
and exponential stability of dynamic models that include time delays, which numerous
researchers have examined in [8–14]. Previous research has shown different outcomes
regarding the stability analysis of time-delayed NNs, utilizing stability and instability
assessments through Lyapunov and non-smooth methods. As a result, an important con-
cern is the examination of global asymptotic robust stability (GARS) and control strategies
for numerous time-delayed NNs. Recently, several researchers have started to focus on
investigating this topic [15–20]. As we all know, in an NN, the dynamical properties of the
equilibrium point can be influenced by delay parameters. Therefore, studying the stability
of the equilibrium point in delayed NNs is of great significance (see [21–27]).

BAM is a significant NN technique that was first presented by B. Kosko [28,29]. The
BAM model consists of two layers of neurons, where neurons within the same layer do
not interconnect. The BAM NN can range from a single-layer auto-switching model to a
dual-layer pattern-matching heterojunction chain that retains both forward and backward
pattern pairs. Numerous researchers have thoroughly examined the dynamic properties
and used BAM NNs to address various real-time challenges, such as automatic control,
optimization, signal processing, and pattern recognition. In addition, studies have ad-
dressed the time delay present in BAM models. The results of the BAM models can be
classified into three categories. In previous research on BAM models, only two types were
considered: those with time delays and those without. Numerous authors have investi-
gated the stability results of the two aforementioned types in the literature [30–32]. The
hybrid variant of the BAM nervous system represents a newer area of study. In this form,
both delayed and immediate signals are present. A specific solution is required for every
possible initial condition in hybrid BAM NNs. Mathematically speaking, this shows that
the GARS function created a lag in the NNs reaching the time equilibrium point. Numerous
authors have examined the worldwide asymptotic robust stability of the hybrid BAM
model in [33–36]. This will lead to huge growth in the amount of computation. So, there is
much room left for us to investigate the global robust stability of delayed BAM NNs.

The main contributions of this research are as follows:

1. A comprehensive new sufficient condition is derived for the GARS of BAM NNs with
delays using the Frobenius norm.

2. The Frobenius norm offers a simpler approach compared to other upper-bound
norms.The Frobenius norm is a flexible tool in deep learning that helps with NN sta-
bility and generalization by providing information about the size of weight matrices.

3. Additionally, various constraints on interconnection matrix norms, Lyapunov–
Krasovskii functions, and specific activation functions are utilized to derive results
that confirm the stability of hybrid BAM NNs.

4. Finally, numerical examples demonstrate the efficiency of the proposed findings for
network parameters.

Notations: The notations that will be utilized in this paper are as follows. Define E
as a matrix with elements eij for n × m. The 2-norm of the matrix E is equal to the square
root of the maximum eigenvalue of ETE. The absolute value of a matrix E = (eij)n×m

with real numbers is equal to the absolute value of each entry in the matrix, denoted by
| E |= (| eij |)n×m. A matrix A = (aij)n×n is called positive definite (semidefinite) if it is a



Symmetry 2025, 17, 183 3 of 17

symmetric matrix and uT Au > 0(≥ 0) holds for all real vectors u = (u1, u2, · · · , un)T ∈ Rn.

Also,
n,m
∑

i,j=1
=

n
∑

i=1

m
∑

j=1
and

m,n
∑

j,i=1
=

m
∑

j=1

n
∑

i=1
.

2. Preliminaries
Take into account the system of the hybrid NNs with delayed connection in BAM,

which is given as follows [28,37]:
ẏj(t) = −b̌jyj(t) + ∑n

i=1 ǧijϕ1i(wi(t)) + ∑n
i=1 ǧτ

ijϕ1i(wi(t − σ̌ij)) + Kj, ∀j

ẇi(t) = −ǎiwi(t) + ∑m
j=1 f̌ jiϕ2j(yj(t)) + ∑m

j=1 f̌ τ
ji ϕ2j(yj(t − τ̌ji)) + Ji, ∀i

(1)

where wi(t) and yj(t) represent the state of the ith and jth neurons in the vectors at time t.
n and m represent the total number of neurons in the proposed hybrid BAM model (1).
ϕ1i and ϕ2j indicate the activation functions of the neurons; f̌ ji, f̌ τ

ji , ǧij, and ǧτ
ij are the

connection weight matrices; ǎi and b̌j stand for the neuron charging time constants; Ji and
Kj are the inputs.

For the stability of the NN model (1), the following several considerations have
been made:

Assumption 1. Assume that there are certain ľi > 0, ȟj > 0, such that the following specified
conditions are satisfied:

0 ≤ ϕ1i(x)− ϕ1i(y)
x − y

≤ ľi,

0 ≤
ϕ2j(x̂)− ϕ2j(ŷ)

x̂ − ŷ
≤ ȟj, x̂ ̸= ŷ, x ̸= y

for all x̂, ŷ, x, y ∈ R.

Assumption 2. Assume there are positive constants M̌i and Ňj for which certain conditions are satisfied.
|ϕ1i(w1)| ≤ M̌i and |ϕ2j(w2)| ≤ Ňj for all w1, w2 ∈ R, where i = 1, 2, · · · , n, j = 1, 2, · · · , m.
Based on this assumption, the activation functions are limited in type.

The matrices b̌j, f̌ ji, f̌ τ
ji , ǧij, ǧτ

ij, ǎi, τ̌ji and σ̌ij are assumed to be uncertain matrices.
The usual approach to deal with the delayed system includes modifying the synaptic
strength connection matrices within a specific time frame in the following manner for
i = 1, 2, · · · , n, j = 1, 2, · · · , m.

BI = {B = diag(b̌j) : 0 ≺ B ⪯ B ⪯ B,

ie., 0 < b̌j ≤ b̌j ≤ b̌j}, ∀B ∈ BI

GI = {G = (ǧij) : G ⪯ G ⪯ G ,
ie., ǧ

ij
≤ ǧij ≤ ǧij}, ∀G ∈ GI

Gτ
I = {Gτ = (ǧτ

ij) : Gτ ⪯ Gτ ⪯ Gτ ,

ie., ǧτ
ij
≤ ǧτ

ij ≤ ǧτ
ij}, ∀Gτ ∈ Gτ

I

œI = {œ = (σ̌ij) : œ ⪯ œ ⪯ œ,
ie., σ̌ij ≤ σ̌ij ≤ σ̌ij}, ∀œ ∈ œI ,

AI = {A = diag(ǎi) : 0 ≺ A ⪯ A ⪯ A ,
ie., 0 < ǎi ≤ ǎi ≤ ǎi}, ∀A ∈ AI

FI = {F = ( f̌ ji) : F ⪯ F ⪯ F ,

ie., f̌
ji
≤ f̌ ji ≤ f̌ ji}, ∀F ∈ FI

F τ
I = {F τ = ( f̌ τ

ji ) : F τ ⪯ F τ ⪯ F τ ,

ie., f̌
τ

ji
≤ f̌ τ

ji ≤ f̌
τ

ji}, ∀F τ ∈ F τ
I

øI = {ø = (τ̌ji) : ø ⪯ ø ⪯ ø ,
ie., τ̌ ji ≤ τ̌ji ≤ τ̌ ji}, ∀ø ∈ øI .

(2)
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Next, we move the equilibrium point of the system (1) to the origin for the simplification of
our proposed results. To achieve this, we employ the subsequent alteration:

x̌j(·) = yj(·)− y∗j , ǔi(·) = wi(·)− w∗
i ,

for every j = 1, 2, · · · , m, i = 1, 2, · · · , n.

Through the use of the transformation mentioned above, we change the system (1) into the
form shown below: 

dx̌j(t)
dt = −b̌j x̌j(t) + ∑n

i=i ǧijχ1i(ǔi(t))
+∑n

i=i ǧτ
ijχ1i(ǔi(t − σ̌ij)), ∀j,

dǔi(t)
dt = −ǎiǔi(t) + ∑m

j=i f̌ jiχ2j(x̌j(t))
+∑m

j=i f̌ τ
ji χ2j(x̌j(t − τ̌ji)), ∀i,

(3)

where
χ1i(ǔi(·)) =ϕ1i(ǔi(·) + w∗

i )− ϕ1i(w∗
i ), χ1i(0) = 0,

χ2j(x̌j(·)) =ϕ2j(x̌j(·) + y∗j )− ϕ2j(y∗j ), χ2j(0) = 0,

for every i, j.

Now, it is simple to confirm that the functions χ1i and χ2j meet the requirements for
ϕ1i and ϕ2j, meaning that χ1i, χ2j satisfy both Assumptions 1 and 2.

Definition 1 ([38]). The system (3) satisfying (2) is GARS if the origin of the unique equilibrium
point of the BAM system (3) is globally asymptotically stable for all B ∈ BI , G ∈ GI , Gτ ∈ Gτ

I ,
A ∈ AI , F ∈ FI , F ∈ F τ

I . The global asymptotic stability of the system (3) is nothing but the
solutions of the system (3) that converge to the origin of the unique equilibrium point irrespective of
the initial conditions.

The identification and understanding of these following lemmas and facts are pivotal
in establishing the prerequisites for conducting a thorough examination of global stability
in (1).

Lemma 1 ([39]). The following inequalities are valid for each matrix E in the interval [E , E ]

such that
|| E ||2 ≤ Tq(E), q = 2, 3, 4,

where
T2(E) = ∥ E∗ ∥2 + ∥ E∗ ∥2,

T3(E) =
√
∥ E∗ ∥2

2 + ∥ E∗ ∥2
2 +2 ∥ E T∗ | E∗ |∥2,

T4(E) = ∥ Ê ∥2, Ê = (êji).

Here, êji = max(| eji |, | eji |), E∗ = 1
2 (E + E), E∗ =

1
2 (E − E).

Remark 1. The results described in Lemma 1 are consistently applicable to any synaptic connection
strength matrices defined in (1).
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Lemma 2 ([3]). The following inequality holds for any two vectors u = (u1, u2, · · · , un)T ∈ Rn

and y = (y1, y2, · · · , yn)T ∈ Rn.

2uTy = 2yTu ≤ βuTu +
1
β

yTy, ∀ β > 0.

Lemma 3 ([11]). If E ∈ EI , then

∥ E ∥2 ≤∥ E ∥F,

where ∥ E ∥F is the Frobenius norm of the matrix E and it is defined by ∥ E ∥F=

(∑n
i=1 ∑m

j=1 a2
ij)

1
2 = (trace[E TE ])

1
2 , where trace[E TE ] is the sum of the diagonal elements of E TE .

Assumption 3. Consider the matrix E , which satisfies (2). Now, there exists a positive constant
T(E) that satisfies the following condition:

∥ E ∥2 ≤ T(E),

where E is any matrix as defined in (2).

3. Main Results
Within this section, we establish certain generalized adequate conditions for the GARS

of the system represented by (1). Through the application of Assumption 2, the system
described by (1) that fulfills (2) possesses an equilibrium point. Hence, demonstrating the
uniqueness and GARS of the equilibrium point of the BAM model (1) is essential. Suppose
that if the origin of system (3) is unique and GARS, then the equilibrium point of system (1)
is also unique and GARS.

Theorem 1. Assume the activation functions χ1i and χ2j fulfill the conditions in Assumptions 1 and 2,
and there are positive constants γ and δ in which the conditions below are satisfied:

ΨFi =η − β ∥ G ∥2
F −ζ(gτ∗) > 0, ∀i,

ΩFj =ξ − µ ∥ F ∥2
F −τ( f τ∗) > 0, ∀j,

where η = 2mǎi − ν, ν = m(γ + δ), β =
1
δ

nľ2
i , ζ =

1
γ

n2 ľ2
i , ( f τ∗) =

n
∑

i=1
( f̌ τ∗

ji )2, µ =
1
δ

mȟ2
j ,

f τ∗
ji = max(| f̌

τ

ji
|, | f̌

τ

ji |), ξ = 2nb̌j − θ, θ = n(γ + δ), τ =
1
γ

m2ȟ2
j , (gτ∗) =

m
∑

j=1
(ǧτ∗

ij )
2

and gτ∗
ij = max(| ǧτ

ij
|, | ǧτ

ij |), i = 1, 2, . . . , n, j = 1, 2, . . . , m. Then, the system defined by (3)

with network parameters that meet (2) has GARS at its origin.

Proof. This theorem will be shown through a two-step process. In step 1, we show that the
only equilibrium point of model (3) is its origin. On the flip side, we show that model (3)’s
origin is GARS.

Step 1:
Assume that the equilibrium points of model (3) are (ǔ∗

1 , . . . , ǔ∗
n)

T = ǔ∗ ̸= 0 and
(x̌∗1 , . . . , x̌∗m)T = x̌∗ ̸= 0. The points that satisfy the equations stated below are the equilib-
rium points of (3).

−ǎiǔ∗
i +

m

∑
j=i

f̌ jiχ2j(x̌∗j ) +
m

∑
j=i

f̌ τ
ji χ2j(x̌∗j ) = 0, ∀i, (4)
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−b̌j x̌∗j +
n

∑
i=i

ǧijχ1j(ǔ∗
i ) +

n

∑
i=i

ǧτ
ijχ1j(ǔ∗

i ) = 0, ∀j. (5)

We multiply (4) by 2mǔ∗
i and (5) by 2nx̌∗j , then add the resulting equations,

0 =− 2mǎiǔ∗
i

2 +
n,m

∑
i,j=1

2mǔ∗
i f̌ jiχ2j(x̌∗j )

+
m,n

∑
j,i=1

2mǔ∗
i f̌ τ

ji χ2j(x̌∗j )− 2nb̌j x̌∗j
2

+ 2n
m,n

∑
j,i=1

x̌∗j ǧijχ1j(ǔ∗
i ) + 2n

m,n

∑
j,i=1

x̌∗j ǧτ
ijχ1j(ǔ∗

i ),

0 =− 2mǎiǔ∗
i

2 +
n,m

∑
i,j=1

2mǔ∗
i f̌ jiχ2j(x̌∗j ) +

n,m

∑
i,j=1

2mǔ∗
i f̌ τ

ji χ2j(x̌∗j )

− 2nb̌j x̌∗j
2 + 2n

m,n

∑
j,i=1

x̌∗j gijχ1j(ǔ∗
i ) + 2n

m,n

∑
j,i=1

x̌∗j ǧτ
ijχ1j(ǔ∗

i )

+
1
γ

n,m

∑
i,j=1

m2( f̌ τ
ji )

2χ2
2j(x̌∗j )−

1
γ

n,m

∑
i,j=1

m2( f̌ τ
ji )

2χ2
2j(x̌∗j )

+
1
γ

m,n

∑
j,i=1

n2(ǧτ
ij)

2χ2
1j(ǔ

∗
i )−

1
γ

m,n

∑
j,i=1

n2(ǧτ
ij)

2χ2
1j(ǔ

∗
i )

Applying Assumptions 1 and 2 for the activation functions, we have

≤− 2mǎiǔ∗
i

2 +
n,m

∑
i,j=1

2mǔ∗
i f̌ jiχ2j(x̌∗j ) +

n,m

∑
i,j=1

2mǔ∗
i f̌ τ

ji χ2j(x̌∗j )

− 2nb̌j x̌∗j
2 + 2n

m,n

∑
j,i=1

x̌∗j ǧijχ1j(ǔ∗
i ) + 2n

m,n

∑
j,i=1

x̌∗j gτ
ijχ1j(ǔ∗

i )

+
1
γ

n,m

∑
i,j=1

m2( f̌ τ
ji )

2ȟ2
j (x̌∗j

2)− 1
γ

n,m

∑
i,j=1

m2( f̌ τ
ji )

2χ2
2j(x̌∗j )

+
1
γ

m,n

∑
j,i=1

n2(ǧτ
ij)

2 ľ2
i (ǔ

∗
i

2)− 1
γ

m,n

∑
j,i=1

n2(ǧτ
ij)

2χ2
1j(ǔ

∗
i ) (6)

Take into account the forthcoming inequalities:

n,m

∑
i,j=1

2mǔ∗
i (t) f̌ jiχ2j(x̌∗j ) = 2mǔ∗TFS(x̌∗)

≤ mδǔ∗T ǔ∗ + m
1
δ

S T(x̌∗)F TFS(x̌∗)

≤ mδǔ∗T ǔ∗ + m
1
δ
∥ F ∥2

2∥ S(x̌∗) ∥2
2

≤ mδ
n

∑
i=1

ǔ∗
i

2 + m
1
δ
∥ F ∥2

2

m

∑
j=1

ȟ2
j x̌∗j

2, (7)
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m,n

∑
j,i=1

2nx̌∗j ǧijχ1j(ǔ∗
i ) =2nx̌∗TGS(ǔ∗)

≤ nδx̌∗T x̌∗ + n
1
δ

S T(ǔ∗)G TGS(ǔ∗)

≤ nδx̌∗T x̌∗ + n
1
δ
∥ S ∥2

2∥ G(u∗) ∥2
2

≤ nδ
m

∑
j=1

x̌∗j
2 + n

1
δ
∥ G ∥2

2

n

∑
i=1

ľ2
i ǔ∗

i
2, (8)

n,m

∑
i,j=1

2mǔ∗
i f̌ τ

ji χ2j(x̌∗j ) ≤
n,m

∑
i,j=1

γǔ∗
i

2 +
n,m

∑
i,j=1

1
γ

m2( f̌ τ
ji )

2χ2
2j(x̌∗j )

= mγ
n

∑
i=1

ǔ∗
i

2 +
n,m

∑
i,j=1

1
γ

m2( f̌ τ
ji )

2χ2
2j(x̌∗j ), (9)

m,n

∑
j,i=1

2nx̌∗j ǧτ
ijχ2j(ǔ∗

i ) ≤
m,n

∑
j,i=1

γx̌∗j +
m,n

∑
j,i=1

1
γ

n2(ǧτ
ij)

2χ2
1i(ǔ

∗
i )

= nγ
m

∑
j=1

x̌∗j +
m,n

∑
j,i=1

1
γ

n2(ǧτ
ij)

2χ2
1i(ǔ

∗
i ). (10)

By applying the results of (7)–(10) in (6), we have

0 ≤−
n

∑
i=1

2mǎiǔ∗
i

2 + mδ
n

∑
i=1

ǔ∗
i

2 + m
1
δ
∥ F ∥2

2

m

∑
j=1

ȟ2
j x̌∗j

2

−
m

∑
j=1

2nb̌j x̌∗j
2 + nδ

m

∑
j=1

x̌∗j
2 + n

1
δ
∥ G ∥2

2

n

∑
i=1

ľ2
i ǔ∗

i
2

+ mγ
n

∑
i=1

ǔ∗
i

2 + nγ
m

∑
j=1

x̌∗j
2 +

1
γ

n,m

∑
i,j=1

m2( f̌ τ
ji )

2ȟ2
j (x̌∗j

2)

+
1
γ

m,n

∑
j,i=1

n2(ǧτ
ij)

2 ľ2
i (ǔ

∗
i

2).

Since

∥ G ∥2
2≤ ∥ G ∥2

F,

∥ F ∥2
2≤ ∥ F ∥2

F, ( f̌ τ
ji )

2 ≤ ( f τ∗
ji )2, (ǧτ

ij)
2 ≤ (gτ∗

ij )
2.

0 ≤
n

∑
i=1

{
− 2mǎi + m(γ + δ) +

1
δ

nľ2
i
(
∥ G ∥2

F)

+
1
γ

n2 ľ2
i

m

∑
j=1

((gτ∗
ij )

2)

}
ǔ∗

i
2

+
m

∑
j=1

{
− 2nb̌j + n(γ + δ) +

1
γ

m2ȟ2
j

n

∑
i=1

(( f τ∗
ji )2)

+
1
δ

mȟ2
j
(
∥ F ∥2

F)

}
x̌∗j

2
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0 ≤
n

∑
i=1

{
− 2mǎi + ν + β ∥ G ∥2

F +ζ(gτ∗)

}
ǔ∗

i
2

+
m

∑
j=1

{
− 2nb̌j + θ + µ ∥ F ∥2

F +τ( f τ∗)

}
x̌∗j

2

0 ≤−
n

∑
i=1

{
η − β ∥ G ∥2

F −ζ(gτ∗)

}
ǔ∗

i
2

−
m

∑
j=1

{
ξ − µ ∥ F ∥2

F −τ( f τ∗)

}
x̌∗j

2

0 ≤−
n

∑
i=1

ΨFiǔ2
i −

m

∑
j=1

ΩFj x̌2
j . (11)

Given that ΨFi > 0 and ΩFj > 0, for every i, j and x̌∗ ̸= 0 ̸= ǔ∗. But −
n
∑

i=1
ΨFiǔ∗

i
2 −

m
∑

j=1
ΩFj x̌∗j

2 < 0. Here, (11) contradicts the above result and thus, we can deduce that the

only equilibrium point besides x̌∗ = 0 = ǔ∗. Therefore, the unique equilibrium point is the
origin of system (3).

Step 2:
Let us examine the Lyapunov–Krasovskii method provided below:

V(x̌(t), ǔ(t)) =
n

∑
i=1

mǔ2
i (t) +

1
γ

n,m

∑
i,j=1

m2( f̌ τ
ji )

2
t∫

t−τ̌ji

χ2
2j(x̌j(η))dη

+
m

∑
j=1

nx̌2
j (t) +

1
γ

m,n

∑
j,i=1

n2(ǧτ
ji)

2
t∫

t−σ̌ij

χ2
1iǔi(ξ)dξ.

Obtaining V̇(ǔ(t), x̌(t)) in the trajectories of system (3) and using Lemma 2 yield the
following result:

V̇(x̌(t), ǔ(t)) ≤mδ
n

∑
i=1

ǔ2
i (t)−

n

∑
i=1

2mǎiǔ2
i (t)

+ nδ
m

∑
j=1

x2
j (t) + m

1
δ
∥ F ∥2

2

m

∑
j=1

ȟ2
j x̌2

j (t)

+ n
1
δ
∥ G ∥2

2

n

∑
i=1

ľ2
i ǔ2

i (t)−
m

∑
j=1

2nb̌j x̌2
j (t)

+ mγ
n

∑
i=1

ǔ2
i (t) + nγ

m

∑
j=1

x̌2
j (t)

+
1
γ

m

∑
j=1

n

∑
i=1

n2( f̌ τ
ji )

2 ľ2
i ǔ2

i (t)

+
1
γ

n

∑
i=1

m

∑
j=1

m2(ǧτ
ij)

2ȟ2
j x̌2

j (t).

Since ∥ G ∥2
2≤∥ G ∥2

F, ∥ F ∥2
2≤∥ F ∥2

F, ( f̌ τ
ji )

2 ≤ ( f τ∗
ji )2 and (ǧτ

ij)
2 ≤ (gτ∗

ij )
2.
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V̇(x̌(t), ǔ(t)) ≤
n

∑
i=1

{
− 2mǎi + m(γ + δ) +

1
δ

nľ2
i
(
∥ G ∥2

F)

+
1
γ

n2 ľ2
i

m

∑
j=1

(( f τ∗
ij )2)

}
ǔ∗

i
2

+
m

∑
j=1

{
− 2nb̌j + n(γ + δ)

+
1
γ

m2ȟ2
j

n

∑
i=1

((gτ∗
ji )

2) +
1
δ

mȟ2
j
(
∥ F ∥2

F)

}
x̌∗j

2

0 ≤
n

∑
i=1

{
− 2mǎi + ν + β ∥ G ∥2

F +ζ( f τ∗)

}
ǔ∗

i
2

+
m

∑
j=1

{
− 2nb̌j + θ + µ ∥ F ∥2

F +τ(gτ∗)

}
x̌∗j

2

0 ≤−
n

∑
i=1

{
η − β ∥ G ∥2

F −ζ( f τ∗)

}
ǔ∗

i
2

−
m

∑
j=1

{
ξ − µ ∥ F ∥2

F −τ(gτ∗)

}
x̌∗j

2

=−
n

∑
i=1

ΨFiǔ2
i −

m

∑
j=1

ΩFj x̌2
j .

Given that ΨFi > 0 and ΩFj > 0, for every i and j, for all non-zero values of ǔ(t)
and x̌(t), V̇(x̌(t), ǔ(t)) < 0. Therefore, according to the theory of Lyapunov stability, the
origin of the system (3) that satisfies (2) is GARS. Therefore, the system (1) that fulfills (2) is
considered GARS.

Now, let us find the different results from Theorem 1 for the different upper bounds of
the synaptic connection weight matrices which are stated as follows:

Theorem 2. Assume the activation functions χ1i and χ2j fulfill the conditions of Assumptions 1 and 2
and there are positive constants γ and δ where the conditions below are satisfied:

Ψ2i =η − β(∥ G∗ ∥2 + ∥ G∗ ∥2)
2 − ζ(gτ∗) > 0, ∀i,

Ω2j =ξ − µ(∥ F ∗ ∥2 + ∥ F∗ ∥2)
2 − τ( f τ∗) > 0, ∀j,

where η = 2mǎi − ν, ν = m(γ + δ), β =
1
δ

nľ2
i , ζ =

1
γ

n2 ľ2
i , ( f τ∗) =

n
∑

i=1
( f̌ τ∗

ji )2, µ =
1
δ

mȟ2
j ,

f τ∗
ji = max(| f̌

τ

ji
|, | f̌

τ

ji |), ξ = 2nb̌j − θ, θ = n(γ + δ), τ =
1
γ

m2ȟ2
j , (gτ∗) =

m
∑

j=1
(ǧτ∗

ij )
2

and gτ∗
ij = max(| ǧτ

ij
|, | ǧτ

ij |), i = 1, 2, . . . , n, j = 1, 2, . . . , m. Then, the system defined by (3)

with network parameters that meet (2) has GARS at its origin.

Theorem 3. Assume the activation functions χ1i and χ2j fulfill the conditions of Assumptions 1 and 2
and there are positive constants γ and δ where the conditions below are satisfied:

Ψ3i =η − β(∥ G∗ ∥2
2 + ∥ G∗ ∥2

2 +2 ∥ G T
∗ | G∗ |∥2)− ζ(gτ∗) > 0, ∀i,

Ω3j =ξ − µ(∥ F ∗ ∥2
2 + ∥ F ∗ ∥2

2 +2 ∥ F T
∗ | F ∗ |∥2)− τ( f τ∗) > 0, ∀j,
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where η = 2mǎi − ν, ν = m(γ + δ), β =
1
δ

nľ2
i , ζ =

1
γ

n2 ľ2
i , ( f τ∗) =

n
∑

i=1
( f̌ τ∗

ji )2, µ =
1
δ

mȟ2
j ,

f τ∗
ji = max(| f̌

τ

ji
|, | f̌

τ

ji |), ξ = 2nb̌j − θ, θ = n(γ + δ), τ =
1
γ

m2ȟ2
j , (gτ∗) =

m
∑

j=1
(ǧτ∗

ij )
2

and gτ∗
ij = max(| ǧτ

ij
|, | ǧτ

ij |), i = 1, 2, . . . , n, j = 1, 2, . . . , m. Then, the system defined by (3)

with network parameters that meet (2) has GARS at its origin.

Theorem 4. Assume the activation functions χ1i and χ2j fulfill Assumptions 1 and 2 and there are
positive constants γ and δ where the conditions below are satisfied:

Ψ4i =η − β(∥ Ĝ ∥2)
2 − ζ(gτ∗) > 0, ∀i,

Ω4j =ξ − µ(∥ F̂ ∥2)
2 − τ( f τ∗) > 0, ∀j,

where η = 2mǎi − ν, ν = m(γ + δ), β =
1
δ

nľ2
i , ζ =

1
γ

n2 ľ2
i , ( f τ∗) =

n
∑

i=1
( f̌ τ∗

ji )2, µ =
1
δ

mȟ2
j ,

f τ∗
ji = max(| f̌

τ

ji
|, | f̌

τ

ji |), ξ = 2nb̌j − θ, θ = n(γ + δ), τ =
1
γ

m2ȟ2
j , (gτ∗) =

m
∑

j=1
(ǧτ∗

ij )
2

and gτ∗
ij = max(| ǧτ

ij
|, | ǧτ

ij |), i = 1, 2, . . . , n, j = 1, 2, . . . , m. Then, the system defined by (3)

with network parameters that meet (2) has GARS at its origin.

Remark 2. In the available literature, the Frobenius norm for delayed BAM NNs has been discussed
using different techniques to derive the global stability condition. In [40], the problem of nonlinear
differential systems with infinite delay has been studied for global stability analysis with the effect of
BAM NNs. The authors of [41] studied the synchronization stability criteria for the same proposed
delayed BAM NNs with sufficient conditions. Recently, in [6], the proposed BAM NN problem has
been discussed with the global asymptotic stability condition with a delay approach. Different from
the existing literature [6,40,41], in this paper, the problem of delayed BAM NNs has been addressed
by utilizing the Lyapunov–Krasovskii method. The new sufficient conditions for GARS in BAM
NNs were established using the Frobenius norm. The effectiveness of the proposed new results are
compared with the existing norms in the following numerical section.

4. Numerical Example
In this part, we demonstrate the contrast in outcomes of Theorems 1–4 through the

following instances.

Example 1. Take into account the network parameters for the specified NN model (1) that adhere
to (2).

l1 = l2 = l3 = 1, h1 = h2 = h3 = 1, γ =
1
8

, δ =
1
8

,

A = A = A =

16 0 0
0 16 0
0 0 16

 = B = B = B.

G = F =
−1
5


1 1 1
1 1 1
1 1 1
1 1 1

, G = F =
1
5


1 1 1
1 1 1
1 1 1
1 1 1

,
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G∗ = F ∗ =

0 0 0
0 0 0
0 0 0

, G∗ = F∗ =
1
8

1 1 1
1 1 1
1 1 1

,

Ĝ = F̂ =
1
8

1 1 1
1 1 1
1 1 1

, G = F =
1

30

1 1 1
1 1 1
1 1 1

.

Gτ =
−1
8

d1 d1 d1

d1 d1 d1

d1 d1 d1

, Gτ
=

1
8

d1 d1 d1

d1 d1 d1

d1 d1 d1

 = Gτ∗ .

F τ =
−1
8

d2 d2 d2

d2 d2 d2

d2 d2 d2

, F τ
=

1
8

d2 d2 d2

d2 d2 d2

d2 d2 d2

 = F τ∗ .

where d1 > 0, d2 > 0.
We now identify the distinct norms in Lemmas 1 and 3 in the following manner.

∥ G ∥2
F=∥ G ∥2

F = 0.0100

T2
2 (G) = T2

2 (F ) = T2
3 (G) = T2

3 (F ) = 0.1406 = T2
4 (G)

= T2
4 (F )

We exhibit the results of Theorem 1 for the Frobenius upper bound; we obtain

ΨFi = 95.25 − 0.24 − 3.375d2
1

= 95.0100 − 3.375d2
1.

Since ΨFi > 0, ∀i = 1, 2, 3. Therefore, d2
1 < 28.1511.

ΩFj = 95.25 − 0.24 − 3.375d2
2

= 95.0100 − 3.375d2
2.

Since Ω1j > 0, ∀j = 1, 2, 3. Therefore, d2
2 < 28.1511. Similarly, we exhibit the results of

Theorem 2 for the upper bounds T2
k , k = 2, 3, 4, and we obtain

Ψki = 95.25 − 3.3744 − 3.375d2
1

= 91.8756 − 3.375d2
1.

Since Ψki > 0, ∀k = 2, 3, 4 and i = 1, 2, 3. Therefore, d2
1 < 27.2224.

Ωkj = 95.25 − 3.3744 − 3.375d2
2

= 91.8756 − 3.375d2
2.

Since Ωkj > 0, ∀k = 2, 3, 4 and j = 1, 2, 3. Therefore, d2
2 < 27.2224.

The simulation figures for Example 1 can be observed in Figures 1–3. Utilizing the randomized
initial condition, the state trajectories of x̌i(i = 1, 2, 3) and ǔi(i = 1, 2, 3) are demonstrated in
Figures 1–3.
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Figure 1. Response of x̌(t), ǔ(t) among the different initial states.
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Figure 2. Response of x̌(t) among the different initial states.
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Figure 3. Response of ǔ(t) among the different initial states.

Remark 3. For ΨFi and ΩFj, ∀i, j = 1, 2, 3, d2
2 and d2

1, respectively, are valid in the domain
27.2224 < d2

q < 28.1511, q = 1, 2 whereas Ψki and Ωkj, ∀ k = 2, 3, 4, i, j = 1, 2, 3 are not valid in
that domain. This is because of the minimum value of the Frobenius norm for the given network
parameters. Hence, our new results in Theorem 1 will give better results for the proposed BAM
NN model.

Example 2. Take into account the network parameters for the specified BAM NN model (1) that
adhere to (2).

l1 = l2 = l3 = l4 = 1, h1 = h2 = h3 = h4 = 1, γ =
1
5

, δ =
1
5

,
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A = A = A =


10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

 = B = B = B.

G = F =
−1
5


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

, G = F =
1
5


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

,

G∗ = F ∗ =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, G∗ = F∗ =
1
5


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

,

Ĝ = F̂ =
1
5


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

, G = F =
1
25


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

.

Gτ =
−1
8


e1 e1 e1 e1

e1 e1 e1 e1

e1 e1 e1 e1

e1 e1 e1 e1

, Gτ
=

1
5


e1 e1 e1 e1

e1 e1 e1 e1

e1 e1 e1 e1

e1 e1 e1 e1


= Gτ∗ .

F τ =
−1
5


e2 e2 e2 e2

e2 e2 e2 e2

e2 e2 e2 e2

e2 e2 e2 e2

, F τ
=

1
5


e2 e2 e2 e2

e2 e2 e2 e2

e2 e2 e2 e2

e2 e2 e2 e2


= F τ∗ .

where e1 > 0, e2 > 0. We now identify the distinct norms in Lemmas 1 and 3 in the following manner.

∥ G ∥2
F=∥ F ∥2

F = 0.0256

T2
2 (G) = T2

2 (F ) = T2
3 (G) = T2

3 (F ) = 0.6400 = T2
4 (G)

= T2
4 (F ).

We exhibit the results of Theorem 1 for the upper bound using the Frobenius norm, and
we obtain

ΨFi = 78.4 − 0.5120 − 12.8e2
1

= 77.888 − 12.8e2
1.

Since ΨFi > 0, ∀i = 1, 2, 3, 4. Therefore, e2
1 < 6.0850.

ΩFj = 78.4 − 0.5120 − 12.8e2
2

= 77.888 − 12.8e2
2.
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Since ΩFj > 0, ∀j = 1, 2, 3, 4. Therefore, e2
2 < 6.0850. Similarly, we exhibit the results of

Theorems 2–4 for the upper bounds T2
k , k = 2, 3, 4 and we obtain

Ψki = 78.4 − 12.8 − 12.8e2
1

= 65.6 − 12.8e2
1.

Since Ψki > 0, ∀k = 2, 3, 4 and i = 1, 2, 3, 4. Therefore, e2
1 < 5.1250.

Ωkj = 78.4 − 12.8 − 12.8e2
2

= 65.6 − 12.8e2
2.

Since Ωkj > 0, ∀q = 2, 3, 4 and j = 1, 2, 3, 4. Therefore, e2
2 < 5.1250.

The simulation outcomes of Example 2 are depicted in Figures 4–6. Figure 4 show the state
responses of the proposed BAM NNs in Example 2. Figures 5 and 6 depict the state trajectories of
x̌i(i = 1, 2, 3, 4) and ǔi(i = 1, 2, 3, 4), respectively.

Remark 4. For ΨFi and ΩFj, ∀i, j = 1, 2, 3, 4, e2
1 and e2

2, respectively, are valid in the domain
5.1250 < e2

q < 6.0850, q = 1, 2 whereas Ψki and Ωkj, ∀ k = 2, 3, 4, i, j = 1, 2, 3, 4 are not valid in
that domain. This is because of the minimum value of the Frobenius norm for the given network
parameters. Hence, our new results in Theorem 1 will give better results for the proposed BAM
NN model.

0 5 10 15 20 25 30 35 40 45 50

Time

-4

-3

-2

-1

0

1

2

3

4

S
ta

te
 V

a
ri
a

b
le

s

Figure 4. Response of x̌(t), ǔ(t) among the different initial states.
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Figure 5. Response of x̌(t) among the different initial states.
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Figure 6. Response of ǔ(t) among the different initial states.

5. Conclusions
This article presented new findings on the GARS of time-delayed BAM NNs with

uncertain parameters. Using the Frobenius norm, sufficient conditions for GARS in BAM
NNs were established. In activities such as model quantization, where it is crucial to
lower the precision of weights for use in devices with limited resources, the Frobenius
norm serves as a measure to assess the effect on model performance. The charm of the
Frobenius norm is in its capacity to reflect the total “magnitude” of a matrix while remaining
computationally efficient. NNs are models of neural circuits, with each neuron representing
a simple analog processor. Parallel communication lines in value-passing analog processor
networks provide the connectivity found in real neural circuits through synapses. This
NN is under the topic of BAM NNs discussed in this study. The results are more efficient
than some previously published findings. Numerical examples are provided to illustrate
how the proposed sufficient criteria differ from and improve upon previous results. In
future work, this proposed work could be extended to include complex-valued NNs and
quaternion-valued BAM NNs with practical applications like four-tank system and coupled
circuit models.
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