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Abstract: This study examines a Caputo-type fractional-order food chain model, consider-
ing the Holling type II functional response with the vigilance effect. The model explores
the interaction dynamics of the food chain model, which consists of prey, middle predators,
and top predators. Additionally, habitat complexity is integrated into the model, which
is assumed to reduce predation rates by lowering the encounter rates between predators
and prey. All possible feasible equilibrium points are determined and the stability of
our proposed model is explored near the equilibrium points. To support the analytical
findings, numerical simulation results are given in terms of time series, phase portraits,
and bifurcation diagrams. It is discovered that the proposed model can become more stable
under a fractional-order derivative. Moreover, the interplay between the vigilance effect
and habitat complexity is shown to influence the existence of stable and periodic dynamics.
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1. Introduction
Predators affect prey populations and community dynamics, playing an essential

role in forming ecosystems. A three-species predator–prey system was the subject of
exploration on the presence of chaos by Hasting and Powell [1]. A crucial element of the
description of natural systems’ association is complex networks. Numerous researchers
have studied food chain models in great detail because they are one of the most significant
predator–prey systems. Several intriguing findings have been obtained, including global
stability, persistence, the extinction of top predators, the uniqueness and stability of positive
periodic results, and more [2–4]. Functional responses, which characterize the rate at which
a predator attacks a prey, are the central conception in predator–prey relations. Although
there are several types of functional responses (Holling I, Holling II, ratio-dependent, etc.),
Holling type II is the most generally employed functional response [5–7].

Understanding the evolution of an ecosystem’s species diversity is essential to com-
prehending food web structure. Ecological systems have been analyzed using several
mathematical models. The study of vigilance and habitat complexity in predator–prey
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relations has become a fascinating study area in theoretical ecology and applied mathemat-
ics. Nearly every ecosystem is complex, terrestrial or aquatic. Aquatic habitat complexes
include, for instance, seagrass, mangroves, aquatic weeds, coastal zone vegetation, coral
reefs, salt marshes, etc. Trials conducted in the field and the laboratory have verified that
habitat complexity promotes population persistence by reducing predator–prey contact
and accordingly reducing predation rates [8–10]. Researchers have become more interested
in the study of vigilance in population models in recent times [11,12]. An antipredator
survival tactic used by the prey population is vigilance. There are costs associated with
vigilance actions, similar to consuming energy or cutting out fitness activities [13]. Today,
ecology and psychology make expansive use of the term vigilance. The idea of vigilance is
constantly employed by ecologists to estimate the nonlethal effects of predators on their
prey [14]. With mathematical models, some academics have investigated how vigilance
affects the dynamics of a system [15,16]. Although these models frequently use integer-
order derivatives to represent dynamic behaviors, they have offered important insights
into predator–prey interactions. However, fractional calculus is being used to develop a
more sophisticated method that captures more accurate dynamics of complex systems.

Fractional calculus is currently being studied by several academics in the fields of ecol-
ogy and applied mathematics [17]. It can be used to simulate a broad range of scientific and
engineering challenges. In dynamical systems, the conversion of a differential system with
integer-order derivatives into a fractional-order derivative has gained popularity [17,18].
There are several advantages to using fractional-order differential equations to simulate
prey–predator relations. Many biological systems have been described using fractional-
order mathematical models, which are highly dependent on previous activity [19], dealing
with species memory that has been achieved during their life cycle, hereditary characteris-
tics, and more [20]. Nevertheless, a small change in the order might result in significant
changes in the behavior of solutions. Integer-order differential equations are not able
to quantitatively describe complicated biological processes with nonlinear behavior and
long-term memory; instead, fractional-order differential equations can. Due to its tendency
to provide present states as the influence of all past biological circumstances, specifically
the memory effect, natural modeling using fractional calculus is thought to be close to
real-world situations [21,22]. It has also been seen to be an important component in cre-
ating a more trustworthy and realistic mathematical model. Because fractional calculus
can more correctly and efficiently represent the relevant circumstances, its use in natural
models is rapidly expanding among academics [23,24]. In addition, they are nearly related
to fractals, which are abundant in natural systems [25–27]. A discrete fractional-order
system with habitat complexity built in the Caupto sense was considered by the authors
of [28]. They showed the existence of Hopf bifurcation for both continuous and discrete
models. Similarly, the existence and uniqueness of the solution, along with the number
of fractional-order model equilibria and their stability, were determined by the authors
of [29,30].

A MATLAB algorithm for solving a fractional-order nonlinear system of differential
equations was programmed by Garrappa [31]. This work used α ∈ (0, 1] as the fractional-
order derivative and the Caputo fractional-order (CFO) operator. We are seeking to explore
the solution of the system solely in R3

+ for all t ≥ 0 because of its biological character, which
means that the population density remains positive. While prior research has focused
on integer-order models, the dynamics of fractional-order systems have received less
attention. The vigilance–food chain model, investigated in [11], focuses on stability and
bifurcation outcomes using an integer-order system. However, a model with fractional-
order derivatives has yet to be explored. Motivated by this gap, we aim to investigate
the dynamics of a fractional-order food chain model that includes vigilance and habitat
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complexity. This study aims to gain a better understanding of the behavior of the system
by collecting memory effects.

The structure of this document is as follows: Section 2 formulates the mathematical
model. Section 3 presents some preliminary results. We examine the equilibrium points,
their existence, their local stability, and the presence of Hopf bifurcation in Section 4. In
Section 5, we describe various numerical simulations to demonstrate the results from the
preceding section. With the conclusion in Section 6, we end this work.

2. Mathematical Model
The food chain model in [11], which takes into account the impact of habitat complexity,

is given by

dX1
dT = B(1 − ρ)X1 − M1X1 − AX2

1 −
P1X1X2(1−σ)(1−γ)

(R1+(1−σ)X1)(g1+h1ρ)
,

dX2
dT = C1P1(1−σ)X1X2(1−γ)

(R1+(1−σ)X1)(g1+h1ρ)
− P2X2X3

(R2+X2)(g2+h2γ)
− M2X2,

dX3
dT = C2P2X2X3

(R2+X2)(g2+h2γ)
− M3X3,

(1)

with initial conditions X1(0) > 0, X2(0) > 0, and X3(0) > 0, where X1(T) is the basal prey’s
density, X2(T) is the middle predator’s density, and X3(T) is the top predator’s density at
time instant T. The interpretation of all model parameters is provided in Abbreviations
Section. Predation took place in the Holling type II form, which characterizes the rate as
an increasing function and a saturation function of the prey and is the most commonly
used functional response. When there is no habitat complexity (c = 0), predator X2 catches
the prey at a maximum rate P1. The predation rate drops to P1(1 − σ) when complexity is
present; the degree or severity of complexity is denoted by the dimensionless parameter
σ. σ has a value between 0 and 1. Specifically, σ = 0.4 suggests that habitat complexity
reduces the predation rate by 40% [28]. Accordingly, the system simplifies to the system
in [11] if there is no habitat complexity and σ = 0.

To reduce the number of parameters and complexity, we use the following transformation:

x1 = AX1
M1

, x2 = AX2
C1 M1

, x3 = AX3
C1C2 M1

, t = M1T.

Then, System (1) reduces to the following form:

dx
dt = b(1 − ρ)x1 − x1 − x1

2 − p1x1x2(1−γ)(1−σ)
(1+r1(1−σ)x1)(g1+h1ρ)

,
dy
dt = p1x1x2(1−γ)(1−σ)

(1+r1(1−σ)x1)(g1+h1ρ)
− p2x2x3

(1+r2x2)(g2+h2γ)
− m2x2,

dz
dt = p2x2x3

(1+r2x2)(g2+h2γ)
− m3x3,

(2)

with initial conditions x1(0) > 0, x2(0) > 0, and x3(0) > 0, where m2 = M2
M1

, m3 = M3
M1

,

p1 = C1P1
AR1

, p2 = C1C2P2
AR2

, r1 = M
AR1

, and r2 = C1 M1
AR2

.
Further, using a fractional-order Caputo-type derivative, we add the fractional-order

derivative α to Model (2). The resulting form of the reduced model is then obtained and is
given by the following:

dαx1
dt = b(1 − ρ)x1 − x1 − x1

2 − p1x1x2(1−γ)(1−σ)
(1+r1(1−σ)x1)(g1+h1ρ)

,
dαx2

dt = p1x1x2(1−γ)(1−σ)
(1+r1(1−σ)x1)(g1+h1ρ)

− p2x2x3
(1+r2x2)(g2+h2γ)

− m2x2,
dαx3

dt = p2x2x3
(1+r2x2)(g2+h2γ)

− m3x3,

(3)

with initial conditions x1(0) > 0, x2(0) > 0, x3(0) > 0, and α ∈ (0, 1).



Fractal Fract. 2025, 9, 45 4 of 17

3. Preliminaries
We provide the following definitions and theorems regarding the fractional-order

differential equation to strengthen our theoretical investigation.

Definition 1. The fractional derivative in the Caupto sense [32] is given by

Dα
t = Il−α f l(t), α > 0,

provided that l is the least integer that is not smaller than α and that Iθ is the Riemann–Liouville
integral operator of order θ, which is given by

Iθ x(t) = 1
Γ(θ)

∫ t
0 (t − τ)θ−1x(τ)dτ, θ > 0,

where Γ(θ) is Euler’s Gamma function and Dα is the Caputo fractional operator.

Theorem 1. By [33], let us consider the fractional differential system of N-dimension dαx1
dtα = Ax1,

with x1(0) = x0, where A is an arbitrary constant, the relevant matrix is N × N, and α ∈ (0, 1).

• The equilibrium point x1 = 0 is asymptotically stable if and only if every eigenvalue λj (for
j = 1, 2, · · · , N) of the matrix A satisfies the condition |arg

(
λj
)
|> απ

2 .
• The equilibrium x1 = 0 is stable if and only if all eigenvalues of A meet the condition

|arg
(
λj
)
|≥ απ

2 ; also, any eigenvalue for which |arg
(
λj
)
|= απ

2 must have matching geometric
and algebraic multiplicities.

Then the local stability of the equilibrium points of a linearized fractional-order system
can be obtained from Matignon’s results, given as follows [34].

Theorem 2. Consider dαx1
dtα = f (x1) with x1(0) = x0, where α ∈ (0, 1) and x1 ∈ Rα [17]. The

equilibrium points of this system are determined by solving f (x1) = 0. An equilibrium point is
locally asymptotically stable if, for all eigenvalues λj of the Jacobian matrix J = ∂ f

∂x1
evaluated at

that equilibrium, the condition |arg
(
λj
)
|> απ

2 is satisfied [34].

Uniqueness, Boundedness, and Non-Negativity of Solutions

The uniqueness, boundedness, and non-negativity of System (3)’s solutions are exten-
sively examined in this subsection.

Theorem 3. The fractional-order system in (3) has a unique solution for every non-negative ini-
tial condition.

Proof. In the region of Ψ × (0, t], we look for an appropriate prerequisite for the existence
and uniqueness of solutions for the fractional-order system in (3): Ψ = {(x1, x2, x3) ∈
R3: max (|x1|, |x2|, |x3|)≤ M}. Here, we adopted the approach utilized in [35]. Now, we
consider the mapping H(X) = (H1(X), H2(X), H3(X)) and

H1(X) = b(1 − ρ)x1 − x1 − x1
2 − p1x1x2(1−γ)(1−σ)

(1+r1(1−σ)x1)(g1+h1ρ)
,

H2(X) = p1x1x2(1−γ)(1−σ)
(1+r1(1−σ)x1)(g1+h1ρ)

− p2x2x3
(1+r2x2)(g2+h2γ)

− m2x2,

H3(X) = p2x2x3
(1+r2x2)(g2+h2γ)

− m3x3.
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For any X, X ∈ ψ, using the above equations, we have

||H(X) − H
(
X
)
||

= |H1(X)− H1
(
X
)
|+|H2(X)− H2

(
X
)
|+|H3(X)− H3

(
X
)
|

=
∣∣∣b(1 − ρ)x1 − x1 − x1

2 − p1x1x2(1−γ)(1−σ)
(1+r1(1−σ)x1)(g1+h1ρ)

−
(

b(1 − ρ)x1 − x1 − x2
1 −

p1x1x2(1−γ)(1−σ)
(1+r1(1−σ)x1)(g1+h1ρ)

)∣∣∣
+
∣∣∣ p1x1x2(1−γ)(1−σ)
(1+r1(1−σ)x1)(g1+h1ρ)

− p2x2x3
(1+r2x2)(g2+h2γ)

− m2 x2

−
(

p1x1x2(1−γ)(1−σ)
(1+r1(1−σ)x1)(g1+h1ρ)

− p2x2x3
(1+r2x2)(g2+h2γ)

− m2x2

)∣∣∣
+
∣∣∣ p2x2x3
(1+r2x2)(g2+h2γ)

− m3x3 −
(

p2x2x3
(1+r2x2)(g2+h2γ)

− m3x3

)∣∣∣
≤ b(1 − ρ)|x1 − x1|+|x1 − x1|+|x2

1 − x2
1|

+ p1(1−γ)(1−σ)
g1+h1ρ

∣∣∣ x1x2
1+r1(1−σ)x1

− x1x2
1+r1(1−σ)x1

∣∣∣
+ p1(1−γ)(1−σ)

g1+h1ρ

∣∣∣ x1x2
1+r1(1−σ)x1

− x1x2
1+r1(1−σ)x1

∣∣∣+ p2
g2+h2γ

∣∣∣ x2x3
1+r2x2

− x2x3
1+r2x2

∣∣∣
+m2|x2 − x2|+ p2

g2+h2γ

∣∣∣ x2x3
1+r2x2

− x2x3
1+r2x2

∣∣∣+m3|x3 − x3|
≤ b(1 − ρ)|x1 − x1|+|x1 − x1|+|x1 + x1||x1 − x1|

+ p1(1−γ)(1−σ)
g1+h1ρ |x1x2 + r1(1 − σ)x1x1x2 − x1x2 − r1(1 − σ)x1x1x2|

+ p2
g2+h2γ |x2x3 + r2x2x2x3 − x2x3 − r2x2x2x3|+m2|x2 − x2|

+ p2
g2+h2γ |x2x3 + r2x2x2x3 − x2x3 − r2x2x2x3|+m3|x3 − x3|

≤ (b(1 − ρ) + 1)|x1 − x1|+M|x1 − x1|
+ p1(1−γ)(1−c)

g1+h1ρ |x1x2 − x1x2 + x1x2 − x1x2|+ p1r1(1−γ)(1−σ)2

g1+h1ρ |x1x1||x2 − x2|
+ p2

g2+h2γ |x2x3 − x2x3 + x2x3 − x2x3|+ p2r2
g2+h2γ |x2x2||x3 − x3|+m2|x2 − x2|

+ p2
g2+h2γ |x2x3 − x2x3 + x2x3 − x2x3|+ p2r2

g2+h2γ |x2x2||x3 − x3|+m3|x3 − x3|
= (b(1 − ρ) + 1 + M)|x1 − x1|

+ p1(1−σ)(1−γ)
g1+h1ρ x1|x2 − x2|+ p1(1−σ)(1−γ)

g1+h1ρ x2|x1 − x1|+ p1r1(1−γ)(1−σ)2

g1+h1ρ M2|x2 − x2|
+ p2

g2+h2ρ x2|x3 − x3|+ p2
g2+h2γ x3|x2 − x2|+ p2r2

g2+h2γ M2|x3 − x3|+m2|x2 − x2|
+ p2

g2+h2γ x2|x3 − x3|+ p2
g2+h2γ x3|x2 − x2|+ p2r2

g2+h2γ M2|x3 − x3|+m3|x3 − x3|
≤ (b(1 − ρ) + 1 + M)|x1 − x1|+ p1 M(1−σ)(1−γ)

g1+h1ρ |x2 − x2|
+ p1 M(1−σ)(1−γ)

g1+h1ρ |x1 − x1|+ p1r1 M2(1−σ)2(1−γ)
g1+h1ρ |x2 − x2|

+ p2 M
g2+h2γ |x3 − x3|+ p2 M

g2+h2γ |x2 − x2|+ p2r2 M2

g2+h2γ |x3 − x3|+m2|x2 − x2|
+ p2 M

g2+h2γ |x3 − x3|+ p2 M
g2+h2γ |x2 − x2|+ p2r2 M2

g2+h2γ |x3 − x3|+m3|x3 − x3|
=

(
b(1 − ρ) + 1 + M + p1 M(1−σ)(1−γ)

g1+h1ρ

)
|x1 − x1|(

p1 M2(1−σ)2(1−γ)(1+r1 M(1−σ))
g1+h1ρ + 2p2 M

g2+h2γ + m2

)
|x2 − x2|(

2p2 M
g2+h2γ + 2p2r2 M2

g2+h2γ + m3

)
|x3 − x3|

≤ L||X − X||.

where
L = max

{
b(1 − ρ) + 1 + M + p1 M(1−σ)(1−γ)

g1+h1ρ ,
p1 M(1−σ)(1−γ)(1+r1 M(1−σ))

g1+h1ρ + 2p2 M
g2+h2γ + m2,

2p2 M
g2+h2γ + 2p2r2 M2

g2+h2γ + m3

}
.

Thus, the solution of the fractional-order System (3) is unique and H(X) satisfies the
Lipschitz condition. □
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Theorem 4. Every solution to the fractional-order System (3) that begins with R3
+ is uniformly

bounded.

Proof. We follow [35] and define U(t) = U1 + U2 + U3

dUα(t)
dt =

dUα
1

dt +
dUα

2
dt +

dUα
3

dt
= b(1 − ρ)x1 − x1 − x2

1 −
p1x1x2(1−γ)(1−σ)

(1+r1(1−σ)x1)(g1+h1ρ)

+ p1x1x2(1−γ)(1−σ)
(1+r1(1−σ)x1)(g1+h1ρ)

− p2x2x3
(1+r2x2)(g2+h2γ)

− m2 x2

+ p2x2x3
(1+r2x2)(g2+h2γ)

− m3 x3

= (b(1 − ρ)− 1)x1 − x2
1 − m2x2 − m3x3.

Now, for each κ, we have

dUα(t)
dt + κU = (b(1 − ρ)− κ)x1 − x2

1 − (m2 − κ)x2 − (m3 − κ)x3

≤ (b(1 − ρ)− κ)x1 − x2
1,

where κ = min{m2, m3}.
Let us consider f (x1) = (b(1 − ρ)− κ)x1 − x2

1; then, the maximum of f (x1) at x1 =
(b(1−ρ)−κ)

2 is max f (x1) =
(b(1−ρ)−κ)2

4 . Then, from the above equation, we have

dUα(t)
dt + κU ≤ (b(1−ρ)−κ)2

4 .

Let U(0) = U0 be the initial condition; then (see Lemma 3.2 [36]),

U(t) ≤ U0Eα(−κtα) +
(b(1−ρ)−κ)2

4

∫ t
0 (t − s)α−1Eα,α

(
−κ(t − s)α)ds

= U0Eα(−κtα) +
(b(1−ρ)−κ)2

4

∫ t
0 (t − s)α−1 ∞

∑
j=0

(−κ)j(t−s)αj

Γ(jα+α)
ds

= U0Eα(−κtα) +
(b(1−ρ)−κ)2

4

∞
∑

j=0

(−κ)j

Γ(jα+α)

∫ t
0 (t − s)α(j+1)−1ds

= U0Eα(−κtα) +
(b(1−ρ)−κ)2

4

∞
∑

j=0

(−κ)jtαj

Γ(jα+α+1)

= U0Eα(−κtα) +
(b(1−ρ)−κ)2

4 tαEα,α+1(−κtα).

(4)

Now (see Lemma 5 [37]), Eα,α(−κtα) is given as follows:

Eα,α(−κtα) = −
2
∑

j=1

1
Γ(α−αj)

1
(−κ)jtαj + O

(
1

(−κ)3t3α

)
= − 1

Γ(−α)
1

(−κ)2t2α
+ O

(
1

(−κ)3t3α

)
→ 0, as t → ∞.

Next (see Corollary 6 [37]), tαEα,α+1(−κtα) is given by

tαEα,α+1(−κtα) = 1
κ − 1

Γ(1−α(−κ)2tα)
+ O

(
1

(−κ)3t2α

)
1
κ as t → ∞

Then, from Equation (4), we obtain

U(t) ≤ (b(1−ρ)−κ)2

4κ .
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Therefore, all the solutions starting in R3
+ are confined in the region for the fractional-

order System (3).

Ω =

{
(x1, x2, x3) ∈ R3

+ : U = (b(1−ρ)−κ)2

4κ + ϵ, ϵ > 0
}

.

□

Theorem 5. Every solution of System (3) is non-negative.

Proof. Using the first equation from (3), we have

dxα
1

dt = b(1 − ρ)x1 − x1 − x2
1 −

p1x1x2(1−γ)(1−σ)
(1+r1(1−σ)x1)(g1+h1ρ)

. (5)

Again, from Theorem 4, we have

U = x1 + x2 + x3 ≤ (b(1−ρ)−κ)2

4κ = h1(say).

□

4. Stability and Bifurcation
In this section, we provide all possible feasible equilibrium points, their stability, and

bifurcation results.

4.1. Equilibrium Points

The equilibrium points of System (3) are roots of the following coupled nonlinear
equations:

b(1 − ρ)x1 − x1 − x1
2 − p1x1x2(1−γ)(1−σ)

(1+r1(1−σ)x1)(g1+h1ρ)
= 0,

p1x1x2(1−γ)(1−σ)
(1+r1(1−σ)x1)(g1+h1ρ)

− p2x2x3
(1+r2x2)(g2+h2γ)

− m2x2 = 0,
p2x2x3

(1+r2x2)(g2+h2γ)
− m3x3 = 0.

(6)

The biologically feasible equilibrium points are E0(0, 0, 0) and E1(x̂1, x̂2, 0), where
x̂1 = m2(g1+h1ρ)

(1−σ)(p1(1−γ)−m2r1(g1+h1ρ))
, x̂2 = (1+r1(1−σ)x̂1)(g1+h1ρ)

p1(1−γ)(1−σ) (b(1 − ρ)− 1 − x̂1), and the

interior equilibrium point is E∗(x∗1 , x∗2 , x∗3
)
, where

x∗1 =
−ρ1+

√
ρ2

1−4ρ0ρ2
2ρ0

, x∗2 = m3(g2+h2γ)
p2−m3r2(g2+h2γ)

, and

x∗3 =

(
p1(1−γ)(1−σ)x∗1

(g1+h1ρ)(1+r1(1−σ)x∗1)
− m2

)
(1+r2x∗2)(g2+h2γ)

p2
, with

ρ0 = r1(1 − σ)(g1 + h1ρ),
ρ1 = (g1 + h1ρ)(1 − (b(1 − ρ)− 1)r1(1 − σ)), and
ρ2 = p1(1 − γ)(1 − σ)x∗2 − (g1 + h1ρ)(b(1 − ρ)− 1).

4.2. Stability Analysis

In this subsection, we provide the relevant analytical expressions to offer a stability
analysis for System (3). Using the transformation x1(t) = x1(t)− x1, x2(t) = x2(t)− x2,
and x3(t) = x3(t)− x3 andthe linearized model for System (3) is given by

Dαx1(t) = A1x1(t) + A2x2(t) + A3x3(t),
Dαx2(t) = A4x1(t) + A5x2(t) + A6x3(t),
Dαx3(t) = A7x1(t) + A2x2(t) + A9x3(t),

(7)
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which is of the form
DαX = AX(t), (8)

where A is given by

A(x1, x2, x3) =

A1 A2 A3

A4 A5 A6

A7 A8 A9

, (9)

A1 = b(1 − ρ)− 1 − 2x1 − p1(1−γ)(1−σ)x2
(1+r1(1−σ)x1)(g1+h1ρ)

+ p1r1(1−γ)(1−σ)2x1x2

(g1+h1ρ)(1+r1(1−σ)x1)
2 ,

A2 = −p1(1−γ)(1−σ)x1
(1+r1(1−σ)x1)(g1+h1ρ)

, A3 = 0, A4 = p1(1−γ)(1−σ)x1
(1+r1(1−σ)x1)(g1+h1ρ)

,

A5 = p1x1(1−γ)(1−σ)
(1+r1(1−σ)x1)(g1+h1ρ)

− p2x3
(g2+h2γ)(1+r2x2)

− m2 +
p2r2x2x3

(g2+h2γ)(1+r2x2)
2 ,

A6 = −p2x2
(1+r2x2)(g2+h2γ)

, A7 = 0, A8 = p2x3

(g2+h2γ)(1+r2x2)
2 ,

A9 = p2x2
(1+r2x2)(g2+h2γ)

− m3.

Additionally, the Jacobian matrix of System (3) around the arbitrary equilibrium point
E(x1, x2, x3) is A. Therefore, the equilibrium is asymptotically stable for all eigenvalues
of A if and only if |arg (λi)|> απ

2 . This explanation is based on the fractional linearization
technique [38], which ensures that the equilibrium is locally asymptotically stable. Further,
the stability criteria for the equilibria that are biologically possible are given as follows.

Theorem 6. The trivial equilibrium point E0(0, 0, 0) is always locally asymptotically stable, if
b(1 − ρ) < 1.

Proof. The stability matrix is given by

A1 =

b(1 − ρ)− 1 0 0
0 −m2 0
0 0 −m3

. (10)

Then, the characteristic equation A1 is

(λ − b(1 − ρ) + 1)(λ + m2)(λ + m3) = 0. (11)

The roots are b(1 − ρ) − 1, −m2, and −m3. This follows from the convergence
of the Mittag–Leffler function [17]. Thus, if b(1 − ρ) < 1, then |arg (λ1)|= π > απ

2 ,
|arg (λ2)|= π > απ

2 , and |arg (λ3)|= π > απ
2 , and the equilibrium E0 is locally asymptoti-

cally stable. □

Theorem 7. The top predator-free equilibrium point E1(x̂1, x̂2, 0) is locally asymptotically stable.

Proof. The stability matrix is given by

A2 =

a11 a12 a13

a21 a22 a23

a31 a32 a33

, (12)

where

a11 = b(1 − ρ)− 1 − 2x̂1 − p1(1−γ)(1−σ)x̂2

(1+r1(1−σ)x̂1)
2(g1+h1ρ)

,

a12 = −p1(1−γ)(1−σ)x̂1
(1+r1(1−σ)x̂1)(g1+h1ρ)

, a13 = 0,

a21 = p1(1−γ)(1−σ)x̂1
(1+r1(1−σ)x̂1)(g1+h1ρ)

, a22 = p1 x̂1(1−γ)(1−σ)
(1+r1(1−σ)x̂1)(g1+h1ρ)

− m2,

a23 = −p2 x̂2
(1+r2 x̂2)(g2+h2γ)

, a31 = 0, a32 = 0, a33 = p2 x̂2
(1+r2 x̂2)(g2+h2γ)

− m3.
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The characteristic equation of A2 at E1 is given by

(a33 − λ)
(
λ2 − (a11 + a22)λ + a11a22 − a12a21

)
= 0 (13)

One root of the above equation is p2 x̂2
(1+r2 x̂2)(g2+h2γ)

− m3. Thus, if p2 x̂2
(1+r2 x̂2)(g2+h2γ)

< m3,
a11 + a22 < 0, and a11a22 − a12a21) > 0, then |arg (λ1)|= π > απ

2 , |arg (λ2)|= π > απ
2 , and

|arg (λ3)|= π > απ
2 , which are a consequence of the convergence properties of the Mittag–

Leffler function [17]. The equilibrium point E1 of Model (3) is locally asymptotically stable.
□

Theorem 8. The interior equilibrium point E∗ is conditionally locally asymptotically stable.

Proof. The stability matrix is given by

A2 =

b22 b12 b13

b21 b22 b23

b31 b31 b33

 (14)

b11 = −x1 +
p1r1(1−γ)(1−σ)2x1x2

(g1+h1ρ)(1+r1(1−σ)x1)
2 , b12 = −p1(1−γ)(1−σ)x1

(1+r1(1−σ)x1)(g1+h1ρ)
, b13 = 0,

b21 = p1(1−γ)(1−σ)x1
(1+r1(1−σ)x1)(g1+h1ρ)

, b22 = p2r2x2x3

(g2+h2γ)(1+r2x2)
2 , b23 = −p2x2

(1+r2x2)(g2+h2γ)
,

b31 = 0, b32 = p2x3

(g2+h2γ)(1+r2x2)
2 , b33 = 0.

The characteristic equation of A2 at E∗ is given by

λ3 + φ1λ2 + φ2λ + φ = 0, (15)

where

φ1 = −(b11 + b22 + b33),
φ2 = b22b33 + b23b32 + b11b22 + b11b33 + b12b21 + d12d31,
φ3 = b13b21b32 − b11b22b33 − b11b23b32 − b12b23b31 − b12b21b33 − b13b31b22.

The interior equilibrium point E∗ exhibits local asymptotic stability if at least one of
the following conditions is satisfied:

D(p) > 0, φ1 > 0, φ3 > 0 and φ1 φ2 > φ3,
D(p) < 0, φ1 ≥ 0, φ2 ≥ 0, φ3 > 0 and α < 2

3 ,
D(p) < 0, φ1 > 0, φ2 > 0, φ1 φ2 = φ3 and α ∈ (0, 1).

□

4.3. Hopf Bifurcation

The comprehensive analytical expressions required to give a Hopf bifurcation analysis
for Model (3) are provided in this section. The limit set of a trajectory is a solution for
an integer-order system, but it cannot be in a fractional-order situation [39]. Different
claims that fractional-order systems lack periodic orbits were made in [40,41]. They also
provided an example of a system whose solutions are non-periodic yet satisfy periodic
signals. Instead of being a solution of a fractional system, the Hopf bifurcation generates a
limit cycle that attracts near solutions, according to Abdelouahab et al. [42]. Similar research
on periodicity in fractional-order systems can be found in [18,43,44]. Additionally, the end
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state of the trajectory is of interest to us in this work; rather than arising from a fractional
system, the limit cycle that arises through Hopf bifurcation attracts nearby solutions.

We examine a three-dimensional commensurate fractional-order system as follows:

DαX = f (σ, X),

where α ∈ (0, 1) and X ∈ R3; let E be the system’s equilibrium point. The stability of E
in the integer case (when α = 1) is linked to the sign of Re(λi), i = 1, 2, 3, where λi is the
eigenvalue of the Jacobian matrix ∂ f

∂X |E. If Re(λi) < 0, then E is locally asymptotically stable
for any i = 1, 2, 3. If there is an i such that Re(λi) > 0, then E is unstable. The Jacobian
matrix has two complex-conjugate eigenvalues λ1,2 = ξ(σ)± iη(σ) and one real λ3(σ).
Consequently, ξ(σ) = 0, dξ

dσ |σ=σ∗ ̸= 0, λ3(σ
∗) ̸= 0, and η(σ)± 0.

However, in the fractional-order situation, the stability of E is linked to the sign of
mi(α, σ) = α π

2 − |arg(λi(σ))|, i = 1, 2, 3. If mi(α, a11) = α π
2 − |arg(λi(σ))| < 0 for all

i = 1, 2, 3, then E is locally asymptotically stable. If i exists such that mi(α, σ) > 0, then E
is unstable. The Hopf bifurcation criteria are extended to fractional systems by replacing
Re(λi) with mi(α, σ) in the following way, as the function mi(α, σ) has an influence similar
to that of the real component of the eigenvalue in an integer system:

∂m∂σ|σ=σ∗ ̸= 0. (16)

5. Numerical Simulations
The goal of this section is to find out how different levels of vigilance and habitat

complexity impact the dynamics of the fractional-order model through numerical simulation.
Analytical procedures frequently result in large and convoluted formulations that are difficult
to grasp and have less practical application. Using MATLAB R2023a, we ran our simulations
with the step size fixed as 0.01 [31]. To investigate the dynamics of the fractional-order
model given in (3), we use the following set of parametric values.

b = 2, p1 = 5, p2 = 0.1, r1 = 3.3, r2 = 2, g1 = 0.85,
g2 = 0.9, h1 = 0.1, h2 = 0.2, m2 = 0.4, m3 = 0.01.

(17)

We use (0.5, 0.7, 9.0) as the fixed initial value of Model (3), unless otherwise specified.
As seen in Figure 1, Model (3) with an integer-order derivative displays chaotic dynamics
when basal prey and predator vigilance is absent. The consequences of basal prey vigilance,
predator vigilance, and fractional order are also discussed below.

Fractal Fract. 2025, 1, 0 11 of 18

We examine a three-dimensional commensurate fractional-order system as follows:

DαX = f (σ, X),

where α ∈ (0, 1) and X ∈ R3; let E be the system’s equilibrium point. The stability of E
in the integer case (when α = 1) is linked to the sign of Re(λi), i = 1, 2, 3, where λi is the
eigenvalue of the Jacobian matrix ∂ f

∂X |E. If Re(λi) < 0, then E is locally asymptotically stable
for any i = 1, 2, 3. If there is an i such that Re(λi) > 0, then E is unstable. The Jacobian
matrix has two complex-conjugate eigenvalues λ1,2 = ξ(σ)± iη(σ) and one real λ3(σ).
Consequently, ξ(σ) = 0, dξ

dσ |σ=σ∗ ̸= 0, λ3(σ
∗) ̸= 0, and η(σ)± 0.

However, in the fractional-order situation, the stability of E is linked to the sign of
mi(α, σ) = α π

2 − |arg(λi(σ))|, i = 1, 2, 3. If mi(α, a11) = α π
2 − |arg(λi(σ))| < 0 for all

i = 1, 2, 3, then E is locally asymptotically stable. If i exists such that mi(α, σ) > 0, then E
is unstable. The Hopf bifurcation criteria are extended to fractional systems by replacing
Re(λi) with mi(α, σ) in the following way, as the function mi(α, σ) has an influence similar
to that of the real component of the eigenvalue in an integer system:

∂m∂σ|σ=σ∗ ̸= 0. (16)

5. Numerical Simulations
The goal of this section is to find out how different levels of vigilance and habitat

complexity impact the dynamics of the fractional-order model through numerical sim-
ulation. Analytical procedures frequently result in large and convoluted formulations
that are difficult to grasp and have less practical application. Using MATLAB , we ran
our simulations with the step size fixed as 0.01 [31]. To investigate the dynamics of the
fractional-order model given in (3), we use the following set of parametric values.

b = 2, p1 = 5, p2 = 0.1, r1 = 3.3, r2 = 2, g1 = 0.85,

g2 = 0.9, h1 = 0.1, h2 = 0.2, m2 = 0.4, m3 = 0.01. (17)

We use (0.5, 0.7, 9.0) as the fixed initial value of Model (3), unless otherwise specified.
As seen in Figure 1, Model (3) with an integer-order derivative displays chaotic dynamics
when basal prey and predator vigilance is absent. The consequences of basal prey vigilance,
predator vigilance, and fractional order are also discussed below.

Figure 1. Chaotic time series (a–c) and phase portrait (d) for Model (3) with α = 1. All other essential
parameters are given in (17).
Figure 1. Chaotic time series (a–c) and phase portrait (d) for Model (3) with α = 1. All other essential
parameters are given in (17).



Fractal Fract. 2025, 9, 45 11 of 17

5.1. Effect of Fractional Order

To showcase the effect of the fractional-order quality of Model (3), the different phase
portraits are portrayed in Figure 2. First, for α = 0.95, 0.9, Model (3) shows chaotic
dynamics; on further decreases, when α = 0.85, the model exhibits periodic dynamics, and
for α = 0.8, Model (3) reaches an asymptotically stable state. It is shown that Model (3)
changes to regular from irregular dynamics when decreasing the order parameter. Thus,
Model (3) has more sensitivity in the order parameter and greatly influences the considered
model’s dynamics. In [11], the authors showed that the integer-order model undergoes
periodic doubling and reverse periodic doubling on increasing the parameter r1. To give
a comparison with the fractional-order model, we display the effect of parameter r1 with
α = 0.95 in the one-parameter bifurcation diagram in Figure 3. It is verified that the model
is less chaotic and undergoes Hopf bifurcation into higher periodic dynamics. Similarly,
higher periodic orbits are shown in the one-parameter bifurcation diagram by varying
r1 ∈ (2, 5) in Figure 4.
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Figure 4. One-parameter bifurcationdiagram for Model (3) as parameter r1 varies within range
(2, 5). Diagram depicts evolution of system’s dynamic behavior, showcasing changes in stability and
bifurcation points as r1 increases.

5.2. Effect of Habitat Complexity

Then, by adjusting σ ∈ [0, 1] and setting α = 0.95, γ = 0, and ρ = 0, we confirm the
impact of habitat complexity. In Figure 5, we showed the one-parameter bifurcation to
demonstrate the full dynamics of Model (3). It can be described that when σ increases,
the model experiences Hopf bifurcation by reverse period doubling. The model simplifies
to a periodic orbit for σ = 0.5 and includes higher-order periodic dynamics at the lower
value of σ = 0.1. The asymptotically stable state for σ ≈ 0.85 is then reached. Additionally,
at larger levels, the habitat complexity σ = 0.95 in the basal prey leads to the extinction
of x3 due to considerable changes in the size of the top predator population. The model’s
habitat complexity in (3) may be a major factor in the survival or extinction of the relevant
populations.

Figure 5. One-parameter bifurcation diagram for Model (3) by varying σ ∈ (0, 1). Results demonstrate
that larger values of σ lead to more stable dynamics in system.
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5.2. Effect of Habitat Complexity

Then, by adjusting σ ∈ [0, 1] and setting α = 0.95, γ = 0, and ρ = 0, we confirm the
impact of habitat complexity. In Figure 5, we showed the one-parameter bifurcation to
demonstrate the full dynamics of Model (3). It can be described that when σ increases,
the model experiences Hopf bifurcation by reverse period doubling. The model simplifies
to a periodic orbit for σ = 0.5 and includes higher-order periodic dynamics at the lower
value of σ = 0.1. The asymptotically stable state for σ ≈ 0.85 is then reached. Addi-
tionally, at larger levels, the habitat complexity σ = 0.95 in the basal prey leads to the
extinction of x3 due to considerable changes in the size of the top predator population. The
model’s habitat complexity in (3) may be a major factor in the survival or extinction of the
relevant populations.
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5.3. Effect of Basal Prey Vigilance

Further, it is important to verify the effect of basal prey vigilance in the considered
model. For this, we vary ρ ∈ [0, 0.07], fixing α = 0.95; all other parameters are the same as
in (17). Model (3) shows a similar kind of dynamics as for habitat complexity σ. Model (3)
undergoes Hopf bifurcation via reverse period doubling on increasing the prey’s vigilance
parameter. For the larger value of ρ = 0.07, the top predator’s size eventually leads to
extinction. Similar results for the integer model in [11] showed the extinction of one or
more species for a higher value of basal prey vigilance. The changes in the density of the
population by varying the prey vigilance parameter are depicted in Figure 6.

Fractal Fract. 2025, 1, 0 14 of 18

5.3. Effect of Basal Prey Vigilance

Further, it is important to verify the effect of basal prey vigilance in the considered
model. For this, we vary γ ∈ [0, 0.8], fixing α = 0.95; all other parameters are the same as
in (17). Model (3) shows a similar kind of dynamics as for habitat complexity σ. Model (3)
undergoes Hopf bifurcation via reverse period doubling on increasing the prey’s vigilance
parameter. For the larger value of γ = 0.8, the top predator’s size eventually leads to
extinction. Similar results for the integer model in [11] showed the extinction of one or
more species for a higher value of basal prey vigilance. The changes in the density of the
population by varying the prey vigilance parameter are depicted in Figure 6.

Figure 6. One-parameter bifurcation for Model (3) by varying γ ∈ (0, 0.8). The results indicate that
increasing γ enhances the stability of the model, with larger values of γ leading to greater stability.

5.4. Effect of Middle Predator Vigilance

Verifying the impact of middle predator vigilance in the model under consideration is
also crucial. All other parameters are the same as in (17), and we change γ ∈ [0, 0.8], while
fixing α = 0.95. The dynamics of Model (3) are comparable to those of habitat complexity
σ. As the prey’s vigilance parameter increases, Model (3) experiences Hopf bifurcation by
reverse period doubling. When γ = 0.8 is greater, the magnitude of the top predator finally
causes extinction. According to similar findings for the integer model in [11], a greater
value of basal prey vigilance resulted in the extinction of one or more species. Figure 7
illustrates how the prey vigilance parameter affects population densities.
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increasing ρ enhances the stability of the model, with larger values of ρ leading to greater stability.
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5.4. Effect of Middle Predator Vigilance

Verifying the impact of middle predator vigilance in the model under consideration is
also crucial. All other parameters are the same as in (17), and we change γ ∈ [0, 0.8], while
fixing α = 0.95. The dynamics of Model (3) are comparable to those of habitat complexity
σ. As the prey’s vigilance parameter increases, Model (3) experiences Hopf bifurcation by
reverse period doubling. When γ = 0.8 is greater, the magnitude of the top predator finally
causes extinction. According to similar findings for the integer model in [11], a greater
value of basal prey vigilance resulted in the extinction of one or more species. Figure 7
illustrates how the prey vigilance parameter affects population densities.

Remark 1. Since the predator population may disappear from the ecosystem for a relatively high
degree of vigilance due to decreased prey availability, studying the vigilance effect is one of the
more intriguing problems facing population models. In [15], for example, the relevant tri-tropic
food chain system incorporates the vigilant behaviors of the middle predator and the basal prey.
They came to the conclusion that the degree of vigilance exhibited by populations of small predators
and prey may be a significant factor in the ability of the populations to survive or go extinct. Its
equilibrium density grew when the intermediate predators’ level of vigilance went from low to
high, reaching a particular threshold. This demonstrates that the total advantage of the middle
predator’s decreased rate of predation by the top predator surpasses the loss resulting from less
foraging. The model in [11] was compared to the food chain model examined by [15], taking into
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account both predators feeding on prey in the form of Holling type II. The food chain system can
establish long-term coexistence by regulating chaotic oscillations caused by basal prey vigilance.
However, greater vigilance among base prey is undesirable to the system since it results in the
extinction of one or more species. Thus, in a three-species food chain model, trophic cascades begin
when prey demonstrate awareness through behavioral changes in response to the fear of predation
threats. In [12], a basic discrete-time predator–prey model was explored, assuming that vigilance
affects both prey growth rate and predation rate.

Remark 2. The fractional-order food chain model used in this study incorporates the impacts of
vigilance and habitat complexity. The model examined in [11] is a simplified version of the model
as an integer-order model with no habitat complexity. By taking α = 1 into consideration, we
demonstrated the chaotic character of the integer-order model. The model was subsequently reduced
from chaotic to stable and periodic dynamics by decreasing the derivative order, while accounting
for the Caputo-type fractional order. The introduction of habitat complexity helped to stabilize the
model by improving its capacity to attain stable dynamics. Intermediate predators and base prey
both show attentiveness. In recent years, Caputo-type fractional systems have attracted a lot of
attention and applications [25–27,45]. We found that changes in one species’ level of vigilance have
a major effect on the density of all the species. Therefore, in a fractional-order three-species food chain
model, trophic cascades begin when prey exhibit vigilance through behavioral changes in response
to fears of predation risks. Studying the dynamic complexity of ecosystems will benefit f rom this.
Additionally, this study helps to establish broad conclusions on the coexistence of interacting species
and the survival or extinction of populations.

Fractal Fract. 2025, 1, 0 15 of 18

Figure 7. One-parameter bifurcation for Model (3) by varying ρ ∈ (0, 0.07). The results indicate that
increasing ρ enhances the stability of the model, with larger values of ρ leading to stable dynamics.

Remark 1. Since the predator population may disappear from the ecosystem for a relatively high
degree of vigilance due to decreased prey availability, studying the vigilance effect is one of the
more intriguing problems facing population models. In [15], for example, the relevant tri-tropic
food chain system incorporates the vigilant behaviors of the middle predator and the basal prey.
They came to the conclusion that the degree of vigilance exhibited by populations of small predators
and prey may be a significant factor in the ability of the populations to survive or go extinct. Its
equilibrium density grew when the intermediate predators’ level of vigilance went from low to
high, reaching a particular threshold. This demonstrates that the total advantage of the middle
predator’s decreased rate of predation by the top predator surpasses the loss resulting from less
foraging. The model in [11] was compared to the food chain model examined by [15], taking into
account both predators feeding on prey in the form of Holling type II. The food chain system can
establish long-term coexistence by regulating chaotic oscillations caused by basal prey vigilance.
However, greater vigilance among base prey is undesirable to the system since it results in the
extinction of one or more species. Thus, in a three-species food chain model, trophic cascades begin
when prey demonstrate awareness through behavioral changes in response to the fear of predation
threats. In [12], a basic discrete-time predator–prey model was explored, assuming that vigilance
affects both prey growth rate and predation rate.

Remark 2. The fractional-order food chain model used in this study incorporates the impacts of
vigilance and habitat complexity. The model examined in [11] is a simplified version of the model
as an integer-order model with no habitat complexity. By taking α = 1 into consideration, we
demonstrated the chaotic character of the integer-order model. The model was subsequently reduced
from chaotic to stable and periodic dynamics by decreasing the derivative order, while accounting
for the Caputo-type fractional order. The introduction of habitat complexity helped to stabilize the
model by improving its capacity to attain stable dynamics. Intermediate predators and base prey
both show attentiveness. In recent years, Caputo-type fractional systems have attracted a lot of
attention and applications [25–27,45]. We found that changes in one species’ level of vigilance have
a major effect on the density of all the species. Therefore, in a fractional-order three-species food chain
model, trophic cascades begin when prey exhibit vigilance through behavioral changes in response
to fears of predation risks. Studying the dynamic complexity of ecosystems will benefit from this.

Figure 7. One-parameter bifurcation for Model (3) by varying γ ∈ (0, 0.07). The results indicate that
increasing γ enhances the stability of the model, with larger values of γ leading to stable dynamics.
(a), (b), and (c) are the sizes of the populations x1, x2, and x3.

6. Conclusions
In this work, the results of a fractional-order food chain model, which included the

impacts of habitat complexity and vigilance, were generalized to predators and prey. We
determined the conditions that give rise to the fractional system’s equilibrium. We also
deduced requirements for the stability of the positive equilibria. To confirm the feasibility
of the results, a few numerical simulations were provided. We found rich dynamical
behavior in the fractional-order derivative. Additionally, by adjusting the fractional order
α ∈ (0, 1), very intricate dynamics were seen. Our suggested model’s solution was shown
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to be unstable for integer-order cases, while our system’s solution was shown to be stable
for fractional-order derivatives.

If the impact on habitat complexity is more severe, the predator population will
decrease. An important goal of ecological research is to understand the connection between
predators and prey. There is emerging evidence that habitat complexity reduces predator
encounter rates and foraging efficiency. Our proposed model is physiologically realistic
as positive events in the first quadrant remain stable and evenly limited throughout time.
We used bifurcation analysis to determine the degree of habitat complexity, and the results
showed that, regardless of how sensitive the prey population is, a higher degree of habitat
complexity increases the likelihood of the predator going extinct and that the carrying
capacity of the prey will be the only constant attractor.

As a result, the current work outlines many potential dynamical behaviors of a
fractional-order food chain model. Therefore, our research will be useful in understanding
how species interact with greater ecological implications. Potential research directions
may include extensions of this topic related to the Allee effect in the proposed system
and may include more simulation results to demonstrate the dynamics with respect to
fractional order.
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Abbreviations
Symbols and interpretation of parameters in Model (1).

Symbol Interpretation
α β

T Time
X1 Basal prey density
X2 Middle predator density
X3 Top predator density
B Birth rate of basal prey
M1 Natural death rate of basal prey
M2 Natural death rate of middle predator
M3 Natural death rate of top predator
A Intraspecific competition rate of basal prey
P1 Maximum predation rate of middle predator
P2 Maximum predation rate of top predator
C1 Conversion efficiency of middle predator
C2 Conversion efficiency of top predator
R1 Half-saturation constant of middle predator
1
g1

Middle predator lethality
1
g2

Top predator lethality
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ρ Level of vigilance of basal prey
γ Level of vigilance of middle predator
h1 Effectiveness of basal prey’s vigilance
h2 Effectiveness of middle predator’s vigilance
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