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1. Introduction

In recent years, neural networks (NNs) have garnered significant attention due to their successful
applications, and there has been a notable focus on the dynamical analysis of various kinds of NNs
due to their importance as significant categories of non-linear mathematical models that can be used in
addressing many categories of engineering challenges in optimization, image processing, and other
engineering disciplines [1–4]. Numerous NNs are available for selection, such as cellular NNs,
recurrent NNs, Hopfield NNs, Cohen-Grossberg NNs, and BAM NNs. We use NNs to solve technical

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2025182


3911

difficulties such as signal processing, pattern recognition, and combinatorial optimization. However,
a common challenge in the development and hardware implementation of NNs is the imprecision of
NNs parameters, such as the inherent variability of network circuit parameters. Estimation errors occur
during the network design process when looking at important data such as neuron firing rate, synaptic
connection strength, and signal transmission delay, although it is possible to look at the ranges and
limits of these parameters. Consequently, a successful model needs to possess certain attributes. As
a result, certain resilience characteristics must be present in an effective model. Furthermore, a single
equilibrium point plays a crucial role in the modification of the network model. Dynamical NNs are
largely based on many types of equilibrium point stability analysis. Many researchers have looked at
different ways to find stability, including GARS, full stability, and exponential stability of dynamic
models with time delays in various works [5–9]. Researchers have already shown different stability
analysis results for time-delayed NNs using Lyapunov and non-smooth analysis to look at stability
and instability. In literature, the stability criteria of delayed NNs using delay-dependent results are
discussed in [10–12]. Consequently, a significant issue is the analysis of GARS and control techniques
of many multiple time-delayed BAM NNs. Many researchers have only recently focused on studying
it [13, 14].

BAM is a significant NNs technique that was first presented by B. Kosko [15, 16]. The BAM
NNs have two layers of neurons. A single layer of neurons lacks interconnectivity. The BAM NNs
range from a monolayer auto-switching to a double-layer pattern-matched hetero junction chain that
stores both forward and backward pattern pairs. Many researchers have studied in detail the dynamic
characteristics and applications of BAM NNs to solve many real-time issues, including automatic
control, optimization, signal processing, and pattern recognition. Some global asymptotic stability
of BAM NNs with S-type distributed delays is discussed in [17]. The global stability analysis of
fractional-order quaternion-valued BAM NNs is discussed in [18]. The global asymptotic stability
of periodic solutions for neutral-type delayed BAM NNs by combining an abstract theorem of k-
set contractive operator with the LMI method is discussed in [19]. The global asymptotic stability
of periodic solutions for neutral-type BAM NNs with delays is discussed in [20]. The literature
has also reported time delays in BAM NNs for GARS. In [21, 22], the issue of synchronization in
uncertain delayed fractional order BAM NNs is examined with state feedback control and parameters.
Taking into account cost efficiency and the longevity of equipment, infinite-time synchronization is
not the optimal selection in engineering contexts such as secure communication and image encryption.
Moreover, we can classify the result of BAM NNs into three distinct categories. Earlier research on
BAM NNs identified only two types: models with time delays and models without time delays. In
the literature, many authors have looked into the stability outcomes of the two types listed above. The
hybrid form of the BAM NNs is a newer research topic. In this type, both the delay and the immediate
signal occur simultaneously. A precise resolution is necessary for every conceivable initial condition
in hybrid BAM NNs. From a mathematical perspective, this indicates that the GARS function caused a
delay in the NNs reaching the time equilibrium point. Several authors have discussed the GARS of the
hybrid BAM NNs [23–28]. The study of the global stability of synaptic connection matrices in NNs
leads to interval matrix theory. This will result in a significant increase in computational capacity. So,
there is much room left for us to investigate the GARS of hybrid BAM NNs with temporal delays.

The novelty of this paper deals with the GARS of hybrid BAM NNs that have time delays. The
main objective of this research is to establish extensive criteria for the global asymptotic robustness of
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hybrid BAM NNs with delays. We also use the upper limit for the norms of interconnection matrices,
Lyapunov-Krasovskii functionals (LKF), and certain activation functions to find results that make sure
hybrid BAM NNs are stable. Finally, we implement a numerical example to demonstrate the efficacy
of the proposed results.

Notations: The notations that will be utilized in this paper are as follows: Rn denotes n-dimensional
Euclidean space, and Rn×m is the set of all real matrices of n ×m. Define E as a matrix with elements
ei j for n × m. The 2-norm of matrix E equals the square root of the maximum eigenvalue of ET E.
The absolute value of a matrix E = (ei j)n×m with real numbers is equal to the absolute value of each
entry in the matrix, denoted by | E |= (| ei j |)n×m. A matrix is positive definite (semi-definite) when

it uT Bu > 0(≥ 0) holds for all real vectors u = (u1, u2, · · · , un)T ∈ Rn. Also that
n,m∑

i, j=1
=

n∑
i=1

m∑
j=1

and

m,n∑
j,i=1

=
m∑

j=1

n∑
i=1

.

2. Preliminaries

Consider the system of NNs that includes delayed connections in the BAM as described below: [29]
ẏ j(t) = −b̌ jy j(t) +

∑n
i=1 ǧi jφ1i(wi(t)) +

∑n
i=1 ǧτi jφ1i(wi(t − σ̌i j)) + K j, ∀ j

ẇi(t) = −ǎiwi(t) +
∑m

j=1 f̌ jiφ2 j(y j(t)) +
∑m

j=1 f̌ τjiφ2 j(y j(t − τ̌ ji)) + Ji, ∀i
(2.1)

where wi(t) and y j(t) represent the state of the ith and jth neurons in the vectors at time t. n and m
represent the total number of neurons in the proposed hybrid BAM NNs (2.1). φ1i and φ2 j indicate the
activation functions of the neurons; f̌ ji, f̌ τji, ǧi j, and ǧτi j are the connection weight matrices; ǎi and b̌ j
stand for the neuron charging time constants; Ji and K j, for every i = 1, 2, · · · , n, j = 1, 2, · · · , m are
the inputs. For the stability of (2.1), the following several considerations have been made.

Assumption 2.1. (A1). Assume that there are certain ľi > 0 < ȟ j, such that the following specified
conditions are satisfied:

0 ≤
φ1i(x) − φ1i(y)

x − y
≤ ľi, 0 ≤

φ2 j(x̂) − φ2 j(ŷ)
x̂ − ŷ

≤ ȟ j, x̂ , ŷ, x , y for all x̂, ŷ, x, y ∈ R.

Assumption 2.2. (A2). Assume there are positive constants M̌i and Ň j for which certain conditions
are satisfied. |φ1i(w1)| ≤ M̌i and |φ2 j(w2)| ≤ Ň j for all w1, w2 ∈ R, where i = 1, 2, · · · , n, j =
1, 2, · · · , m. Based on this assumption, the activation functions are limited in type.

The matrices b̌ j, f̌ ji, f̌ τji, ǧi j, ǧτi j, ǎi, τ̌ ji and σ̌i j are assumed to be uncertain matrices. The usual
approach to dealing with the delayed system includes modifying the synaptic strength connection
matrices within a specific time frame in the following manner for i = 1, 2, · · · , n, j = 1, 2, · · · , m.
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BI = {B = diag(b̌ j) : 0 ≺ B � B � B, ie., 0 < b̌ j ≤ b̌ j ≤ b̌ j},∀B ∈ BI

GI = {G = (ǧi j) : G � G � G , ie., ǧ
i j
≤ ǧi j ≤ ǧi j},∀G ∈ GI

Gτ
I = {Gτ = (ǧτi j) : Gτ � Gτ � G

τ
, ie., ǧτ

i j
≤ ǧτi j ≤ ǧ

τ
i j},∀Gτ ∈ Gτ

I

œI = {œ = (σ̌i j) : œ � œ � œ, ie., σ̌i j ≤ σ̌i j ≤ σ̌i j},∀œ ∈ œI ,
AI = {A = diag(ǎi) : 0 ≺ A � A � A , i.e., ., 0 < ǎi ≤ ǎi ≤ ǎi},∀A ∈ AI

FI = {F = ( f̌ ji) : F � F � F , ie., f̌
ji
≤ f̌ ji ≤ f̌ ji},∀F ∈ FI

F τ
I = {F τ = ( f̌ τji) : F τ � F τ � F

τ
, ie., f̌ τ

ji
≤ f̌ τji ≤ f̌

τ

ji},∀F τ ∈ F τ
I

øI = {ø = (τ̌ ji) : ø � ø � ø , ie., τ̌ ji ≤ τ̌ ji ≤ τ̌ ji},∀ø ∈ øI .

(2.2)

Next, we move the equilibrium point of (2.1) to the origin. To achieve this, we employ the
subsequent alteration:

x̌ j(·) = y j(·) − y∗j, ǔi(·) = wi(·) −w∗i , for every j = 1, 2, · · · , m, i = 1, 2, · · · , n.

Through the use of the transformation mentioned above, we change (2.1) into the form as shown
below: 

dx̌ j(t)
dt = −b̌ j x̌ j(t) +

∑n
i=i ǧi jχ1i(ǔi(t)) +

∑n
i=i ǧτi jχ1i(ǔi(t − σ̌i j)), ∀ j,

dǔi(t)
dt = −ǎiǔi(t) +

∑m
j=i f̌ jiχ2 j(x̌ j(t)) +

∑m
j=i f̌ τjiχ2 j(x̌ j(t − τ̌ ji)), ∀i,

(2.3)

where χ1i(ǔi(·)) = φ1i(ǔi(·) + w∗i ) − φ1i(w∗i ), χ1i(0) = 0,
χ2 j(x̌ j(·)) = φ2 j(x̌ j(·) + y∗j) − φ2 j(y∗j), χ2 j(0) = 0, for every i, j.

Now, it is straightforward to verify that the functions χ1i and χ2 j meet the requirements for φ1i and
φ2 j, meaning χ1i, χ2 j satisfy both (A1) and (A2).

Definition 2.3. [30] The BAM NNs (2.3) satisfying (2.2) is GARS if the origin of the unique equilibrium
point of the BAM NNs (2.3) is globally asymptotically stable for all B ∈ BI , G ∈ GI , Gτ ∈ Gτ

I , A ∈ AI ,
F ∈ FI , F τ ∈ F τ

I . Regardless of the initial conditions, the solutions of (2.3) that converge to the origin
of the unique equilibrium point constitute the system’s global asymptotic stability.

The identification and understanding of these following lemmas and facts are pivotal in establishing
the prerequisites for conducting a thorough examination of global stability in (2.1).

Lemma 2.4. [31] If F ∈ FI , then

‖ F ‖2 ≤ T (F ),

where T (F ) =
√

2 ‖| (F ∗)T F ∗ | +F T
∗ F∗ ‖2, F ∗ = 1

2(F + F ), F∗ = 1
2(F − F ). Similarly, G∗ =

1
2(G + G), G∗ = 1

2(G − G). The matrices F , F , G and G are defined as in (2.2).
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Lemma 2.5. [32] The following inequality holds for any two vectors u = (u1, u2, · · · , un)T ∈ Rn and
y = (y1, y2, · · · , yn)T ∈ Rn.

2uT y = 2yT u ≤ βuT u +
1
β

yT y, ∀ β > 0.

Lemma 2.6. [33] For each matrix F in the interval [F , F ], the following inequality holds:

|| F ||2 ≤ ‖ F ∗ ‖2 + ‖ F∗ ‖2,

where F ∗ = 1
2(F + F ), F∗ = 1

2(F − F ).

Remark 2.7. The results described in Lemmas 2.4 and 2.6 are consistently applicable to any synaptic
connection strength matrices defined as in (2.1).

Consider the matrix E , which satisfies Eq (2.2). Now, there exists a positive constant T (E) that
satisfies the following condition:

‖ E ‖2 ≤ T (E),

where E is any matrix as defined in (2.2).

3. Main results and proofs

In this section, we define specific generalized sufficient conditions for the GARS of the BAM NNs
described by (2.1). Through the application of the assumption (A2), BAM NNs (2.1) that fulfill (2.2)
possess the existence of the equilibrium point. Hence, demonstrating the uniqueness of the equilibrium
point for the GARS of (2.1) is essential.

Theorem 3.1. Assume the activation functions χ1i, χ2 j fulfill conditions (A1), (A2), and there are
positive constants, γ and δ, such that the conditions below are satisfied:

Ψ1i =mγδǎi −
1
2

mδ(γ2ľ2i − δγ −m( f τ
∗

)) −
1
2

nγľ2i T 2(G) > 0, ∀i = 1, 2, ..., n,

Ω1 j =nγδb̌i −
1
2

nδ(γ2ȟ2
j − δγ − n(gτ

∗

)) −
1
2

mγȟ2
jT

2(F ) > 0, ∀ j = 1, 2, ..., m,

where ( f τ
∗

) =
m∑

j=1
( f̌ τ

∗

ji )
2, (gτ

∗

) =
n∑

i=1
(ǧτ

∗

i j )
2, f τ

∗

ji = max(| f̌ τ
ji
|, | f̌

τ

ji |) and gτ
∗

i j = max(| ǧτ
i j
|, | ǧ

τ
i j |).

Then, the BAM NNs defined by (2.3) with network parameters that meet (2.2) have GARS at their
origin.

Proof. This proof will be shown through a two-step process. In Step 1, we show that its origin is the
only equilibrium point of (2.3). On the flip side, we show that BAM NNs (2.3) whose origin is GARS.
Step 1. Assume that the equilibrium points of (2.3) are (ǔ∗1, ..., ǔ∗n)

T = ǔ∗ , 0 and (x̌∗1, ..., x̌∗m)
T = x̌∗ ,

0. The points that satisfy the equations stated below are the equilibrium points of (2.3).

ǎiǔ∗i +
m∑

j=i

f̌ jiχ2 j(x̌∗j) +
m∑

j=i

f̌ τjiχ2 j(x̌∗j) = 0, ∀i, (3.1)
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b̌ j x̌∗j +
n∑

i=i

ǧi jχ1 j(ǔ∗i ) +
n∑

i=i

ǧτi jχ1 j(ǔ∗i ) = 0, ∀ j. (3.2)

Multiplying (3.1) by 2mǔ∗i and (3.2) by 2nx̌∗j , then addition of the resulting equations,

0 = − 2mǎiǔ∗i
2 +

n,m∑
i, j=1

2mǔ∗i f̌ jiχ2 j(x̌∗j) +
m,n∑

j,i=1

2mǔ∗i f̌ τjiχ2 j(x̌∗j) − 2nb̌ j x̌∗j
2 + 2n

m,n∑
j,i=1

x̌∗j ǧi jχ1 j(ǔ∗i )

+ 2n
n,m∑

i, j=1

x̌∗j ǧ
τ
i jχ1 j(ǔ∗i ),

0 = − 2mǎiǔ∗i
2 +

m,n∑
j,i=1

2mǔ∗i f̌ jiχ2 j(x̌∗j) +
n,m∑

i, j=1

2mǔ∗i f̌ τjiχ2 j(x̌∗j) − 2nb̌ j x̌∗j
2 + 2n

m,n∑
j,i=1

x̌∗jgi jχ1 j(ǔ∗i )

+ 2n
m,n∑

j,i=1

x̌∗j ǧ
τ
i jχ1 j(ǔ∗i ) +

1
γ

n,m∑
i, j=1

m2( f̌ τji)
2χ2

2 j(x̌∗j) −
1
γ

n,m∑
i, j=1

m2( f̌ τji)
2χ2

2 j(x̌∗j)

+
1
γ

m,n∑
j,i=1

n2(ǧτi j)
2χ2

1 j(ǔ
∗
i ) −

1
γ

m,n∑
j,i=1

n2(ǧτi j)
2χ2

1 j(ǔ
∗
i ),

≤ − 2mǎiǔ∗i
2 +

n,m∑
i, j=1

2mǔ∗i f̌ jiχ2 j(x̌∗j) +
n,m∑

i, j=1

2mǔ∗i f̌ τjiχ2 j(x̌∗j) − 2nb̌ j x̌∗j
2 + 2n

m,n∑
j,i=1

x̌∗j ǧi jχ1 j(ǔ∗i )

+ 2n
m,n∑

j,i=1

x̌∗jg
τ
i jχ1 j(ǔ∗i ) +

1
γ

n,m∑
i, j=1

m2( f̌ τji)
2ȟ2

j(x̌∗j
2) −

1
γ

n,m∑
i, j=1

m2( f̌ τji)
2χ2

2 j(x̌∗j) (3.3)

+
1
γ

m,n∑
j,i=1

n2(ǧτi j)
2 ľ2i (ǔ

∗
i

2) −
1
γ

m,n∑
j,i=1

n2(ǧτi j)
2χ2

1 j(ǔ
∗
i ).

Take into account the forthcoming inequalities:

n,m∑
i, j=1

2mǔ∗i (t) f̌ jiχ2 j(x̌∗j) = 2mǔ∗T FS(x̌∗)

≤ mδǔ∗T ǔ∗ + m
1
δ

ST (x̌∗)F T FS(x̌∗)

≤ mδǔ∗T ǔ∗ + m
1
δ
‖ F ‖22‖ S(x̌∗) ‖22

≤ mδ
n∑

i=1

ǔ∗i
2 + m

1
δ
‖ F ‖22

m∑
j=1

ȟ2
j x̌
∗
j
2, (3.4)

n,m∑
i, j=1

2nx̌∗j ǧi jχ1 j(ǔ∗i ) =2nx̌∗T GS(ǔ∗)
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≤ nδx̌∗T x̌∗ + n
1
δ

ST (ǔ∗)GT GS(ǔ∗)

≤ nδx̌∗T x̌∗ + n
1
δ
‖ S ‖22‖ G(u∗) ‖22

≤ nδ
m∑

j=1

x̌∗j
2 + n

1
δ
‖ G ‖22

n∑
i=1

ľ2i ǔ∗i
2, (3.5)

n,m∑
i, j=1

2mǔ∗i f̌ τjiχ2 j(x̌∗j) ≤
m,n∑

j,i=1

1
γ

m2( f̌ τji)
2(ǔ∗i )

2 +
n,m∑

i, j=1

γχ2
2 j(x̌∗j)

=
1
γ

m2
m,n∑

j,i=1

( f̌ τji)
2(ǔ∗i )

2 + nγ
m∑

j=1

ȟ2
j((x̌∗j)

2), (3.6)

m,n∑
j,i=1

2nx̌∗j ǧ
τ
i jχ2 j(ǔ∗i ) ≤

n,m∑
i, j=1

1
γ

n2(ǧτi j)
2(x̌∗j)

2 +
m,n∑

j,i=1

γχ2
1i(ǔ

∗
i )

=
1
γ

n2
n,m∑

i, j=1

(ǧτi j)
2(x̌∗j)

2 + mγ
n∑

i=1

ľ2i
(
(ǔ∗i )

2
)
. (3.7)

By applying the results (3.4)–(3.7) in (3.3), we have

0 ≤ −
n∑

i=1

2mǎi(ǔ∗i )
2 + mδ

n∑
i=1

(ǔ∗i )
2 + m

1
δ
‖F ‖22

m∑
j=1

ȟ2
j(x̌∗j)

2

−

m∑
j=1

2nb̌ j(x̌∗j)
2 + nδ

m∑
j=1

(x̌∗j)
2 + n

1
δ
‖G‖22

n∑
i=1

ľ2i (ǔ
∗
i )

2

+
1
γ

n2
n,m∑

i, j=1

(ǧτi j)
2(x̌∗j)

2 + mγ
n∑

i=1

ľ2i
(
(ǔ∗i )

2
)

+
1
γ

m2
m,n∑

j,i=1

( f̌ τji)
2(ǔ∗i )

2 + nγ
m∑

j=1

ȟ2
j

(
(x̌∗j)

2
)
.

Since,

‖ G ‖22≤2 ‖| (G∗)T G∗ | +GT
∗ G∗ ‖2= T 2(G), ‖ F ‖22 ≤ T 2(F ), ( f̌ τji)

2 ≤ ( f τ
∗

ji )
2, (ǧτi j)

2 ≤ (gτ
∗

i j )
2.

0 ≤
n∑

i=1

{
m(−2ǎi + γ+ δ) +

1
δ

nľ2i
(
2 ‖| (G∗)T G∗ | +GT

∗ G∗ ‖2) +
1
γ

n2ľ2i

m∑
j=1

(( f τ
∗

i j )
2)

}
ǔ∗i

2

+
m∑

j=1

{
n(−2b̌ j + γ+ δ) +

1
γ

m2ȟ2
j

n∑
i=1

(( f τ
∗

ji )
2) +

1
δ

mȟ2
j

(
2 ‖| (F ∗)T F ∗ | +F T

∗ F∗ ‖2)
}

x̌∗j
2,
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0 ≤
−2
γδ

{ n∑
i=1

{
mγδǎi −

1
2

mδ(γ2ľ2i − δγ −m( f τ
∗

)) −
1
2

nγľ2i T 2(G)

}
ǔ∗i

2+

m∑
j=1

{
nγδb̌i −

1
2

mγȟ2
jT

2(F ) −
1
2

nδ(γ2ȟ2
j − δγ − n(gτ

∗

))

}
x̌∗j

2
}

,

0 ≤
−2
γδ

{ n∑
i=1

Ψiǔ2
i +

m∑
j=1

Ω j x̌2
j

}
. (3.8)

Since γ > 0 δ > 0, Ψi > 0, Ω j > 0 for every i, j and x̌∗ , 0 , ǔ∗. But
−2
γδ

{
n∑

i=1
Ψiǔ∗i

2 +
m∑

j=1
Ω j x̌∗j

2
}
< 0.

Here (3.8) contradicts the above result, and thus, we can deduce that the only equilibrium point is
x̌∗ = 0 = ǔ∗. Therefore, the unique equilibrium point is the origin of (2.3).
Step 2. Let us examine the LKF provided below:

V(x̌(t), ǔ(t)) =
n∑

i=1

mǔ2
i (t) + γ

n,m∑
i, j=1

t∫
t−τ̌ ji

χ2
2 j(x̌ j(η))dη+

m∑
j=1

nx̌2
j(t) + γ

m,n∑
j,i=1

t∫
t−σ̌i j

χ2
1iǔi(ξ)dξ.

Obtaining V̇(x̌(t), ǔ(t)) in the trajectories of (2.3) and using Lemma 2.5 yields the following result:

V̇(x̌(t), ǔ(t)) ≤ mδ
n∑

i=1

ǔ2
i (t) −

n∑
i=1

2mǎiǔ2
i (t) + nδ

m∑
j=1

x2
j(t) + m

1
δ
‖ F ‖22

m∑
j=1

ȟ2
j x̌

2
j(t)

+ n
1
δ
‖ G ‖22

n∑
i=1

ľ2i ǔ2
i (t) −

m∑
j=1

2nb̌ j x̌2
j(t) + mγ

n∑
i=1

ľ2i ǔ2
i (t) + nγ

m∑
j=1

ȟ2
j x̌

2
j(t)

+
1
γ

n∑
i=1

m∑
j=1

m2( f̌ τji)
2ǔ2

i (t) +
1
γ

m∑
j=1

n∑
i=1

n2(ǧτi j)
2 x̌2

j(t).

Since ‖ G ‖22 ≤ T 2(G), ‖ F ‖22 ≤ T 2(F ), ( f̌ τji)
2 ≤ ( f τ

∗

ji )
2 and (ǧτi j)

2 ≤ (gτ
∗

i j )
2.

V̇(x̌(t), ǔ(t)) ≤
n∑

i=1

{
m(−2ǎi + γl2i + δ) +

1
δ

nľ2i
(
T 2(G)

)
+

1
γ

m2
m∑

j=1

(( f τ
∗

ji )
2)

}
ǔ2

i

+
m∑

j=1

{
n(−2b̌ j + γȟ2

j + δ) +
1
δ

mȟ2
j

(
T 2(F )

)
+

1
γ

n2
n∑

i=1

((gτ
∗

i j )
2)

}
x̌2

j ,

=
−2
γδ

{ n∑
i=1

{
mγδǎi −

1
2

nγľ2i T 2(G) −
1
2

mδ(γ2ľ2i − δγ −m( f τ
∗

))

}
ǔ∗i

2

+
m∑

j=1

{
nγδb̌i −

1
2

mγȟ2
jT

2(F ) −
1
2

nδ(γ2ȟ2
j − δγ − n(gτ

∗

))

}
x̌∗j

2
}

,

V̇(x̌(t), ǔ(t)) ≤
−2
γδ

{ n∑
i=1

Ψiǔ2
i +

m∑
j=1

Ω j x̌2
j

}
.
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Since γ > 0, δ > 0, Ψ1i > 0, and Ω1 j > 0, ∀i, j, for all non-zero values of ǔ(t), x̌(t), V̇(x̌(t), ǔ(t)) <
0. Therefore, according to the theory of Lyapunov stability, the origin of (2.3) that satisfies (2.2) is
GARS. �

The following theorem, which is obtained with the help of Lemmas 2.4 and 2.5, provides a different
sufficient condition for GARS of the proposed system. Furthermore, this paper’s numerical section
discusses the effectiveness of the given results.

Theorem 3.2. Assume the activation functions χ1i, χ2 j fulfill conditions (A1), (A2), and there are
positive constants γ and δ, such that the conditions below are satisfied:

Ψ2i =mγδ(2ǎi − γ − δ) − nľ2i (nδg
τ∗ + γT 2(G)) > 0, ∀i = 1, 2, ..., n,

Ω2 j =nγδ(2b̌ j − γ − δ) −mȟ2
j(mδ f τ

∗

+ γT 2(F )) > 0, ∀ j = 1, 2, ..., m,

where ( f τ
∗

) =
m∑

j=1
( f̌ τ

∗

ji )
2, (gτ

∗

) =
n∑

i=1
(ǧτ

∗

i j )
2, f τ

∗

ji = max(| f̌ τ
ji
|, | f̌

τ

ji |) and gτ
∗

i j = max(| ǧτ
i j
|, | ǧ

τ
i j |).

Then the BAM NNs defined by (2.3) with network parameters that meet (2.2) have GARS at their origin.

Proof. This proof will be shown through a two-step process. In Step 1, we show that its origin is the
only equilibrium point of (2.3). On the flip side, we show that (2.3) has it origin in GARS.
Step 1. Assume that the equilibrium points of (2.3) are (ǔ∗1, ..., ǔ∗n)

T = ǔ∗ , 0 and (x̌∗1, ..., x̌∗m)
T = x̌∗ ,

0. The points that satisfy the equations stated below are the equilibrium points of (2.3).

ǎiǔ∗i +
m∑

j=i

f̌ jiχ2 j(x̌∗j) +
m∑

j=i

f̌ τjiχ2 j(x̌∗j) = 0, ∀i, (3.9)

b̌ j x̌∗j +
n∑

i=i

ǧi jχ1 j(ǔ∗i ) +
n∑

i=i

ǧτi jχ1 j(ǔ∗i ) = 0, ∀ j. (3.10)

Multiplying (3.1) by 2mǔ∗i and (3.2) by 2nx̌∗j , then addition of the resulting equations,

0 = − 2mǎiǔ∗i
2 +

n,m∑
i, j=1

2mǔ∗i f̌ jiχ2 j(x̌∗j) +
m,n∑

j,i=1

2mǔ∗i f̌ τjiχ2 j(x̌∗j) − 2nb̌ j x̌∗j
2 + 2n

m,n∑
j,i=1

x̌∗j ǧi jχ1 j(ǔ∗i )

+ 2n
m,n∑

j,i=1

x̌∗j ǧ
τ
i jχ1 j(ǔ∗i ),

0 = − 2mǎiǔ∗i
2 +

n,m∑
i, j=1

2mǔ∗i f̌ jiχ2 j(x̌∗j) +
n,m∑

i, j=1

2mǔ∗i f̌ τjiχ2 j(x̌∗j) − 2nb̌ j x̌∗j
2 + 2n

m,n∑
j,i=1

x̌∗jgi jχ1 j(ǔ∗i )

+ 2n
m,n∑

j,i=1

x̌∗j ǧ
τ
i jχ1 j(ǔ∗i ) +

1
γ

n,m∑
i, j=1

m2( f̌ τji)
2χ2

2 j(x̌∗j) −
1
γ

n,m∑
i, j=1

m2( f̌ τji)
2χ2

2 j(x̌∗j) +
1
γ

m,n∑
j,i=1

n2(ǧτi j)
2χ2

1 j(ǔ
∗
i )
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−
1
γ

m,n∑
j,i=1

n2(ǧτi j)
2χ2

1 j(ǔ
∗
i ),

≤ − 2mǎiǔ∗i
2 +

n,m∑
i, j=1

2mǔ∗i f̌ jiχ2 j(x̌∗j) +
n,m∑

i, j=1

2mǔ∗i f̌ τjiχ2 j(x̌∗j) − 2nb̌ j x̌∗j
2 + 2n

m,n∑
j,i=1

x̌∗j ǧi jχ1 j(ǔ∗i )

+ 2n
m,n∑

j,i=1

x̌∗jg
τ
i jχ1 j(ǔ∗i ) +

1
γ

n,m∑
i, j=1

m2( f̌ τji)
2ȟ2

j(x̌∗j
2) −

1
γ

n,m∑
i, j=1

m2( f̌ τji)
2χ2

2 j(x̌∗j) +
1
γ

m,n∑
j,i=1

n2(ǧτi j)
2ľ2i (ǔ

∗
i

2)

−
1
γ

m,n∑
j,i=1

n2(ǧτi j)
2χ2

1 j(ǔ
∗
i ). (3.11)

Take into account the forthcoming inequalities:

n,m∑
i, j=1

2mǔ∗i (t) f̌ jiχ2 j(x̌∗j) = 2mǔ∗T FS(x̌∗)

≤ mδǔ∗T ǔ∗ + m
1
δ

ST (x̌∗)F T FS(x̌∗)

≤ mδǔ∗T ǔ∗ + m
1
δ
‖ F ‖22‖ S(x̌∗) ‖22

≤ mδ
n∑

i=1

ǔ∗i
2 + m

1
δ
‖ F ‖22

m∑
j=1

ȟ2
j x̌
∗
j
2, (3.12)

m,n∑
j,i=1

2nx̌∗j ǧi jχ1 j(ǔ∗i ) =2nx̌∗T GS(ǔ∗)

≤ nδx̌∗T x̌∗ + n
1
δ

ST (ǔ∗)GT GS(ǔ∗)

≤ nδx̌∗T x̌∗ + n
1
δ
‖ S ‖22‖ G(u∗) ‖22

≤ nδ
m∑

j=1

x̌∗j
2 + n

1
δ
‖ G ‖22

n∑
i=1

ľ2i ǔ∗i
2, (3.13)

n,m∑
i, j=1

2mǔ∗i f̌ τjiχ2 j(x̌∗j) ≤
n,m∑

i, j=1

γǔ∗i
2 +

n,m∑
i, j=1

1
γ

m2( f̌ τji)
2χ2

2 j(x̌∗j)

= mγ
n∑

i=1

ǔ∗i
2 +

n,m∑
i, j=1

1
γ

m2( f̌ τji)
2χ2

2 j(x̌∗j), (3.14)

m,n∑
j,i=1

2nx̌∗j ǧ
τ
i jχ2 j(ǔ∗i ) ≤

m,n∑
j,i=1

γx̌∗j +
m,n∑

j,i=1

1
γ

n2(ǧτi j)
2χ2

1i(ǔ
∗
i )
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= nγ
m∑

j=1

x̌∗j +
m,n∑

j,i=1

1
γ

n2(ǧτi j)
2χ2

1i(ǔ
∗
i ). (3.15)

By applying the results (3.12)–(3.15) in (3.11), we have

0 ≤ −
n∑

i=1

2mǎiǔ∗i
2 + mδ

n∑
i=1

ǔ∗i
2 + m

1
δ
‖ F ‖22

m∑
j=1

ȟ2
j x̌
∗
j
2 −

m∑
j=1

2nb̌ j x̌∗j
2 + nδ

m∑
j=1

x̌∗j
2

+ n
1
δ
‖ G ‖22

n∑
i=1

ľ2i ǔ∗i
2 + mγ

n∑
i=1

ǔ∗i
2 + nγ

m∑
j=1

x̌∗j
2 +

1
γ

n,m∑
i, j=1

m2( f̌ τji)
2ȟ2

j(x̌∗j
2)

+
1
γ

m,n∑
j,i=1

n2(ǧτi j)
2ľ2i (ǔ

∗
i

2).

Since,

‖ G ‖22≤ 2 ‖| (G∗)T G∗ | +GT
∗ G∗ ‖2= T 2(G), ‖ F ‖22≤ T 2(F ), ( f̌ τji)

2 ≤ ( f τ
∗

ji )
2, (ǧτi j)

2 ≤ (gτ
∗

i j )
2.

0 ≤
n∑

i=1

{
− 2mǎi + m(γ+ δ) +

1
δ

nľ2i
(
T 2(G) +

1
γ

n2ľ2i

m∑
j=1

((gτ
∗

i j )
2)

}
ǔ∗i

2

+
m∑

j=1

{
− 2nb̌ j + n(γ+ δ) +

1
γ

m2ȟ2
j

n∑
i=1

(( f τ
∗

ji )
2) +

1
δ

mȟ2
j

(
T 2(F )

}
x̌∗j

2,

0 ≤ −
n∑

i=1

{
mγδ(2ǎi − γ − δ) − nľ2i (nδg

τ∗ + γT 2(G))

}
ǔ∗i

2

−

m∑
j=1

{
nγδ(2b̌ j − γ − δ) −mȟ2

j(mδ f τ
∗

+ γT 2(F ))

}
x̌∗j

2,

0 ≤ −
n∑

i=1

Ψ2iǔ2
i −

m∑
j=1

Ω2 j x̌2
j . (3.16)

Given that Ψ2i > 0 and Ω2 j > 0, ∀i, j, x̌∗ , 0 , ǔ∗. But −
n∑

i=1
Ψ2iǔ∗i

2 −
m∑

j=1
Ω2 j x̌∗j

2 < 0. Here (3.16)

contradicts the above result, and thus, we can deduce that the only equilibrium point is x̌∗ = 0 = ǔ∗.
Therefore, the unique equilibrium point is the origin of (2.3).
Step 2. Let us examine the LKF provided below:

V(x̌(t), ǔ(t)) =
n∑

i=1

mǔ2
i (t) +

m∑
j=1

nx̌2
j(t) +

1
γ

n,m∑
i, j=1

m2( f̌ τji)
2

t∫
t−τ̌ ji

χ2
2 j(x̌ j(η))dη

+
1
γ

m,n∑
j,i=1

n2(ǧτji)
2

t∫
t−σ̌i j

χ2
1iǔi(ξ)dξ.
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Obtaining V̇(x̌(t), ǔ(t)) in the trajectories of (2.3) and using Lemma 2.5 yields the following result:

V̇(x̌(t), ǔ(t)) ≤mδ
n∑

i=1

ǔ2
i (t) −

n∑
i=1

2mǎiǔ2
i (t) + nδ

m∑
j=1

x2
j(t) + m

1
δ
‖ F ‖22

m∑
j=1

ȟ2
j x̌

2
j(t)

+ n
1
δ
‖ G ‖22

n∑
i=1

ľ2i ǔ2
i (t) −

m∑
j=1

2nb̌ j x̌2
j(t) + mγ

n∑
i=1

ǔ2
i (t) + nγ

m∑
j=1

x̌2
j(t)

+
1
γ

m∑
j=1

n∑
i=1

n2( f̌ τji)
2 ľ2i ǔ2

i (t) +
1
γ

n∑
i=1

m∑
j=1

m2(ǧτi j)
2ȟ2

j x̌
2
j(t).

Since ‖ G ‖22≤ T 2(G), ‖ F ‖22≤ T 2(F ), ( f̌ τji)
2 ≤ ( f τ

∗

ji )
2 and (ǧτi j)

2 ≤ (gτ
∗

i j )
2.

V̇(x̌(t), ǔ(t)) ≤
n∑

i=1

{
− 2mǎi + m(γ+ δ) +

1
δ

nľ2i
(
T 2(G)) +

1
γ

n2ľ2i

m∑
j=1

((gτ
∗

i j )
2)

}
ǔ∗i

2

+
m∑

j=1

{
− 2nb̌ j + n(γ+ δ) +

1
γ

m2ȟ2
j

n∑
i=1

(( f τ
∗

ji )
2) +

1
δ

mȟ2
j

(
T 2(G))

}
x̌∗j

2,

≤ −

n∑
i=1

{
mγδ(2ǎi − γ − δ) − nľ2i (nδg

τ∗ + γT 2(G))

}
ǔ∗i

2

−

m∑
j=1

{
nγδ(2b̌ j − γ − δ) −mȟ2

j(mδ f τ
∗

+ γT 2(F ))

}
x̌∗j

2,

= −
n∑

i=1

Ψ2iǔ2
i −

m∑
j=1

Ω2 j x̌2
j .

Given that Ψ2i > 0 and Ω2 j > 0, ∀i, j, for every non-zero values of ǔ(t), x̌(t), V̇(x̌(t), ǔ(t)) < 0.
Therefore, according to the theory of Lyapunov stability, the origin of (2.3) that satisfies (2.2) is GARS.
The proof is completed. �

4. Numerical examples

In this part, we demonstrate the contrast in outcomes of Theorems 3.1 and 3.2 through the following
instances.

Example 4.1. Take into account the network parameters for the specified BAM NNs (2.1) that adhere
to (2.2).

l1 = l2 = l3 =
1
2

, h1 = h2 = h3 =
1
2

, γ =
1
6

, δ =
1
6

,

A = A = A =


13 0 0
0 13 0
0 0 13

 = B = B = B, G = F =
1
2


0 0 0
0 0 0
−2 0 0

 , G = F =
1
2


2 2 2
2 2 2
0 0 4

 ,
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G∗ = F ∗ =
1
2


1 1 1
1 1 1
−1 0 2

 , G∗ = F∗ =
1
2


1 1 1
1 1 1
1 0 2

 , Gτ =


d1 d1 d1
d1 d1 d1
d1 d1 d1

 , G
τ
=

1
8


d1 d1 d1
d1 d1 d1
d1 d1 d1

 = Gτ∗ ,

F τ =
−1
8


d2 d2 d2
d2 d2 d2
d2 d2 d2

 , F
τ
=

1
8


d2 d2 d2
d2 d2 d2
d2 d2 d2

 = F τ∗ ,

where d1 > 0, d2 > 0. We identify the norm in Lemma 2.4 in the following manner.

T 2(G) = 2 ‖| (G∗)T G∗ | +GT
∗ G∗ ‖2= 8.1883 = T 2(F ) = 2 ‖| (F ∗)T F ∗ | +F T

∗ F∗ ‖2 .

We exhibit the results of Theorem 3.1 for the upper bound T 2, we obtain

Ψ1i = 1.0833 − 0.5118 − 0.0404d2
2 = 0.5715 − 0.0404d2

2.

Since Ψ1i > 0,∀i = 1, 2, 3. Therefore, d2
2 < 14.1460.

Ω1 j = 1.0833 − 0.5118 − 0.0404d2
1 = 0.5715 − 0.0404d2

1.

Since Ω1 j > 0,∀ j = 1, 2, 3. Therefore, d2
1 < 14.1460. Similarly, we exhibit the results of

Theorem 3.2 for the upper bound T 2, we obtain

Ψ2i = 2.1389 − 1.0236 − 0.0176d2
1 = 1.1153 − 0.0176d2

1.

Since Ψ2i > 0,∀ i = 1, 2, 3. Therefore, d2
1 < 63.3693.

Ω2 j = 2.1389 − 1.0236 − 0.0176d2
2 = 1.1153 − 0.0176d2

2.

Since Ω2 j > 0,∀ j = 1, 2, 3. Therefore, d2
2 < 63.3693.

For this example, the Matlab simulation results from non-linear activation functions under the initial
conditions x̌(0) = [−0.5, 0.5,−0.2]T and ǔ(0) = [0.3,−0.3, 0.1]T . The activation function used is a
piecewise linear functions f (x̌) = 0.5 × (|x̌ + 1| − |x̌ − 1|) and g(ǔ) = 0.5 × (|ǔ + 1| − |ǔ − 1|), which
bounds neuron activations, ensuring stability. The state response graph shows the evolution of neuron
activations over time for each layer ( x̌ and ǔ ), influenced by time-delayed interactions. The responses
converge smoothly to zero due to the damping effect in Figure 1.
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Figure 1. Response of x̌, ǔ among the different initial states.

Remark 4.1. For Ψ2i and Ω2 j,∀i, j = 1, 2, 3, d2
1 and d2

2 respectively, are valid in the domain,
12.5869 < d2

q < 49.6193, q = 1, 2 whereas Ψ1i and Ω1 j,∀ i, j = 1, 2, 3 are not valid in that
domain. This is because of the new upper bound value T 2 norm and the sufficient conditions in 3.1
and 3.2. Hence, our new sufficient conditions in 3.2 will give better results when comparing 3.1 with
the proposed BAM NNs.

Remark 4.2. In this example, we apply the existing norm in the literature as stated in Lemma 2.6,
then T 2(G) = (‖ G∗ ‖2 + ‖ G∗ ‖2)2 = (‖ F ∗ ‖2 + ‖ F∗ ‖2)2 = T 2(F ) = 8.3284 > 8.1883 =
2 ‖| (G∗)T G∗ | +GT

∗ G∗ ‖2= 2 ‖| (F ∗)T F ∗ | +F T
∗ F∗ ‖2. Therefore, the proposed results will give

better domain of region as compared with their existing results. Hence, our results are efficient when
compared with the existing results for this network parameters.

Example 4.2. Take into account the network parameters for the specified BAM NNs (2.1) that adhere
to (2.2).

l1 = l2 = l3 = l4 =
1
4

, h1 = h2 = h3 = h4 =
1
4

, γ =
1
5

, δ =
1
5

,

A = A = A =


10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

 = B = B = B, G = F =
1

25


0 0 0 0
0 0 0 0
0 0 0 0
−6 0 0 0

 ,
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G = F =
1

25


6 6 6 6
6 6 6 6
6 6 6 6
0 0 0 12

 , G∗ = F ∗ =
1

25


3 3 3 3
3 3 3 3
3 3 3 3
−3 0 0 6

 ,

G∗ = F∗ =
1

25


3 3 3 3
3 3 3 3
3 3 3 3
3 0 0 6

 , Gτ =
−1
5


e1 e1 e1 e1
e1 e1 e1 e1
e1 e1 e1 e1
e1 e1 e1 e1

 , G
τ
=

1
5


e1 e1 e1 e1
e1 e1 e1 e1
e1 e1 e1 e1
e1 e1 e1 e1

 ,

F τ =
−1
5


e2 e2 e2 e2
e2 e2 e2 e2
e2 e2 e2 e2
e2 e2 e2 e2

 , F
τ
=

1
5


e2 e2 e2 e2
e2 e2 e2 e2
e2 e2 e2 e2
e2 e2 e2 e2

 .

where e1 > 0, e2 > 0. We identify the norm in Lemma 2.4 in the following manner.

T 2(G) = T 2(F ) = 0.7778.

We exhibit the results of Theorem 3.1 for the upper bound T 2, we obtain

Ψ1i = 1.6 − 0.0356 − 0.256e2
2 = 1.5644 − 0.256e2

2.

Since Ψ1i > 0,∀i = 1, 2, 3, 4. Therefore, e2
2 < 6.2576.

Ω1 j = 1.6 − 0.0356 − 0.256e2
1 = 1.5644 − 0.256e2

1.

Since Ω1 j > 0,∀ j = 1, 2, 3, 4. Therefore, e2
1 < 6.2576. Similarly, we exhibit the results of

Theorem 3.2 for the upper bounds T 2, we obtain

Ψ2i = 3.1360 − 0.0389 − 0.0320e2
1 = 3.0971 − 0.0320e2

1.

Since Ψ2i > 0,∀ i = 1, 2, 3, 4. Therefore, e2
1 < 96.7844.

Ω2 j = 3.1360 − 0.0389 − 0.0320e2
2 = 3.0971 − 0.0320e2

2.

Since Ω2 j > 0,∀ j = 1, 2, 3, 4. Therefore, e2
2 < 96.7844.

For this example, the Matlab simulation results from non-linear activation functions under the initial
conditions x̌(0) = [−0.5, 0.5,−0.3, 0.4]T and ǔ(0) = [0.3,−0.3, 0.2,−0.4]T . The activation function
used is a piecewise linear function f (x̌) = 0.5× (|x̌ + 1| − |x̌− 1|) and g(ǔ) = 0.5× (|ǔ+ 1| − |ǔ− 1|),
which bounds neuron activations, ensuring stability. The state response graph shows the evolution of
neuron activations over time for each layer ( x̌ and ǔ ), influenced by time-delayed interactions. The
responses converge smoothly to zero due to the damping effect in Figure 2.
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Figure 2. Response of x̌ , ǔ among the different initial states.

Remark 4.3. For Ψ2i and Ω2 j,∀i, j = 1, 2, 3, 4, e2
1 and e2

2, respectively, are valid in the domain,
6.1035 < e2

q < 96.7186, q = 1, 2 whereas Ψ1i and Ω1 j,∀ i, j = 1, 2, 3, 4 are not valid in that
domain. This is because of the new upper bound value T 2 norm and the sufficient conditions in 3.1
and 3.2. Hence, our new sufficient conditions in 3.2 will give better results for the proposed BAM NNs.
Moreover, Theorem 3.2 provides better results and is more robust compared to Theorem 3.1. It offers a
significantly larger stability region e2

1, e2
2 < 96.7186, while Theorem 3.1 is limited to e2

1, e2
2 < 6.1035.

Remark 4.4. In this example, we apply the existing norm as stated in Lemma 2.6, then T 2(G) = (‖
G∗ ‖2 + ‖ G∗ ‖2)2 = (‖ F ∗ ‖2 + ‖ F∗ ‖2)2 = T 2(F ) = 0.7811 > 0.7778 = 2 ‖| (G∗)T G∗ |
+GT
∗ G∗ ‖2= 2 ‖| (F ∗)T F ∗ | +F T

∗ F∗ ‖2. Therefore, the proposed results will give better domain of
region as compared with the existing results. Hence, our results are efficient when compared with the
existing results for these network parameters.

Remark 4.5. The constant multiple time delays are employed in a range of real-time applications,
such as network communication, and control systems, particularly in industrial processes,
telecommunication operating systems, signal processing, and also gravitational lensing in
astrophysics. The novel global asymptotic stability and dissipativity criteria of BAM NNs with delays
have been discussed in [34]. The fractional-order uncertain BAM NNs with mixed time delays are
discussed in [35]. Some new criteria on the stability of fractional-order BAM NNs with time delay is
discussed in [36]. The concept of global the exponential stability via inequality technique for inertial
BAM NNs with time delays is discussed in [37]. Also, the proposed results can be applied to the time-
varying delay parameters of BAM NNs. Since we can find multiple constant time delays as the upper
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bounds for the time-varying delay parameters. The proposed results can be utilized for the GARS of
time-varying delayed BAM NNs, and it will give better results for these network parameters.

5. Conclusions

This research looks into the GARS of hybrid BAM NNs that deal with time delays and unknown
parameters in great detail. We have defined the relevant conditions to ensure GARS in these hybrid
BAM NNs. Also, the results for the GARS of these BAM NNs are given in 3.1 and 3.2. The proposed
research work confers the following advantages: (1) The results stated in both 3.1 and 3.2 are different
sufficient conditions. (2) From the numerical examples, it is clear that the results in 3.2 are valid in the
larger domain, while the sufficient conditions in 3.1 are enforceable only in the smaller domain. (3)
The domain of validity for the results in 3.2 is much larger compared to the larger network parameters
given in 4.2. The new results stated in 3.1 and 3.2 are derived using the new upper bound and the
suitable LKF. Our research has shown greater efficacy compared to some earlier findings. The two
numerical instances demonstrate how our novel conditions yield effective outcomes. This suggested
research could be expanded in further studies to incorporate complex-valued diffusion BAM NNs and
the impulsive fractional-order quaternion-valued BAM NNs with real-time applications.
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