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Abstract— This study investigates the optimization of 

wireless network performance using decision tree-based gain 

prediction. A simulation involving 100 users, uniformly 

distributed around a central Access Point (AP), calculates the 

Signal-to-Interference-plus-Noise Ratio (SINR) for each user, 

based on their distance and angle relative to the AP. The 

resulting dataset captures relationships between user positions 

and network performance metrics. A Decision Tree Regressor 

predicts continuous gain values, while a Decision Tree Classifier 

categorizes gains into discrete classes. The regression model 

demonstrates high accuracy with strong correlation, and the 

classification model achieves notable accuracy and recall, 

validated through confusion matrices and classification reports. 

Simulations evaluate the impact of both normal and predicted 

gains on network throughput and delay, showing that predicted 

gains closely approximate outcomes seen with normal gain 

calculations. These findings highlight the potential of decision 

tree models for optimizing network configurations and fine-

tuning parameters to improve overall network performance. 

Keywords— wireless network optimization, decision tree 

regressor, gain prediction 

I. INTRODUCTION  

Wireless networks are integral to contemporary 
communication systems, facilitating connectivity across a 
wide range of devices, from smartphones to Internet of Things 
(IoT) sensors. As the proliferation of wireless services 
accelerates, optimizing network performance has become a 
pressing priority. Critical performance metrics, such as 
throughput and delay, are significantly influenced by the gain 
experienced by users within the network. Gain, in this context, 
refers to the amplification of signal strength received by a user 
from an Access Point (AP), and it is modulated by factors such 
as distance, signal attenuation, and environmental conditions. 
Improving antenna gain is essential for enhancing signal 
levels, as demonstrated in [1] and [2], where enhanced antenna 
gain significantly improved network performance. 

Traditional approaches to gain prediction typically rely on 
deterministic models that incorporate parameters such as path 
loss, shadowing, and fading effects. While these models 
provide useful insights, they often fail to capture the full 
complexity of real-world environments. Variability in user 
distribution, mobility, and environmental interference 
introduces significant unpredictability, leading to suboptimal 
network configurations and degraded Quality of Service 
(QoS) for end-users. To address these challenges, machine 
learning (ML) techniques present a promising alternative. 

Machine learning offers the potential to enhance gain 
prediction by learning patterns from empirical data. Among 
these techniques, decision tree algorithms are particularly 
well-suited for modeling nonlinear relationships and handling 
both continuous and categorical variables. Decision trees also 
provide interpretability and computational efficiency, making 

them advantageous for real-time wireless network 
applications. By employing decision trees, it is possible to 
develop models that predict gain more accurately, accounting 
for user-specific factors such as position, distance from the 
AP, and angle of reception. 

Although machine learning has been applied in wireless 
networks [3], its usage has been mostly confined to specific 
layers, such as the radio, Medium Access Control (MAC), and 
network layers. For instance, research [4] utilized a 
convolutional neural network (CNN) for spectrum 
monitoring, demonstrating improved WLAN performance 
through spectrum capture. Another study [5] applied neural 
networks to predict channel parameters, while [6] optimized 
user throughput through user selection. Despite these 
advances, the application of decision tree models for gain 
prediction, particularly for improving physical and MAC layer 
performance in dynamic environments, remains 
underexplored. 

In this study, we investigate the application of decision 
tree-based models for gain prediction in wireless networks. 
Our approach demonstrates effective performance, even with 
relatively simple prediction models, and is tailored to specific 
data types. Decision tree-based models have already seen 
success in related fields, including intrusion detection [8], 
communication [9], and wireless sensors [10]. We extend this 
methodology to predict wireless network gains. 

We simulate a wireless environment consisting of 100 
users uniformly distributed around a central AP, covering a 
full 360-degree range. Each user's position is utilized to 
calculate the Signal-to-Interference-plus-Noise Ratio (SINR), 
which serves as a key input for determining the gain 
experienced by each user. This simulation generates a 
comprehensive dataset containing user positions, distances, 
angles, and corresponding gains. Using this dataset, a 
Decision Tree Regressor predicts continuous gain values, 
while a Decision Tree Classifier categorizes gains into 
discrete classes. 

The objectives of this study are threefold: (1) to evaluate 
the accuracy of decision tree models in predicting gain; (2) to 
assess the impact of predicted gain on key network 
performance metrics, specifically throughput and delay; and 
(3) to compare the predicted gains with those derived from 
traditional gain calculations, assessing the feasibility of 
machine learning approaches for optimizing wireless 
networks in dynamic environments. 

Our results demonstrate that decision tree models 
effectively predict gain values that closely approximate actual 
measurements. Through simulations, we show that these 
predicted gains can be used to estimate network throughput 
and delay with a high degree of accuracy. The findings suggest 
that decision tree-based models are capable of serving as 



effective tools for network optimization, improving 
adaptability and efficiency in network configurations. 

 The remainder of this paper is organized as follows: 
Section II details the methodology used for simulation setup 
and data collection. Section III focuses on the implementation 
of the Decision Tree Regressor. Section IV presents the 
simulations related to throughput and delay. Section V 
discusses the results and findings, including a comprehensive 
analysis of the models' performance. Finally, Section VI 
concludes the study and offers suggestions for future research. 

II. METHODOLOGY 

In this study, we simulate a wireless communication 

network to analyze the performance of machine learning 

models in predicting network gains and their impact on 

throughput and delay. The methodology consists of four main 

components: user distribution simulation, signal metric 

calculations, machine learning model implementation, and 

performance evaluation. Each component is designed to 

simulate realistic network conditions and assess the 

effectiveness of decision tree-based models for gain 

prediction and network optimization. 

A. User Distribution  

The first step in our methodology is the simulation of user 
positions within a wireless network. We model a network 
consisting of 100 users, uniformly distributed around a central 
Access Point (AP) located at coordinates (50, 50) on a 2D 
plane. The users are distributed across five concentric circles, 
with each circle representing a different distance from the AP. 
The radii of the circles are generated using an equally spaced 
linear distribution ranging from 10 meters to 50 meters. Each 
circle contains an equal number of users, and the users' 
positions on the circles are determined based on angles 
distributed between 0° and 360°. 

This uniform distribution of users is designed to capture 
various network conditions, including users located at 
different distances and angles relative to the AP. The 
simulation ensures that users are situated in a realistic wireless 
environment, allowing us to evaluate the impact of user 
distribution on key network metrics such as Signal-to-Noise 
Ratio (SNR), gain, throughput, and delay. 

The user positions are calculated using polar to Cartesian 
coordinate conversion: 

 �� = ��� + ��	
(��) (1) 

 �� = ��� + ��	
(��) (2) 

 

Where � is the radius of the circle, and �� is the angle for the � − th user. 

B. Signal Metric  

Once user positions are established, the next step is to 
calculate key signal metrics for each user. Specifically, we 
compute the Signal-to-Interference-plus-Noise Ratio (SINR) 
for every user in the network. The SINR is calculated based 
on the user's distance from the AP and the surrounding 
interference from other users, serving as a critical input for 
determining the gain experienced by each user. 

The antenna gain for each user is calculated based on their 
SINR. In this study, we compare two types of gain values: 

• Normal Gain: Calculated using traditional deterministic 
models that account for path loss, shadowing, and fading 
effects. 

• Predicted Gain: Derived from decision tree-based machine 
learning models, utilizing user-specific features, including 
position, distance from the AP, and angle of reception. 

To evaluate network performance, we calculate the Signal-
to-Interference-plus-Noise Ratio (SINR) for each user based 
on their distance and angle relative to the AP. The SINR 
calculation considers factors such as transmit power, 
directional gain, path loss, and noise power as follows: 

• Transmit Power (��): Set at 20 dBm. 

• Noise Power (��): −100 dBm. 

• Path Loss Exponent (�): Assumed to be 2, representing 
free-space propagation. 

The path loss �(�)  over distance �  is calculated using the 
logarithmic path loss model as [11]: 

                        �(�) = 10��	�10(�) (3) 

Antenna gain is often calculated using the directivity and 
efficiency of the antenna. In simplified terms, when 
considering the impact of user position (distance and angle 
from the AP), the gain can be expressed as:  

                          � = ��� ⋅ "(�, $) (4) 

Where: 

���  is the maximum gain of the antenna (measured in dB). 

� is the elevation angle relative to the antenna's main lobe. 

$ is the azimuth angle, representing the angle in the horizontal 
plane. 

"(�, $) is the radiation pattern function, which describes the 
variation of gain based on the direction of the signal, and 
typically depends on the design of the antenna.  

In this study, we utilize a directional antenna for both the users 
and the AP, and the gain can be specifically described as: 

                            �(�) = ��� ⋅ �	
(�) (5) 

In scenarios where users are perfectly aligned with the main 
lobe of the antenna, the gain will be maximized, while it 
decreases as the angle increases.  

Finally, the received signal power (�%) is given by: 

                            �% = �� + �(�) − �(�) (6) 

III. DECISION TREE REGRESSOR 

 In this study, we selected decision tree-based models for 
gain prediction due to their unique strengths that align with the 
specific challenges of wireless network environments. 
Decision trees perform well with a limited number of 
parameters and in relatively simple environments, making 
them a suitable choice for this paper, which involves a small 
parameter set and a straightforward network environment. 
Consequently, these models are highly effective in addressing 
the objectives of this study. We utilize machine learning 
techniques to predict network gain based on user distances and 
angles from the Access Point (AP). Two models are 
implemented to handle different aspects of gain prediction. 



A. Decision Tree Regressor 

The Decision Tree Regressor is used to predict continuous 
gain values for each user. The input features include: 

• User distances from the AP. 

• User angles relative to the AP. 

The target variable is the actual gain, which is calculated 
based on the Signal-to-Interference-plus-Noise Ratio (SINR). 
The dataset is divided into training and testing sets, with 80% 
of the data allocated for training and 20% set aside for testing. 
The regressor is trained on the training set and subsequently 
used to predict gain values for all users in the testing set. The 
model’s performance is assessed by comparing the predicted 
gain values to the actual gain values. 

B. Decision Tree Classifier 

The Decision Tree Classifier categorizes gain values into 

discrete classes, offering a classification of network 

conditions based on predicted gains. This classification is 

based on RSSI thresholds. The classifier divides gain values 

into the following categories: 

 �&�' )�&



=
⎩⎪
⎨
⎪⎧ 0,                              �" � < −30 �0 (�	1)

1,      �" − 30 ≤ � < −25 �0 (56��78)
2,             �" − 25 ≤ � < −20 �0 (9��ℎ)
3,                �" − 20 ≤ � �0 (;6�� 9��ℎ<)

 
(7) 

 

These thresholds are based on the expected range of gain 

values in the simulated environment. Similar to the regressor, 

the dataset is split into training and testing sets. The classifier 

is trained on the training set to predict the correct gain 

category for each user based on their distance and angle 

relative to the AP. 

To evaluate the classifier’s performance, we compute the 

following metrics: 

• Accuracy: The proportion of correctly predicted gain 

classes across the testing set. 

• Recall: The ability of the classifier to correctly identify 

gain classes (sensitivity). 

• Confusion Matrix: A matrix that provides a detailed 

breakdown of the true and predicted classifications, 

showing how well the classifier distinguishes between 

the different gain categories. 

Additionally, a classification report is generated, detailing the 

precision, recall, and F1-score for each gain class. These 

metrics offer a comprehensive understanding of the 

classifier's performance in predicting different levels of 

network gain. 

IV. THROUGHPUT AND DELAY SIMULATION 

In this section, we simulate the network's throughput and 

delay to assess the impact of predicted gains on overall 

network performance. The simulations are carried out under 

varying network loads by increasing the number of users 

from 1 to 100. The primary performance metrics evaluated 

are throughput and delay, both calculated based on the 

Signal-to-Interference-plus-Noise Ratio (SINR) derived from 

the predicted gains. 

A. Throughput 

Throughput, representing the maximum achievable data rate 

in the network, is calculated using the Shannon-Hartley 

theorem, which relates channel capacity to the available 

bandwidth and SINR. Since interference significantly affects 

this scenario, SINR is used instead of the traditional SNR to 

account for interference caused by other users. The formula 

for throughput C in bits per second is given follow [12]: 

 

                                C = 0log2(1 + ABCD) (8) 

Where: 0 is the bandwidth, set to 20 MHz in this study. ABCD  is the Signal-to-Interference-plus-Noise Ratio, 

calculated for each user based on the distance from the 

Access Point (AP), the antenna gain, and interference from 

other users. The SINR is calculated as: 

 

                                      ABCD = �E
�FGH (9) 

 

Where: �� is the noise power. B is the interference power contributed by other users in the 

network.  

As the number of users increases, both noise and interference 

levels rise, which reduces the SINR and consequently the 

achievable throughput. Throughput is calculated for each 

user using both the normal gains and the predicted gains 

Comparative plots are generated to illustrate the differences 

in throughput for normal and predicted gains. 

B. Delay 

Network delay, defined as the time it takes for a data packet 

to travel from the sender to the receiver, is approximated as 

the inverse of throughput. Delay increases as throughput 

decreases, reflecting reduced data transfer rates in the 

network as interference and user load increase. The formula 

for delay is given as: 

 

                          I6�&� = J
KL%MNOLPN� (10) 

 

Where throughput is measured in bits per second and delay is 

calculated in seconds. As the number of users in the network 

increases, throughput decreases due to higher interference 

and competition for bandwidth, resulting in an increase in 

delay. 

V. RESULTS AND DISCUSSION 

This section presents and discusses the key findings from the 

simulations of throughput, delay, and gain predictions using 

decision tree-based models. The performance of the predicted 

gains is compared to normal (deterministic) gains to evaluate 

their accuracy and impact on network performance metrics 

such as throughput and delay. 

Figure 1 visualizes the distribution of users in the wireless 

network and their corresponding SINR values. The 

simulation confirms that users closest to the Access Point 

(AP) experience the highest SINR values due to reduced path 

loss and interference. Conversely, users positioned further 

from the AP, particularly those on the outer rings, exhibit  



Fig. 1. User Positions with SINR (dB) 

Fig.  2. Gain Classification Performance 

Fig. 3. Throughput Comparison: Normal vs. Predicted Gain 

with 100 Users 

 

Fig. 4. Delay Comparison: Normal vs. Predicted Gain with 

100 Users  

TABLE I.  PRECISION, RECALL, F1-SCORE FOR GAIN CLASSIFICATION 

 

lower SINR values as they are more affected by interference 

and signal attenuation. The directional radiation pattern of the 

AP, along with user distance, significantly impacts the SINR. 

This highlights the importance of gain and proper antenna 

positioning to maximize SINR for users, especially those in 

the outer regions of the network. This figure serves as a 

crucial input to the decision tree model, which utilizes 

distance, angle, and SINR to predict user gain. The affinity 

between user position and SINR is clearly demonstrated, 

providing an intuitive understanding of how distance from the 

AP affects network performance. 
 The metrics in Table I provide a comprehensive overview 
of the classifier's performance across different gain categories. 
The high precision and recall for the Low gain class indicate 
that the model effectively identifies users in this category, 
suggesting reliable classification performance in typical 
scenarios. However, the model's performance is less robust for 
the Medium gain class, evidenced by lower precision and 
recall values. This suggests that misclassifications occur more 
frequently for Medium gains, particularly under conditions of 
high interference or congestion. 
 The decision tree classifier categorizes gains into four 
discrete classes: Low, Medium, High, and Very High. Figure 
2 displays the confusion matrix for this classification. The 
model demonstrates strong performance in classifying Low 
and High gain categories, as shown by the high precision for 
the High gain class (1.00). However, the classification of 
Medium gains is less accurate, indicating challenges in 
differentiating between similar gain levels under certain 
conditions. The overall accuracy of the classifier is 80%, 
which is a reasonable result for a multi-class classification 
task. The weighted average F1-score of 0.81 suggests that the 
model performs consistently across all classes, though 
improvements could be made, particularly for the Medium 
gain class where more training data or a more complex model 
might be necessary. 

  precision recall f1-score support 

Low 0.91 0.83 0.87 12 

Medium 0.50 0.67 0.57 3 

High 1.00 0.67 0.80 3 

Very High 0.67 1.00 0.80 2 



Figure 3 compares the throughput for normal gains and 
predicted gains as the number of users increases from 1 to 100. 
Throughput decreases as the network becomes more 
congested, which is expected due to increasing interference 
and reduced bandwidth per user. The predicted throughput 
follows the same decreasing trend as the normal throughput 
but remains slightly lower throughout the range of user 
densities. This reduction in predicted throughput can be 
attributed to the decision tree model’s slight underestimation 
of gain, particularly in high-load scenarios. The difference 
between normal and predicted throughput widens as the 
number of users increases, reflecting the model's difficulty in 
maintaining accuracy as interference intensifies. However, 
despite this underestimation, the predicted throughput remains 
within a reasonable range of the actual throughput, suggesting 
that the model is still effective in estimating network capacity 
under varying load conditions. 

The delay results shown in Figure 4 indicate that delay 
increases as the number of users grows, consistent with the 
reduction in throughput. The delay for predicted gains is 
higher than for normal gains, particularly as the user count 
rises. This is expected, as lower predicted throughput leads to 
higher delay. 

Similar to the throughput analysis, the divergence between 
normal and predicted delay becomes more pronounced at 
higher user densities, reflecting the increasing gap between 
predicted and actual throughput. The predicted delay is 
consistently higher, indicating that the decision tree model 
may underestimate network performance under congested 
conditions. Nevertheless, the delay prediction is still accurate 
enough for most practical applications, especially in lower-
density environments where the decision tree model performs 
more precisely. 

Overall, the decision tree model demonstrates strong 
performance in predicting gain, throughput, and delay across 
a range of user densities. The slight underestimation of gain, 
particularly in low-gain or high-load scenarios, results in 
modest discrepancies in predicted throughput and delay. 
However, the model’s predictions remain within acceptable 
bounds for most applications, making it a viable tool for 
network performance optimization. 

The results indicate that decision tree models can 
effectively capture the relationship between user-specific 
parameters (such as distance, angle, and SINR) and network 
performance metrics. The model performs well in low- to 
medium-density environments but may require further 
refinement to handle high-interference scenarios more 
accurately. Future work could explore the use of more 
advanced machine learning models (such as ensemble 
methods or deep learning) to improve prediction accuracy in 
high-load networks. 

Future research could enhance network optimization by 
combining decision trees with other machine learning 
methods, such as neural networks, to handle complex 
scenarios with many parameters. A decision tree could make 
initial predictions, while a neural network refines them to 
achieve greater accuracy in dense, dynamic environments. 
Additionally, fine-tuning parameters like tree depth and split 
criteria through automated methods, such as grid search, can 
optimize performance across various network conditions. The 
integration of advanced models and targeted tuning would 

improve the adaptability and accuracy of gain predictions, 
leading to better overall network performance. 

VI. CONCLUSION 

This study has explored the application of decision tree-
based models for predicting gain in wireless networks and 
evaluating their impact on key performance metrics such as 
throughput and delay. Through simulations, we have 
demonstrated that decision tree models can effectively predict 
gain based on user-specific parameters, including distance, 
angle, and Signal-to-Interference-plus-Noise Ratio (SINR). 
These predictions enable the estimation of throughput and 
delay, facilitating a comprehensive analysis of network 
performance under varying user densities. 

The results reveal that while the decision tree model 
exhibits strong predictive accuracy in most cases, it tends to 
slightly underestimate gains in low-gain or high-interference 
scenarios. This underestimation results in modest 
discrepancies in throughput and delay, particularly as network 
congestion increases. Nevertheless, the predicted throughput 
and delay closely follow the trends observed with actual gains, 
indicating that the decision tree model captures the essential 
dynamics of the network with reasonable precision. 

Additionally, the gain classification results demonstrate 
the model’s ability to categorize users into distinct gain 
classes, achieving an overall accuracy of 80%. The classifier 
performs best in the Low and Medium gain classes, while 
slight misclassifications are observed between High and Very 
High gain users, suggesting a need for further refinement in 
high-gain scenarios. 

Overall, this study highlights the potential of decision tree 
models for optimizing network performance. By providing 
accurate predictions of gain, throughput, and delay, these 
models offer valuable insights into network configurations, 
enhancing adaptability and efficiency. The application of 
machine learning in this context presents a promising avenue 
for improving performance in dynamic wireless 
environments. 
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