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A B S T R A C T

Tuberculosis (TB), the second leading infectious killer globally, claimed the lives of 1.3 million individuals
in 2022, after COVID-19, surpassing the toll of HIV and AIDS. With an estimated 10.6 million new TB cases
worldwide in 2022, the gravity of the disease persists, necessitating urgent attention. Tuberculosis remains a
critical public health crisis, and efforts to combat this infectious disease demand intensified global commitment
and resources. This study utilizes predictive modeling techniques to forecast the incidence of Tuberculosis (TB),
employing a range of machine learning models. Additionally, the research incorporates impactful visualizations
for comprehensive data exploration, analysis and comparison. Various machine learning models are developed
to anticipate TB incidence, with the optimal performing model to customize a user-defined function. This
research provides valuable insights into the potential determinants influencing TB incidence, contributing to
the identification of strategies for preventing the spread of Tuberculosis.
1. Introduction

Mathematical modeling involves applying mathematical concepts to
address complex, real-world problems that lack clear structures (Peter
and Clatworthy, 1990). In these modeling processes, mathematical
methodologies are employed to derive solutions for practical issues.
Real-world problems are translated into mathematical formulations
and subsequently addressed through the application of mathematical
techniques (Ang, 2001). It incorporates the processes of revealing the
relationships, conducting mathematical analyses, obtaining results and
reinterpreting the model (Dndar et al., 2012). Mathematical models
play a crucial role across various domains, including epidemiological
research. Initially, they aid in refining study inquiries by visually rep-
resenting intricate systems, guiding literature searches, and pinpointing
crucial variables. During the study design phase, models assist in testing
sampling strategies, estimating sample size and power, and predicting
outcomes for studies that may be impractical due to time or ethical
constraints. Post data collection, models facilitate result interpretation,
exploration of causal pathways, and integrated analysis of data from
multiple sources. Furthermore, in applying research findings to pub-
lic health practice, models are instrumental in estimating population
risk, predicting intervention effects, and contributing to the ongoing
program evaluation. The potential of mathematical modeling to sig-
nificantly enhance epidemiology lies in its capacity to streamline the

∗ Corresponding author at: Department of Mathematics, Faculty of Education, Phuket Rajabhat University, Phuket, Thailand.
E-mail address: sayooaby999@gmail.com (S.A. Jose).

research process, serve as a communication tool for policymakers,
and foster interdisciplinary collaboration (Chubb and Jacobsen, 2010).
Numerous scholars employ mathematical modeling as a pivotal tool
to tackle practical challenges in their research endeavors (Jose et al.,
2023a, 2022, 2023b).

With the introduction of systems based on computers, the digital-
ization of all medical records and the evaluation of clinical data in
healthcare systems have become widespread routine practices. Daily,
healthcare services produce an enormous amount of data, making it
increasingly complicated to analyze and handle it in ‘‘conventional
ways’’. Using machine learning and deep learning, this data may be
properly analyzed to generate actionable insights (Badawy et al., 2023).
In the present investigation, machine learning models have been em-
ployed for analysis. Machine learning systems represent innovative
methodologies for mathematical modeling, grounded in the utilization
of differential equations. This approach possesses a distinct advantage
in enabling the development of applications capable of dynamically ad-
justing to evolving environments. Machine Learning (ML) is the fastest
rising arena in computer science, and health informatics is of extreme
challenge. The aim of Machine Learning is to develop algorithms which
can learn and progress over time and can be used for predictions.
Machine Learning practices are widely used in various fields and pri-
marily health care industry has been benefitted a lot through machine
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data mining, AI training, and similar technologies. 
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learning prediction techniques (Nithya and Ilango, 2017). Machine
Learning consists of training systems capable of understanding the data
entered in order to predict responses or extract useful information from
them. It is a subset of artificial intelligence and is closely related to
statistics (Bokonda et al., 2020).

Tuberculosis (TB) stands as one of humanity’s oldest diseases, with
olecular evidence tracing its existence back over 17,000 years. De-

pite the introduction of modern approaches to diagnose and treat TB,
regrettably, individuals continue to endure its impact, contributing to
ts status as one of the top 10 fatal infectious diseases globally (Sandhu,

2011). Tuberculosis (TB) is attributed to the bacterium Mycobacterium
uberculosis, and transmission occurs when individuals afflicted with TB
elease bacteria into the air, such as through coughing. Approximately
5% of the worldwide population is believed to have experienced TB
nfection (Nalunjogi et al., 2023; World Health Organization, 0000b).

Tuberculosis (TB) is a preventable and usually curable disease. Yet in
2022, TB was the world’s second leading cause of death from a single
infectious agent, after coronavirus disease (COVID-19), and caused
almost twice as many deaths as HIV/AIDS. More than 10 million people
continue to fall ill with TB every year (World Health Organization,
0000b). Although it can affect people of any age, individuals with

eakened immune systems, e.g., with HIV infection, are at increased
isk. Since the immune system in healthy people walls off the causative
acteria, TB infection in healthy people is often asymptomatic. This
acterium lives and multiplies in the macrophages, thus avoiding the
atural defense system in the patient’s serum. Infection with TB can
esult in two stages: asymptomatic latent tuberculosis infection (LTBI)
r tuberculosis disease. If left untreated, the mortality rate with this
isease is over 50% (Abdualgalil et al., 2022).

Several investigators utilized mathematical and machine learning
odels to evaluate the gravity of Tuberculosis, acknowledging its sub-

stantial implications for public health. A notable contribution to the
understanding of tuberculosis incidence is conducted in a comprehen-
sive study titled ‘Machine Learning Prediction Model of Tuberculosis
ncidence Based on Meteorological Factors and Air Pollutants’ (Tang

et al., 2023). Alvaro David Orjuela-Cañón implemented machine learn-
ng within the diagnostic support framework for tuberculosis, supple-
ented by data that can function as an alternative diagnostic tool

hrough data processing, particularly in regions with constrained health
nfrastructure (Orjuela-Canñón Alvaro et al., 2022). In Tiwari and Maji

(2019), the author has provided an extensive examination of the array
of machine learning techniques utilized by researchers in the study
of tuberculosis disease (Jose et al., 2024). The authors introduced
an optimized machine learning model, which extracts optimal texture
features from images related to tuberculosis, and they determined the
hyperparameters of the classifiers in Hrizi et al. (2022) for tubercu-
osis diagnosis. In Abdualgalil et al. (2022), a comparative study on
odeling and forecasting tuberculosis cases using machine learning

nd deep learning approaches was implemented. The study forecasted
ccurrences of pulmonary negative, positive, and overall TB incidence
ases spanning the years 2020 to 2029, while also offering insights into

the spread of Tuberculosis in Yemen. The rise of antibiotic-resistant
Mycobacterium tuberculosis strains poses a significant threat to global
tuberculosis control efforts, as it renders current treatments less effec-
tive. The increasing prevalence of drug-resistant TB has led to higher
mortality rates, longer treatment durations, and increased healthcare
costs, underscoring the urgent need of innovative solutions (Shamil
et al., 2014). Our research methodology involves a comparative study
tilizing diverse machine learning models to assess potential influential
actors and propose recommendations for mitigating tuberculosis inci-
ence, drawing on global data. The prediction models of TB incidence
an help mitigate the impact of antibiotic resistance by identifying
igh-risk populations and areas, enabling targeted interventions, and
ptimizing resource allocation for preventive measures and novel treat-
ent strategies (World Health Organization, 0000a; Anggriani et al.,

2023).
Main contributions of this paper as follows:
 m

2 
• This research is centered on the analysis of authentic non-
temporal data, with a primary emphasis on constructing diverse
models for predicting tuberculosis incidence.

• The paper introduces impactful visualizations aimed at facilitat-
ing exploration, analysis, and comparison of results derived from
predictive modeling of tuberculosis incidence.

• Various machine learning techniques were explored in depth
for the purpose of predictive modeling within the context of
tuberculosis incidence.

• A comprehensive comparative study was conducted to identify
and highlight the best-performing model in this research, accom-
panied by the presentation of its predicted values.

• The paper proposes a user-defined function designed to offer
practical suggestions for reducing the incidence of tuberculosis,
based on insights derived from the selected machine learning
model.

2. Methods

2.1. Data collection

In this investigation, data were obtained from the World Health
Organization (WHO) official website, specifically from the World Tu-
berculosis Programme (World Health Organization, 0000). The dataset
ncompasses 18 CSV files, consisting of four files containing WHO TB

burden estimates and the remaining files containing data submitted
by various countries and territories to WHO. The dataset comprises a
total of 637 variables. To identify suitable independent variables and
the specific dependent variable, a comprehensive exploration of these
variables was conducted using Microsoft Excel.

2.2. Data preprocessing

A new dataset, denoted as the ‘‘Input Dataset’’, was constructed in
Excel, consolidating relevant columns such as Country, Year, and the
alues of both independent and dependent variables. Given the pres-

ence of numerous missing values in the dataset, a pragmatic decision
as made to focus on the year 2022, as it exhibited a comparatively
igher number of data entries than other years. The Input Dataset,
hus derived, served as the foundation for subsequent machine learning
nalyses, enabling the impact of independent variables on the targeted
utcome.

In the ‘Input Dataset’, certain countries exhibit missing values. To
address this, mean imputation was employed to estimate the missing
values of the respective variables. This imputation method involved uti-
izing the mean values of the variables from preceding years for the cor-

responding countries. After importing the ‘Input Dataset’ into Python, a
thorough examination was conducted to identify and address potential
ssues, including missing values and duplicate entries. Appropriate
easures were taken to resolve these data quality concerns.

2.3. Exploratory data analysis

The chosen dependent variable for prediction is ‘New_Cases’, repre-
enting the count of newly diagnosed cases of bacteriologically con-

firmed pulmonary tuberculosis. Bacteriologically confirmed cases in-
olve laboratory tests that confirm the presence of Mycobacterium tu-
erculosis in clinical samples obtained from patients. This choice of the
ependent variable stems from its recognized specificity and reliability
ompared to diagnoses solely based on clinical or radiological assess-
ents. The independent variables considered in the analysis include

hh_Contacts’, representing the estimated number of household contacts
f individuals newly diagnosed with bacteriologically confirmed pul-
onary TB; ‘Prev_Cases’, representing the count of previously treated
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Fig. 1. Impact of independent variables.
Fig. 2. Boxplot for detecting outliers.

bacteriologically confirmed pulmonary TB cases; and ‘No_Labs’, repre-
senting the total number of sites providing laboratory diagnostic testing
for TB at the end of the reporting year 2022.

The rationale behind choosing these independent variables is based
on their direct impact on the transmission dynamics and detection
capacity of TB. ‘hh_Contacts’ is crucial because household contacts are
at a higher risk of contracting TB from infected individuals, making
it a significant predictor of new cases. ‘Prev_Cases’ provides insight
into the recurrence and ongoing transmission within the population, as
previously treated cases can contribute to the spread of the disease if
not adequately managed. ‘No_Labs’ reflects the diagnostic capacity and
accessibility of TB testing, which directly influences the detection rates
of new cases. These variables collectively capture important aspects
of TB transmission, recurrence, and detection, making them essential
for accurately predicting new TB cases. Fig. 1 illustrates the impact
of individual independent variables on the dependent variable using
a scatter plot.

The analysis of Fig. 1 reveals a robust positive correlation between
‘hh_Contacts’ and ‘New_Cases’, surpassing the correlation observed with
other independent variables such as ‘Prev_Cases’ and ‘No_Labs’. Specif-
ically, as the magnitude of the independent variables increases, there
is a corresponding tendency for the dependent variable to exhibit an
increase as well. Fig. 2 illustrates the identification of outliers through
the visualization of a boxplot.

Upon scrutinizing the findings depicted in Fig. 2, it becomes ap-
parent that the majority of predicted values closely align with the
actual values, with the exception of some data points, which can be
identified as outliers. The presence of these outliers has the potential to
3 
Fig. 3. Correlation matrix for detecting multicollinearity.

exert an influence on the accuracy of predictions. To address this issue,
outliers were eliminated from the dataset through the application of the
Interquartile Range (IQR) Method. The IQR method is renowned for its
robust statistical approach and is employed to detect and exclude out-
liers in the dataset. This method is particularly effective in identifying
extreme values that deviate significantly from the central tendency of
the data, which can otherwise skew the results and reduce the accuracy
of predictive models. By removing these outliers, the IQR method
enhances the reliability of the data analysis process by mitigating
the influence of extreme values on statistical measures. The rationale
behind using the IQR method lies in its ability to improve model perfor-
mance. Outliers can distort parameter estimates and lead to overfitting,
where the model learns noise instead of the underlying pattern. By
excluding outliers, we aim to achieve a more generalized model that
better captures the true relationship between the variables, thereby
improving prediction accuracy. This process involves calculating the
IQR (the range between the first and third quartiles) and removing
data points that fall below the first quartile minus 1.5 times the IQR or
above the third quartile plus 1.5 times the IQR. This criterion is widely
accepted in statistical analysis for its balance between sensitivity and
specificity in outlier detection. Thus, the application of the IQR method
not only helps in refining the dataset but also plays a crucial role in
enhancing the overall accuracy and robustness of the predictive models
used in our study. Fig. 3 displays a correlation matrix, employed for the
assessment of multicollinearity within the dataset.

The examination of Fig. 3 suggests the existence of moderate multi-
collinearity; however, caution should be exercised in drawing definitive
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Table 1
VIF results.

Variable VIF

hh_Contacts 2.685449
Prev_Cases 2.655770
No_Labs 2.281032

conclusions based solely on this correlation assessment. To provide
a conclusive evaluation of multicollinearity, the Variance Inflation
Factor (VIF) for the independent variables was computed, and the
corresponding values are presented in Table 1.

All independent variables exhibit VIF values below 10, indicat-
ng the absence of substantial multicollinearity concerns within this
ontext. Therefore, it can be concluded that multicollinearity is not
revalent in the dataset under examination.

3. Performing model selection: Application of six machine learn-
ng techniques

In this section, we developed multiple machine learning models
using a dataset comprising 152 instances. The dataset was divided into
0% for training purposes and 30% for testing. This investigation uti-
ized a diverse set of machine learning techniques, including K-Nearest
eighbors, Quantile Regression, Random Forest, XGBoost, LightGBM,
nd CatBoost. Various libraries such as numpy, pandas, matplotlib,
cikit-learn, and seaborn in Python were employed for the analysis. To
nsure that the features contribute equally to the model’s performance,
he variables in both the training and test sets were standardized using

the StandardScaler. This process involved calculating the mean and
tandard deviation for each feature from the training set and then
pplying this scaling to both the training and test sets to ensure they
ave a mean of 0 and a standard deviation of 1. Prior to model training,
n exploratory data analysis (EDA) was conducted to understand the

underlying properties of the data, including checking for homoskedas-
ticity versus heteroskedasticity, which are fundamental assumptions in
regression modeling. Homoskedasticity implies constant variance of the
residuals, a key assumption for linear models, while heteroskedasticity
indicates varying variance, which can affect model performance and
inference. In the context of Quantile Regression, this study investigated
the presence of heteroskedasticity using the Breusch–Pagan test. The
results indicated the presence of heteroskedasticity, which quantile
regression can handle effectively as it does not rely on the homoskedas-
ticity assumption. For ensemble methods like Random Forest, XGBoost,
LightGBM, and CatBoost, the assumption of homoskedasticity is not a
strict requirement. These models are robust to heteroskedasticity and
can handle complex, non-linear relationships in the data. During the
training stage, the model learns the relationships between the input
features and the target variable by adjusting its parameters to minimize
the difference between its predictions and the actual target values. Once
the model is trained, we use the test set to evaluate its performance. The
model’s predictions on the test set are compared to the actual values,
and various metrics (such as Mean Squared Error or R-squared) are used
to assess how well the model generalizes to new, unseen data.

3.1. K-nearest neighbors model

K-nearest neighbors (KNN) is a supervised machine learning method
that can be utilized for both classification and regression tasks
(Ozturk Kiyak et al., 2023). Fig. 4 illustrates the cross-validation
echnique employed to determine the optimal value of 𝑘. The analysis

of Fig. 4 indicates that the optimal value of 𝑘 is 1.
Fig. 5 presents a multiline chart depicting the fluctuations in ob-

served and predicted values of TB incidence using the K-Nearest Neigh-
ors model on the test data. The visual representation in Fig. 5 indicates
4 
Fig. 4. Cross-validation mean squared error for different 𝑘 values.

Fig. 5. Actual vs. Predicted values.

Table 2
Evaluation metrics.

Metric Value

Mean squared error 1 825 604.5135135136
R-squared 0.8290852427928085

that, at certain instances, the predicted values closely correspond to the
actual values.

Fig. 6 exhibits the residual values derived from the K-Nearest Neigh-
bors model on the test data. The examination of Fig. 6 indicates a
notable prevalence of high residual values for the majority of pre-
dictions made by this model during the evaluation on the test data.
Consequently, this analysis suggests the consideration of employing an
alternative machine learning technique.

Table 2 displays the values of evaluation metrics for the perfor-
ance of K-Nearest Neighbors Model on test data. Even though R-

quared value is high, the larger Mean Squared Error (MSE) suggests
hat the K-Nearest Neighbor technique does not generalize well to new
nd unseen data.

3.2. Quantile regression

Quantile Regression is a Machine Learning Model that is more resis-
ant to outliers and can handle data with a wide range of distributions.

It has emerged as a promising approach for practical applications,
offering a more comprehensive view than mean regression (Kumar
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Fig. 6. Residual analysis.

Fig. 7. Actual vs. Predicted values.

Fig. 8. Residual analysis.

et al., 2023). The Fig. 7 displays the trajectory of Actual and Predicted
alues across the observations of test data.

The Fig. 8 portrays the Residual Analysis of the Quantile Regression
odel on test data. In Fig. 8, Most of the predicted values have low

alue of residuals except five.
Table 3 presents the evaluation metrics values illustrating the per-

formance of the Quantile Regression (QR) Model on the test data.
 X

5 
Table 3
Evaluation metrics.

Metric Value

Mean squared error 2 225 342.1865850654
R-squared 0.791661437782542

Table 4
Evaluation metrics.

Metric Value

Mean squared error 1 547 136.267245946
R-squared 0.8551556936207015

To assess the assumptions of the Quantile Regression model, we
erformed the Breusch–Pagan test to evaluate the presence of het-
roskedasticity. The Breusch–Pagan test yielded a 𝑝-value of 0.02963
nd an f_p-value of 0.02808. These results indicate that the null hy-
othesis of homoskedasticity is rejected, suggesting that the model
xhibits heteroskedasticity. Heteroskedasticity implies that the variance
f the residuals is not constant across all levels of the independent
ariables, which can affect the efficiency of the estimates and the
alidity of statistical tests. Despite this, Quantile Regression remains
 robust technique for modeling data with non-constant variance, as
t does not assume homoskedasticity and can provide valuable insights
cross different quantiles of the dependent variable.

3.3. Random forest

In Machine Learning, Random forests are a combination of tree
redictors in which each tree depends on the values of a random vector
ampled independently and with the same distribution for all trees in
he forest. This machine learning model mitigates overfitting (Breiman,

2001). As Random forests is an ensemble of decision trees, it is chal-
enging to visualize the entire Random forest model. Fig. 9 depicts a

visual representation of a single decision tree from the Random Forest
model.

Fig. 10 presents a multiline chart depicting the variations in both
observed and predicted values of the dependent variable using the
Random Forest model on the test data. A visual examination of Fig. 10
reveals that, for the most part, the predicted values align well with the
corresponding actual values, with only a few exceptions.

Fig. 11 illustrates the residual plot reflecting the performance of
the Random Forest machine learning model on the test data. Analysis
of Fig. 11 reveals that while there is a notable difference between
predictions and actual values for a few data points, overall, the model
demonstrates relatively accurate predictions.

Table 4 presents the evaluation metric values for the Random Forest
model, illustrating the model’s performance on the test data. Analysis
of Table 4 highlights the relatively low Mean Squared Error (MSE),
indicating favorable performance in the context of this study. Addition-
ally, the coefficient of determination value in Table 4 is notably high,
ndicating a well-fitted model.

3.4. XGBoost model

Extreme Gradient Boosting (XGBoost) is a scalable end-to-end tree
boosting system which is used widely by data scientists to achieve
state-of-the-art results on many machine learning challenges (Chen
and Guestrin, 2016). It is a type of gradient boosting with additional
eatures and optimizations such as regularization, parallel processing,
nd tree-pruning techniques. Fig. 12 provides a visual depiction of a

tree of the XGBoost model.
Fig. 13 displays a multiline chart illustrating the fluctuations in

oth observed and predicted values of the dependent variable using the
GBoost model on the test data. A detailed analysis of Fig. 13 reveals
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Fig. 9. A single decision tree from random forest model.
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v
T

o

a

Fig. 10. Actual vs. Predicted values.

Fig. 11. Residual analysis.

that, for the most part, the predictions of the dependent variable closely
lign with the corresponding actual values, with a few exceptions.
his observation suggests a well-fitted model. To further validate this

insight, a residual analysis is conducted, and evaluation metrics are
employed.

The visualization of residual analysis for the XGBoost model on test
ata is displayed in Fig. 14. A thorough examination of Fig. 14 makes

sense that the occurrence of large residuals is rare, indicating a well
itted model.
6 
Table 5
Evaluation metrics.

Metric Value

Mean squared error 1 477 982.538665361
R-squared 0.8616299286715207

Table 6
Evaluation metrics.

Metric Value

Mean squared error 2 771 451.6797361965
R-squared 0.7405341696696737

The Table 5 provides values of evaluation metrics to assess the
performance of the model to generalize well to new and unseen data.
The analysis of Table 5 suggests that XGBoost Model performs well
on test data with low Mean Squared Error (MSE) and high R-squared
(Coefficient of Determination) value.

3.5. LightGBM Model

LightGBM is a fast, distributed, high-performance gradient boosting
method based on decision tree algorithms, used for machine learning
tasks (Machado et al., 2019; Ke et al., 2017). The following Fig. 15
displays the variation of predicted values of dependent variables across
the observations of test data along with the variation of corresponding
actual values. The visual perception of Fig. 15 provides an intuitive in-
ormation that some observations have a noticeable difference between
ctual and predicted values of dependent variable.

In Fig. 16, a graphical representation of residual analysis of Light-
GBM model on test data is plotted. Fig. 16 highlights that, upon
isual inspection, certain predicted values exhibit higher residuals.
his indicates comparatively moderate variation of predicted values of

dependent variable from corresponding actual values.
Table 6 provides values of evaluation metrics of the LightGBM

model depicting the performance of the model on test data. The analysis
f Table 6 confirms that this model is comparable with previously con-

structed models with a reasonable value of coefficient of determination
nd Mean Squared Error (MSE).

3.6. CatBoost model

CatBoost is an open-source Gradient Boosted Decision Tree (GBDT)
implementation for supervised machine learning (Hancock and Khosh-
goftaar, 2020). It is an ensemble of decision trees to deal with large
amounts of data effectively. The Fig. 17 provides intuitive information
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Fig. 12. Visualization of one of the trees in XGBoost model.
Fig. 13. Actual vs. Predicted values.

Fig. 14. Residual analysis.

about the fluctuations of predicted values of dependent variable with
corresponding actual values in the test data.

Fig. 18 portrays the Residual Analysis of the CatBoost model on the
test data. The occurrence of high-valued residuals is relatively small in
this case, providing a comparable model. The detailed comparison of
7 
Fig. 15. Actual vs. Predicted values.

Fig. 16. Residual analysis.

models is provided in the section ‘Model Comparison and Selection of
Optimal Model’.

The accuracy of the performance of the CatBoost model on test data
is measured using Mean Squared Error (MSE) and R-squared value.
The resultant values are displayed in the Table 7. The metric values
in Table 7 indicates the presence of a well-fitted model.
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Fig. 17. Actual vs. Predicted values.

Fig. 18. Residual analysis.

Table 7
Evaluation metrics.

Metric Value

Mean squared error 1 690 019.4090710224
R-squared 0.8417788437535669

4. Model comparison, selection of optimal model and tailoring a
ser-defined function

Various machine learning models were constructed to evaluate
the performance of model on test data. We forecast the incidence of
tuberculosis (New_Cases) based on parameters such as hh_Contacts,
Prev_Cases, and No_Labs on test data to generalize how well the model
fits to new and unseen data. The performance of these models on
test data was assessed using standard evaluation metrics like Mean
Squared Error (MSE) and R-squared value (Coefficient of Determina-
tion). Visual representation plays a crucial role in comparative analyses,
enhancing the interpretability of findings. In this study, the Matplotlib
package was employed to create bar charts that illustrate a comparative
assessment of the evaluation metrics for the implemented machine
learning models. Figs. 19 and 20 provides comparison of machine
earning models for their predictive performance on test data based on
alues of Coefficient of determination and Mean Squared Error (MSE)
espectively.

The optimal model is characterized by a high R-squared value and
a low Mean Squared Error. After thorough examination of Figs. 19 and
 p

8 
Fig. 19. Comparison based on R-squared.

Fig. 20. Comparison based on MSE.

20, our selection for the most effective machine learning model in this
study is Extreme Gradient Boosting (XGBoost) model.

I employed the selected XGBoost model to forecast New_Cases val-
ues by inputting various Independent variable values. Table 8 presents
he resultant predictions alongside the Independent variable values
hh_Contacts, Prev_Cases, No_Labs) and the actual values of the de-
endent variable (New_Cases). Additionally, within this manuscript, a
ustom function named ‘suggestion’ is formulated to offer recommen-
ations for mitigating Tuberculosis incidence by addressing pertinent
actors. In this context, we focus on the parameters of the XGBoost
odel, specifically the Independent variables utilized in constructing

he model.
The purpose of constructing the user-defined function ‘suggestion’ is

o offer recommendations for mitigating the occurrence of tuberculosis
y considering the identified features (independent variables) that
nfluence it. The function outputs are presented below.

Suggestions for reducing New_Cases:
Adjust hh_Contacts to reduce New_Cases (Importance: 0.9330)
Adjust Prev_Cases to reduce New_Cases (Importance: 0.0478)
Adjust No_Labs to reduce New_Cases (Importance: 0.0192)

The visualization of the feature importance is provided in Fig. 21.
The user-defined ‘suggestion’ function provides a general recommen-
dation to modify the values of independent variables based on their
espective feature importance, aiming to decrease the occurrence of tu-
erculosis. In the analysis of Fig. 21, notably, the feature ‘hh_Contacts’

demonstrates substantial importance, while ‘Prev_Cases’ and ‘No_Labs’
exhibit relatively lower feature importance. Consequently, to effec-
ively reduce tuberculosis incidence, we recommend focusing on ad-
usting ‘hh_Contacts’ exclusively. For more precise details regarding the
uggested adjustments, an analysis of Fig. 1 was conducted. Given the
ositive correlation observed between the feature ‘hh_Contacts’ and the
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Table 8
Predictions of XGBoost model.

hh_Contacts Prev_Cases No_Labs New_Cases Predicted

18 000.0 843 593 6676 6112.723145
590.0 46 16 233 188.471542
1900.0 520 84 1203 557.502686
180.0 6 7 57 84.627579
1500.0 45 46 405 830.118652
720.0 7 1 155 129.411469
17 000.0 242 220 4462 3486.389648
5200.0 307 143 2018 1474.339478
730.0 25 114 305 342.530182
270.0 7 13 126 101.647568
6300.0 422 188 2515 2455.607910
5300.0 301 219 1589 1530.781982
2500.0 281 28 993 1077.725586
11 000.0 258 310 2920 3463.915527
310.0 16 11 237 104.209106
150.0 15 10 68 118.916321
140.0 18 7 68 118.916321
1800.0 105 38 1081 729.664307
19 000.0 2527 249 5874 5098.303223
7400.0 701 89 2173 2961.008301
24 000.0 300 164 5061 5137.084473
330.0 20 15 248 134.795303
4400.0 53 27 1084 1069.607422
24 000.0 382 87 5082 5059.948730
6000.0 37 44 1209 1803.658936
120.0 8 1 51 87.545189
360.0 19 30 316 300.128662
2500.0 120 60 955 1170.333984
31 000.0 672 105 7025 8419.661133
7900.0 528 90 2051 2948.931885
17 000.0 2182 460 10 407 4861.993164
84 000.0 1311 147 10 871 14 654.570312
1000.0 31 30 366 633.293152
59 000.0 309 187 10 131 10 918.321289
750.0 7 9 173 141.998291
9400.0 329 84 1777 2351.060791
280.0 0 5 128 71.079674
29 000.0 419 250 9669 10 926.706055

Fig. 21. Feature importance.

target variable ‘New_Cases’, we advocate for decreasing ‘hh_Contacts’ to
diminish the incidence of tuberculosis.

5. Conclusions and future work

In this investigation, an extensive examination of predictive ma-
chine learning models was undertaken to conduct a comparative anal-
ysis aimed at identifying the most effective model for forecasting
Tuberculosis incidence. Assessment metrics such as Mean Squared Er-
ror (MSE) and R-squared value (Coefficient of Determination) were
consistently applied across all implemented machine learning models
to evaluate their predictive capabilities. The selected model, XGBoost,
9 
demonstrated superior predictive accuracy and offered recommenda-
tions to mitigate Tuberculosis incidence based on data-derived insights
and patterns. This prediction model helps identify high-risk areas,
enabling targeted interventions and effective prevention strategies in
the context of antibiotic-resistant TB. This data-driven approach has
facilitated the development of a user-defined function that provides
actionable suggestions for reducing Tuberculosis incidence. One key
recommendation is to reduce household contacts to decrease new TB
cases, which can be effectively achieved through quarantine measures.
In the context of the ‘WHO Global Tuberculosis Programme’ led by
the World Health Organization (WHO), this study proves valuable and
informative. It contributes towards the overarching goal of achieving a
world free of TB, with zero fatalities, disease prevalence, and suffering
attributable to Tuberculosis.

In our prospective endeavors, we anticipate advancing the compre-
hensiveness and intricacy of predictive machine learning by integrating
additional pertinent parameters. The augmentation is designed to facil-
itate an in-depth examination of Tuberculosis (TB) incidence through
the application of time series analysis in conjunction with other re-
gional and socio-economic factors. This refined methodology is poised
to contribute to the development of more sophisticated models, thereby
enhancing the efficacy of preventive measures aimed at mitigating
the transmission of TB. Furthermore, future research initiatives could
explore the integration of advanced data sources, such as genomics
and environmental factors, to further refine predictive models and
strengthen our understanding of the complex dynamics underlying TB
transmission. Additionally, the incorporation of innovative technolo-
gies, such as real-time monitoring systems and artificial intelligence
algorithms, could offer new avenues for the timely identification and
containment of TB outbreaks, thereby bolstering public health efforts.
Despite these advancements, our study has certain limitations. One
key limitation is the relatively small number of significant predictors
currently available for the predictive model. This constraint limits the
model’s ability to capture the full range of factors influencing TB
incidence. Moreover, there are fewer practical applications in real life
due to the limited scope of available data. To address these limitations,
future research should focus on identifying and incorporating more
variables that are strongly connected to the spread of TB cases. With
a richer dataset, we can develop more accurate predictive models,
leading to more informed and effective decisions for reducing the
occurrence of new TB cases. By acknowledging these limitations, we
highlight the importance of continuous data enhancement and method-
ological improvements to better support TB prevention and control
efforts.
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