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Sensitivity analysis and global 
stability of epidemic between Thais 
and tourists for Covid ‑19
Rattiya Sungchasit 1, I.‑Ming Tang 2 & Puntani Pongsumpun 3*

This study employs a mathematical model to analyze and forecast the severe outbreak of SARS-CoV-2 
(Severe Acute Respiratory Syndrome Coronavirus 2), focusing on the socio-economic ramifications 
within the Thai population and among foreign tourists. Specifically, the model examines the impact 
of the disease on various population groups, including susceptible (S), exposed (E), infected (I), 
quarantined (Q), and recovered (R) individuals among tourists visiting the country. The stability theory 
of differential equations is utilized to validate the mathematical model. This involves assessing the 
stability of both the disease-free equilibrium and the endemic equilibrium using the basic reproduction 
number. Emphasis is placed on local stability, the positivity of solutions, and the invariant regions of 
solutions. Additionally, a sensitivity analysis of the model is conducted. The computation of the basic 
reproduction number (R0) reveals that the disease-free equilibrium is locally asymptotically stable 
when R0 is less than 1, whereas the endemic equilibrium is locally asymptotically stable when R0 
exceeds 1. Notably, both equilibriums are globally asymptotically stable under the same conditions. 
Through numerical simulations, the study concludes that the outcome of COVID-19 is most sensitive 
to reductions in transmission rates. Furthermore, the sensitivity of the model to all parameters 
is thoroughly considered, informing strategies for disease control through various intervention 
measures.

Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-COV-2 virus which has spread 
throughout the world. The World Health Organization (WHO) has declared it a serious epidemic1–5. The World 
Health Organization (WHO) has coordinated and asked for international cooperation to stop the spread of the 
coronavirus -19, which the epidemic is continuously spreading. From reports around the world starting with 
H1N1 influenza infection, there was a clear outbreak in 2009, with a new outbreak starting on December 31, 
2019. A group of cases of pneumonia of unknown ethology in Wuhan, Hubei Province in China. The outbreak 
was later reported to WHO in January 2022. An outbreak of a new virus1–4 and6–9 was identified, and the new 
virus was later named the 2019 novel coronavirus. By analyzing the genetics of viruses from personal illnesses, 
including Coronavirus Disease 2019 by WHO in February 2020 on behalf of the virus. This virus is called SARS-
CoV-2 and a disease in the same family is COVID-193–11.

Coronaviruses are a set of viruses that cause sicknesses such as respiratory diseases or gastrointestinal diseases. 
Respiratory diseases can extend from the common cold to the more serious diseases e.g. Middle East Respiratory 
Syndrome (MERS-COV), Severe Acute Respiratory Syndrome (SARS-COV). The novel coronavirus (nCOV) is a 
new strain that has not been identified in humans. New diseases caused by viruses are named according to where 
they were first discovered, such as the Spanish flu and the Hong Kong flu. West Nile Flu, etc. The official name 
of the disease in this article is COVID-19, not Wuhan Flu (or Chinese flu) Coronaviruses are zoonotic1–3 and6–9 
and14–18, which means they are transmitted between animals and humans meaning that they are transmitted 
between animals and humans. It has been definite that MERS-COV was transmitted from dromedary camels to 
humans and SARS-COV from civet cats to humans5–8. While the original source of the COVID-19 virus has not 
been precisely determined, ongoing investigations point it to be zoonotic15,16.

In a person infected with the COVID-19 virus, respiratory symptoms can appear almost immediately. In most 
cases, the person can exhibit no symptoms or mild symptoms. The symptoms of this disease are very similar to 
those of seasonal flu17 and20–23. Laboratory and clinical signs of the COVID-19 infection can appear 2–14 days 
after exposure. The period between the initial exposure to the disease and the time when the symptoms first 
appear is called the incubation period. During the incubation of the disease, there is a probability of transmitting 
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or spreading the COVID-19 virus. The clinical signs of COVID-19 infections are a fever, a cough, and a general 
tiredness. Other early symptoms of COVID-19 of the slight loss of taste or smell, shortness of breath or difficult 
breathing, muscle aches, chills, sore throat, runny nose, headache, chest pain, pink eye (conjunctivitis), nausea. 
While many of the other illnesses are caused by other viruses, the main cause at the early stages of the current 
pandemic was the COVID-19 and it seems to have targeted older people21–25. Older people (people over 70 years 
of age) often suffer from other serious chronic illnesses, such as diabetes, cardiovascular disease, chronic respira-
tory disease, cancer, hypertension, chronic liver disease and people who are physically inactive1–4 and13–16 have 
weaker immune symptoms and may succumb to the disease (COVID-19). The WHO reported cases of COVID-
19 from January 2020 to the present. The number of cases and the number of deaths in Thailand are shown in 
the following in Fig. 1. The reasons for separating the populations into Thais and foreigners are that there is 
shortage of season labor (needed for the farming industry) and tourism is one of the top industries in Thailand. 
The spread of this disease to become a pandemic is due to the ease of moving from one country to another. The 
slowness of the great Spanish Flu was the difficulty of traveling from country to country or continent to continent.

WHO has issued guidelines for the treatment of COVID-19 in the high-risk groups (older people and people 
with serious chronic illness). These are the people who are the most susceptible to infection by the virus and who 
are in most danger of dying. The World Health Organization has issued guidelines for preventing COVID-19 
infection. Not separated from each other, but able to live together with groups of people at risk. They will take 
care of their treatment and social care. In Thailand from January 2020 to October 2022, there were 4,689,897 
confirmed cases of COVID-19 and 32,922 deaths, according to the WHO 2022 September report. A total of 
142,635,014 vaccine doses have been administered.

To understand the nature and dynamics of the COVID-19 of epidemic (a pandemic in the larger scheme), 
mathematical modeling is used to forecast the transmission dynamics needed for controlling and planning strate-
gies. Most epidemiological modelling studies of COVID-19 are based on WHO data. The studies on COVID-19 
modelling done in Thailand16 and26. The authors considered a mathematical model for the transmission dynamics 
of COVID-19. The data from Thailand, which considers the special features pertaining to Thailand and other 
neighboring countries4–6 and16–18, and24. From the information obtained, we estimate the values of unknown 
parameters by statistical and mathematical methods. It should be noted that the effective parameters for the 
spread of the virus differ from country to country and that the effective control over the rate of virus transmis-
sion from country to country will be different. In necessary to stop the spread of the virus. It was found in other 
studies, that the spread of COVID-19 be managed by minimizing the contact rate of infected and increasing the 

Fig. 1.   Number of patients and deaths of COVID-19 cases per month around the world and in Thailand1–4.
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quarantine of exposed individuals17–25. This study examined a mathematical model of the COVID-19 transmis-
sion dynamics by dividing it into two groups of coronavirus transmission. The research was organized as follows: 
explanation of the mathematical models, formulation of the differential equations, mathematical analysis of 
models, followed by numerical solutions of the differential equations, summarization and discussion.

Materials and methods
In this study, a deterministic mathematical model was created. It covers the well-known SEIR epidemic 
model20–26. By adding people who are in quarantine and do not have symptoms of the disease. Symptomatic 
and asymptomatic infected people will be collected. The SEIQR epidemic model was thus obtained, which 
evolved with the following subpopulations: Susceptible (S), Exposed (E- (people not yet infectious)), Infectious 
(I), Quarantined (Q- (setting aside individuals who are exposed), and Recovered (R). This is because people in 
the Q (Quarantined) group, which represents people who are required to stay in the hospital and at home for a 
period of time due to the disease, are concerned about their illness. The COVID-19 pandemic in Thailand, we 
used a ten-dimensional SEIQR (Susceptible, Exposed, Infected, Quarantined and Recovered) containing two 
populations S1,E1,I1,Q1,R1 are Thais population respectively and S2,E2,I2,Q2,R2 are Foreign (tourist) or migrant 
workers) population respectively of COVID-19 transmission model21–26.

The Recruitment term of the susceptible population in Thais and the rest if the Foreign (tourist) are given as µ 
and C  respectively. Only exposed and infectious are considered, it is assumed that those infected show symptoms 
of Thais and Foreign (tourist). The natural death rate of Thais population and the natural death rate of Foreign 
(tourist) population is assumed to be the same across the world are given as  δ1 and δ2 . The force of infections 
in Thais population ϕ1S1(E1 + I1) (Transmission rate of virus between population from Thais population to 
Foreign (tourist) population (in Thais) and ϕ12S1(E2 + I2) (When Foreign (tourist) are present, a susceptible 
Thais can also be infected by an infected or exposed Foreign (tourist) (in Thais)) are the new infections caused 
by other infected individuals in Thais. The force of infection in rest of Foreign (tourist) population ϕ2S2(E2 + I2)
(Transmission rate of virus between population from Foreign (tourist) population to Thais population (in For-
eign (tourist)) and ϕ21S2(E1 + I1) (When Thais are present, the susceptible Thais can also be infected by an 
infected or exposed Thais (in Foreign (tourist)) are the new infections caused by other infected individuals in 
Foreign (tourist). Taking into consider the above discretion, the schematic flow diagram for COVID-19 model 
is appeared in Fig. 2.

The host population was divided into five compartments: S1 number of Thais susceptible to COVID-19 
infection at time t  , E1 number of Thais exposed to COVID-19 infection at time t  , I1 number of infectious Thais 
at time t  , Q1 number of Thais quarantined for COVID-19 at time t  , R1 number of recovered Thais at time t  , S2 
number of Foreign (tourist) susceptible at time t  , E2 number of Foreign (tourist) exposed at time t  , I2 number of 
Foreign (tourist) infected at time t  , Q2 number of Foreign (tourist) quarantined at time t  , R2 number of Foreign 
(tourist) recovered at time t .

A system of ordinary differential equations can be used to model the influence of two populations on each 
other as a set nonlinear differential equation20 and24,25 as follows:

Fig. 2.   The flowchart illustration the dynamics of the model.
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w i t h  i n i t i a l  d e n s i t i e s :  S1 ≥ 0,E1 ≥ 0, I1 ≥ 0,Q1 ≥ 0,R1 ≥ 0  i n  T h a i s  p o p u l a t i o n  a n d 
S2 ≥ 0,E2 ≥ 0, I2 ≥ 0,Q2 ≥ 0,R2 ≥ 0 in the Foreign (tourist) population.

All the parameters and corresponding biological meaning are defined in Table 1.
The total Thais population Nh is S1 + E1 + I1 + Q1 + R1 . The equations for the human compartment are the 

following Eq. (1) and the total Foreign (tourist) population is NT = S2 + E2 + I2 + Q2 + R2 . We assume that 
there are constant total number of human Thais population and of Foreign (tourist) population. Therefore the 
rate of change for total number of human Thais population and of Foreign (tourist) population are equivalent 
to zero. Thus, the Recruitment term of human and death rate are equivalent. We defined the new state vari-

ables as follows: S1Nh
=

′
S1,

E1
Nh

=
′
E1,

I1
Nh

=
′
I1,

Q1
Nh

=
′
Q1,

R1
Nh

= R′
1, 

S2
NT

= S′2,
E2
NT

= E′2,
I2
NT

= I ′2,
Q2
NT

= Q′
2,

R2
NT

= R′
2   

Renormalizing model (1) we obtain the following:

(1)

dS1

dt
= µNh − ϕ1S1(E1 + I1)− δ1S1 + α1R1 − ϕ12S1(E2 + I2),

dE1

dt
= ϕ1S1(E1 + I1)+ ϕ12S1(E2 + I2)− δ1E1 −

1

IIP1
E1,

dI1

dt
=

1

IIP1
E1 − q2T I1 − (δ1I1 + ρ1I1),

dQ1

dt
= q2T I1 − γ1Q1 − δ1Q1 + g1(E1 + I1),

dR1

dt
= γ1Q1 − (δ1 + α1)R1,

dS2

dt
= CNT − ϕ2S2(E2 + I2)− ϕ21S2(E1 + I1)− δ2S2 − ϑS2 + α2R2,

dE2

dt
= ϕ2S2(E2 + I2)+ ϕ21S2(E1 + I1)− δ2E2 − ϑE2 −

1

IIP2
E2,

dI2

dt
=

1

IIP2
E2 − q3T I2 − (δ2 + ρ2 + ϑ)I2,

dQ2

dt
= q3T I2 − γ2Q2 − (δ2 + ρ2 + ϑ)Q2 + g2(E2 + I2),

dR2

dt
= γ2Q2 − (δ2 + ϑ + α2)R2.

Table 1.   The description of the state variables and parameters of the model.

Description Symbol

Recruitment term of the susceptible population in Thais µ

Total Thais population Nh

Recruitment term of the susceptible population in Foreign (tourist) C

Total Foreign (tourist) population NT

Transmission rate of virus between population from Thais population to Foreign (tourist) population (in Thai) ϕ1S1(E1 + I1) ϕ1

When Foreign (tourist) are present, a susceptible Thais can also be infected by an infected or exposed Foreign (tourist)(in Thais) ϕ12S1(E2 + I2) ϕ12

Transmission rate of virus between population from Foreign (tourist) population to Thais population (in Foreign (tourist)) ϕ2S2(E2 + I2) ϕ2

When Thais are present, a susceptible Thais can also be infected by an infected or exposed Thais (in Foreign (tourist))ϕ21S2(E1 + I1) ϕ21

Per capita rate of progression of Thais population from the exposed state to the infectious state IIP1

Per capita rate of progression of Foreign (tourist) population from the exposed state to the infectious state IIP2

The rate at which the exposed Thais are put into quarantine from the exposed and infected Thais g1

The rate at which the exposed Foreign (tourist) are put into quarantine from the exposed and infected Foreign (tourist) g2

The number of infected Thais that leave the quarantine period with the virus intact q2T

The number of infected Foreign (tourist) that leave the quarantine period with the virus intact q3T

Per capita recovery rate for population in Thais from the infectious state to the recovered state γ1

Per capita recovery rate for population in Foreign (tourist) from the infectious state to the recovered state γ2

Natural death rate of Thais population δ1

Natural death rate of Foreign (tourist) population δ2

Per capita rate of loss of immunity in Thais population α1

Per capita rate of loss of immunity in Foreign (tourist) population α2

Rate at which Foreign (tourist) population move out the country ϑ

Death rate due to COVID-19 of Thais population ρ1

Death rate due to COVID-19 of Foreign (tourist) population ρ2
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Positivity of solution
Model (2) must been found to be biologically and epidemiologically meaningful and well positioned. To do 
this, we needed to show that the solutions of all state variables were non-negative all the time. The following 
theorem24–26 were required.

Theorem 1: The given solution 
{

S1,E1, I1,Q1,R1,S2,E2, I2,Q2,R2
}

 of the epidemiological systems (2) with 
non-negative initial data when S1 ≥ 0,E1 ≥ 0, I1 ≥ 0,Q1 ≥ 0,R1 ≥ 0 and S2 ≥ 0,E2 ≥ 0, I2 ≥ 0,Q2 ≥ 0,

R2 ≥ 0 stills non-negative for all time non-negative t > 0.

Proof of Theorem 1  Given the initial data S1(0),E1(0), I1(0),Q1(0),R1(0) and S2(0),E2(0), I2(0),Q2(0),R2(0) are 
non—negative. It is clear from the first sub-equation of the model (2) that

d
′
S1
dt =

[

ϕ1
′
S1

(

′
E1 +

′
I1

)

+ δ1
′
S1 + ϕ12

′
S1
(

E′2 + I ′2
)

]

≥ 0 so that

Integrating (3) gives

Further, one sees from the second sub-equation of the model (2) that

d
′
E1
dt

[

δ1
′
E1 + 1

IIP1

′
E1

]

≥ 0 implies  ddt

[

′
E1exp (δ1 + 1

IIP1

t
∫
0

′
E1(ζ1))dζ1

]

≥ 0  which on integration yields

Further, one sees from the third sub-equation of the model (2) that

(2)

d
′
S1

dt
= µ− ϕ1

′
S1

(

′
E1 +

′
I1

)

− δ1
′
S1 + α1R

′
1 − ϕ12

′
S1
(

E′2 + I ′2
)

,

d
′
E1

dt
= ϕ1

′
S1

(

′
E1 +

′
I1

)

+ ϕ12
′
S1
(

E′2 + I ′2
)

− δ1
′
E1 −

1

IIP1

′
E1,

d
′
I1

dt
=

1

IIP1

′
E1 − q2T

′
I1 −

(

δ1
′
I1 + ρ1

′
I1

)

,

dQ
1

dt
= q2T

′
I1 − γ1

′
Q1 − δ1

′
Q1 + g1

(

′
E1 +

′
I1

)

,

dR′
1

dt
= γ1

′
Q1 − (δ1 + α1)R

′
1,

dS′2
dt

= C − ϕ2S
′
2

(

E′2 + I ′2
)

− ϕ21S
′
2

(

′
E1 +

′
I1

)

− (δ2 + ϑ)S′2 + α2R
′
2,

dE′2
dt

= ϕ2S
′
2

(

E′2 + I ′2
)

+ ϕ21S
′
2

(

′
E1 +

′
I1

)

− (δ2 + ϑ)E′2 −
1

IIP2
E′2

dI ′2
dt

=
1

IIP2
E′2 − q3T I

′
2 − (δ2 + ρ2 + ϑ)I ′2,

dQ
2

dt
= q3T I

′
2 − γ2Q

′
2 − (δ2 + ρ2 + ϑ)Q′

2 + g2(E
′
2 + I ′2),

dR′
2

dt
= γ2Q

′
2 − (δ2 + ϑ + α2)R

′
2.

(3)
d

dt

[

′
S1 exp(δ1 + ϕ1 + ϕ12

t
∫
0

′
E1(ζ1)+ I ′1(ζ1)+ E′2(ζ1)+ I ′2(ζ1))dζ1] ≥ 0

]

(4)
′
S1(t) ≥

′
S1(0) exp

[

−
(

δ1 + ϕ1 + ϕ12
t
∫
0

′
E1(ζ1)+ I ′1(ζ1)+ E′2(ζ1)+ I ′2(ζ1)

)

dζ1

]

≥ 0,∀t > 0

(5)d
′
E1

dt
= ϕ1

′
S1

(

′
E1 +

′
I1

)

+ ϕ12
′
S1
(

E′2 + I ′2
)

− δ1
′
E1 −

1

IIP1

′
E1

(6)
′
E1(t) ≥

′
E1(0)exp

[

−
(

δ1 +
1

IIP1

t
∫
0

′
E1(ζ1))dζ1

]

> 0,∀t > 0.

d
′
I1

dt
=

1

IIP1
E′1 − q2T

′
I1 −

(

δ1
′
I1 + ρ1

′
I1

)
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which upon integration yields

Further, one sees from the fourth sub-equation of the model (2) that

d
′
Q
1

dt = [γ1 + δ1)
′
Q
1
] ≥ 0 implies 

d
′
Q
1

dt

[

′
Q
1
exp(γ1 + δ1

t
∫
0

′
Q
1
(ζ1

)

)dζ1] ≥ 0  which upon integration yields

Further, one sees from the fifth sub-equation of the model (2) that 
d

′
R
1

dt = γ1
′
Q
1
−(δ1 + α1)

′
R
1

 , 

d
′
R
1

dt

[

(δ1 + α1)
′
R
1

]

≥ 0 implies  
d

′
R
1

dt

[

′
R
1
exp

(

δ1 + α1
t
∫
0

′
R
1
(ζ1)

)

dζ1

]

≥ 0  which upon integration yields.

In a similar model, it can be shown that  
′
S
2
(t) ≥ 0,

′
E
2
(t) ≥ 0,

′
I
2
≥ 0,

′
Q
2
≥ 0 and 

′
R
2
(t) ≥ 0 for all time t > 0 . 

This completes the proof. It is important to note that the model (2) has be analyzed in the region β given by

Divided into two groups S
1
+E

1
+ I

1
+Q

1
+R

1
= 1 and S

2
+E

2
+ I

2
+Q

2
+R

2
= 1 which can easily be shown to be 

positively univariate according to model (2). In the following, model (2) is epidemiologically and mathematically 
well-positioned in β.

Theorem 2:   The solution of system (1) is possible for all if entering an invariant region. � = �1 ×�2 , where  
�1 = {S1,E1, I1,Q1,R1 ∈ R5

+ : 0 < Nh(t) ≤ µ
δ1
}  a s  t → ∞  ,  w h e n  θ = min{δ1, δ1 + ρ1}  a n d  

�2 =
{

S2,E2, I2,Q2,R2 ∈ R5
+ : 0 < NT (t) ≤ C

δ2

}

  as t → ∞ , when θ2 = min {δ2 + ϑ , δ2 + ρ2 + ϑ}.

Proof of Theorem  2  The invariant region is received from the bounded situation of the system. Here,  
Nh(t) = S1(t)+ E1(t)+ I1(t)+ Q1(t)+ R1(t) and NT (t) = S2(t)+ E2(t)+ I2(t)+ Q2(t)+ R2(t) . It follow-
ing that,

dNh

dt
=

dS1

dt
+

dE1

dt
+

dI1

dt
+

dQ1

dt
+

dR1

dt

= µ−
(

ρ1 + g1
)

I1 − g1E1 − δ1Nh

≤ µ− δ1Nh
This inequality can be expressed in a general solutions as

where Nh(0) is the initial values, i.e., Nh(t) = Nh(0)  at t = 0.
In a similar model, it can be shown that NT (t) = S2(t)+ E2(t)+ I2(t)+ Q2(t)+ R2(t) for the bounded situ-

ation of the system all time t > 0 . Moreover, every solution for systems (1) with initial conditions in � remains 
in � for all t > 0 . Therefore, the dynamics of our model will be poised in �.

Analysis of the model
Basic reproduction number
The next generation matrix method is used to calculate the basic reproduction number, R027–36 the number of 
secondary infections caused by a single infected individual in a completely susceptible population (including of 
the local Thais and the Foreign (tourist)). The behavior of the disease in the total system defined by Eq. (2)15–19 
will be determined by R0 which has the form

(7)d
′
I1

dt

[

q2T
′
I1 + δ1

′
I1 + ρ1

′
I1

]

≥ 0 so that
d

′
I1

dt

[

′
I1 exp q2T + δ1 + ρ1

t
∫
0

′
I1(ζ1))dζ1

]

≥ 0

(8)
′
I1(t) ≥

′
I1(0)exp

[

−
(

q2T + δ1 + ρ1
t
∫
0

′
I1(ζ1)

)

dζ1

]

> 0,∀t > 0

d
′
Q1

dt
= q2T

′
I1 − γ1

′
Q1 − δ1

′
Q1 + g1

(

′
E1 +

′
I1

)

,

(9)
′
Q
1
(t) ≥

′
Q
1
(0) exp

[

−(γ1 + δ1
t
∫
0

′
Q
1
(ζ1))dζ1

]

≥ 0,∀t > 0.

(10)
′
R
1
(t) ≥

′
R
1
(0)exp

[

−
(

δ1 + α1
t
∫
0

′
R
1
(ζ1)

)

dζ1

]

≥ 0,∀t > 0

β =
{(

S
1
,E
1
, I
1
,Q
1
,R
1
, S
2
,E
2
, I
2
,Q
2
,R
2

)

∈ R10
+ : S

1
+E

1
+ I

1
+Q

1
+R

1
+ S

2
+E

2
+ I

2
+Q

2
+R

2
= 1

}

Nh(t) ≤
µ

δ1
+

(

Nh(0)−
µ

δ1

)

e−δ1t ,
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where R0T = (q2T+γ1+δ1)µ(1+IIP1(δ1+ρ1))ϕ1

δ1(1+IIP1δ1)(g1q2T+(q2T+γ1+δ1)(δ1+ρ1))
 is the basic reproduction number for Thais and   

R0F = α3C(1+α2IIP2)ϕ2
α1(α2α3+g2q3T)IIP2(δ2+ϑ)

 is the basic reproduction number for the Foreign (tourist) population only with   
α1 = δ2 + ϑ + 1

IIP2
,α2 = δ2 + ϑ + ρ2,α3 = δ2 + ϑ + γ2 + q3T and α4 = δ2 + ϑ + α2 , we have

Theorem 3:   To find the basic reproduction number of our proposed differential Eq. (2), using help of the next 
generation matrix formulas17–25. We initially define K = (E

1
, I
1
,Q
1
)T and K1 = (E

2
, I
2
,Q
2
)T . The model (2) is rewritten 

in the following form dydt = F
(

y
)

− V
(

y
)

 , where F
(

y
)

 is the non-negative matrix of the newly infected (Thais and 
Foreign (tourist) populations) and V

(

y
)

 is the non-singular matrix for the transfers between the parts in the infective 
equations (Thais and Foreign (tourist) populations) (when y represents Thais populations and Foreign (tourist) 
populations) as follows:

for the Thais population.

for the Foreign (tourist) population.

The basic reproductive number (R0) is the threshold for the stability of the disease-free equilibrium B0. It can 
be calculated by  R0 = ρ

(

FV−1
)

 where, FV−1 is called the next generation matrix and ρ
(

FV−1
)

 is the spectral 
radius of the matrix FV−1 . Then we get reproduction number (R0) where,

Finally, the Routh–Hurwitz criteria is used for determining the stabilities of the model. If R0 > 1 , then the 
endemic equilibrium is local asymptotically stable, but if R0 < 1 , then the disease free equilibrium point is local 
asymptotically stable.

Equilibrium point
The standard method is used to analyze the model. The equilibrium points are found by setting the right-hand 
side of Eq. (2) to zero. By doing this, the equilibrium points are determined as follows24–37.

(A)	 The COVID-19 free equilibrium of the Eq. (2) exists and then given by

(B)	 The COVID-19 endemic equilibrium of the Eq. (2) exists with infection and then given by
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(12)R0 =
α3C(1+α2IIP2)ϕ2(q2T+γ1+δ1)µ(1+IIP1(δ1+ρ1))ϕ1

α1
(
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Local asymptotically stability of disease—free equilibrium point

Lemma 1:  (The Generalized Routh–Hurwitz Criterion). Given the charactistic equation

Define k matrices as follows:

where the (l,m) term in the matrix Hj is a2l−m for 0 < 2l −m < k , 1  for  2l = m.
0  for  0 < 2l or 2l < k +m.
Then all eigenvalues have negative real parts; that is, the steady-state N  is stable if and only if the determinants 

of all Hurwitz are positive:

(13)
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When is N = Ni + a1e
�1t + a2e

�2t + · · · + ake
�kt.

Theorem 4:   The local stability of disease-free equilibrium point is determined from the Jacobian matrix of the 
model of Eq. (2) evaluated at the equilibrium points. If R0 > 1 , the point is stable and unstable otherwise.12–18, 
and24–29, and31.

Proof of Theorem 4  To determine the local stability of J0 , we evaluate the Jacobian matrix at the disease-free 
state to be

w h e r e  θ1 = ϕ1 S
1
−
(

δ1 + 1
IIP1

)

  ,  θ2 = ϕ2 S
2
−
(

δ2 + ϑ + 1
IIP2

)

  ,  θ3 = −(δ2 + ϑ + q3T + ρ2  ) , 
θ4 = (δ2 + ϑ + γ2 + ρ2 ) and θ5 = −(δ2 + ϑ + α2).

The eigenvalues of the J0 are obtained by solving Det(J0 − �I) = 0 . We obtain the characteristic equation, 
where � is an eigenvalue of the matrix J0 . The, root of the model (2) i.e., eigenvalue of the matrix J0 are

The three eigenvalues from Eq. (15) were �1 = −δ2 − ϑ − α2 , �2 = −δ1 − α1 and �3 = −δ1 and all of them 
must have negative real parts. For the other seven eigenvalues, we examine the stability of disease-free equilib-
rium state by using the Routh Hurwitz principle (R-H criterion) to show that all eigenvalues given by Eq. (14) 
has a negative real part, i.e., coefficients of the seventh order the polynomial appearing in Eq. (14) satisfies all 
R-H conditions when A1,A2,A3,A4,A5,A6,A7 > 0(The coefficients appearing in Eq. 15 from the Routh Hur-
witz condition are plotted on the graph by the x axis being the coefficient A2 . and the Y-axis is the coefficient of 
A1,A2,A3,A4,A5,A6 and A7 obtained by finding determinants from size nxn, parameter values from Table 1 
by the use the Mathematica program.) This is displayed for R0 < 1 , disease-free equilibrium point will be stable 
as showed in Fig. 3.
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Fig. 3.   The parameter areas for disease free equilibrium state which satisfies the Routh-Hurwitz criteria with 
the value of parameters: respectively, for with (�7 + A1�

6
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4
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+ A6� + A7 = 0.
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Local asymptotically stability of disease endemic equilibrium point

Theorem 5:   The disease endemic equilibrium point is set from the Jacobian matrix of the sys‑
tem of Eq. (2) evaluated at every equilibrium point. If R0 < 1 the state is stable and unstable 
otherwise12–18, and24–26, and30,31.
Proof of Theorem 5  The Jacobian matrix of the model (2) at pandemic equilibrium point is
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)

 , 
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−(δ2 + ϑ + 1

IIP2
 , η7 = −

(

q3T + δ2 + ρ2 + ϑ
)

, η8 = −(γ2 + δ2 + ρ2 + ϑ) and η9 = (δ2 + ϑ + α2).

The endemic equilibrium point (B1) exists and is positive if R0 > 1 . The eigenvalues of J1 are obtained 
by solving Det(J1 − �I) = 0 . The characteristic equation is as follows; we obtain the characteristic equation 
�
10 +W1�

9 +W2�
8 +W3�

7 +W4�
6 +W5�

5 +W6�
4 +W7�

3 +W8�
2 +W9� +W10 = 0   where � are eigen-

values of the matrix J1 . To consider the local stability of the endemic equilibrium state, we check the stability of 
endemic equilibrium state by using the Routh-Hurwitz criteria required for all the eigenvalues defined by Eq. (16) 
to have negative real parts. We find that the Routh-Hurwitz conditions for the above the all the eigenvalues of the 
above 10th order polynomial to have negative real parts when W1,W2,W3,W4,W5,W6,W7,W8,W9,W10 > 0 
(The coefficients appearing in Eq. (15) from the Routh Hurwitz condition are plotted on a graph by the x axis 
being the coefficient W2 and the Y-axis is the coefficient of W1,W2,W3,W4,W5,W6,W7,W8,W9,W10 , obtained 
by finding determinants from size nxn, parameter values from Table 1 by the use the Mathematica program.) 
This is displayed for R0 > 1 , endemic equilibrium point will be stable as showed in Fig. 4.
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Fig. 4.   The parameter areas for endemic equilibrium point which satisfies the Routh-Hurwitz criteria with the 
value of parameters: respectively, for with.
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Table 2.   Values of the parameter of the model (2) on COVID-19 transmissions.

Parameter Description Value/range (Units)

δ1 Natural death rate of Thais population 0.0000365

δ2 Natural death rate of Foreign (tourist) population 0.000033

α1 Per capita rate of loss of immunity in Thais population 0.045

α2 Per capita rate of loss of immunity in Foreign (tourist) population 0.067

IIP1 Per capita rate of progression of Thais population from the exposed state to the infectious state 0.13–0.785
Estimation26–32

IIP2 Per capita rate of progression of Foreign (tourist) population from the exposed state to the infectious state 0.13–0.785
Estimation27–30

g1 The rate at which the exposed Thais are put into quarantine from the exposed and infected Thais 0.341–0.854
Estimation24–30

g2 The rate at which the exposed Foreign (tourist) are put into quarantine from the exposed and infected Foreign (tourist) 0.341–0.854
Estimation23–29

q2T The number of infected Thais that leave the quarantine period with the virus intact 0.08–0.099
Estimation22–27

q3T The number of infected Foreign (tourist) that leave the quarantine period with the virus intact 0.08–0.099
Estimation26–32

γ1 Per capita recovery rate for population in Thais from the infectious state to the recovered state 0.0035–0.097

γ2 Per capita recovery rate for population in Foreign (tourist) from the infectious state to the recovered state 0.0035–0.097

ρ1 Death rate due to COVID-19 of Thais population 0.000067–0.003

ρ2 Death rate due to COVID-19 of Foreign (tourist) population 0.000067–0.003

ϕ1 Transmission rate of virus between population in Thais population 0.03125

ϕ12 When Foreign are present, a susceptible Thais can also be infected by an infected or exposed Foreign (in Thais) 0.239–0.988

ϕ2 Transmission rate of virus between population in Foreign (tourist) population 0.04167

ϕ21 When Thais are present, a susceptible Thais can also be infected by an infected or exposed Thais (in Foreign (tourist) 0.239–0.988

ϑ Rate at which Foreign (tourist) population move out the country 0.0078–0.5
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Fig. 5.   Numerical simulations of each population for the disease free state. We will see that the solutions 
converge to the disease free state when it satisfy.
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Fig. 6.   Numerical simulations of each population for the disease state.
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Fig. 7.   The trajectories of the numerical projected onto the 2D (a)(S1,E1) , (b) (S1, I1) , (c) (S1,Q1) , (d) (E1, I1) , 
(e) (I1,Q1) , (f) (S2,E2) , (g) (S2,Q2) , (h) (I2,Q2) , (i) (E1,E2) , (j) (I1, I2) and (k) (Q1,Q2) . planes when there was no 
vertical transmission and equilibrium state the endemic state.
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Fig. 7.   (continued)



18

Vol:.(1234567890)

Scientific Reports |        (2024) 14:21569  | https://doi.org/10.1038/s41598-024-71009-x

www.nature.com/scientificreports/

, and 

Numerical results
Numerical simulations of the impact of the strategies to control the spread of coronavirus disease 19 (COVID-19) 
in the Thais population when there are Foreign (tourist) also present. Numerical values of various parameters 
and data points needed for the numerical calculations in Table 2. The Data collected were from the official 
website of the Ministry of Public Health and World Health Organization (WHO)1–6 and24–30. Using the numeri-
cal values in Table 2, we obtained the time evolutions of a susceptible Thais individual, an exposed Thais, an 
infectious Thais, a quarantined Thais, a recovered Thais, a susceptible Foreigner (tourist), an exposed Foreigner 
(tourist), an infectious Foreigner (tourist), a quarantined Foreigner (tourist), and a recovered Foreigner (tour-
ist). The values of the parameters were first chosen to lead to R0 to be less than one so the equilibrium state will 
be disease free State (0.80893). The time evolutions of the ten states were plotted in Figs. 5. Next, we change the 
values of the parameters so that the value of R0 will be greater than one, meaning that the equilibrium state will 
be the endemic state (9.4175). In Fig. 6, we see the evolution of the ten categories of individuals (susceptible 
Thais, exposed Thais, infectious Thais, quarantined Thais, recovered Thais, susceptible Foreign (tourist), exposed 
Foreign (tourist), infectious Foreign (tourist), quarantined Foreign (tourist), recovered Foreign (tourist)) con-
verge to their epidemic equilibrium values (0.002951, 0.0000217, 0.0001608, 0.0000236, 0.000125, 0.0000001974, 
0.00000134, 0.000001218).

The behavior’s of the endemic, we has plotted the 2-D trajectories of the following thirteen pairs (Thais 
susceptible-Thais exposed), (Thais susceptible-Thais infectious), (Thais susceptible-Thais quarantined), (Thais 
exposed-Thais infectious), (Thais exposed-Thais quarantined), (Thais infectious-Thais quarantined), (susceptible 
Foreign (tourist) -exposed Foreigner), (susceptible Foreign (tourist) -infectious Foreign (tourist)), (exposed 
Foreign (tourist) -quarantined Foreign (tourist)), (infectious Foreign (tourist) -quarantined Foreign (tourist)), 
(infectious Thais-exposed Foreign (tourist)), (infectious Thais-infectious Foreign (tourist)) and (quarantined 
Thais-quarantined Foreign (tourist). These 2D trajectories are shown in Fig. 7. We can see that all the trajectories 
converge to a central point (the equilibrium pot).

Global Stability of disease free equilibrium for model
The solutions to Eq. (2) were asymptotically stable locally in section “Analysis of the model”. We have now proved 
that the two equilibrium points are asymptotically stable globally through the following theorem.

Theorem 6:   If R0 ≤ 1 , then the disease—free equilibrium E∗ is globally asymptotically stable, by

Proof of Theorem 6  The Lyapunov function may be constructed for the model (1) through the use of the function
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Using the condition (17), Eq. (17a) may be rewrite as,

Substitute with Eq. (17) we obtain

Note that on Ω, we have S∗1 = µNh
δ1

 and S∗2 = CNT
δ2+ϑ

  with this in mind, Eq. (17) becomes

Hence, Ṗ(t) ≤ 0 . By using LaSalle’ s (1976)31–37 extension to Lyapunov method, the limit of each solution is 
c o n t a i n e d  i n  t h e  l a r g e s t  i n v a r i a n t  s e t  f o r  w h i c h 
S1 = S∗1 ,E1 = 0, I1 = 0,Q1 = 0,R1 = 0, S2 = S∗2 ,E2 = 0, I2 = 0,Q2 = 0 and R2 = 0 which is the singleton {E0} . 
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  is globally asymptotically stable 

on � . This achieves the proof of the theorem.
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Proof of Theorem 7  We construct the Lypunov function from the model as follows

(18)ρ2 = γ2,µNh = S∗∗1 (δ1) and CNT = S∗∗2 (δ2 + ϑ).

ω̇(t) = (S1 − S∗∗1 ln S1)+ E1 + I1 + Q1 + R1 + (S2 − S∗∗2 ln S2)+ E2 + I2 + Q2 + R2,

ω̇(t) = Ṡ1

(

1−
S∗∗1
S1

)

+ Ė1 + İ1 + Q̇1 + Ṙ1 + Ṡ2

(

1−
S∗∗2
S2

)

+ Ė2 + İ2 + Q̇2 + Ṙ2,

=
(

µNh − ϕ1S1(E1 + I1)− δ1S1 − ϕ12S1(E2 + I2)+ α1(S1 + E1 + I1 + Q1)
)

(

1−
S∗∗
1

S1

)

+ (ϕ1S1(E1 + I1)+ ϕ12S1(E2 + I2)− δ1E1 −
1

IIP1
E1)

+ (
1

IIP1
E1 − q2T I

1

− (δ1I1 + ρ1I1)+ q2T I1)+ (q2T I1 − (γ 1 + δ1)Q1 + g1(E1 + I1))+)

+ ((CNT − ϕ2S2(E2 + I2)− ϕ21S2(E1 + I1)−(δ2 + ϑ)S2 + α2((S2 + E2 + I2 + Q2))

(

1−
S∗∗
2

S2

)

+ (ϕ2S2(E2 + I2)+ ϕ21S2(E1 + I1)−(δ2 + ϑ)E2 −
1

IIP2
E2)

+ (
1

IIP2
E2+q3T I2−(δ2 + ρ2 + ϑ)I2)+ (q3T I2−(δ2 + ρ2 + ϑ + γ2)Q2 + g2(E2 + I2)),

=µNh

(

1−
S∗∗
1

S1

)

+ ϕ1(E1 + I1)S
∗∗
1 + ϕ12(E2 + I2)S

∗∗
1 − δ1S1 + δ1S

∗∗
1 + α1 − α1

(

S∗∗
1

S1

)

− α1S1 + α1S
∗∗
1

− α1E1 + α1E1

(

S∗∗
1

S1

)

− α1I1 + α1I1

(

S∗∗
1

S1

)

− α1Q1 + α1Q1

(

S∗∗
1

S1

)

−
(

δ1 +
1

IIP1

)

E1 − δ1I1 − ρ1I1 − γ1Q1 − δ1Q1 − q2T I1

+ CNT

(

1−
S∗∗
2

S2

)

+ ϕ2(E2 + I2)S
∗∗
2 + ϕ21(E1 + I1)S

∗∗
2 −δ2S2 + δ2S

∗∗
2 − ϑS2 + ϑS∗∗2 + α2 − α2

(

S∗∗
2

S2

)

− α2S2 + α2S
∗∗
2 − α2E2 + α2E2

(

S∗∗
2

S2

)

− α2I2 + α2I2

(

S∗∗
2

S2

)

− α2Q2 + α2Q2

(

S∗∗
2

S2

)

−
(

δ2 + ϑ +
1

IIP2

)

E2−(δ2 + ρ2 + ϑ)I2+q3TI2−(δ2 + ρ2 + ϑ + γ2)Q2,

Table 3.   The sensitivity index (S.I).

Parameters Sensitivity indices Parameters Sensitivity indices

δ1 Negative δ2 Negative

α1 Positive α2 Positive

IIP1 Negative IIP2 Positive

g1 Positive g2 Positive

q2T Negative q3T Positive

γ1 Negative γ2 Negative

ρ1 Negative ρ2 Negative

µ Positive C Positive

ϕ1 Positive ϕ12 Positive

ϕ2 Positive ϕ21 Positive

ϑ Negative
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Since

Substituting the relations in Eqs. (18), we have

(18a)

=µNh

(

1−
S∗∗
1

S1

)

+ δ1S
∗∗
1

(

1−
S1

S∗∗
1

)

+ α1(1− S1 − E1 − I1 − Q1)

(

1−
S∗∗
1

S1

)

− δ1E1

−
1

IIP1

E1 −
(

δ1 + ρ1 − ϕ1S
∗∗
1

)

I1 −
(

γ1 + δ1 − ϕ1S
∗∗
1

)

Q1

+ CNT

(

1−
S∗∗
2

S2

)

+ (δ2 + ϑ)S∗∗2

(

1−
S2

S∗∗
2

)

+ α2(1− S2 − E2 − I2 − Q2)

(

1−
S∗∗
2

S2

)

−
(

δ2 + ϑ +
1

IIP2

)

E2 − (q3T + δ
2
+ ρ2 + ϑ)I2+q3T − ϕ2S

∗∗
2 )I

2

− (δ2 + ρ2 + ϑ + γ2−ϕ2S
∗∗
2 )Q

2

S∗∗1 =
R∗
1α1 + µ

ϕ1
(

E∗1 + I∗1
)

+ δ1 + ϕ12
(

E∗2 + I∗2
) and S∗∗2 =

C + R∗
2α2

ϕ2
(

E∗2 + I∗2
)

− ϕ21
(

E∗1 + I∗1
)

+ (δ2 + ϑ)

ω̇(t) =µNh

(

1−
S∗∗
1

S1

)

+ δ1

(

R∗
1
α1 + µ

ϕ1
(

E∗
1
+ I∗

1

)

+ δ1 + ϕ12
(

E∗
2
+ I∗

2

)

)

(

1−
S1

S∗∗
1

)

+ α1(1− S1 − E1 − I1 − Q1)

(

1−
S∗∗
1

S1

)

− δ1E1 −
1

IIP1
E1 −

(

δ1 + ρ1 − ϕ1S
∗∗
1

)

I1 −
(

γ1 + δ1 − ϕ1S
∗∗
1

)

Q1

+ CNT

(

1−
S∗∗
2

S2

)

+ (δ2 + ϑ)(
C + R∗

2
α2

ϕ2
(

E∗
2
+ I∗

2

)

+ ϕ21
(

E∗
1
+ I∗

1

)

+ (δ2 + ϑ)
)

(

1−
S2

S∗∗
2

)

+ α2(1− S2 − E2 − I2 − Q2)

(

1−
S∗∗
2

S2

)

−
(

δ2 + ϑ +
1

IIP2

)

E2

− (q3T + δ2 + ρ2 + ϑ)I2+q3T − ϕ2S
∗∗
2 )I

2
− (δ2 + ρ2 + ϑ + γ2−ϕ2S

∗∗
2 )Q

2

µNh = δ1(
R∗
1α1 + µ

ϕ1
(

E∗1 + I∗1
)

+ δ1 + ϕ12
(

E∗2 + I∗2
) ),

Fig. 8.   A bar chart showing the measurement of the sensitivity indices with various parameters of model (2) 
and the reference values as indicated in Table 3.
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Substituting the relations in Eq. (18a), we have 

Hence, the condition (16) show that ω̇(t) ≤ 0 of all terms. Then the equilibrium steady state                              

B1 =
(

S∗1 ,
∗
E
1
,
∗
I
1
,
∗
Q
1
,
∗
R
1
,
∗
S
2
,
∗
E
2
,
∗
I
2
,
∗
Q
2
,
∗
R
2

)

 is the globally asymptotically stable in the �.

Sensitivity analysis
The model of the parameters will affect the spread and spread of COVID-19, the results of insertion into model 
(2) will be subjected to a sensitivity analysis. We begin by first introducing the following definitions of30–36.

Definition 1:   The normalized forward sensitivity index of the variable ( R0 ), depending on the parameter dif-
ference, is given as: E∅ζ = ∂∅

∂ζ
× ζ

∅ . A new expression for R0 is introduced as:

Then the sensitivity indices of the basic reproduction number ( R0 ), with respect to the system model depends 
on the nineteenth parameter are computed as below.

CNT = (δ2 + ϑ)(
C + R∗

2α2

ϕ2
(

E∗2 + I∗2
)

− ϕ21
(

E∗1 + I∗1
)

+ (δ2 + ϑ)
),

ω̇(t) =µNh

(

1−
S
∗∗
1

S1

)

+ µNh

(

1−
S1

S
∗∗
1

)

δ1 + α1(1− S1 − E1 − I1 − Q1)

(

1−
S
∗∗
1

S1

)

+ α1(1− S1 − E1 − I1 − Q1)

(

1−
S1

S
∗∗
1

)

− δ1E1 −
1

IIP1

E1 −
(

γ1 + δ1 − ϕ1S
∗∗
1

)

Q1 + CNT

(

1−
S
∗∗
2

S2

)

+ CNT

(

1−
S2

S
∗∗
2

)

+ α2(1− S2 − E2 − I2 − Q2)

(

1−
S
∗∗
2

S2

)

+ α2(1− S2 − E2 − I2 − Q2)

(

1−
S2

S
∗∗
2

)

−
(

δ2 + ϑ +
1

IIP2

)

E2 −−(δ2 + ρ2 + ϑ + γ2−ϕ2S
∗∗
2 )Q

2
,

ω̇(t) = −µNh

(

S
∗∗
1

− S1

)2

S1S
∗∗
1

− α1(1− S1 − E1 − I1 − Q1)

(

S
∗∗
1

− S1

)2

S1S
∗∗
1

− δ1E1 −
1

IIP1

E1 − CNT

(

S
∗∗
2

− S2

)2

S2S
∗∗
2

− α2(1− S2 − E2 − I2 − Q2)

(

S
∗∗
2

− S2

)2

S2S
∗∗
2

−
(

δ2 + ϑ +
1

IIP2

)

E2.

ω̇(t) =− µNh

(

S
∗∗
1

− S1

)2

S1S
∗∗
1

− α1(1− S1 − E1 − I1 − Q1)

(

S
∗∗
1

− S1

)2

S1S
∗∗
1

− δ1E1 −
1

IIP1

E1 − CNT

(

S
∗∗
2

− S2

)2

S2S
∗∗
2

− α2(1− S2 − E2 − I2 − Q2)

(

S
∗∗
2

− S2

)2

S2S
∗∗
2

−
(

δ2 + ϑ +
1

IIP2

)

E2,

ω̇(t) =−
[

µNh

(

S
∗∗
1

− S1

)2

S1S
∗∗
1

+ α1(1− S1 − E1 − I1 − Q1)

(

S
∗∗
1

− S1

)2

S1S
∗∗
1

+δ1E1 +
1

IIP1

E1 + CNT

(

S
∗∗
2

− S2

)2

S2S
∗∗
2

α2

(1− S2 − E2 − I2 − Q2)

(

S
∗∗
2

− S2

)2

S2S
∗∗
2

+
(

δ2 + ϑ +
1

IIP2

)

E2

]

≤ 0.

R0 =
α3C(1+ α2IIP2)ϕ2

(

γ1 + δ1 + q2T + γ1 + δ1
)

µ(1+ IIP1)δ1 + ρ1))ϕ1

α1
(

α2α3 + g2q3T
)

IIP2(δ2 + ϑ)δ1(1+ IIP1δ1)
(

g1q2T +
(

q2T + γ1 + δ1
)

(δ1 + ρ1)
) .

χR0
α1

=
(

∂R0

∂α1

)(

α1

R0

)

= 0, χR0
α2

=
(

∂R0

∂α2

)(

α2

R0

)

= 0, χ
R0
C =

(

∂R0

∂C

)(

C

R0

)

= 0,

χR0
µ =

(

∂R0

∂µ

)(

µ

R0

)

=
IIP1

(

q2T + γ1 + δ1
)

µ(1+ IIP1)δ1 + ρ1))(δ2 + ϑ + ρ2)ϕ1ϕ2

1+ IIP1
(

q2T + γ1 + δ1
)

µ(1+ IIP1)δ1 + ρ1))(δ2 + ϑ + ρ2)ϕ1ϕ2
,
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χ
R0
δ1

= (IIP1
(

−g1 q2T +
(

q2T + γ1 + δ1
)

(δ1 + ρ1)
)

(δ1 + (1+ IIP1δ1)µ

(

1

IIP2
+ δ1 + ϑ

)

(

−g1 q2T +
(

q2T + γ1 + δ1
)

(δ1 + ρ1)
)

(1+ IIP1)

(

∂R0

∂δ1

)(

δ1

R0

)

=
(

q2T + γ1 + 2δ1 + ρ1
)

(δ2 + ϑ + ρ2)ϕ1ϕ2 −
1

IIP1
δ1(1+ IIP1δ1)

(

1

IIP2
+ δ1 + ϑ

)

(

q2T + γ1 + 2δ1 + ρ1
)

(1+ IIP1

(

q2T + γ1 + δ1
)

µ(1+ IIP1(δ1 + ρ1))(1+ IIP1

(

q2T + γ1 + δ1
)

µ(1+ IIP1(δ1 + ρ1))

(δ2 + ϑ + ρ2)ϕ1ϕ2 −
1

IIP1
δ1(1+ IIP1δ1)

(

−g1 q2T +
(

q2T + γ1 + δ1
)

(δ1 + ρ1)
)

(1+ IIP1)
(

q2T + γ1 + ρ1
)

µ

(

1+ IIP1 (δ1 + ρ1)(δ2 + ϑ + ρ2)ϕ1ϕ2)− δ1

(

1

IIP2
+ δ1 + ϑ

)

(

−g1 q2T +
(

q2T + γ1 + δ1
)

(δ1 + ρ1)
)

(1+ IIP1)
((

q2T + γ1 + δ1
)

µ 1+ IIP1(δ1 + ρ1)
)

(δ2 + ϑ + ρ2)ϕ1ϕ2)

)

−
1

IIP1
(1+ IIP1δ 1

(

1

IIP2
+ δ1 + ϑ

)

−
(

g1 q2T +
(

q2T + γ1 + δ1
)

(δ1 + ρ1)
)

(1+ IIP1)
(

q2T + γ1 + ρ1
)

µ(1+ IIP1) (δ1 + ρ1)

((

−g1 q2T +
(

q2T + γ1 + δ1
)

(δ1 + ρ1)
)

(1+ IIP1)
(

q2T + γ1 + ρ1
)

µ(1+ IIP1) (δ1 + ρ1) (δ2 + ϑ + ρ2)ϕ1ϕ2)
)

/

(

1+ IIP1δ1)

(

1

IIP2
+ δ1 + ϑ

)

(−g1 q2T +
(

q2T + γ1 + δ1
)

(δ1 + ρ1))
2 (1+ IIP1

(

q2T + γ1 + δ1
)

µ(1+ IIP1) (δ1 + ρ1) (δ2 + ϑ + ρ2)ϕ1ϕ2))

χ
R0
δ2

=
(

∂R0

∂δ2

)(

δ2

R0

)

=
(

δ2
(

−g2 q3T + q3T + γ2 + δ2
)

(δ2 + ϑ + ρ2)
)

(−q3T + γ2 + δ2)
2

(

2δ2 + ϑ + ρ2 + IIP1
(

q2T + γ1 + δ1
)

µ(1+ IIP1) (δ1 + ρ1)
)

( γ2 + ϑ + δ2)
2ϕ1ϕ2 + g2 q3T

(

q3T + γ2 − ϑ − IIP1
(

q2T + γ1 + δ1
)

µ(1+ IIP1)(δ1 + ρ1)
)

((

ϑ + δ2)
2 −

(

q3T + γ2
)

ρ2 + ϑ + ρ2
)

ϕ1ϕ2
)

)/(
(

q3T + γ2 + δ2
)

( ϑ + δ2(g2 q3T −
(

q3T + γ2 + δ2
)

( ϑ + γ2 + δ2))
2

(1+ IIP1
(((

q2T + γ1 + δ1
)

µ(1+ IIP1) (δ1 + ρ1)
)

(δ2 + ϑ + ρ2)ϕ1ϕ2)
)

χ
R0
IIP1

=
(

∂R0

∂IIP1

)(

IIP1

R0

)

= (
IIP2

(

1

IIP2
+ δ1 + ϑ

)

(

−1− 2IIP1δ1 + IIP1
2
(

g2T + γ1 + δ1
)

µρ1((δ2 + υ + ρ2)ϕ1ϕ2)
)

((1+ IIP1δ1(1+ IIP2(δ1 + ϑ))(1+ IIP1(q2T + γ1 + δ1)µ(1+HP1(δ1 + ρ1))((δ2 + ϑ + ρ2)ϕ1ϕ2)),

χ
R0
IIP2

=
(

∂R0

∂HP2

)(

HP2

R0

)

=
1

1+ IIP2(δ1 + ϑ)
,

χ
R0
ρ1 =

(

∂R0

∂ρ1

)(

ρ1

R0

)

= −(IIP2(q2T + γ1 + δ1)(
1

IIP2

+ δ1 + ϑ)ρ1(−g1q2T + (q2T + γ1 + δ1)(δ1 + ρ1))

(1+ IIP1(q2T + g1q2T + γ1 + δ1)µ(δ2 + ϑ + ρ2)ϕ1ϕ2)/((1+ IIP2(δ1 + ρ1))(g1q2T − (q2T + γ1 + δ1)(δ1 + ρ1))
2

(1+ IIP1(q2T + γ1 + δ1)µ(1+ IIP1(δ1 + ρ1))(δ2 + ϑ + ρ2)ϕ1ϕ2)),

χR0
ρ2

=
(

∂R0

∂ρ2

)(

ρ2

R0

)

= −(IIP2(
1

HP2
+ δ1 + ϑ)ρ2(−g2q3T + (q3T + γ2 + δ2)(δ2 + υ + ρ2))

(q3T + γ2 + δ2 + g2q3T IIP1(q2T + γ1 + δ1)

µ(1+ IIP1(δ1 + ρ1))ϕ1ϕ2))/((1+ IIP2(δ1 + ϑ))(g2q3T − (q3T + γ2 + δ2)(δ2 + ϑ + ρ2))
2

(1+ IIP1(q2T + γ1 + δ1)µ(1+ IIP1(δ1 + ρ1))(δ2 + ϑ + ρ2)ϕ1ϕ2)),

χR0
γ1

=
(

∂R0

∂γ1

)(

γ1

R0

)

=
γ1(q2T + δ1 + ρ)

(q2T + γ1 + δ1)((γ1 + δ1)+ (q2T + γ1 + δ1)(δ1 + ρ))
,

χR0
ϕ1

=
(

∂R0

∂ϕ1

)(

ϕ1

R0

)

IIP1((q2T + γ1 + δ1)µ(1+ IIP1(δ1 + ρ1))ϕ1ϕ2))

(1+ IIP1(q2T + γ1 + δ1)µ(1+ IIP1(δ1 + ρ1))(δ2 + ϑ + ρ2)ϕ1ϕ2))
,

χR0
ϕ12

=
(

∂R0

∂ϕ12

)(

ϕ12

R0

)

= 0,

χR0
ϕ21

=
(

∂R0

∂ϕ21

)(

ϕ21

R0

)

= 0,
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We can estimate the sensitivity indices (S.I) of the basic reproduction number (R0) , taking into account the 
parameter of the model (2). The signs of sensitivity indices (S.I) are shown in the Table 3 and bar chart Fig. 8.

The effects of changing parameter values on the functional value of the reproduction number R0 are obtainable 
in this section. The necessary parameters must be found, which may be important criteria in disease management. 
The desirable changes of the occurred when their changes produce a positive effect, i.e., when their sensitivity 
indices have positive sign, i.e.α1,α2, IIP2, g1, g2, q3T ,µ,C,ϕ1,ϕ12,ϕ2 and ϕ21 have a positive effect on R0 . The 
determine that the increase in the number of two exposed population (E1,E2) and two infectious host popula-
tion (I1, I2) with the value IIP1, g1, g2, IIP2 may lead to an outbreak. On the other hand, the negative sign of the 
sensitivity indices (S.I) in the R0 i.e. δ1, δ2, IIP1, q2T , ρ1, γ1,ϑ, γ2 and ρ2 has a negative effect on the spread of dis-
ease according to the system (2). Thus, the sensitivity indices (S.I) of the Covid-19 (2) shows that there will been 
appreciable change at the beginning of the transmission the disease. This would help the public health official to 
plan on how best to develop a reasonable interference strategy to prevent and manage the spread of the disease.

Conclusions and discussion
Tourism has become an important source of foreign currency for many countries. This is especially true for 
Thailand. It is the second major source of currency. This means that tourists are coming to Thailand every year. 
When combined with the need for temporary, seasonal farmer workers to support the main source of income 
in Thailand, that is the agricultural industry, foreigners (tourists), and these foreign workers diseases can be 
brought into Thailand. Thailand must always be aware of the arrival of new infectious diseases. Most recently, the 
novel coronavirus COVID-19 appeared in China. From a few hundred infections in Wuhan, China, it is quickly 
evolved into a pandemic, which spread to five continents public health authorities in Thailand have initiated 
public health measures to control the spread and stop the spread of this virus in the United States. More than one 

χR0
g1

(

∂R0

∂g1

)(

g1

R0

)

= −
g1q2T

g1q2T − (q2T + γ1 + δ1)(δ1 + ρ1)
,

χR0
ϕ2

=
(

∂R0

∂ϕ2

)(

ϕ2

R0

)

=
IIP1((q2T + γ1 + δ1)µ(1+ IIP1(δ1 + ρ1))(δ2 + ϑ + ρ2)ϕ1ϕ2

(1+ IIP1(q2T + γ1 + δ1)µ(1+ IIP1(δ1 + ρ1))(δ2 + ϑ + ρ2)ϕ1ϕ2
,

χR0
g2

=
(

∂R0

∂g2

)(

g2

R0

)

= −
g2q3T

g2q3T − (q3T + γ3 + δ3)(δ2 + ρ2 + ϑ)
,

χ
R0
γ1 =

(

∂R0

∂γ1

)(

γ1

R0

)

= −(IIP2γ1(
1

HP2

+ δ1 + ϑ)(−g1q2T + (q2T + γ1 + δ1)(δ1 + ρ1))(δ1 + ρ1 + g1q2T IIP1µ(1+ IIP1

(δ1 + ρ1))(δ2 + ϑ + ρ2)ϕ1ϕ2))/((1+ IIP1(δ1 + ρ1))(−g1q2T + (q2T + γ1 + δ1)(δ1 + ρ1))
2

(1+ IIP1(q2T + γ1 + δ1)µ(1+ IIP1(δ1 + ρ1))(δ2 + ϑ + ρ2)ϕ1ϕ2)),

χR0
γ2

=
(

∂R0

∂γ2

)(

γ2

R0

)

= −
g2q3Tγ2

(q3T + γ2 + δ2)(−g2q3T + (q3T + γ2 + δ2)(δ2 + ϑ + ρ2))
,

(

∂R0

∂q2T

)(

q2T

R0

)

=(q2T IIP2(
1

HP2

+ δ1 + ϑ)(−g1q2T + (q2T + γ1 + δ1)(δ1 + ρ1))

(g1 − δ1 − ρ1 + g1IIP1(γ1 + δ1)µ(1+ IIP1(δ1 + ρ1))(δ2 + ϑ + ρ2)ϕ1ϕ2))/((1+ IIP1(δ1 + ρ1))

(−g1q2T +
(

q2T + γ1 + δ1
)

(δ1 + ρ1))
2
(

1+ IIP1

(

q2T + γ1 + δ1
)

µ(1+ IIP1(δ1 + ρ1))(δ2 + ϑ + ρ2)ϕ1ϕ2)),

χR0
q3T

(

∂R0

∂q3T

)(

q3T

R0

)

=
g2q3T (γ2 + δ2)

(q3T + γ2 + δ2)(−g2q3T + (q3T + γ2 + δ2)(δ2 + ϑ + ρ2))
,

χ
R0
ϑ =

(

∂R0

∂ϑ

)(

ϑ

R0

)

= (ϑ(−g2q3T + (q3T + γ2 + δ2)(δ2 + ϑ + ρ2))(−(q3T + γ2 + δ2)

(2δ2 + 2IIP2δ1δ2 + IIP2δ2
2 + 2ϑ + 2IIP2δ1ϑ + 4IIP2δ2ϑ + 3IIP2υ

2 + ρ2

+ IIP2δ1ρ2 + IIP2δ2ρ2 + 2IIP2ϑρ2 + IIP1(q2T + γ1 + δ1)µ(1+ IIP2(δ1 + δ2 + 2ϑ))

(1+ IIP1(γ1 + δ1))(δ2 + ϑ + ρ2)
2ϕ1ϕ2)+ g2q3T (1+ IIP2(δ1 + δ2 + 2ϑ)+ IIP1(q2T + γ1 + δ1)µ(1+ IiP1(γ1 + δ1))

(ρ2 + IiP2((δ2 + ϑ)2 + (δ1 + δ2 + 2ϑ)ρ2))ϕ1ϕ2)))/(IiP2(
1

IIP2
+ δ2 + ϑ)(g2q3T − (q3T

+ γ2 + δ2)(δ2 + ϑ + ρ2))
2(1+ IIP1(q2T + γ1 + δ1)µ(1+ IIP1(δ1 + ρ1))(δ2 + ϑ + ρ2)ϕ1ϕ2)).
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million people have died from the disease. In this article a standard SEIQR model has been introduced for the 
transmission dynamics of COVID-19 infection in Thailand and for Foreign (tourists) entering the Thai popula-
tion. Affecting the change of COVID-19 among Thais people, they took the SEIQR model for each population 
and linked them together, allowing members of each population to cross-infection with each other. The impact 
of factors causing changes in the spread of COVID-19 is examined. After that, we performed a basic reproductive 
number analysis and saw how homeostasis changes. Taking cross-infection (mixed) into account, we find that our 
model achieves an infection-free equilibrium. When the basic reproductive number is less than one. This model 
achieves local equilibrium at multiple points when the number is greater than one. Our analysis shows that the 
rate of recovery rate of both Thais and tourists would be affected by decreases in the recruitment rates and death 
rates. This result shows that the recovery rate for both Thais and foreigners has increased. This is because changes 
in recruitment and death rates will result in a decrease in the basic reproductive number. However, changes IIP1 
(capita rate of progression of Thais population from the exposed state to the infectious state), IIP2 (capita rate of 
progression of foreign human from the exposed state to the infectious state), q2T ( the number of infected Thais 
that leave the quarantine period with the virus intact) and  q3T (the number of infected Foreign that leave the 
quarantine period with the virus intact), g1 (the rate at which the exposed Thais are put into quarantine from 
the exposed and infected Thais) and  g2 (the rate at which the exposed Foreign (tourists) are put into quarantine 
from the exposed and infected Foreign (tourists)), ϕ1 ( transmission rate of virus between population in Thais 
population), ϕ2 (transmission rate of virus between population in Foreign (tourists) population), µ (recruitment 
term of the susceptible population in Thais) and C(recruitment term of the susceptible population in Foreign 
(tourists)) would cause the basic reproductive number to increase meaning increases in the severity of the 
pandemic, more people being infected by the COVID-19 coronavirus. Therefore, we controlled the number of 
new confirmed cases or new infections significantly by introducing a positive change in the parameter memory 
value in the sensitivity analysis.

In summary, from the study of the spread of the COVID-19 virus, which is an infectious disease. This disease 
is a health problem, leading to a rapid decline in the impact on the economy. Although governments and the 
World Health Organization have implemented international control measures and prevented interference. By 
creating a mathematical model that uses data from disease outbreaks between Thais population and Foreign 
(tourist) entering Thailand. To determine some parameters affecting the outbreak under proper control of the 
disease. By relying on the strategies of the government and the World Health Organization, including controlling 
the spread of infection, incubation, treatment and prevention of fever. It was found that controlling the disease 
transmission will be a guideline for reducing the spread and reducing the number of cases between Thai people 
and foreigners.

Data availability
The data in the analysis is taken from Bureau of Epidemiology Ministry of Public Health, Thailand (https://​ddc.​
moph.​go.​th/​viral​pneum​onia/​eng/​index.​php).
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