
Vol.:(0123456789)

Modeling Earth Systems and Environment 
https://doi.org/10.1007/s40808-024-02101-4

ORIGINAL ARTICLE

Mathematical analysis on the transmission dynamics of delta 
and omicron variants of COVID‑19 in the United States

Benjamin Idoko Omede1 · Sayooj Aby Jose2,3   · J. Anuwat3 · Taesung Park2,4

Received: 12 June 2024 / Accepted: 6 July 2024 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024

Abstract
The COVID-19 pandemic has undergone significant changes due to the emergence of new variants. The Delta and Omicron 
variants, in particular, have posed unique challenges because of their increased transmissibility and potential for vaccine 
escape. Understanding the transmission dynamics of these variants is crucial for public health planning and response. Con-
sequently, this paper introduces a new deterministic mathematical model to understand the transmission dynamics of the 
Delta and Omicron variants of COVID-19, considering re-infection and imperfect vaccination. The analysis begins with the 
computation of the basic reproduction number for the Delta and Omicron variants and the examination of the local stability 
of the disease-free equilibrium using the Routh–Hurwitz criterion. An in-depth analysis of the COVID-19 model highlights 
that both variants demonstrate a phenomenon called backward bifurcation, which is characterized by the co-existence of a 
stable disease-free equilibrium and a stable endemic equilibrium when their basic reproduction number falls below one. This 
property poses challenges in effectively controlling COVID-19 within the population. However, assuming flawless vaccine 
efficacy and zero re-infection, these variants have a globally asymptotically stable disease-free equilibrium. We conducted 
a sensitivity analysis on the basic parameters of the Delta and Omicron reproduction numbers to identify influential factors 
contributing to the transmission of these variants. Additionally, we calculated the Omicron invasion reproduction number and 
developed analytical expressions to determine the necessary percentage of vaccinated individuals required for COVID-19 
eradication, even with an imperfect vaccine. The model was validated by fitting it with the daily confirmed cases of COVID-
19 in the United States during the period coinciding with the emergence of the Omicron variant. It was determined that with 
a COVID-19 vaccine offering 60% protection against the Omicron variant, a vaccination rate of at least 97.67% among the 
susceptible population is required to attain the herd immunity threshold. Numerical simulations indicate that increasing both 
the vaccination rate and the efficacy of the vaccine against the Delta and Omicron variants significantly reduces the number 
of hospitalized individuals.

Keywords  Delta and Omicron variants · COVID-19 · Basic reproduction number · Stability · Invasion reproduction 
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Introduction

In December 2019, Wuhan, China, became the initial 
epicenter of an outbreak involving a newly identified and 
highly infectious virus referred to as severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), resulting in the 
emergence of the illness known as coronavirus disease 2019 
(COVID-19). This outbreak swiftly disseminated across 
the globe, evolving into a significant and worldwide public 
health crisis (Nadim and Chattopadhyay 2020; Gilbert et al. 
2020). The primary mode of transmission for SARS-CoV-2 
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is through respiratory droplets, which are transferred from 
person to person in close proximity, often through activities 
like coughing or sneezing. It can also be transmitted through 
the air, by touching contaminated surfaces (fomite transmis-
sion), and through various other means, including contact 
with biological materials such as urine and feces (Chan 
et al. 2020). People of all age groups, including newborns 
and pregnant women, can become infected with the virus. 
The most frequently observed symptoms of the infection 
typically include fever, fatigue, and a dry cough. Additional 
upper respiratory symptoms may manifest as a sore throat, 
headaches, and muscle pain. There is a documented case 
report mentioning patients, particularly children and adoles-
cents, who exhibited gastrointestinal symptoms like abdomi-
nal pain and diarrhea (Centers for Disease 2021). Similar 
to other RNA (ribonucleic acid) viruses, SARS-CoV-2 has 
undergone multiple changes that have affected its ability to 
spread and infect individuals, posing significant challenges 
to the global population (Chakraborty et al. 2022). Cer-
tainly, since the emergence of the COVID-19 pandemic in 
December 2019, a multitude of variants of the SARS-CoV-2 
virus have indeed emerged (Chakraborty et al. 2022). As of 
January 25, 2022, the World Health Organization (WHO) 
has officially recognized five variants of concern (Alpha, 
Beta, Gamma, Delta, and Omicron), two variants of interest 
(Lambda and Mu), and is actively monitoring three other 
variants (Chakraborty et al. 2022). The WHO identifies 
variants of concern (VOC) as SARS-CoV-2 mutations that 
heighten transmissibility, severity of illness, or potency, or 
diminish the efficacy of public health measures, diagnostics, 
treatments, or vaccines. Variants of interest (VOI) encom-
pass genetic alterations expected to increase the virus’s 
transmissibility, identified in various countries causing 
community spread and potentially posing a global public 
health risk. Variants under monitoring entail genetic changes 
suspected to impact virus traits, with currently uncertain 
effects on characteristics or spread, both phenotypically and 
epidemiologically. Variants under monitoring usually remain 
unnamed until they advance to the status of a variant of 
interest or concern (Chakraborty et al. 2022).

By April 2022, there were at least two notable vari-
ants of the SARS-CoV-2 virus in circulation: the Delta 
(B.1.617.2) and Omicron (B.1.1.529) variants. The Delta 
variant was first identified in late 2020 in Maharashtra, 
India, and by May 2, 2021, it was responsible for around 
70% of cases in the Indian subcontinent according to 
various medical reports (Chakraborty et al. 2022). Due 
to its significant transmission rates, the Centers for Dis-
ease Control and Prevention (CDC) elevated it from a 
variant of interest (VOI) to a variant of concern (VOC). 
The Delta variant quickly spread to 50 other countries by 
August 2021, affecting a total of 163 countries worldwide. 
Among various VOCs, the Delta variant, according to the 

World Health Organization (WHO), was deemed the most 
rapid and adaptable strain up to that point (Chakraborty 
et al. 2022). On November 26, 2021, the World Health 
Organization’s Technical Advisory Group on SARS-
CoV-2 Virus Evolution designated the B.1.1.529 variant, 
initially discovered in Gauteng province, South Africa, 
as the Omicron variant of concern (South African 2021). 
This classification was based on a sharp rise in confirmed 
cases of SARS-CoV-2 infection in South Africa, coincid-
ing with increased detection of the Omicron variant, the 
presence of troubling mutations, and early indications 
of heightened reinfection risk among recently recovered 
individuals. The Omicron variant harbors numerous muta-
tions, notably within the spike protein’s receptor-binding 
domain, which have been linked to enhanced transmissi-
bility and the ability to evade immunity post-infection or 
vaccination (European Centre 2021). In December 2021, 
the Omicron variant surpassed the Delta variant in Gaut-
eng, South Africa, being responsible for 98.4% of newly 
sequenced cases in the region. Notably, the fourth wave 
of COVID-19 occurred amidst the rollout of COVID-19 
vaccination, which began in South Africa on May 17, 2021 
(Madhi et al. 2022).

When a new variant of a virus, such as the Omicron vari-
ant of COVID-19, becomes dominant and supersedes the 
prevalence of a previous variant like the Delta variant, it’s 
often referred to as "viral displacement" or "competitive 
replacement". This describes the process where one vari-
ant becomes more prevalent in a population, often due to 
factors such as increased transmissibility or immune eva-
sion, leading to a decline in the prevalence of the earlier 
variant. New findings from actual situations suggest that 
the Omicron variant might be less severe compared to the 
earlier variants. However, even though Omicron tends to 
cause milder symptoms, the large number of infections could 
still lead to increased hospitalizations and fatalies among 
individuals who are more susceptible to the virus (Young 
et al. 2022). Omicron variant shows broad but incomplete 
ability to evade immunity from both natural infection and 
vaccines. When compared to the Delta variant, Omicron 
requires about a 10-fold higher level of antibodies to be 
neutralized after receiving vaccines like ChAdOx1 nCoV-
19 (Oxford-AstraZeneca) and BNT162b2 (Pfizer-BioNTech) 
(European Centre 2021; South African 2021; Young et al. 
2022). The global urgency caused by the COVID-19 pan-
demic led to a swift worldwide quest to find safe and effi-
cient vaccines for the SARS-CoV-2 virus. By January 25, 
2022, there were 194 vaccines in pre-clinical stages and 140 
in clinical development. Many studies have investigated the 
efficacy of approved vaccines, but considerable differences 
in their effectiveness have been documented. These varia-
tions likely stem from diverse factors within the studies, such 
as the country, data collection methods, study populations 
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and the presence of different SARS-CoV-2 variants during 
the research period (Young et al. 2022).

Mathematical modeling is crucial for grasping the 
dynamics of infectious diseases, with numerous models spe-
cifically crafted to explore how COVID-19 transmits and 
its dynamic transmission patterns (see Abioye et al. 2021; 
Paul et al. 2023; Mohamadou et al. 2020; Kouidere et al. 
2023; Ando et al. 2023; Hassan et al. 2023; Logeswari et al. 
2024; Khajanchi et al. 2021; Mohamadou et al. 2020; Ghosh 
and Ghosh 2023; Ndaırou et al. 2020; Bugalia et al. 2020). 
For instance, Gumel et al. (2021), introduced a primer for 
formulating, analysing and simulating mathematical mod-
els to understand COVID-19 dynamics. This included 
basic epidemic models and an endemic model to evaluate 
a hypothetical COVID-19 vaccine’s potential impact on the 
population-level outcomes. Okuonghae and Omame (2020), 
developed a mathematical model examining how different 
non-pharmaceutical control measures influence COVID-19 
transmission in Lagos, Nigeria. According to their study, if 
around 55% of the population adheres to social distancing 
and approximately 55% consistently wear face masks in pub-
lic, the disease is projected to eventually diminish within the 
population. Omede et al. (2023), introduced a deterministic 
mathematical model to analyze the transmission patterns 
of the third wave of COVID-19 in Nigeria, incorporating 
optimal control strategies. Their findings indicated that 
implementing two control measures (vaccination and the 
sensitization on the danger of self-medication) resulted in 
a substantial decrease in the spread of COVID-19. Samui 
et  al. (2020), developed a compartmental deterministic 
model to forecast and manage the transmission patterns of 
the COVID-19 pandemic in India, utilizing epidemic data 
until April 30, 2020. Their model predicted a higher peak 
for COVID-19 in India around 60 days from the given data, 
followed by a plateau in the curve. However, despite this 
plateau, the virus is expected to persist for an extended 
period. Iboi et al. (2020) devised a mathematical model 
aimed at assessing the impact of a theoretical imperfect anti-
COVID-19 vaccine on containing the spread of the virus 
within the United States. According to their research, if a 
vaccine with an assumed efficacy of 80% were to be utilized, 
about 82% of the susceptible population in the US would 
need to be vaccinated to achieve the threshold required for 
herd immunity. Hellewell et al. (2020) introduced a stochas-
tic model to evaluate the effectiveness of contact tracing 
and isolation in controlling the disease. According to their 
study, if these two control measures are highly effective, 
COVID-19 spread could be effectively contained within a 
span of 3 months. Khan and Atangana (2022) proposed a 
novel mathematical model to understand the dynamics of 
the Omicron variant of COVID-19. Their study included 
a second-order differential epidemic model to explore the 

potential existence of multiple layers or waves within the 
spread of the virus.

Goswami et al. (2022) developed and analyzed a novel 
deterministic mathematical model to assess the impact of 
media awareness programs on the spread of COVID-19. 
They introduced three time-dependent controls: personal 
protection, diagnosis, and treatment measures. The optimal 
control analysis showed that implementing these controls 
significantly reduces the spread of COVID-19 compared to 
a model without such controls. Alaje and Olayiwola (2023) 
proposed a fractional-order mathematical model to study the 
spatiotemporal spread of COVID-19 in the context of vac-
cine distribution. Their analysis of homogeneous fractional-
order vaccine distribution revealed that an optimal vaccina-
tion strategy is crucial. Higher-order vaccine implementation 
can substantially reduce disease transmission and help 
achieve herd immunity. Sepulveda et al. (2023) formulated 
a mathematical model to investigate the effects of transmis-
sion rates, vaccination, and time delays on the dynamics 
of the COVID-19 pandemic. Riyapan and Shuaib (2021) 
proposed and analyzed a new mathematical model to under-
stand the transmission dynamics of the COVID-19 pandemic 
in Bangkok, Thailand. The outcome of their model analysis 
and numerical results demonstrate that the consistent use of 
face masks significantly reduces the spread of COVID-19. 
Masandawa et al. (2021) formulated a mathematical model 
for the transmission dynamics of COVID-19 between health-
care workers and the community. They incorporated public 
control measures as a parameter and healthcare workers as 
an independent compartment. Their results indicated that the 
protection of healthcare workers can be achieved through 
the effective use of personal protective equipment and mini-
mizing the transmission of COVID-19 in the general public 
through the implementation of control measures.

Few mathematical models have been designed to under-
stand the dynamics of COVID-19 variants. Saha and Saha 
(2023) formulated a new mathematical model considering 
the wild strain and its two variants, Delta and Omicron, to 
understand the dynamics of COVID-19 transmission. The 
aim of their study was to assess the impact of the original 
strain and its two variants on developing new infections, hos-
pitalizations, and deaths. The results from their numerical 
simulation revealed that the emergence of new variants of 
concern increases COVID-19 infections and related deaths. 
Furthermore, the combination of non-pharmaceutical inter-
ventions with vaccination programs using new, more effec-
tive vaccines should be continued to control the disease out-
break. León et al. (2022) designed a mathematical model 
to depict the dynamics of the two-strain model under one 
vaccination regime, showing the impact of multiple vari-
ants and their response to the vaccine. Liossi et al. (2023) 
developed a compartmental mathematical model to analyze 
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the transmission dynamics of the Delta and Omicron vari-
ants of SARS-CoV-2 in Greece. They considered the propor-
tion of the vaccinated population, individuals with natural 
immunity, the secondary attack rate, and parameters related 
to population behavior, such as the use of masks and social 
distancing.

One of the limitations in the work of Saha and Saha 
(2023), León et al. (2022) and Liossi et al. (2023) is their 
omission of the potential re-infection of individuals who 
recovered from the Delta variant with the Omicron vari-
ant of COVID-19. In response, this study presents a com-
prehensive and sophisticated deterministic mathematical 
model designed to explore the intricate transmission dynam-
ics of both the Delta and Omicron variants. By thoroughly 
accounting for factors such as the re-infection of Delta vari-
ant recovered individuals with Omicron and the imperfec-
tions in vaccination, it aims to elucidate the complex interac-
tions between these variants. The research aims to decode 
pivotal aspects influencing their competitive advantages, 
encompassing factors like transmissibility, immune evasion, 
and the efficacy of vaccines. Ultimately, the study aspires to 
furnish actionable insights that can inform precise and effec-
tive strategies for managing and controlling the ongoing pan-
demic. The subsequent sections of the paper are organized 
as follows: the next section elucidates the method, including 
model formulation and its basic properties. Following sec-
tion delves into the model analysis. The next section presents 
the results. Following section is the Discussion, and the last 
section provides concluding remarks.

Methods

This section presents the development of the COVID-19 
model, model assumptions, the model flow diagram, basic 
properties of the COVID-19 model, and the model analysis.

Model formulation

We propose a deterministic mathematical model on the 
transmission dynamics of COVID-19 in a population where 
the Delta and Omicron variants of COVID-19 are co-cir-
culating. At time t, the overall population, labeled as N(t), 
is divided into ten distinct compartments, each represent-
ing mutually exclusive groups of susceptible individuals 
denoted by S(t), vaccinated individuals V(t), exposed indi-
viduals to Delta variant of COVID-19 Ed(t) , exposed indi-
viduals to Omicron variant of COVID-19 Eo(t) , quarantined 
individuals Q(t), infected individuals with Delta variant of 
COVID-19 Id(t) , infected individuals with Omicron variant 
of COVID-19 Io(t) , detected and hospitalized individuals 
Ih(t) , recovered individuals from Delta variant of COVID-19 

Rd(t) , and recovered individuals from Omicron variant of 
COVID-19 Ro(t) , so that

The susceptible population expands through the influx of 
individuals into the community, facilitated by either birth or 
migration, occurring at a consistent rate denoted by Π , and 
reduces by the natural death rate � (the natural death rate is 
the same in all the epidemiological compartments). Suscep-
tible individuals acquire COVID-19 infection upon effective 
contact with infected individuals carrying either the Delta or 
Omicron variant of COVID-19. This acquisition occurs at 
rates represented by �d and �o , respectively, given by:

where �d and �o are the effective contact rate for Delta and 
Omicron variant of COVID-19 respectively, and � is the 
compliance rate to COVID-19 safety protocols. The popula-
tion of the vaccinated individuals is generated by susceptible 
individuals that got vaccinated at the rate � . The vaccinated 
individuals acquires COVID-19 infection following an effec-
tive contact with infected individuals with Delta or Omicron 
variant of COVID-19 at the rate 

(
1 − �d

)
�d or 

(
1 − �o

)
�o , 

where �d and �o are the efficacy rates of the vaccine to Delta 
and Omicron variant of COVID-19 respectively. Suscep-
tible individuals in contact with infected individuals with 
either Delta or Omicron variant of COVID-19 moves to the 
exposed classes Ed(t) and Eo(t) at the rates �d and �o respec-
tively. Similarly the Vaccinated individuals in contact with 
infected individuals with either Delta or Omicron variant 
of COVID-19 moves to the exposed classes Ed(t) and Eo(t) 
at the rates 

(
1 − �d

)
�d and 

(
1 − �o

)
�o respectively. Exposed 

individuals to Delta or Omicron variant of COVID-19 are 
quarantined via contact tracing at the rate �d and �o respec-
tively. Exposed individuals to Delta or Omicron variant of 
COVID-19 that were not quarantined progressed to the Delta 
variant infected class Id(t) at the rate �d , and to the Omicron 
variant infected class Io(t) at the rate �o . Quarantined indi-
viduals that progressed to being infected are hospitalized at 
the rate � . Furthermore, quarantined individuals that do not 
developed symptoms of COVID-19 and are uninfected pro-
gressed back to the susceptible class at the rate � . Infected 
individuals with either Delta or Omicron variant of COVID-
19 recovers from COVID-19 due to strong body immune 
system at the rates �d and �o respectively. The rates �d and 
�o are the disease-induced death rates for infected individu-
als with Delta and Omicron variant of COVID-19. Infected 
individuals with Delta variant of COVID-19 acquires Omi-
cron variant of COVID-19 as secondary infection following 
an effective contact with infected individuals with Omicron 

N(t) = S(t) + V(t) + Ed(t) + Eo(t) + Q(t) + Id(t)

+ Io(t) + Ih(t) + Rd(t) + Ro(t).

�d =
(1 − �)�dId

N
, and �o =

(1 − �)�oIo

N
.
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variant of COVID-19 at the rate ��o , where � is the sec-
ondary infection rate. The infected individuals with either 
Delta or Omicron variant are detected and hospitalized at the 
rates �d and �o respectively. the rate �h is the disease-induced 
death rate of the detected and hospitalized individuals while 
receiving treatment, and �h is the recovery rate of detected 
and hospitalized individuals. A proportion, 0 < f ≤ 1 , of 
the hospitalized individuals recovers from Delta variant, 
while the remaining proportion, (1 − f ) , recovers from 
Omicron variant of COVID-19 (Table 1). The Recovered 

individualsfrom Delta variant are re-infected with Delta 
variant at the rate �1�d , and re-infected with Omicron vari-
ant of COVID-19 at the rate �2�o . Individuals that recovered 
from Omicron variant are re-infected with Omicron variant 
of COVID-19 at the rate �3�o . Based on the aforementioned 
formulations and assumptions (Fig. 1), the dynamics of the 
COVID-19 model are described by the following set of non-
linear differential equations:

Table 1   Description of the model variables and parameters

Variable Description

S Susceptible individuals
V Vaccinated individuals
E
d

Exposed individuals to Delta variant of COVID-19
E
o

Exposed individuals to Omicron variant of COVID-19
Q Quarantined individuals
I
d

Infected individuals with Delta variant of COVID-19
I
o

Infected individuals with Omicron variant of COVID-19
I
h

Detected and hospitalized individuals
R
d

Recovered individuals from Delta variant of COVID-19
R
o

Recovered individuals from Omicron variant of COVID-19

 Parameter Description

Π Recruitment rate
�
d

Delta variant effective contact rate
�
o

Omicron variant effective contact rate
� Vaccination rate
�
d

Efficacy of vaccine to Delta variant of COVID-19
�
o

Efficacy of vaccine to Omicron variant of COVID-19
� Compliance rate to COVID-19 safety Protocols
� Natural death rate
�
d

Delta variant disease-induced death rate
�
o

Omicron variant disease-induced death rate
�
h

Disease-induced death rate of individuals in I
h
 class

� The rate at which quarantined individuals that do not progressed to being infected progressed back to being susceptible again
�
d

Recovery rate of infected individuals with Delta variant of COVID-19
�
o

Recovery rate of infected individuals with Omicron variant of COVID-19
�
h

Recovery rate of detected and hospitalized individuals
�
d

Detection rate of infected individuals with Delta variant of COVID-19 via testing and contact tracing
�
o

Detection rate of infected individuals with Omicron variant of COVID-19 via testing and contact tracing
� Secondary infection rate of Delta variant infected individuals with Omicron variant of COVID-19
�
1

Re-infection rate of individuals that recovered from Delta variant of COVID-19 with Delta variant of COVID-19
�
2

Re-infection rate of individuals that recovered from Delta variant of COVID-19 with Omicron variant of COVID-19
�
3

Re-infection rate of individuals that recovered from Omicron variant of COVID-19 with Omicron variant of COVID-19
�
d

Quarantine rate of exposed individuals to Delta variant of COVID-19 via contact tracing
�
o

Quarantine rate of exposed individuals to Omicron variant of COVID-19 via contact tracing
�
d

Progression rate from E
d
 compartment to I

d
 compartment

�
o

Progression rate from E
o
 compartment to I

o
 compartment

f Fraction of detected and hospitalized individuals that recovered from Delta variant of COVID-19
� Progression rate from quarantined compartment to detected and hospitalized compartment
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where

Basic properties of the model

Positivity of solution

The biological validity of the COVID-19 model (1) 
depends on the solution of the system to being positive for 
all values of time t. Therefore, it is crucial to demonstrate 

(1)

dS

dt
= Π − �dS − �oS − (� + �)S + �Q,

dV

dt
= �S −

(
1 − �d

)
�dV −

(
1 − �o

)
�oV − �V ,

dEd

dt
= �d

(
S +

(
1 − �d

)
V
)
−
(
�d + �d + �

)
Ed,

dEo

dt
= �o

(
S +

(
1 − �o

)
V
)
−
(
�o + �o + �

)
Eo,

dQ

dt
= �dEd + �oEo − (� + � + �)Q,

dId

dt
= �dEd + �1�dRd − ��oId −

(
�d + �d + �d + �

)
Id,

dIo

dt
= �oEo + ��oId + �2�oRd + �3�oRo

−
(
�o + �o + �o + �

)
Io,

dIh

dt
= �Q + �dId + �oIo −

(
�h + �h + �

)
Ih,

dRd

dt
= �dId + f �hIh − �1�dRd − �2�oRd − �Rd,

dRo

dt
= �oIo + (1 − f )�hIh − �3�oRo − �Ro.

�d =
(1 − �)�dId

N
, and �o =

(1 − �)�oIo

N
.

that all the state variables of the COVID-19 Model (1) 
remain non-negative for all time t > 0.

Theorem 1  Let the initial data for the COVID-19 model 
(1) be S(0) > 0 , V(0) > 0 , Ed(0) > 0 , Eo(0) > 0 , Q(0) > 0 , 
Id(0) > 0 , Io(0) > 0 , Ih(0) > 0 , Rd(0) > 0 , and Ro(0) > 0 . 
Then the solution 

(
S,V ,Ed,Eo,Q, Id, Io, Ih,Rd,Ro

)
 of the 

COVID-19 model (1) are non-negative for all time t > 0.

Proof  Let tf = sup
{
t > 0 ∶

(
S > 0,V > 0,Ed > 0,

Eo > 0,Q > 0, Id > 0, Io > 0, Ih > 0,Rd > 0,

Ro > 0
)
∈ [0, t]

}
 . Thus, tf > 0.

From the first equation of the COVID-19 model system 
(1), we have

After solving the aforementioned equation, we derived the 
following result:

 Upon integrating the above equation over the interval 
[
0, tf

]
 , 

we obtain:

(2)
dS

dt
= Π − �dS − �oS − (� + �)S + �Q

(3)

d

dt

{
S(t)

[
exp

(
∫

t

0

�d(z)dz + �o(z)dz + (� + �)t

)]}

= (Π + �Q) exp

(
∫

t

0

�d(z)dz + �o(z)dz + (� + �)t

)

(4)

{
S(t) exp

[
∫

tf

0

�d(z)dz + �o(z)dz + (� + �)tf

]}

− S(0) = (Π + �Q)

× ∫
tf

0

exp

[
∫

x

0

�d(z)dz + �o(z)dz + (� + �)x

]
dx

Fig. 1   Flowchart of the COVID-
19 model with �

d
=

(1−�)�d Id

N
 and 

�
o
=

(1−�)�oIo

N
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 So that

 Likewise, it can be demonstrated that V > 0 , Ed > 0 , 
Eo > 0 , Q > 0 , Id > 0 , Io > 0 , Ih > 0 , Rd > 0 , Ro > 0 . 	
� ◻

Invariant Region

Lemma 1  The region

is positively-invariant and attracts all solution in ℜ10
+

 
(Omede et al. 2023).

Proof  By summing the equations of the COVID-19 model 
system (1), we find the rate of change of the total popula-
tion to be:

from Eq. (3), we have that

where � = min
{
�d, �o, �h

}
.

Thus, since it follows that the right hand side of the ine-
quality (4) is bounded by Π − �N , it can be shown using a 
standard comparison theorem from (Lakshmikantham et al. 
1989) that

Hence, it follows that N(t) ≤ Π

�
 , if N(0) ≤ Π

�
 . Thus, the 

closed region D  is positively invariant and attracts all the 
solution in ℜ10

+
 . Furthermore, whenever N >

Π

𝜇
 , then dN

dt
< 0 . 

Consequently, the COVID-19 model (1) is both mathemati-
cally and biologically well-posed within the region D . Thus, 
it is adequate to analyze the dynamics of the COVID-19 

(5)

S(t) =S(0) exp

[
−

(
∫

tf

0

𝜆d(z)dz + 𝜆o(z)dz + (𝜓 + 𝜇)tf

)]

+ exp

[
−

(
∫

tf

0

𝜆d(z)dz + 𝜆o(z)dz + (𝜓 + 𝜇)tf

)]

× (Π + 𝜔Q)∫
tf

0

exp

[
∫

x

0

(
𝜆d(z)dz + 𝜆o(z)dz

)

+(𝜓 + 𝜇)x]dx > 0.

D =
{(

S,V ,Ed,Eo,Q, Id, Io, Ih,Rd,Ro

)
∈ ℜ

10
+

∶ S + V

+Ed + Eo + Q + Id + Io + Ih + Rd + Ro ≤ Π

�

}

(6)
dN

dt
= Π − �N − �dId − �oIo − �hIh.

(7)Π − (� + 3�)N ≤ dN

dt
≤ Π − �N,

(8)N(t) ≤ N(0)e−�t +
Π

�

(
1 − e−�t

)

model solely within this region, as established in prior stud-
ies (Hethcote 2000). 	�  ◻

Model analysis

In this section, we embark on a qualitative exploration of 
the COVID-19 model (1). Our inquiry spans several critical 
dimensions. We commence by computing the basic repro-
duction number and then delve into examining the presence 
and stability of equilibrium points for both the Delta and 
Omicron variants of COVID-19. Additionally, we ascertain 
the invasion reproduction number for the Omicron variant, 
pinpoint the threshold for herd immunity, and meticulously 
analyze the primary parameters shaping the reproduction 
numbers.

Disease‑free equilibrium point

The disease-free equilibrium denotes a stable condition 
characterized by the absence of COVID-19 infection in 
the population. To attain this state in the model, we set 
all disease-related compartments to zero (specifically, 
Ed = Eo = Q = Id = Io = Ih = Rd = Ro = 0 ) and equated the 
right-hand side of the model system (1) equations to zero. 
Consequently, the expression for the disease-free equilib-
rium is formulated as follows:

Basic reproduction number

The COVID-19 basic reproduction number, denoted by 
R

v

0
 , is defined as the average number of new infections 

generated when a single infectious individual is introduced 
into a completely susceptible population (Driessche and 
Watmough 2002). The basic reproduction number serves 
as a yardstick for infectious disease, it helps predict the 
potential for an outbreak. If the basic reproduction is equal 
to 1, each infected person spreads the disease to one other 
person on average, maintaining a steady rate of infection. 
When the basic reproduction number is above 1, each 
infected person passes the disease to more than one per-
son, causing an outbreak to grow. Conversely, if the basic 
reproduction number is less than 1, the disease gradually 
fades away because infected individuals, on average, pass 
it to fewer than one person.

The computation of the basic reproduction number 
can be conducted utilizing the next-generation operator 

(9)
Δ0 =

(
S∗,V∗,E∗

d
,E∗

o
,Q∗, I∗

d
, I∗

o
, I∗

h
,R∗

d
,R∗

o

)

=

(
Π

� + �
,

Π�

(� + �)�
, 0, 0, 0, 0, 0, 0, 0, 0

)
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method outlined in Driessche and Watmough (2002). Fol-
lowing the methodology described in Driessche and Wat-
mough (2002), the non-negative matrix F  and the non-
singular matrix V  , representing the new infection and the 
remaining transition terms respectively, at the disease-free 
equilibrium point, are given by:

and

 where

K1 = � + �  ,  K2 = �d + �d + �  ,  K3 = �o + �o + �  , 
K4 = � + � + �   ,  K5 = �d + �d + �d + �   , 
K6 = �o + �o + �o + � , K7 = �h + �h + � , and K8 = (1 − f )�h.

It follows that Rv

0
= �

(
FV

−1
)
 , where � is the dominant 

eigenvalue of the 
(
FV

−1
)
 . Hence, the COVID-19 basic 

reproduction number is given as

where

Here, Rvd

0
 represents the basic reproduction number for 

Delta variant of COVID-19, while Rvo

0
 represents the basic 

reproduction number for Omicron variant of COVID-19.
In the absence of COVID-19 vaccination in the popula-

tion (i.e. � = 0 ), the basic reproduction number is given as

F =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 X1 0 0

0 0 0 0 X2 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

,

V =

⎡⎢⎢⎢⎢⎢⎢⎣

K2 0 0 0 0 0

0 K3 0 0 0 0

−�d − �o K4 0 0 0

−�d 0 0 K5 0 0

0 − �o 0 0 K6 0

0 0 − � − �d − �o K7

⎤⎥⎥⎥⎥⎥⎥⎦

X1 =
(1 − �)�d

(
S∗ +

(
1 − �d

)
V∗

)
S∗ + V∗

,

X2 =
(1 − �)�o

(
S∗ +

(
1 − �o

)
V∗

)
S∗ + V∗

,

(10)R
v

0
= max

{
R

vd

0
,Rvo

0

}

R
vd

0
=

(1 − �)�d
(
� + (1 − �d)�

)
�d

(� + �)
(
�d + �d + �

)(
�d + �d + �d + �

) ,

R
vo

0
=

(1 − �)�o
(
� + (1 − �o)�

)
�o

(� + �)
(
�o + �o + �

)(
�o + �o + �o + �

) .

(11)R0 = max
{
R

d

0
,Ro

0

}

where

Furthermore, if the COVID-19 vaccines are perfect (i.e. 
�d = �o = 1 ), then the basic reproduction number is reduced 
to

where

Local stability of the disease‑free equilibrium

Theorem  2  The disease-free equilibrium (DFE) of the 
COVID-19 model (1) is locally asymptotically stable (LAS) 
if Rv

0
< 1 , and unstable if Rv

0
> 1.

Proof  We investigated the local stability of the COVID-
19 model by calculating the Jacobian matrix of the model 
system (1) assessed at the disease-free equilibrium 

(
Δ0

)
 , as 

expressed by:

 where d1 = −
(1−�)�d�

K1

 , d2 = −
(1−�)�o�

K1

 , d3 = −
(1−�)(1−�d)�d�

K1

 , 

d4 = −
(1−�)(1−�o)�o�

K1

  ,  d5 =
(1−�)�d(�+(1−�d)�)

K1

  , 

d6 =
(1−�)�o(�+(1−�o)�)

K1

 ,  K1 = � + � ,  K2 = �d + �d + � , 
K3 = �o + �o + � , K4 = � + � + � , K5 = �d + �d + �d + � , 
K6 = �o + �o + �o + � , K7 = �h + �h + � , and K8 = (1 − f )�h
.

R
d

0
=

(1 − �)�d�d(
�d + �d + �

)(
�d + �d + �d + �

) ,

R
o

0
=

(1 − �)�o�o(
�o + �o + �

)(
�o + �o + �o + �

) .

(12)R
v∗

0
= max

{
R

vd∗

0
,Rvo∗

0

}

R
vd∗

0
=

(1 − �)�d�d�

(� + �)
(
�d + �d + �

)(
�d + �d + �d + �

) ,

R
vo∗

0
=

(1 − �)�o�o�

(� + �)
(
�o + �o + �

)(
�o + �o + �o + �

) .

J
�
Δ0

�
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−K1 0 0 0 � d1 d2 0 0 0

� − � 0 0 0 d3 d4 0 0 0

0 0 − K2 0 0 d5 0 0 0 0

0 0 0 − K3 0 0 d6 0 0 0

0 0 �d �o − K4 0 0 0 0 0

0 0 �d 0 0 − K5 0 0 0 0

0 0 0 �o 0 0 − K6 0 0 0

0 0 0 0 � �d �o − K7 0 0

0 0 0 0 0 �d 0 f �h − � 0

0 0 0 0 0 0 �o K8 0 − �

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The eigenvalues of the Jacobian matrix J
(
Δ0

)
 are 

�1 = −� , �2 = −K1 , �3 = −� , �4 = −� , and the roots of the 
characteristic polynomial given below

where

 Employing the Routh–Hurwitz criterion, as referenced in 
Hassan et al. (2022), which asserts that for all roots of the 
characteristic polynomial (g(�)) to have negative real parts, 

(13)g(�) = �6 + �1�
5 + �2�

4 + �3�
3 + �4�

2
2
+ �5� + �6

�
1
= K

2
+ K

3
+ K

4
+ K

5
+ K

6
+ K

7
,

�
2
= K

2

(
K
2
+ K

3
+ K

4
+ K

5
+ K

6
+ K

7

)
+ K

3

(
K
4
+ K

5
+ K

7

)
+ K

4

(
K
5
+ K

6
+ K

7

)

+ K
5

(
K
6
+ K

7

)
+ K

6
K
7
+ K

2
K
5

(
1 −R

vd

0

)
+ K

3
K
6

(
1 −R

vo

0

)
,

�
3
= K

3

(
K
4
K
5
+ K

4
K
7
+ K

5
K
7

)

+ K
2
K
5

(
K
3
+ K

4
+ K

6
+ K

7

)(
1 −R

vd

0

)
+ K

4
K
5

(
K
6
+ K

7

)
+ K

2
K
4

(
K
6
+ K

7

)
+ K

3
K
6

(
K
2
+ K

4
+ K

5
+ K

7

)(
1 −R

vo

0

)
+ K

6
K
7

(
K
2
+ K

4
+ K

5

)
,

�
4
= K

4
K
7

(
K
3
+ K

6

)(
K
2
+ K

5

)

+ K
2
K
5

(
K
4

(
K
6
+ K

7

)
+ K

6
K
7

)(
1 −R

vd

0

)

+ K
2
K
3
K
5

(
K
4
+ K

6
+ K

7

)(
1 −R

vd

0

)
+ K

3
K
6

(
K
4

(
K
5
+ K

7

)
+ K

5
K
7

)(
1 −R

vo

0

)

+
(1 − �)2

(
� +

(
1 − �d

)
�
)(
� +

(
1 − �o

)
�
)
�d�o�d�o

K2

1

−
(1 − �)

(
� +

(
1 − �o

)
�
)
�o�oK2

K
3
K
6

(
K
4
+ K

7

)
K
1

.

�
5
= K

3
K
4
K
6
K
7

(
K
2
+ K

5

)

+ K
2
K
3
K
4
K
5

(
K
6
+ K

7

)(
1 −R

vd

0

)

+ K
2
K
5
K
6
K
7

(
K
3
+ K

4

)(
1 −R

vd

0

)

+
(1 − �)2

(
� +

(
1 − �d

)
�
)(
� +

(
1 − �o

)
�
)
�d�o�d�oK4

K2

1

+
(1 − �)2

(
� +

(
1 − �o

)
�
)
�d�o�d�o�K7

K2

1

+
(1 − �)2

(
� +

(
1 − �o

)
�
)(
1 − �d

)
��d�o�d�oK7

K2

1

−
(1 − �)

(
� +

(
1 − �o

)
�
)
�o�oK2

K
4

(
K
5
+ K

7

)
K
1

−
(1 − �)

(
� +

(
1 − �o

)
�
)
�o�oK5

K
7

(
K
2
+ K

4

)
K
1

�
6
= K2

1
K
2
K
3
K
4
K
5
K
6
K
7

(
1 −R

vd

0

)(
1 −R

vo

0

)
.

it is necessary that 𝜉1 > 0 , 𝜉2 > 0 , 𝜉3 > 0 , 𝜉4 > 0 , 𝜉5 > 0 , 
𝜉6 > 0 . It is evident that if Rv

0
< 1 (that is, if both Rvd

0
< 1 

and Rvo

0
< 1 ), then all conditions are met. Consequently, 

based on the Routh–Hurwitz Criterion, the disease-free 
equilibrium of the COVID-19 model (1) exhibits local 
asymptotic stability if and only if Rv

0
< 1 . 	�  ◻

From a biological standpoint, Theorem 2 suggests that a 
minor introduction of COVID-19 infected individuals into 
the community will not trigger a COVID-19 outbreak pro-
vided that the basic reproduction number ( Rv

0
 ) remains 

below one (Omede et al. 2023). It’s important to empha-
size that this conclusion hinges on the initial proportions of 
infected individuals within the population.

Existence and stability of boundary equilibria

In this section, we will explore the presence and stability of 
the equilibria in the COVID-19 model (1) where the infected 
variables corresponding to the Delta and Omicron variants 
of COVID-19 are not equal to zero. Consequently, the poten-
tial equilibria of the COVID-19 model (1) are outlined as 
follows: 

1.	 D e l t a  v a r i a n t  d o m i n a n c e  e q u i l i b r i u m , 
�d =

(
S∗∗,V∗∗,E∗∗

d
, 0,Q∗∗, I∗∗

d
, 0, I∗∗

h
,R∗∗

d
, 0
)
 (i.e., no 

Omicron variant).
2.	 O m i c r o n  v a r i a n t  d o m i n a n c e  e q u i l i b -

rium,�o =
(
S∗∗,V∗∗, 0,E∗∗

o
,Q∗∗, 0, I∗∗

o
, I∗∗

h
, 0,R∗

o

)
 (i.e., 

no Delta variant).
3.	 Co-existence of Delta and Omicron Equilibrium, �do

=(S∗∗ , V∗∗ , E∗∗
d

 , E∗∗
o

 , Q∗∗ , I∗∗
d

 , I∗∗
o

 , I∗∗
h

 , R∗∗
d

 , R∗∗
o

)

The COVID-19 model (1) is solved at steady state in terms of 
the forces of infection, given by

where

with

(14)�∗∗
d

=
(1 − �)�dI

∗∗
d

N∗∗
, and �∗∗

o
=

(1 − �)�oI
∗∗
o

N∗∗
,

(15)
N∗∗ = S∗∗ + V∗∗ + E∗∗

d
+ E∗∗

o
+ Q∗∗ + I∗∗

d

+ I∗∗
o

+ I∗∗
h

+ R∗∗

d
+ R∗∗

o
,
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where K1 = � + � , K2 = �d + �d + � , K3 = �o + �o + � , 
K4 = � + � + �   ,  K5 = �d + �d + �d + �   , 
K6 = �o + �o + �o + � , K7 = �h + �h + � , K8 = (1 − f )�h,

(16)

S
∗∗ =

Π
((
1 − �

d

)
�∗∗
d

+
(
1 − �

o

)
�∗∗
o

+ �
)
K
2
K
3
K
4

M
,

V
∗∗ =

Π�K
2
K
3
K
4

M
,E

∗∗

d
=

�∗∗
d
ΠK

3
K
4
A
1

M
,

E
∗∗

o
=

�∗∗
o
ΠK

2
K
4
A
2

M
,

Q
∗∗ =

Π
(
�∗∗
d
�
d
K
3
A
1
+ �∗∗

o
�
o
K
2
A
2

)
M

,

I
∗∗

d
=

�∗∗
d
ΠK

3
K
4
�
d
A
1

(
B
2
B
5
− B

3
B
6

)

M
(
�∗∗
o
� + K

5

)(
B
2
B
5
− B

3
B
6

)

+
�∗∗
d
�
1
M
(
B
4
B
5
+ B

1

)

M
(
�∗∗
o
� + K

5

)(
B
2
B
5
− B

3
B
6

) ,

I
∗∗

o
=

B
7

(
B
2
B
5
− B

3
B
6

)
+ B

10

(
B
4
B
5
+ B

1

)

K
6
M
(
�∗∗
o
� + K

5

)(
B
2
B
5
− B

3
B
6

)

+
M�

3

(
�∗∗2
o

� + �∗∗
o
K
5

)(
B
1
B
2
+ B

3
B
4

)

K
6
M
(
�∗∗
o
� + K

5

)(
B
2
B
5
− B

3
B
6

) ,

I
∗∗

h
=

B
8

(
B
2
B
5
− B

3
B
6

)
+ B

9

(
B
4
B
5
+ B

1

)

K
6
K
7
M
(
�∗∗
o
� + K

5

)(
B
2
B
5
− B

3
B
6

)

+
M�

o
�
3

(
�∗∗2
o

� + � + o∗∗K
5

)(
B
1
B
2
+ B

3
B
4

)

K
6
K
7
M
(
�∗∗
o
� + K

5

)(
B
2
B
5
− B

3
B
6

) ,

R
∗∗

d
=

B
4
B
5
+ B

1

B
2
B
5
− B

3
B
6

,R
∗∗

o
=

B
1
B
2
+ B

3
B
4

B
2
B
5
− B

3
B
6

.

A1 =
(
1 − �d

)
�∗∗
d

+
(
1 − �o

)
�∗∗
o

+ � +
(
1 − �d

)
� ,

A2 =
(
1 − �d

)
�∗∗
d

+
(
1 − �o

)
�∗∗
o

+ � +
(
1 − �o

)
� ,

M =
(
1 − �d

)
�∗∗
d

(
�∗∗
d

+ �∗∗
o

+ K1

)
K2K3K4

+
((
1 − �o

)
�∗∗
o

+ �
)(
�∗∗
d

+ �∗∗
o

+ K1

)
K2K3K4

− �
(
�∗∗
d
�dK3A1 + �∗∗

o
�oK2A2

)
,

B1 = �∗∗2
o

A2e1 + �∗∗
d
�∗∗
o
A1e2 + �∗∗

o
A2e3 + �∗∗

d
A1e4,

B2 = M
(
�∗∗2
o

e5 + �∗∗
d
�∗∗
o
e6 + �∗∗

o
e7 + �∗∗

d
e8 + e9

)
,

B3 = M
(
�∗∗2
o

e10 + �∗∗
d
�∗∗
o
e11 + �∗∗

o
e12 + �∗∗

d
e13

)
,

B4 = �∗∗2
o

A2e14 + �∗∗
d
�∗∗
o
A1e15 + �∗∗

o
A2e16

+ �∗∗
d
A1e17,

B5 = M
(
�∗∗
o
e18 − �∗∗2

o
e19 + e20

)
,

B6 = �∗∗2
o

Me21 + �∗∗
o
e22,

B7 = �∗∗2
o

Π�K2K4�oA2 + �∗∗
d
�∗∗
o
Π�K3K4�dA1

+ �∗∗
o
ΠK2K4K5�oA2,

B8 = �∗∗2
o

A2e24 + �∗∗
d
�∗∗
o
A1e23 + �∗∗

o
A2e26 + �∗∗

d
A1e25,

B9 = M
(
�∗∗2
o

��2�o + �∗∗
d
�∗∗
o
��1�o + �∗∗

o
�2�oK5

)
+ �∗∗

d
�1�dK6M,

B10 = M
(
�∗∗2
o

��2 + �∗∗
d
�∗∗
o
��1 + �∗∗

o
�2K5

)
.

With

 The equilibrium states of the COVID-19 model (1) can be 
derived by inserting the components of the steady-state equi-
librium into the equations in Eq. (14), and then identifying 
the fixed points of the system, as outlined in Omede et al. 
(2023) as follows:

Additionally, �1 and �2 represent the right-hand sides of the 
equations governing �∗∗

d
 and �∗∗

o
 in Eq. (14), respectively.

Delta variant dominance equilibrium

The Delta variant dominance equilibrium, denoted by �d , 
is given by

With

(17)

e1 = Π�K2

(
K8

(
��oK6 + �o�oK4

)
+ �o�oK4K7

)
,

e2 = Π�K3

(
K8

(
��dK6 + �d�oK4

)
+ �d�oK4K7

)
,

e3 = ΠK2K5

(
K8

(
��oK6 + �o�oK4

)
+ �o�oK4K7

)
,

e4 = ΠK3K6K8

(
��dK5 + �d�dK4

)
,

e5 = ��2
(
K6K7 − f �h�o

)
, e6 = ��1

(
K6K7 − f �h�o

)
,

e7 = K6K7

(
�� + �2K5

)
− �2f �h�oK5,

e8 = �1K6

(
K5K7 −

(
�dK7 + f �h�d

))
, e9 = �K5K6K7,

e10 = ��2
(
�oK7 + �oK8

)
, e11 = ��1

(
�oK7 + �oK8

)
,

e12 = �2K5

(
�oK7 + �oK8

)
, e13 = �1�dK6K8,

e14 = Π� f �hK2

(
��oK6 + �o�oK4

)
,

e15 = Π� f �hK3

(
��dK6 + �d�oK4

)
,

e16 = Πf �hK2K5

(
��oK6 + �o�oK4

)
,

e17 = ΠK3K6

((
��dK5 + �d�dK4

)
f �h + �d�dK4K7

)
,

e18 = �K6K7 − �2K5

(
�oK7 + K8

)
,

e19 = ��3
(
�oK7 + K8

)
, e20 = K5K6K7, e21 = ��3f �h�o

e22 = �3f �h�oK5, e23 = Π�K3

(
��dK6 + �d�oK4

)
,

e24 = Π�K2

(
��oK6 + �o�oK4

)
,

e25 = ΠK3K6

(
��dK5 + �d�dK4

)
,

e26 = ΠK3K5

(
��oK6 + �o�oK4

)
, e27 = Π�K2K4�o,

e28 = Π�K3K4�d, e29 = ΠK2K4K5�o, e30 = ΠK3K4�d.

(18)u = �(u) =

(
�1

(
�∗∗
d
, �∗∗

o

)
�2

(
�∗∗
d
, �∗∗

o

)
)
,where u =

(
�∗∗
d

�∗∗
o

)

(19)�d =
(
S∗∗,V∗∗,E∗∗

d
, 0,Q∗∗, I∗∗

d
, 0, I∗∗

h
,R∗∗

d
, 0
)
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where

The equilibrium corresponding to the dominance of the 
Delta variant can be identified by solving the fixed-point 
problem �1

(
�∗∗
d
, 0
)
= �∗∗

d
 . Upon solving this fixed-point 

problem with respect to �∗∗
d

 , we derived the polynomial:

(20)

S∗∗ =
ΠM2K2K4(

�∗∗
d

+ K1

)
M2K2K4 − �∗∗

d
�d�M1

,

V∗∗ =
Π�K2K4(

�∗∗
d

+ K1

)
M2K2K4 − �∗∗

d
�d�M1

,

E∗∗

d
=

�∗∗
d
ΠM1K4(

�∗∗
d

+ K1

)
M2K2K4 − �∗∗

d
�d�M1

,

Q∗∗ =
�∗∗
d
Π�dM1(

�∗∗
d

+ K1

)
M2K2K4 − �∗∗

d
�d�M1

,

I∗∗
d

=
�∗∗
d
ΠM1�dK4K7

(
�1�

∗∗
d

+ �
)

((
�∗∗
d

+ K1

)
M2K2K4 − �∗∗

d
�d�M1

)
Z1

+
�∗∗2
d

ΠM1�1f �h�d�((
�∗∗
d

+ K1

)
M2K2K4 − �∗∗

d
�d�M1

)
Z1

,

I∗∗
h

=
�∗∗
d
ΠM1�d�

((
�1�

∗∗
d

+ �
)
K5 − �∗∗

d
�1�d

)
((
�∗∗
d

+ K1

)
M2K2K4 − �∗∗

d
�d�M1

)
Z1

+
�∗∗
d
ΠM1�d�dK4

(
�1�

∗∗
d

+ �
)

((
�∗∗
d

+ K1

)
M2K2K4 − �∗∗

d
�d�M1

)
Z1

,

R∗∗

d
=

�∗∗
d
ΠM1�d�dK4K7((

�∗∗
d

+ K1

)
M2K2K4 − �∗∗

d
�d�M1

)
Z1

+
�∗∗
d
ΠM1f �h

(
�d�K5 + �d�dK4

)
((
�∗∗
d

+ K1

)
M2K2K4 − �∗∗

d
�d�M1

)
Z1

.

M1 =
(
1 − �d

)
�∗∗
d

+ � +
(
1 − �d

)
� ,

M2 =
(
1 − �d

)
�∗∗
d

+ �,

Z1 =
(
�1�

∗∗

d
+ �

)
K5K7 − �∗∗

d
�1
(
�dK7 + �df �h

)
.

(21)P
(
�∗∗
d

)
= C1�

∗∗3
d

+ C2�
∗∗2
d

+ C3�
∗∗

d
+ C4

where

Clearly, in the polynomial (21) C1 > 0 (since all the 
model parameters are positive) and C4 > 0 whenever 
R

vd

0
< 1 . Therefore, the number of possible positive real 

roots of the polynomial (21) can be determined depend-
ing on the signs of C2 , and C3 . Utilizing Descartes’ 
rule of signs (Gumel et  al. 2018) on the polynomial 
P
(
�∗∗
d

)
= C1�

∗∗3
d

+ C2�
∗∗2
d

+ C3�
∗∗
d

+ C4 , the conclusions 
presented in Table 2 below are established.

The delta variant dominance equilibrium has a unique 
endemic equilibrium if Rvd

0
> 1 and cases 1–3 in Table 2 

C1 = Π�1
(
1 − �d

)(
�d + K4

)(
K5K7 + �dK7 + f �h�d

)
+ Π�1

(
1 − �d

)
�dK4

(
�d + K7

)
+ Π�1

(
1 − �d

)
�d�

(
K5 + �d + f �h

)
,

C2 = Π�1
(
1 − �d

)(
K2K4

(
K7

(
K5 − �d

)
+ f �h�d

))
+ Π�1K4

(
� +

(
1 − �d

)
�
)(
�dK7 + f �h�d

)
+ Π�1K4

(
� +

(
1 − �d

)
�
)(
K5K7 + �d

(
�d + K7

))
+ Π�1�d�

(
� +

(
1 − �d

)
�
)(
K5 + �d + f �h

)
+ Π�1�d

(
� +

(
1 − �d

)
�
)(
K5K7 −

(
�dK7 + f �h�d

))
+ Π�dK4K7

(
1 − �d

)(
� + �d

)
+ Π

(
1 − �d

)(
� + f �h

)(
�d�K5 + �d�dK4

)
+ Π�K5K7

(
1 − �d

)(
�d + K4

)
− Π�1�d(1 − �)

(
1 − �d

)(
�dK4K7 + f �h�d�

)
,

C3 = Π
(
� +

(
1 − �d

)
�
)(
� + f �h

)(
�d�K5 + �d�dK4

)
+ Π�dK4K7

(
� +

(
1 − �d

)
�
)(
�d + �

)
+ Π�K5K7

(
� +

(
1 − �d

)
�
)(
�d + K4

)
+ Π�1K1K2K4

(
K5K7 −

(
�dK7 + f �h�d

))
+ Π�K2K4K5K7

(
1 − �d

)
− Π�d(1 − �)��dK4K7

(
1 − �d

)
− Π�d(1 − �)

(
� +

(
1 − �d

)
�
)
�1�dK4K7

− Π�d(1 − �)
(
� +

(
1 − �d

)
�
)
�1f �h�d�,

C4 = Π�K1K2K4K5K7

(
1 −R

vd

0

)
.

Table 2   Number of possible 
positive real roots of P

(
�∗∗
d

)
 for 

R
vd

0
> 1 and Rvd

0
< 1

Cases C
1

C
2

C
3

C
4 R

vd

0
Number of sign 
change

Number of 
positive real 
roots

1 + + + + R
vd

0
< 1 0 0

+ + + − R
vd

0
> 1 1 1

2 + + − + R
vd

0
< 1 2 0,2

+ + − − R
vd

0
> 1 1 1

3 + − − + R
vd

0
< 1 2 0,2

+ − - − R
vd

0
> 1 1 1

4 + − + + R
vd

0
< 1 2 0,2

+ − + − R
vd

0
> 1 3 1,3
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are satisfied. It could have more than one endemic equi-
librium if Rvd

0
> 1 and case 4 is satisfied. Additionally, it 

could have two endemic equilibria if Rvd

0
< 1 and cases 2–4 

are satisfied.
From cases 2–4 outlined in Table 2, it’s evident that 

multiple endemic equilibria emerge when the reproduction 
number 

(
R

vd

0

)
 is below one, indicating a characteristic of 

backward bifurcation. Backward bifurcation refers to the 
coexistence of a stable disease-free equilibrium and a stable 
endemic equilibrium when the basic reproduction number of 
the model falls below unity, a phenomenon observed in vari-
ous epidemiological models, as documented in studies such 
as Gumel (2012); Gumel et al. (2018), Omame et al. (2018, 
2020). Biologically, the implication of backward bifurcation 
is that the requisite condition for effectively controlling the 
Delta variant of COVID-19 within the population, when the 
basic reproduction number is less than one 

(
R

vd

0
< 1

)
 , is no 

longer adequate (Gumel et al. 2018).

Omicron variant dominance equilibrium

Omicron variant dominance equilibrium, denoted by �o , is 
given by

Putting �∗∗
d

= 0 in Eq. (14), we obtained:

where

(22)�o =
(
S∗∗,V∗∗, 0,E∗∗

o
,Q∗∗, 0, I∗∗

o
, I∗∗

h
, 0,R∗

o

)

(23)

S∗∗ =
ΠM4K3K4(

�∗∗
o

+ K1

)
M4K3K4 − �∗∗

o
�o�M3

,

V∗∗ =
Π�K3K4(

�∗∗
o

+ K1

)
M4K3K4 − �∗∗

o
�o�M3

,

E∗∗

o
=

�∗∗
o
ΠK4M3(

�∗∗
o

+ K1

)
M4K3K4 − �∗∗

o
�o�M3

,

Q∗∗ =
�∗∗
o
Π�oM3(

�∗∗
o

+ K1

)
M4K3K4 − �∗∗

o
�o�M3

,

I∗∗
o

=
�∗∗
o
ΠM3�oK4K7

(
�3�

∗∗
o

+ �
)

((
�∗∗
o

+ K1

)
M4K3K4 − �∗∗

o
�o�M3

)
Z2

+
�∗∗2
o

ΠM3�3�o�K8((
�∗∗
o

+ K1

)
M4K3K4 − �∗∗

o
�o�M3

)
Z2

,

I∗∗
h

=
�oΠM3Z3((

�∗∗
o

+ K1

)
M4K3K4 − �∗∗

o
�o�M3

)
Z2

,

R∗∗

o
=

�oΠM3Z4((
�∗∗
o

+ K1

)
M4K3K4 − �∗∗

o
�o�M4

)
Z2

.

By substituting the expressions from Eq. (23) into the 
expression for �∗∗

o
 in Eq. (14), and subsequently simplify-

ing, we derived the polynomial:

where

Examining the polynomial presented in Eq. (24), it becomes 
apparent that the coefficient H1 consistently maintains a posi-
tive value, and H4 is positive (or negative) when Rvo

0
< 1 (or 

R
vo

0
> 1 ). The form of the polynomial in Eq. (24) strongly 

indicates the presence of backward bifurcation.

M3 = (
(
1 − �o

)
�∗∗
o

+ � +
(
1 − �o

)
� ,

M4 =
(
1 − �o

)
�∗∗
o

+ �,

Z2 =
(
�3�

∗∗

o
+ �

)
K6K7 − �∗∗

o
�3
(
�oK7 + �oK8

)
,

Z3 = �o�
((
�3�

∗∗

o
+ �

)
K6 − �∗∗

o
�3�o

)
+ �o�oK4

(
�3�

∗∗

o
+ �

)
,

Z4 =
(
�o�oK4K7 + K8

(
�o�K6 + �o�oK4

))
.

(24)P
(
�∗∗
o

)
= H1�

∗∗3
o

+ H2�
∗∗2
o

+ H3�
∗∗

o
+ H4

H1 = Π�3
(
1 − �o

)(
�o + K4

)(
K7

(
�o + K6

)
+ �oK8

)
+ Π�3

(
1 − �o

)(
�o + K7

)
�oK4

+ Π�3
(
1 − �o

)(
K6 + �o + K8

)
�o�,

H2 = Π�3
(
1 − �o

)(
K3K4

(
K7

(
K6 − �o

)
+ �oK8

))
+ Π�3K4

(
� +

(
1 − �o

)
�
)(
�oK7 + �oK8

)
+ Π�3K4

(
� +

(
1 − �o

)
�
)(
K6K7 + �o

(
�o + K7

))
+ Π�3�o�

(
� +

(
1 − �o

)
�
)(
K6 + �o + K8

)
+ Π�3�o

(
� +

(
1 − �o

)
�
)(
K6K7 −

(
�oK7 + �oK8

))
+ Π�oK4K7

(
1 − �o

)(
� + �o

)
+ Π

(
1 − �o

)(
� + K8

)(
�o�K6 + �o�oK4

)
+ Π�K6K7

(
1 − �o

)(
�o + K4

)
− Π�3�o(1 − �)

(
1 − �o

)(
�oK4K7 + �o�K8

)
,

H3 = Π�3K1K3K4

(
K6K7 −

(
�oK7 + �oK8

))
+ Π�oK4K7

(
� +

(
1 − �o

)
�
)(
�o + �

)
+ Π�K6K7

(
� +

(
1 − �o

)
�
)(
�o + K4

)
+ Π�K3K4K6K7

(
1 − �o

)
+ Π

(
� +

(
1 − �o

)
�
)(
� + K8

)(
�o�K6 + �o�oK4

)
− Π�o(1 − �)

(
1 − �o

)
��oK4K7

− Π�o(1 − �)�3
(
� +

(
1 − �o

)
�
)
�oK4K7

− Π�o(1 − �)�3
(
� +

(
1 − �o

)
�
)
�o�K8,

H4 = Π�K1K3K4K6K7

(
1 −R

vo

0

)
.
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Co‑existence of Delta and Omicron equilibrium

The analysis of the co-existence of Delta and Omicron equi-
librium, denoted by �do , given by

From (14) we have that

So that

Subtracting the second expression from the first expression 
in equation (27), we obtained

We have that

Substituting the values of Id and Io in Eq. (16) into Eq. (29),
The substitution is in the appendix section

Omicron invasion reproduction number

The invasion reproduction number, denoted by Ro∶d

0
 , is a con-

cept used in epidemiology to estimate the potential of a new 
variant or strain of a pathogen to spread and establish itself 
within a population that has little to no immunity against it 
(Martcheva 2015; Mitchell and Kribs 2019). This number rep-
resents the average number of secondary infections generated 
by an index case (a single infected individual) in a completely 
susceptible population, typically at the beginning of an out-
break or introduction of a new variant. It helps in understand-
ing the potential of a new pathogen or variant to spread rapidly 
and cause an outbreak. If the invasion reproduction number is 
greater than 1, it suggests that the new variant has the poten-
tial to cause sustained transmission and become established in 

(25)�do =
(
S∗∗,V∗∗,E∗∗

d
,E∗∗

o
,Q∗∗, I∗∗

d
, I∗∗

o
, I∗∗

h
,R∗∗

d
,R∗∗

o

)

(26)
N∗∗�∗∗

d
= (1 − �)�dI

∗∗

d

N∗∗�∗∗
o

= (1 − �)�oI
∗∗

o

(27)
N∗∗ =

(1 − �)�dI
∗∗
d

�∗∗
d

N∗∗ =
(1 − �)�oI

∗∗
o

�∗∗
o

(28)0 =
(1 − �)�dI

∗∗
d

�∗∗
d

−
(1 − �)�oI

∗∗
o

�∗∗
o

.

(29)
(1 − �)�oIo

�∗∗
o

=
(1 − �)�dId

�∗∗
d

the population. Estimating the invasion reproduction number 
can help public health officials and researchers understand the 
threat level posed by a new pathogen or variant.

Similarly, just like the case of the basic reproduction num-
ber, the Omicron invasion reproduction number can be com-
puted using the next generation operator method as described 
in Martcheva (2015). Following the approach in Martcheva 
(2015), the non-negative matrix F  and the non-singular matrix 
V  for the new Omicron infection and the remaining transition 
terms respectively, evaluated at the delta variant dominance 
equilibrium is given by

w h e r e  K3 = �o + �o + �   ,  K4 = � + � + �   , 
K6 = �o + �o + �o + � , and K7 = �h + �h + �.

It follows that Ro∶d

0
= �

(
FV

−1
)
 , where � is the domi-

nant eigenvalue of the 
(
FV

−1
)
 . Hence, the Omicron inva-

sion reproduction number is given as

F =

⎡
⎢⎢⎢⎢⎣

(1−�)�oIo(S∗∗+(1−�o)V∗∗)
N∗∗

0
(1−�)��oIoI

∗∗
d

N∗∗
+

(1−�)�2�oIoR
∗∗
d

N∗∗

0

⎤
⎥⎥⎥⎥⎦
, and

V =

⎡⎢⎢⎢⎣

�
�o + �o + �

�
Eo

−�oEo + (� + � + �)Q

−�oEo +
�
�o + �o + �o + �

�
Io

−�Q − �oIo +
�
�h + �h + �

�
Ih

⎤⎥⎥⎥⎦

F =

⎡⎢⎢⎢⎢⎣

0 0
(1−�)�o(S∗∗+(1−�o)V∗∗)

N∗∗
0

0 0 0 0

0 0
(1−�)�o(� I∗∗d +�2R

∗∗
d )

N∗∗
0

0 0 0 0

⎤⎥⎥⎥⎥⎦

V =

⎡⎢⎢⎢⎣

K3 0 0 0

−�o K4 0 0

−�o 0 K6 0

0 − � − �o K7

⎤⎥⎥⎥⎦

(30)
R

o∶d

0
=

(1 − �)�o
(
S∗∗ +

(
1 − �o

)
V∗∗

)
�o

N∗∗K3K6

+
(1 − �)�o

(
�I∗∗

d
+ �2R

∗∗
d

)
N∗∗K6

.
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Where S∗∗ , V∗∗ , I∗∗
d

 , R∗∗
d

 , and N∗∗ are values of the delta vari-
ant dominance equilibrium.

Possibility of the existence of backward bifurcation

The existence of the backward bifurcation is explored 
through the application of the center manifold theory, a 
method popularized by Castillo-Chavez and Song (2004).

Castillo–Chavez and Song theorem 

Theorem 3  Considering a general system of ordinary dif-
ferential equations with a parameter ∇;

where u = 0 is an equilibrium point for the system in 
Eq. (31). That is, f (0,∇) ≡ 0 ∀ ∇.

Consider the following assumptions:
G1 : A = Duf (0, 0) =

[
�f

�u
(0, 0)

]
 represents the lineariza-

tion matrix of the system described by Eq. (31) around the 
equilibrium 0, with ∇ evaluated at 0. Zero is a simple 
eigenvalue of A, and all other eigenvalues of A possess 
negative real parts.

G2 : The matrix A possesses a non-negative right eigen-
vector w and a left eigenvector v corresponding to the zero 
eigenvalue.

Let fk be the kth component of f and

The local dynamics of Eq. (31) around the equilibrium point 
0 are entirely dictated by the signs of a and b. 

1.	 In the scenario where a > 0 and b > 0:

•	 When ∇ < 0 with |∇| << 1 , the equilibrium at 0 
is locally asymptotically stable, and there exists a 
positive unstable equilibrium.

(31)
du

dt
= f (u,∇), f ∶ ℝ

n ×ℝ → ℝ
n, f ∈ C

2
(ℝn ×ℝ)

(32)

a =

n∑
k,i,j=1

vkwiwj

�2fk

�ui�uj
(0, 0),

b =

n∑
k,i=1

vkwi

�2fk

�ui�∇
(0, 0).

•	 When 0 < ∇ << 1 , the equilibrium at 0 is unstable, 
and there exists a negative, locally asymptotically 
stable equilibrium.

2.	 If a < 0 and b < 0:

•	 When ∇ < 0 with |∇| << 1 , the equilibrium at 0 is 
unstable.

•	 When 0 < ∇ << 1 , the equilibrium at 0 is a locally 
asymptotically stable equilibrium, and there exists 
a positive unstable equilibrium.

3.	 If a > 0 and b < 0:

•	 When ∇ < 0 with |∇| << 1 , the equilibrium at 0 is 
unstable, and there exists a locally asymptotically 
stable negative equilibrium.

•	 When 0 < ∇ << 1 , the equilibrium at 0 is stable, 
and a positive unstable equilibrium emerges.

4.	 In the case where a < 0 and b > 0:
•	 When ∇ transitions from negative to positive, the 

stability of the equilibrium at 0 shifts from stable to 
unstable. Consequently, a negative unstable equilib-
rium transforms into a positive, locally asymptoti-
cally stable equilibrium.

Specifically, if a < 0 and b > 0 , the bifurcation is forward; 
whereas if a > 0 and b > 0 , the bifurcation is backward. 
Utilizing this method, we can derive the following result.

Theorem 4  The model of system (1) exhibits backward bifur-
cation at Rv

0
= 1.

Proof  To analyze the nature of the bifurcation, we employ 
center manifold theory (Agwu et al. 2023; Castillo-Chavez 
and Song 2004). For effective application of this theory, it is 
essential to introduce the following change of variables: Let 
S = u1 , V = u2 , Ed = u3 , Eo = u4 , Q = u5 , Id = u6 , Io = u7 , 
Ih = u8 , Rd = u9 , Ro = u10 . So that

M o r e o v e r ,  e m p l o y i n g  v e c t o r  n o t a t i o n 
u =

(
u1, u2, u3,… , u10

)T  a n d  du

dt
= F(u)  ,  w h e r e 

(33)N =

7∑
i=1

ui
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F =
(
f1, f2, f3,… , f10

)T  , the COVID-19 model (1) can be 
expressed as follows:

where

Let’s consider the Delta variant effective contact rate �d as 
the bifurcation parameter. Solving for �d = �∗

d
 from Rvd

0
= 1 

yields:

The Jacobian matrix of the transformed system (34) at the 
disease-free equilibrium (DFE) 

(
Δ0

)
 with �d = �∗

d
 is deter-

mined as follows:

(34)

du1

dt
≡ f1 = Π −

(1 − �)�du6u1

N
−

(1 − �)�ou7u1

N

− (� + �)u1 + �u5

du2

dt
≡ f2 = �u1 −

(1 − �)
(
1 − �d

)
�du6u2

N

−
(1 − �)

(
1 − �o

)
�ou7u2

N
− �u2

du3

dt
≡ f3 =

(1 − �)�du6
(
u1 +

(
1 − �d

)
u2

)
N

−
(
�d + �d + �

)
u3

du4

dt
≡ f4 =

(1 − �)�ou7
(
u1 +

(
1 − �o

)
u2

)
N

−
(
�o + �o + �

)
u4

du5

dt
≡ f5 = �du3 + �ou4 − (� + � + �)u5

du6

dt
≡ f6 = �du3 +

(1 − �)�1�du6u9

N

−
(1 − �)��ou7u6

N
−
(
�d + �d + �d + �

)
u6

du7

dt
≡ f7 = �ou4 +

(1 − �)��ou7u6

N

+
(1 − �)�2�ou7u9

N
+

(1 − �)�3�ou7u10

N

−
(
�o + �o + �o + �

)
u7

du8

dt
≡ f8 = �u5 + �du6 + �ou7 −

(
�h + �h + �

)
u8

du9

dt
≡ f9 = �du6 + f �hu8 −

(1 − �)�1�du6u9

N

−
(1 − �)�2�ou7u9

N
− �u9

du10

dt
≡ f10 = �ou7 + (1 − f )�hu8

−
(1 − �)�3�ou7u10

N
− �u10

N = u1 + u2 + u3 + u4 + u5 + u6 + u7 + u8 + u9 + u10

(35)�∗

d
=

(� + �)
(
�d + �d + �

)(
�d + �d + �d + �

)

(1 − �)
(
� + (1 − �d)�

)
�d

 where d1 = −
(1−�)�∗

d
�

K1

 , d2 = −
(1−�)�o�

K1

 , d3 = −
(1−�)(1−�d)�∗d�

K1

 , 

d4 = −
(1−�)(1−�o)�o�

K1

  ,  d5 =
(1−�)�∗

d(�+(1−�d)�)
K1

  , 

d6 =
(1−�)�o(�+(1−�o)�)

K1

 ,  K1 = � + � ,  K2 = �d + �d + � , 
K3 = �o + �o + � , K4 = � + � + � , K5 = �d + �d + �d + � , 
K6 = �o + �o + �o + � , K7 = �h + �h + � , and K8 = (1 − f )�h
.

The right eigenvector, w=(w1 , w2 , w3 , w4 , w5 , w6 , w7 , w8 , 
w9 , w10)T , associated with the simple zero eigenvalue can be 
obtained from J

(
Δ0

)|||�d=�∗d w = 0 , given by

Where y1 = � +
(
1 − �d

)
� , and y2 = � +

(
1 − �o

)
�.

From the equation (36), we obtained

J
�
Δ0

���d=�∗d =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−K1 0 0 0 � d1 d2 0 0 0

� − � 0 0 0 d3 d4 0 0 0

0 0 − K2 0 0 d5 0 0 0 0

0 0 0 − K3 0 0 d6 0 0 0

0 0 �d �o − K4 0 0 0 0 0

0 0 �d 0 0 − K5 0 0 0 0

0 0 0 �o 0 0 − K6 0 0 0

0 0 0 0 � �d �o − K7 0 0

0 0 0 0 0 �d 0 f �h − � 0

0 0 0 0 0 0 �o K8 0 − �

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(36)

− K
1
w
1
+ �w

5
−

(1 − �)�∗
d
�

K
1

w
6

−
(1 − �)�o�

K
1

w
7
= 0,

�w
1
− �w

2
−

(1 − �)
(
1 − �d

)
�∗
d
�

K
1

w
6

−
(1 − �)

(
1 − �o

)
�o�

K
1

w
7
= 0,

− K
2
w
3
+

(1 − �)�∗
d
y
1

K
1

w
6
= 0,

− K
3
w
4
+

(1 − �)�oy2

K
1

w
7
= 0,

�dw3
+ �ow4

− K
4
w
5
= 0,

�dw3
− K

5
w
6
= 0,

�ow4
− K

6
w
7
= 0,

�w
5
+ �dw6

+ �ow7
− K

7
w
8
= 0,

�dw6
+ f �hw8

− �w
9
= 0,

�ow7
+ K

8
w
8
− �w

10
= 0.
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(37)

w1 =

(
(1 − 𝜙)𝛼∗

d
y1 − K1K5

)
𝜔𝜎dw6(

K2 − 𝛾d
)
K2
1
K4

−
(1 − 𝜙)𝛼∗

d
𝜇w6

K2
1

+

(
(1 − 𝜙)𝛼oy2 − K1K6

)
𝜔𝜎ow7(

K3 − 𝛾o
)
K2
1
K4

−
(1 − 𝜙)𝛼o𝜇w7

K2
1

,

w2 =

(
(1 − 𝜙)𝛼∗

d
y1 − K1K5

)
𝜔𝜎d − 𝜓w6(

K2 − 𝛾d
)
𝜇K2

1
K4

−

(
(1 − 𝜙)𝛼∗

d
(𝜇 +

(
1 − 𝜏d

)
K1

)
𝜓w6

𝜇K2
1

+

(
(1 − 𝜙)𝛼oy2 − K1K6

)
𝜔𝜎o𝜓w7(

K3 − 𝛾o
)
𝜇K2

1
K4

−
(1 − 𝜙)𝛼o(𝜇 +

(
1 − 𝜏o

)
K1)𝜓w7

𝜇K2
1

,

w3 =

(
(1 − 𝜙)𝛼∗

d
y1 − K1K5

)
w6(

K2 − 𝛾d
)
K1

,

w4 =

(
(1 − 𝜙)𝛼oy2 − K1K6

)
w7(

K3 − 𝛾o
)
K1

,

w5 =

(
(1 − 𝜙)𝛼∗

d
y1 − K1K5

)
𝜎dw6(

K2 − 𝛾d
)
K1K4

+

(
(1 − 𝜙)𝛼oy2 − K1K6

)
𝜎ow7(

K3 − 𝛾o
)
K1K4

,

w6 = w6 > 0,w7 = w7 > 0,

w8 =

(
(1 − 𝜙)𝛼∗

d
y1 − K1K5

)
𝜅𝜎dw6(

K2 − 𝛾d
)
K1K4K7

+
𝜃dw6

K7

+

(
(1 − 𝜙)𝛼oy2 − K1K6

)
𝜅𝜎ow7(

K3 − 𝛾o
)
K1K4K7

+
𝜃ow7

K7

,

w9 =

(
(1 − 𝜙)𝛼∗

d
y1 − K1K5

)
𝜅𝜎df 𝜂hw6(

K2 − 𝛾d
)
𝜇K1K4K7

+

(
𝜃df 𝜂h + 𝜂dK7

)
w6

𝜇K7

+

(
(1 − 𝜙)𝛼oy2 − K1K6

)
𝜅𝜎of 𝜂hw7(

K3 − 𝛾o
)
𝜇K1K4K7

+
𝜃o𝜂hw7

𝜇K7

,

w10 =

(
(1 − 𝜙)𝛼∗

d
y1 − K1K5

)
𝜅𝜎dK8w6(

K2 − 𝛾d
)
𝜇K1K4K7

+
𝜃dK8w6

𝜇K7

+

(
(1 − 𝜙)𝛼oy2 − K1K6

)
𝜅𝜎oK8 + w7(

K3 − 𝛾o
)
𝜇K1K4K7

+

(
𝜃oK8 + 𝜂oK7

)
w7

𝜇K7

.

Likewise, the left eigenvector, v=(v1 , v2 , v3 , v4 , v5 , v6 , v7 , v8 , 
v9 , v10 ), satisfying v.w = 1 , associated with the simple zero 
eigenvalue, can be derived from vJ

(
Δ0

)|||�d=�∗d = 0 . This is 

given by:

We obtained

Computation of a and b
S i n c e  v1 = v2 = v5 = v8 = v9 = v10 = 0  f o r 

k = 1, 2, 3,… , 10 , the only non-zero partial derivatives are

(38)

− K1v1 + �v2 = 0,

− �v2 = 0,

− K2v3 + �dv5 + �dv6 = 0,

− K3v4 + �ov5 + �ov7 = 0,

�v1 − K4v5 + �v8 = 0,

−
(1 − �)�∗

d
�v1

K1

−
(1 − �)

(
1 − �d

)
�∗
d
�v2

K1

+
(1 − �)�∗

d
y1v3

K1

− K5v6 + �dv8 + �dv9 = 0,

−
(1 − �)�o�v1

K1

−
(1 − �)

(
1 − �o

)
�o�v2

K1

+
(1 − �)�oy2v4

K1

− K6v7 + �ov8 + �ov10 = 0,

− K7v8 + f �hv9 + K8v10 = 0,

− �v9 = 0,

− �v10 = 0.

(39)

v1 = v2 = v5 = v8 = v9 = v10 = 0, v3 = v3 > 0,

v4 = v4 > 0, v6 =

(
(1 − 𝜙)𝛼∗

d
y1 − K1K2

)
v3(

K5 − 𝛾d
)
K1

,

and v7 =

(
(1 − 𝜙)𝛼oy2 − K1K3

)
v4(

K6 − 𝛾o
)
K1

.
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 But

(40)

�2f3

�u1�u6
=

�2f3

�u6�u1
=

(1 − �)�∗
d
�
(
K1 − y1

)
ΠK1

,

�2f3

�u2�u6
=

�2f3

�u6�u2
=

(1 − �)�∗
d
�
(
K1

(
1 − �d

)
− y1

)
ΠK1

,

�2f3

�u3�u6
=

�2f3

�u6�u3
=

�2f3

�u4�u6
=

�2f3

�u6�u4

=
�2f3

�u5�u6
=

�2f3

�u6�u5
= −

(1 − �)�∗
d
y1�

ΠK1

,

�2f3

�u6�u7
=

�2f3

�u7�u6
=

�2f3

�u6�u8
=

�2f3

�u8�u6

=
�2f3

�u6�u9
=

�2f3

�u9�u6
= −

(1 − �)�∗
d
y1�

ΠK1

,

�2f3

�u6�u10
=

�2f3

�u10�u6
= −

(1 − �)�∗
d
y1�

ΠK1

,

�2f3

�u2
6

= −
2(1 − �)�∗

d
y1�

ΠK1

,
�2f3

�u6��
∗
d

=
(1 − �)y1

K1

�2f4

�u1�u7
=

�2f4

�u7�u1
=

(1 − �)�o�
(
K1 − y2

)
ΠK1

,

�2f4

�u2�u7
=

�2f4

�u7�u2
=

(1 − �)�o�
(
K1

(
1 − �o

)
− y2

)
ΠK1

,

�2f4

�u3�u7
=

�2f4

�u7�u3
=

�2f4

�u4�u7
=

�2f4

�u7�u4

=
�2f4

�u5�u7
=

�2f4

�u7�u5
= −

(1 − �)�oy2�

ΠK1

,

�2f4

�u6�u7
=

�2f4

�u7�u6
=

�2f4

�u7�u8
=

�2f4

�u8�u7

=
�2f4

�u7�u9
=

�2f4

�u9�u7
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(1 − �)�oy2�

ΠK1

,
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�u7�u10
=

�2f4

�u10�u7
= −

(1 − �)�oy2�

ΠK1

,

�2f4

�u2
7
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2(1 − �)�oy2�

ΠK1

,

�2f6

�u6�u7
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�2f6

�u7�u6
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(1 − �)��o�

Π
,

�2f6

�u6�u9
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�2f6

�u9�u6
=

(1 − �)�1�
∗
d
�

Π
,

�2f7

�u6�u7
=

�2f7

�u7�u6
=

(1 − �)��o�

Π
,

�2f7

�u7�u9
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�2f7

�u9�u7
=

(1 − �)�2�o�

Π
,

�2f7

�u7�u10
=

�2f7

�u10�u7
=

(1 − �)�3�o�

Π
.

a =

n∑
k,i,j=1

vkwiwj

�2fk

�ui�uj

(
Δ0

)

(41)
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 where
G1 = (1 − �)�∗

d
y1 − K1K5  ,  G2 = (1 − �)�oy2 − K1K6  , 

G3 =
(
K2 − �d

)
K4   ,  G4 =

(
K3 − �o

)
K4   , 

G5 = (1 − �)�∗
d
y1 − K1K2 , and G6 = (1 − �)�oy2 − K1K3.

and

Therefore, based on Theorem 5 in Castillo-Chavez and Song 
(2004), with a positive bifurcation coefficient b and a posi-
tive coefficient for a, the COVID-19 model demonstrates a 
backward bifurcation occurring at Rvd

0
= 1 whenever a > 0 

(Figs. 2, 3). 	�  ◻

Global stability of the disease‑free equilibrium: special case

Several factors known to contribute to backward bifurca-
tion in epidemiological models include imperfect vaccines, 

�1 =
G1��d − (1 − �)�∗

d
�G3

K2 − �d
,

�2 =
G2��o − (1 − �)�o�G4
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(
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d
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)
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(
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)
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)
�oG4K1,

�5 =

(
G3 +

(
K2 − �d

)
�d
)
G1w6(

K2 − �d
)
G3

,

�6 =

(
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(
K3 − �o

)
�o
)
G2(

K3 − �o
)
G4

,

�7 =
G1��d + G3�dK1

G3

,

�8 =
G2��o + G4�oK1

G4

,

�9 =

(
G1��d + G3�dK1

)
f �h + �dG3K1K7

G3

,

�10 =

(
G2��o + G4�oK1

)
f �h

G4

,

�11 =

(
G2��o + G4�oK1

)
K8 + �oG4K1K7

G4

.

b =

n∑
k,i=1

vkwi

�2fk

�ui��
∗
d

(
Δ0

)

(42)b =
v3w6(1 − 𝜙)y1

K1

> 0

secondary infections, and re-infections (as discussed in, 
for example, Omede et al. 2023; Gumel et al. 2018; Gumel 
2012; Omame et al. 2018; Anguelov et al. 2014; Yaagoub 
2024; Naim et al. 2024; Feng et al. 2014). Thus, we aim 
to explore conditions under which the backward bifurca-
tion property can be eliminated from the COVID-19 model 
(1). Consequently, we examine a specific scenario in which 
the COVID-19 model (1) is simplified by assuming perfect 
vaccines and the absence of secondary infections and rein-
fections (i.e., �d = �o = 1 , and �1 = �2 = �3 = � = 0 ). The 
following results are proposed:
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Fig. 2   Bifurcation diagram of the Delta variant dominance equi-
librium, parameter values used are �

d
= 0.05 , �

d
= 0.75 , �

d
= 0.7 , 

�
1
= 0.7 and other parameters are as in Table 3

0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Reproduction number R0
vo

Fo
rc

e 
of

 in
fe

ct
io

n,
 �

o

Stable DFE
Unstable DFE

Stable endemic equilibrium

Unstable endemic equilibrium

Fig. 3   Bifurcation diagram of the Omicron variant dominance equi-
librium, parameter values used are �
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= 0.1 , �
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3
= 0.8 and 

other parameters are as in Table 3
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Theorem 5  Considering the special case of the COVID-19 
model (1) with �d = �o = 1 , and �1 = �2 = �3 = � = 0 . The 
disease-free equilibrium ( Δ0 ) of the COVID-19 model (1) is 
globally asymptotically stable in D  whenever Rv∗

0
≤ 1 (i.e, 

R
vd∗

0
≤ 1 and Rvo∗

0
≤ 1)

Proof  We examine the following Lyapunov function:

where K1 = � + � , K2 = �d + �d + � , K3 = �o + �o + � , 
K4 = � + � + �   ,  K5 = �d + �d + �d + �   , 
K6 = �o + �o + �o + � , K7 = �h + �h + � , and K8 = (1 − f )�h , 
with Lyapunov derivatives (where a dot denotes differentia-
tion with respect to time)

It’s important to note that S(t) ≤ N(t) holds within the feasi-
ble region D  for all t > 0,

Hence, since all the COVID-19 model parameters are non-
negative, it follows that Ċ ≤ 0 for Rv∗

0
≤ 1 (i.e, Rvd∗

0
≤ 1 and 

R
vo∗

0
≤ 1 ) with Ċ = 0 if and only if Id = Io = 0 . Therefore, 

C  serves as a Lyapunov function on D  . Hence, according 
to LaSalle’s invariance principle (La 1976), every solution 
to the COVID-19 model (1), starting from initial conditions 
within D  , converges to the COVID-19 disease-free equilib-
rium point (Δ0) as t → ∞ . 	� ◻

Therefore, the significance of the aforementioned find-
ings in epidemiology lies in the fact that Rv∗

0
≤ 1 serves as 

both a necessary and sufficient condition for eradicating 

(43)C = �dEd + �oEo + K2Id + K3Io.

(44)

Ċ =𝛾dĖd + 𝛾oĖo + K2
̇Id + K3

̇Io,

Ċ =𝛾d

(
(1 − 𝜙)𝛼dIdS

N
− K2Ed

)

+ 𝛾o

(
(1 − 𝜙)𝛼oIoS

N
− K3Eo

)

+ K2

(
𝛾dEd − K5Id

)
+ K3

(
𝛾oEo − K6Io

)
,

Ċ =
(1 − 𝜙)𝛼d𝛾dIdS

N
+

(1 − 𝜙)𝛼o𝛾oIoS

N

− K2K5Id − K3K6Io.

(45)

Ċ ≤Id
(
(1 − 𝜙)𝛼d𝛾d𝜇

𝜓 + 𝜇
− K2K5

)
+

Io

(
(1 − 𝜙)𝛼o𝛾o𝜇

𝜓 + 𝜇
− K3K6

)
,

Ċ ≤K2K5Id

(
(1 − 𝜙)𝛼d𝛾d𝜇

(𝜓 + 𝜇)K2K5

− 1

)
+

K3K6Io

(
(1 − 𝜙)𝛼o𝛾o𝜇

(𝜓 + 𝜇)K3K6

− 1

)

Ċ =K2K5Id
(
R

vd∗

0
− 1

)
+ K3K6Io

(
R

vo∗

0
− 1

) ≤ 0

COVID-19 infection from the population. This means that 
any slight perturbation within the system not only leads 
to a temporary return to the disease-free state (local sta-
bility) but also ensures that the entire system trajectory 
ultimately converges to the disease-free equilibrium over 
time, regardless of the initial conditions. Furthermore, 
achieving global asymptotic stability indicates robust 
and sustainable disease control, offering the possibility 
of long-term eradication without the threat of recurrent 
outbreaks.

Results

Herd immunity threshold

Herd immunity, a fundamental concept in public health, 
indicates that when a substantial portion of a population 
becomes immune to a particular disease, such as corona-
virus, it provides collective protection to the entire com-
munity, preventing widespread outbreaks. This immunity 
can arise through vaccination or prior infection, leading 
to the development of protective antibodies that reduce 
the risk of future infections. Essentially, its like creating 
a protective shield around the community by ensuring 
enough people are immune, making it difficult for the dis-
ease to spread rampantly (Gumel et al. 2021; Iboi et al. 
2020; Patel et al. 2022). Herd immunity might not effec-
tively hold against new or mutated variants of the original 
virus. These new strains can sometimes evade the immune 
system’s defenses established through prior infection or 
vaccination. When the virus mutates significantly, it can 
potentially render the existing immunity less effective, 
leading to breakthrough infections or re-infections among 
individuals who were previously immune to the earlier 
strain.

Given that vaccinated individuals can still get infected, 
it’s important to determine the essential percentage 
(known as the critical proportion) of vaccinated individu-
als needed to eliminate COVID-19 when the vaccine is 
consistently used despite its imperfections.

Recall that the COVID-19 basic reproduction number 
for the Delta and Omicron variants of COVID-19 in the 
presence of vaccination is given as

R
vd

0
=

(1 − �)�d
(
� + (1 − �d)�

)
�d

(� + �)
(
�d + �d + �

)(
�d + �d + �d + �

) , and

R
vo

0
=

(1 − �)�o
(
� + (1 − �o)�

)
�o

(� + �)
(
�o + �o + �

)(
�o + �o + �o + �

) .



	 Modeling Earth Systems and Environment

It’s noticeable that the basic reproduction numbers decline 
as the vaccination rate ( � ) increases. Therefore, higher vac-
cination rates lead to smaller reproduction numbers.

We have that

The proportion of vaccinated individuals in the population 
at the disease-free equilibrium ( Δ0 ) is given by

The herd immunity threshold is determined by solving for 
Pv in Rvd

0
= 1 and Rvo

0
= 1 . Thus, we have that

The formulas Pd

v
 and Po

v
 mentioned above extends the criti-

cal vaccination threshold to account for imperfect vaccines. 
When the vaccine is flawless (that is, when �d = �o = 1 ), it 
results in the usual formula for critical vaccination threshold 
applicable to flawless vaccines (Martcheva 2015).

To project the herd immunity threshold for the United 
States, we calculated the Omicron variant basic reproduction 
number ( Ro

0
 ) using Eq. (11) with the parameters outlined in 

Table 3. This computation yielded Ro

0
= 2.4136 . By substi-

tuting this value into Eq. (48), we determined that the herd 
immunity threshold for the United States stands at approxi-
mately 97.67%. Biologically, this implies that to eradicate 
COVID-19 within the population, assuming a COVID-19 
vaccine provides 60% protection against the Omicron vari-
ant, a vaccination rate of at least 97.67% among the suscep-
tible population in the United States is necessary to achieve 
the herd immunity threshold. It’s worth emphasizing that our 
calculation specifically targeted the herd immunity thresh-
old for the Omicron variant due to our model’s data fitting 
occurring during the emergence of Omicron in the United 
States, where it surpassed the Delta variant to become the 
dominant variant.

Sensitivity analysis

In this section, we’ll perform a sensitivity analysis on the 
key parameters contributing to the basic reproduction num-
ber for both the Delta and Omicron variants of the COVID-
19 model. The aim of this analysis is to assess the impact 
of each parameter on the transmission dynamics of these 
variants. To achieve this, we’ll adopt the methodology delin-
eated in Oguntolu et al. (2024). Following the procedure 

(46)
lim
�→∞

R
vd

0
(�) =

(
1 − �d

)
R

d

0
, and

lim
�→∞

R
vo

0
(�) =

(
1 − �o

)
R

o

0

(47)Pv =
V∗

N∗
=

�

� + �

(48)P
d

v
=

1

�d

(
1 −

1

R
d

0

)
, and P

o

v
=

1

�o

(
1 −

1

R
o

0

)

outlined in Oguntolu et al. (2024), we’ll employ the normal-
ized forward sensitivity index for a variable, represented by 
’u’, which variably depends on the parameter, denoted as ’x’. 
This sensitivity index is defined as:

Therefore, the sensitivity index of the basic reproduction 
number for the Delta and Omicron variants with respect to 
the parameter ’x’ is expressed as:

We initiate by computing the sensitivity indices of the basic 
parameters for the Delta variant, utilizing the parameter val-
ues detailed in Table 3.

Since the basic reproduction number for the Delta variant is 
symmetrical to the Omicron variant, we have that

(49)T
u

x
=

�u

�x
×

x

u
.

(50)
T

R
vd
0

x =
�R

vd

0

�x
×

x

R
vd

0

, and

T
R

vo
0

x =
�R

vo

0

�x
×

x

R
vo

0

.

(51)

T
R

vd
0

�d
=

(1 − �)
(
� + (1 − �d)�

)
�d

(� + �)
(
�d + �d + �

)(
�d + �d + �d + �

)

×
�d(� + �)

(
�d + �d + �

)(
�d + �d + �d + �

)

(1 − �)�d
(
� + (1 − �d)�

)
�d

.

T
R

vd
0

�d
= 1,

T
R

vd
0

�
= −

�

1 − �
= −0.4286,

T
R

vd
0

�d
= −

�d�

� +
(
1 − �d

)
�

= −1.8324,

T
R

vd
0

� = −
���d

(� + �)
(
� +

(
1 − �d

)
�
) = −0.4853,

T
R

vd
0

�d
=

�d + �

�d + �d + �
= 0.3907

T
R

vd
0

�d
= −

�d

�d + �d + �
= −0.3676,

T
R

vd
0

�d
= −

�d

�d + �d + �d + �
= −0.3771,

T
R

vd
0

�d
= −

�d

�d + �d + �d + �
= −0.0566,

T
R

vd
0

�d
= −

�d

�d + �d + �d + �
= −0.5387,

T
R

vd
0

� =
�

� +
(
1 − �d

)
�

−
�

� + �

−
�

�d + �d + �
−

�

�d + �d + �d + �
= 0.4345.
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Interpretation of the sensitivity indices

The bar charts illustrating the sensitivity indices for the basic 
reproduction numbers of the Delta and Omicron variants of 
COVID-19 are presented in Figs. 4 and 5, respectively. Param-
eters with positive indices in these charts exert a significant 
impact on accelerating the spread of the diseases. An eleva-
tion in the values of these parameters, while keeping others 

(52)

T
R

vo
0

�o
= 1,

T
R

vo
0

�
= −

�

1 − �
= −0.4286,

T
R

vo
0

�o
= −

�o�

� +
(
1 − �o

)
�

= −1.1897,

T
R

vo
0

� = −
���o

(� + �)
(
� +

(
1 − �o

)
�
) = −0.3151,

T
R

vo
0

�o
=

�o + �

�o + �o + �
= 0.1941,

T
R

vo
0

�o
= −

�o

�o + �o + �
= −0.1826,

T
R

vo
0

�o
= −

�o

�o + �o + �o + �
= −0.7338,

T
R

vo
0

�o
= −

�o

�o + �o + �o + �
= −0.0037,

T
R

vo
0

�o
= −

�o

�o + �o + �o + �
= −0.2446,

T
R

vo
0

� =
�

� +
(
1 − �o

)
�

−
�

� + �

−
�

�o + �o + �
−

�

�o + �o + �o + �
= 0.42.
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Fig. 4   Sensitivity index of the basic reproduction number of the Delta 
variant of COVID-19
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Table 3   Parameter values for the COVID-19 model (1)

Parameter Value Source

Π 0.056 Hamilton et al. (2024)
�
d

0.3 Fitted
�
o

0.68 Fitted
� 0.0203 Iboi et al. (2020)
�
d

0.88 Estimated from Lauring et al. (2022)
�
o

0.6 Estimated from Lauring et al. (2022)
� 0.3 Estimated from Okuonghae and Omame 

(2020)
� 0.007313 Estimated from Murphy et al. (2020)
�
d

0.015 Okuonghae and Omame (2020)
�
o

0.0015 Fitted
�
h

0.001041 Fitted
� 1

14

Ngonghala et al. (2020)

�
d

1

7

Omede et al. (2023)

�
o

1

10

Fitted

�
h

0.03 Fitted
�
d

0.1 Fitted
�
o

0.05 Fitted
� 0.51 Fitted
�
1

0.05 Fitted
�
2

0.4 Fitted
�
3

0.25 Fitted
�
d

0.1160 Ngonghala et al. (2020)
�
d

0.1160 Ngonghala et al. (2020)
�
d

1

5.2

Okuonghae and Omame (2020)

�
o

0.512 Fitted
f 0.5 Fitted
� 0.05 Fitted
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constant, leads to an increase in the basic reproduction number. 
Conversely, parameters displaying negative indices contribute 
to mitigating the disease burdens; thus, an increase in their 
values results in a decrease in the basic reproduction numbers 
for both variants.

Numerical simulations

In this section, we carried out the numerical simulations of the 
COVID-19 model (1) using MATLAB software. The numeri-
cal simulations were conducted with the aim of providing a 
visual representation for some of the theoretical analysis previ-
ously discussed.

To validate the COVID-19 model, we fitted the COVID-19 
model (1) to the daily confirmed cases of COVID-19 in the 
United States from December 20, 2021, to January 31, 2022. 
This time frame was selected to coincide with the emergence 
of the Omicron variant in the United States, with the goal of 
capturing the dynamics between the Delta and Omicron vari-
ants of COVID-19. The data fitting process was conducted 
using the fmincon algorithm in MATLAB, and the daily 
confirmed cases data were obtained from the World Health 
Organization (WHO) (World Health 2019). The estimated total 
population of the United States is approximately 336 million 
individuals. The initial values of the state variables used for 
data fitting purposes are as follows: V(0) = 208, 517, 246 , 
Ed(0) = 2, 000, 000  ,  Eo = 1, 500, 000  ,  Q(0) = 1, 500  , 
Id(0) = 150, 000  ,  Io(0) = 350, 000  ,  Ih(0) = 67, 352  , 
Rd(0) = 0 , and Ro(0) = 0 . Thus,

(53)
S(0) = N − (V(0) + Ed(0) + Eo(0) + Q(0) + Id(0)

+ Io(0) + Ih(0) + Rd(0) + Ro(0)).

S(0) = 123413902.

It’s important to highlight that the initial values used for 
vaccinated individuals were obtained from CDC (Centers 
for Disease 2024), reflecting the total number of individuals 
who completed the primary vaccination series as of Decem-
ber 20, 2021 (Table 4). The fitting of the COVID-19 model 
to the confirmed cases of COVID-19 in the United States is 
illustrated in Fig. 6. Additionally, our model forecasts the 
potential trajectory of COVID-19 cases in the United States 
for a 200-day period, as depicted in Fig. 7.

Utilizing the parameter values outlined in Table 3, the 
values of the basic reproduction numbers for the Delta and 
Omicron variants of COVID-19 are presented in Table 5.

We calculated the Omicron invasion reproduction number 
using the parameter values specified in Table 3, along with 
the initial conditions of the state variables employed in data 
fitting. The computed value for the invasion reproduction 

Table 4   The daily confirmed 
cases of COVID-19 in the 
United State from December 20, 
2021 to January 31, 2022

Day Confirmed cases Day Confirmed cases Day Confirmed cases Day Confirmed cases

Dec 20 87,584 Jan 2 471,965 Jan 15 892,303 Jan 28 545,225
Dec 21 102,213 Jan 3 302,957 Jan 16 898,407 Jan 29 572,820
Dec 22 266,159 Jan 4 390,858 Jan 17 465,957 Jan 30 523,326
Dec 23 203,318 Jan 5 902,391 Jan 18 418,737 Jan 31 222,172
Dec 24 237,883 Jan 6 732,514 Jan 19 968,465
Dec 25 278,812 Jan 7 702,790 Jan 20 856,293
Dec 26 241,450 Jan 8 798,436 Jan 21 780,466
Dec 27 115,824 Jan 9 852,951 Jan 22 776,490
Dec 28 211,284 Jan 10 448,743 Jan 23 776,480
Dec 29 464,495 Jan 11 486,541 Jan 24 328,564
Dec 30 389,514 Jan 12 1,265,520 Jan 25 314,947
Dec 31 474,309 Jan 13 803,539 Jan 26 1,011,148
Jan 1 584,647 Jan 14 855,880 Jan 27 493,232
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Fig. 6   Confirmed cases of COVID-19 from December 20, 2021 to 
January 31, 2022
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number is R0o∶d = 1.4875 . Additionally, we conducted a 
study by varying the compliance rate to COVID-19 safety 
protocols ( � ) and the efficacy of the vaccine against the 
Omicron variant ( �o ) to assess their impact on the invasion 
reproduction number. The resulting values of the invasion 
reproduction number for different scenarios are summarized 
in Tables 6 and 7.

Discussion

In this study, a deterministic mathematical model for the 
transmission dynamics of the Delta and Omicron variants 
of COVID-19 is presented and rigorously analyzed. We 
computed the basic reproduction number for both variants 

using the next generation operator method. Our analysis 
proved that the disease-free equilibrium for the Delta and 
Omicron variants is locally asymptotically stable when their 
respective basic reproduction numbers are less than 1. Using 
center manifold theory, we observed that the COVID-19 
model exhibits backward bifurcation, characterized by the 
coexistence of a stable disease-free equilibrium and a stable 
endemic equilibrium whenever the reproduction numbers 
for the Delta and Omicron variants are less than 1. Assum-
ing perfect vaccine efficacy and no reinfection, the disease-
free equilibrium for both variants is globally asymptoti-
cally stable whenever their basic reproduction numbers are 
below 1. We also computed the Omicron variant invasion 
reproduction number to determine how the Omicron variant 
invades the population and becomes the dominant strain. 
Sensitivity analysis on the basic reproduction numbers for 
both variants revealed that the key parameters driving the 
spread and expansion of these variants are the transmission 
rates ( �d and �o ), natural death rate ( � ), and the progression 
rates from the exposed to infected compartments ( �d and 
�o ). Additionally, we calculated the necessary percentage of 
susceptible individuals that need to be vaccinated to achieve 
herd immunity. It was found that with a vaccine offering 
60% protection, 97.67% of the susceptible population would 
need to be vaccinated against the Omicron variant. We car-
ried out the numerical simulations of our model and fitted 
it to the daily cumulative cases of COVID-19 in the United 
States. Figure 8a and b depicts the surface plots of the basic 
reproduction number for the Delta and Omicron variants of 
COVID-19 ( Rvd

0
 and Rvd

0
 ) as function of the detection rates 

( �d and �o ) and the efficacy of vaccine against the variants 
of COVID-19 ( �d and �o ), it is observed that an increase in 
the detection rates ( �d and �o ) and the efficacy of vaccine 
( �d and �o ) will significantly reduce the basic reproduction 
numbers ( Rvd

0
 and Rvd

0
 ). This outcome aligns seamlessly 

with the results from the sensitivity analysis.
Fig. 9a and b is the surface plots of the Delta and Omi-

cron variants basic reproduction number ( Rvd

0
 and Rvd

0
 ) as a 

function of the compliance rate to COVID-19 Safety proto-
cols ( � ) and efficacy rate of vaccine to Delta variant ( �d ) and 
Omicron variant ( �o ) respectively. Figure 9a and b reveals 
that by enhancing the compliance rate to COVID-19 safety 
protocols to approximately 50% and achieving perfect effi-
cacy in vaccines against the Delta and Omicron variants, the 
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Fig. 7   Projection of the number of confirmed cases of COVID-19

Table 5   Values of the basic 
reproduction numbers of the 
Delta and Omicron variants of 
COVID-19 using parameter 
values in Table 3

Basic reproduction 
number

Value

R
vd

0
0.1704

R
d

0
0.4825

R
vd∗

0
0.1278

R
vo

0
1.349

R
o

0
2.4136

R
vo∗

0
0.6392

Table 6   The effect of � on 
Omicron invasion reproduction 
number

� 0.1 0.3 0.5 0.7 0.9

Invasion reproduction number ( Ro∶d

0
) 1.9125 1.4875 1.0625 0.6375 0.2125

Table 7   The effect of �
o
 on 

Omicron invasion reproduction 
number

�
o

0.1 0.3 0.5 0.7 0.9

Invasion reproduction number ( Ro∶d

0
) 2.2370 1.9372 1.6374 1.3376 1.0378
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basic reproduction numbers for these variants can be nota-
bly reduced, potentially reaching levels below 0.2 and 0.4, 
respectively. Figure 10a and b depicts the surface plots of the 
Delta and Omicron variants basic reproduction number ( Rvd

0
 

and Rvd

0
 ) as a function of the vaccination rate ( � ) and the 

detection rate of the Delta variant ( �d ) and detection rate of 
Omicron variant ( �o ) via testing respectively. In Fig. 10a and 
b, it is observed that a decrease in the vaccination rate ( � ) 
and a reduction in the detection rate of individuals infected 
with the Delta and Omicron variants ( �d and �o ) correspond 
to an increase in the basic reproduction numbers of both 

variants. This observation aligns seamlessly with the con-
clusions drawn from the sensitivity analysis. Figure 11 is 
the surface plot of the Omicron variant basic reproduction 
number ( Rvd

0
 ) as a function of the vaccination rate ( � ) and 

the compliance rate to COVID-19 safety protocol ( � ). Fig-
ure 11 illustrates that by elevating both the vaccination rate 
( � ) and the compliance rate to COVID-19 safety protocols 
beyond 50%, the basic reproduction number of the Omicron 
variant can be reduced to below one.

Figure 12 illustrates the simulations of the effect of the 
vaccination rate ( � ) on the infected individuals with Delta 
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variant of COVID-19, Omicron variant of COVID-19, and 
hospitalized individuals respectively. In Fig. 12a, it was 
observed that an increase in the vaccination rate decreases 
the number of individuals infected with Delta variant of 
COVID-19, furthermore, it was observed that if the vacci-
nation rate can be stepped up to 70%, the number of infected 
individuals with Delta variant of COVID-19 can be reduced 
to be below 100,000 within 15 days. Similar results is 
observed in Fig. 12b for the infected individuals with Omi-
cron variant of COVID-19. In Fig. 12c, it was observed that 
when the vaccination rate is stepped up to 70%, the peak 

value of the number of hospitalized individuals decreases 
from 2.8 million to 2 million.

Fig. 13 illustrates the simulations of the effect of the 
compliance rate to COVID-19 safety protocols (Usage of 
face mask and hand sanitizer) ( � ) on the infected individu-
als with Delta variant of COVID-19, Omicron variant of 
COVID-19, and hospitalized individuals respectively. In 
Fig. 13a and b, it is observed that if the compliance rate of 
COVID-19 safety protocols can be stepped up to about 50%, 
the number of infected individuals with Delta and Omicron 
variants of COVID-19 will be reduced below 200,000 indi-
viduals within 20 days. In Fig. 13c, if the compliance rate 
to COVID-19 safety protocols is stepped up to 70%, it is 
observed that the number of hospitalized individuals will 
be reduced to below 1 million in 45 days.

Figure 14 is the simulations of the effect of the efficacy 
rate of vaccine to Omicron variant of COVID-19 ( �o ) on 
the infected individuals with Omicron variant of COVID-19 
and the hospitalized individuals. It is shown that an increase 
in the efficacy rate of vaccine to Omicron variant ( �o ) sig-
nificantly reduces the number of individuals infected with 
the Omicron variant of COVID-19 as well as the hospital-
ized individuals. Figure 15 illustrates the simulations of 
the effect of the efficacy rate of vaccine to Delta variant of 
COVID-19 ( �d ) on the infected individuals with Delta vari-
ant of COVID-19 and the hospitalized individuals. Unlike 
the results in Fig. 14, it was observed that an increase in the 
efficacy rate of the vaccine to Delta variant of COVID-19 
( �d ) has minimal effect in decreasing the number of infected 
individuals with delta variant as well as the hospitalized 
individuals.
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Figures 16a, b, and 17a demonstrates that in scenarios 
where vaccination is implemented and the vaccine efficacy 
against both the Delta and Omicron variants of COVID-19 
is perfect, the number of infected individuals drastically 
decreases in comparison to scenarios without vaccina-
tion within the population. Correspondingly, in Figs. 16c 
and 17b, it is evident that elevating the vaccination rate 
to approximately 50% and achieving perfect efficacy in 
vaccines against the Delta and Omicron variants leads 
to a significant decrease in the number of hospitalized 
individuals.

Conclusion

This paper presents a deterministic mathematical model 
designed to explore the transmission dynamics of the Delta 
and Omicron variants of COVID-19, considering reinfec-
tion and imperfect vaccination. The detailed examination 
of this model reveals that both the Delta and Omicron 
variants exhibit the "backward bifurcation" phenomenon 
when their basic reproduction number drops below one. 
This distinct characteristic poses significant challenges in 
effectively managing COVID-19 within the population. 
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However, under the assumption of perfect vaccine efficacy 
and no reinfection, these variants have a globally asymp-
totically stable disease-free equilibrium. To further inves-
tigate, a sensitivity analysis was conducted on the basic 
parameters of the reproduction numbers for both the Delta 
and Omicron variants, identifying the key factors influenc-
ing their transmission. Additionally, the paper calculates 
the Omicron invasion reproduction number and formulates 
analytical expressions to determine the required percent-
age of vaccinated individuals necessary for eradicating 
COVID-19, even with the consistent use of an imperfect 
vaccine. The main findings of this study include: 

1.	 Both the Delta and Omicron variants exhibit the phe-
nomenon of backward bifurcation when their basic 
reproduction number falls below one. This unique prop-
erty poses challenges in effectively controlling COVID-
19 within the population.

2.	 In a scenario where vaccine efficacy is perfect and there 
are no instances of re-infection, both the Delta and Omi-
cron variants of COVID-19 attain a globally asymptoti-
cally stable disease-free equilibrium.

3.	 The sensitivity analysis conducted on the reproduc-
tion numbers of the Delta and Omicron variants reveals 
that the most influential parameters affecting the trans-
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mission of both variants are the effective contact rates 
(denoted as �d for the Delta variant and �o for the Omi-
cron variant) along with the rate of progression from the 
exposed class to the infectious class (represented as �d 
for the Delta variant and �o for the Omicron variant).

4.	 With a COVID-19 vaccine offering 60% protection 
against the Omicron variant, a vaccination rate of at least 
97.67% among the susceptible population is required to 
attain the herd immunity threshold.

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

8

9
x 105

Time (in days)

In
fe

ct
ed

 in
di

vi
du

al
s 

w
ith

 o
m

ic
ro

n 
va

ria
nt

 I 
o (t

)

o = 0.1

o = 0.3

o = 0.5

o = 0.7

o = 0.9

(a)

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 106

Time (in days)

D
et

ec
te

d 
an

d 
ho

sp
ita

liz
ed

 in
di

vi
du

al
s 

I h (t
)

 

 

�o = 0.1

�o = 0.3

�o = 0.5

�o = 0.7

�o = 0.9

(b)

Fig. 14   The effect of the efficacy rate of vaccine to Omicron variant ( �
o
 ) on (a) infected individuals with Omicron variant of COVID-19 I

o
(t) , (b) 

detected and hospitalized individuals I
h
(t)

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7
x 105

Time (in days)

In
fe

ct
ed

 in
di

vi
du

al
s 

w
ith

 d
el

ta
 v

ar
ia

nt
 I 

d (t
)

 

 

�d = 0.1

�d = 0.3

�d = 0.5

�d = 0.7

�d = 0.9

(a)

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4
x 106

Time (in days)

D
et

ec
te

d 
an

d 
ho

sp
ita

liz
ed

 in
di

vi
du

al
s 

I h (t
)

 

 

�d = 0.1

�d = 0.3

�d = 0.5

�d = 0.7

�d = 0.9

(b)

Fig. 15   The effect of the efficacy rate of vaccine to Delta variant ( �
d
 ) on (a) infected individuals with Delta variant of COVID-19 I

d
(t) , (b) 

detected and hospitalized individuals I
h
(t)



Modeling Earth Systems and Environment	

5.	 The findings from numerical simulations reveal that 
increasing both the vaccination rate and the effective-
ness of the vaccine against the Delta and Omicron vari-
ants, alongside higher adherence to COVID-19 safety 
protocols, leads to a substantial reduction in the number 
of individuals requiring hospitalization.

Drawing from the outcomes of this study, here are 
some recommendations for healthcare practitioners and 

policymakers aimed at combating and alleviating the 
impact of COVID-19: 

1.	 Prioritize increasing vaccination rates across all eligible 
populations, focusing on vaccine effectiveness against 
prevalent variants like omicron.

2.	 Encourage strict adherence to COVID-19 safety meas-
ures, including mask-wearing, social distancing, and 
hand hygiene, to curb transmission rates.
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3.	 Strengthen healthcare facilities by providing adequate 
resources, equipment, and personnel to manage potential 
surges in hospitalizations.

4.	 Educate the public about the significance of vaccinations 
and adherence to safety protocols through comprehen-
sive awareness campaigns.

5.	 Foster community engagement and collaboration to 
ensure the successful implementation of preventive 
measures and vaccination campaigns.

There are several directions for extending this study: 

1.	 Expanding the scope of this study could involve refor-
mulating the model using Caputo-based or Atangana-
Beleanu-based fractional order models. This approach 
would offer fresh insights into the dynamics of COVID-
19 from a different mathematical perspective. Numeri-
cally solving these models could provide a more detailed 
understanding of disease spread and its control mecha-
nisms.

2.	 Introducing an age-structured model that would allow 
for a more detailed examination of COVID-19 dynam-
ics within different age groups. This approach could 
uncover age-specific patterns of transmission, suscepti-
bility, and the impact of interventions, aiding in targeted 
strategies for disease management and vaccination dis-
tribution.

Appendix

Appendix: Continuation of the co‑existence 
of the Delta and Omicron equilibrium

where
(54)

W
(
�∗∗
d
, �∗∗

o

)
= �∗∗8

o
L1 + �∗∗

d
�∗∗7
o

L2 + �∗∗7
o

L3 + �∗∗
d
�∗∗6
o

L4

+ �∗∗2
d

�∗∗6
o

L5 + �∗∗6
o

L6 + �∗∗
d
�∗∗5
o

L7+

�∗∗2
d

�∗∗5
o

L8 + �∗∗3
d

�∗∗5
o

L9 + �∗∗5
o

L10+

+ �∗∗
d
�∗∗4
o

L11 + �∗∗2
d

�∗∗4
o

L12 + �∗∗3
d

�∗∗4
o

L13+

�∗∗4
d

�∗∗4
o

L14 + �∗∗4
o

L15 + �∗∗
d
�∗∗3
o

L16+

�∗∗2
d

�∗∗3
o

L17 + �∗∗3
d

�∗∗3
o

L18 + �∗∗4
d

�∗∗3
o

L19+

�∗∗5
d

�∗∗3
o

L20 + �∗∗3
o

L21 + �∗∗
d
�∗∗2
o

L22

+ �∗∗2
d

�∗∗2
o

L23 + �∗∗3
d

�∗∗2
o

L24 + �∗∗4
d

�∗∗2
o

L25+

�∗∗5
d

�∗∗2
o

L26 + �∗∗2
o

L27 + �∗∗
d
�∗∗
o
L28+

�∗∗2
d

�∗∗
o
L29 + �∗∗3

d
�∗∗
o
L30 + �∗∗4

d
�∗∗
o
L31+

�∗∗5
d

�∗∗
o
L32 + �∗∗

o
L33 + �∗∗

d
L34 + �∗∗2

d
L35+

�∗∗3
d

L36 + �∗∗4
d

L37 + �∗∗5
d

L38 + L39 = 0,

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7
x 105

Time (in days)

In
fe

ct
ed

 in
di

vi
du

al
s 

w
ith

 d
el

ta
 v

ar
ia

nt
 I 

d (t
)

 

 

�d = 1, � = 0.5

�d = 0, � = 0

(a)

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 106

Time (in days)

D
et

ec
te

d 
an

d 
ho

sp
ita

liz
ed

 in
di

vi
du

al
s 

I h (t
)

 

 

�d = 1, � = 0.5

�d = 0, � = 0

(b)

Fig. 17   The effect of the efficacy rate of vaccine to Delta variant ( �
d
 ) and the vaccination rate ( � ) on (a) infected individuals with Delta variant 

of COVID-19 I
d
(t) , (b) detected and hospitalized individuals I

h
(t)



Modeling Earth Systems and Environment	

With

L1 = (1 − �)�o
(
1 − �o

)
b2n1,

L2 = (1 − �)�o
(
1 − �d

)
b2

+ (1 − �)�o
(
1 − �o

)(
b3n1 + b2

(
n2 + n3

))
,

L3 = m1 + r1,L4 = m2 + r2,

L5 = (1 − �)�o
(
1 − �d

)(
b3n1 + b2

(
n2 + n3

))

+ (1 − �)�o
(
1 − �o

)(
b1n1 + b2n8 + b3

(
n2 + n3

))
,

L6 = m3 − r3,L7 = m4 − r4,L8 = m5 + r5,

L9 = (1 − �)�o
(
1 − �d

)(
b1n1 + b2n8 + b3

)

+ (1 − �)�o
(
1 − �o

)(
b1

(
n2 + n3

)
+ b3n8

)
,

L10 = m6 − r6,L11 = m7 − r7,

L12 = m8 − r8,L13 = m9 + r9,

L14 = (1 − �)�o
(
1 − �d

)(
b1

(
n2 + n3

)
+ b3n8

)

+ (1 − �)�o
(
1 − �o

)
b1n8,

L15 = m10 − r10,L16 = m11 − r11,L17 = m12 − r12,

L18 = m13 − r13,L19 = m14 + r14,

L20 = (1 − �)�o
(
1 − �d

)
b1n8,L21 = m15 − r15,

L22 = m16 − r16,L23 = m17 − r17,L24 = m18 − r18,

L25 = m19 − r19,L26 = (1 − �)�o
(
1 − �d

)
b1n17,

L27 = m20 − r20,L28 = m21 − r21,L29 = m22 − r22,

L30 = m23 − r23,L31 = m24 − r24,

L32 = (1 − �)�o
(
1 − �d

)
b1n25,L33 = m25 − r25,

L34 = m26 − r26,L35 = m27 − r27,L36 = m28 − r28,

L37 = m29 − r29,L38 = (1 − �)�o
(
1 − �d

)
b1n29,

L39 = Π�2
K
2

1
K
2

2
K
2

3
K
2

4
K
3

5
K
3

6
K
3

7

(
R

vo

0
−R

vd

0

)

− ΠK1K2K3K4K5K6e10e22R
vo

0
.

m
1
= (1 − �)�o

((
1 − �o

)(
b
5
n
1
+ b

2
n
4

)
+ b

2
y
2
n
1

)
,

m
2
= (1 − �)�o

(
1 − �d

)(
b
5
n
1
+ b

2
n
4
+ b

3
y
2
n
1

)
+ (1 − �)�o

(
1 − �o

)(
b
4
n
1
+ b

5

(
n
2
+ n

3

)
+ b

3
n
4

)
+ (1 − �)�o

(
1 − �o

)(
b
2

(
n
6
+ n

7

)
+ b

2

(
y
1
n
2
+ y

1
n
3

))
,

m
3
= (1 − �)�o

(
1 − �o

)(
b
6
n
1
+ b

5
n
4
+ b

2
n
9

)
+ (1 − �)�oy2

(
b
5
n
1
+ b

2
n
4

)
,

m
4
= (1 − �)�o

(
1 − �d

)(
b
6
n
1
+ b

5
n
4
+ b

2
n
9

)
+ (1 − �)�oy2

(
b
2
n
7
+ b

3
n
4
+ b

4
n
1
+ b

5
n
3

)
+ (1 − �)�oy1

(
b
2
n
6
+ b

5
n
2

)
+ (1 − �)�o

(
1 − �o

)(
b
2

(
n
11
+ n

12

)
+ b

3
n
9
+ b

4
n
4

)
+ (1 − �)�o

(
1 − �o

)(
b
5

(
n
6
+ n

7

)
+ b

6

(
n
2
+ n

3

))
,

m
5
= (1 − �)�o

((
1 − �d

)
b
4
+ b

1
y
2

)
n
1

+ (1 − �)�o
((
1 − �d

)
b
5
+
(
1 − �o

)
b
4
+ b

3
y
1

)
n
2

+ (1 − �)�o
((
1 − �o

)
b
5
+ b

2
y
1

)
n
8

+ (1 − �)�o
((
1 − �d

)
b
5
+
(
1 − �o

)
b
4
+ b

3
y
2

)
n
3

+ (1 − �)�o
((
1 − �d

)
b
2
+
(
1 − �o

)
b
3

)(
n
6
+ n

7

)
+ (1 − �)�o

(
1 − �o

)
b
2
n
17

+ (1 − �)�o
((
1 − �d

)
b
3
+
(
1 − �o

)
b
1

)
n
4
,

m
6
= (1 − �)�o

((
1 − �o

)
b
5
+ b

2
y
2

)
n
9

+ (1 − �)�o
((
1 − �d

)
b
6
+ b

5
y
2

)
n
4

+ (1 − �)�o
((
1 − �o

)(
b
2
n
19
− n

5

)
+ b

6
y
2
n
1

)
,

m
7
= (1 − �)�o

((
1 − �d

)
b
6
+ b

4
y
2

)
n
4

+ (1 − �)�o
((
1 − �o

)
b
6
+ b

5
y
2

)
n
7

+ (1 − �)�o
((
1 − �d

)
b
5
+
(
1 − �o

)
b
4
+ b

3
y
2

)
n
9

+ (1 − �)�o
(((

1 − �d
)
b
5
+
(
1 − �o

)
b
4
+ b

3
y
2

)
n
9

)
+ (1 − �)�o

((
1 − �d

)
b
2
+
(
1 − �o

)
b
3

)
n
19

+ (1 − �)�o
((
1 − �o

)
b
5
+ b

2
y
2

)
n
12

+ (1 − �)�o
((
1 − �o

)
b
5
+ b

2
y
1

)
n
11

+ (1 − �)�o
(
1 − �o

)
b
2

(
n
21
+ n

22

)
,

m
8
= (1 − �)�o

(((
1 − �d

)
b
5
+
(
1 − �o

)
b
4
+ b

3
y
2

)
n
7

)
+ (1 − �)�o

(
1 − �o

)
b
2
n
25
+

+ (1 − �)�o
((
1 − �d

)
b
2
+
(
1 − �o

)
b
3

)(
n
11
+ n

12

)
+ (1 − �)�o

(((
1 − �d

)
b
3
+
(
1 − �o

)
b
1

)
n
9

)
+ (1 − �)�o

((
1 − �o

)
b
5
+ b

2
y
1

)
n
17

+ (1 − �)�o
((
1 − �o

)
b
6
+ b

5
y
1

)
n
8

+ (1 − �)�o
((
1 − �d

)
b
5
+
(
1 − �o

)
b
4
+ b

3
y
1

)
n
6

+ (1 − �)�o
((
1 − �d

)
b
4
+ b

1
y
2

)
n
4

+ (1 − �)�o
((
1 − �d

)
b
6
+ b

4
y
1

)
n
2

+ (1 − �)�o
((
1 − �d

)
b
6
+ b

4
y
2

)
n
3
,

m
9
= (1 − �)�o

((
1 − �d

)
b
4
+ b

1
y
1

)
n
2

+ (1 − �)�o
((
1 − �d

)
b
4
+ b

1
y
2

)
n
3

+ (1 − �)�o
((
1 − �d

)
b
3
+
(
1 − �o

)
b
1

)(
n
6
+ n

7

)
+ (1 − �)�o

((
1 − �d

)
b
2
+
(
1 − �o

)
b
3

)
n
17

+ (1 − �)�o
(
(1 − �d)b5 +

(
1 − �o

)
b
4
+ b

3
y
1

)
n
8

+ (1 − �)�o
(
1 − �d

)
b
1
n
4
,

m
10

= (1 − �)�o
(((

1 − �o
)
b
6
+ b

5
y
2

)
n
9

)
+ (1 − �)�o

((
1 − �o

)
b
5
+ b

2
y
2

)
n
19

+ (1 − �)�o
(
1 − �o

)(
b
2
n
27
+ n

10

)
+ y

2

(
b
6
n
4
− n

5

)
,



	 Modeling Earth Systems and Environment

m
11

= (1 − �)�ob6y1n6

+ (1 − �)�o
((
1 − �d

)
b
5
+
(
1 − �o

)
b
4
+ b

3
y
2

)
n
19

+ (1 − �)�o
((
1 − �o

)
b
6
+ b

5
y
1

)
n
11

+ (1 − �)�o
((
1 − �o

)
b
6
+ b

5
y
2

)
n
12

+ (1 − �)�o
((
1 − �d

)
b
2
+
(
1 − �o

)
b
3

)
n
27

+ (1 − �)�o
((
1 − �o

)
b
5
+ b

2
y
1

)
n
21

+ (1 − �)�o
((
1 − �o

)
b
5
+ b

2
y
2

)
n
22

(1 − �)�o
((
1 − �o

)(
b
2

(
n
30
+ n

31

)
+ n

14
+ n

15

))
+ (1 − �)�o

(
b
6
y
2
n
17
+
((
1 − �d

)
b
6
+ b

4
y
2

)
n
9

)
+ (1 − �)�o

(
1 − �d

)
n
10
,

m
12

= (1 − �)�o
((
1 − �d

)
b
5
+
(
1 − �o

)
b
4
+ b

3
y
1

)
n
11

+ (1 − �)�o
(((

1 − �d
)
b
5
+
(
1 − �o

)
b
4

))
+ (1 − �)�o

((
1 − �d

)
b
2
+
(
1 − �o

)
b
3

)(
n
21
+ n

22

)
+ (1 − �)�o

((
1 − �d

)
b
3
+
(
1 − �o

)
b
1

)
n
19

+ (1 − �)�o
((
1 − �d

)
b
2
+
(
1 − �o

)
b
3

)(
n
21
+ n

22

)
+ (1 − �)�o

((
1 − �d

)
b
3
+
(
1 − �o

)
b
1

)
n
19

+ (1 − �)�o
((
1 − �o

)
b
6
+ b

5
y
1

)
n
17

+ (1 − �)�o
((
1 − �d

)
b
6
+ b

4
y
1

)
n
6

+ (1 − �)�o
((
1 − �d

)
b
6
+ b

4
y
2

)
n
7

+ (1 − �)�o
((
1 − �d

)
b
4
+ b

1
y
2

)
n
9

+ (1 − �)�o
((
1 − �o

)
b
5
+ b

2
y
1

)
n
25

+ (1 − �)�o
((
1 − �o

)(
b
2
n
29
+ n

18

)
+ b

6
y
1
n
8

)
,

m
13

= (1 − �)�o
((
1 − �d

)
b
5
+
(
1 − �o

)
b
4
+ b

3
y
1

)
n
17

+ (1 − �)�o
((
1 − �d

)
b
4
+ b

1
y
1

)
n
6

+ (1 − �)�o
((
1 − �d

)
b
4
+ b

1
y
2

)
n
7

+ (1 − �)�o
((
1 − �d

)
b
2
+
(
1 − �o

)
b
3

)
n
25

+ (1 − �)�o
((
1 − �d

)
b
6
+ b

4
y
1

)
n
8

+ (1 − �)�o
((
1 − �d

)
b
1
n
9
+
(
1 − �d

)
b
3

(
n
11
+ n

12

))
+ (1 − �)�o

(
1 − �o

)
b
1

(
n
11
+ n

12

)
,

m
14

= (1 − �)�o
(
1 − �d

)
b
1

(
n
6
+ n

7

)
+ (1 − �)�o

((
1 − �d

)
b
4
+ b

1
y
1

)
n
8

+ (1 − �)�o
((
1 − �d

)
b
3
+
(
1 − �o

)
b
1

)
n
17
,

m
15

= (1 − �)�o
((
1 − �o

)
b
6
+ b

5
y
2

)
n
19

+ (1 − �)�o
((
1 − �o

)
b
5
+ b

2
y
2

)
n
27

+ (1 − �)�o
(
1 − �o

)(
b
2
n
33
+ n

20

)
+ (1 − �)�oy2

(
b
6
n
9
+ n

10

)
,

m
16

= (1 − �)�o
((
1 − �d

)
b
5
+
(
1 − �o

)
b
4
+ b

3
y
2

)
n
27

+ (1 − �)�o
((
1 − �d

)
b
2
+
(
1 − �o

)
b
3

)
n
33

+ (1 − �)�o
(
1 − �d

)
n
20

+ (1 − �)�o
((
1 − �d

)
b
6
+ b

4
y
2

)
n
19

+ (1 − �)�o
((
1 − �o

)
b
6
+ b

5
y
1

)
n
21

+ (1 − �)�o
((
1 − �o

)
b
6
+ b

5
y
2

)
n
22

+ (1 − �)�o
(
1 − �o

)(
n
23
+ n

24

)
+ (1 − �)�o

(((
1 − �o

)
b
5
+ b

2
y
1

)
n
30
− n

16

)
+ (1 − �)�o

(((
1 − �o

)
b
5
+ b

2
y
2

)
n
31
+ y

1
n
14

)
+ (1 − �)�o

(
b
6

(
y
1
n
11
+ y

2
n
12

)
+ y

2
n
15

)
,

m
17

= (1 − �)�o
(((

1 − �d
)
b
5
+
(
1 − �o

)
b
4
+ b

3
y
2

)
n
22

)
+ (1 − �)�o

((
1 − �d

)
b
2
+
(
1 − �o

)
b
3

)(
n
30
+ n

31

)
+ (1 − �)�o

(
b
6
y
1
n
17
+
(
1 − �o

)
n
26
− y

1
n
18

)
+ (1 − �)�o

(
1 − �d

)(
n
14
+ n

15

)
+ (1 − �)�o

((
1 − �d

)
b
6
+ b

4
y
1

)
n
11

+ (1 − �)�o
((
1 − �d

)
b
6
+ b

4
y
2

)
n
12

+ (1 − �)�o
((
1 − �d

)
b
5
+
(
1 − �o

)
b
4
+ b

3
y
1

)
n
21

+ (1 − �)�o
((
1 − �d

)
b
4
+ b

1
y
2

)
n
19

+ (1 − �)�o
((
1 − �o

)
b
6
+ b

5
y
1

)
n
25

+ (1 − �)�o
(((

1 − �d
)
b
3
+
(
1 − �o

)
b
1

)
n
27

)
+ (1 − �)�o

((
1 − �o

)
b
5
+ b

2
y
1

)
n
29
,

m
18

= (1 − �)�o
((
1 − �d

)
b
1
n
19

)
+ (1 − �)�o

(((
1 − �d

)
b
5
+
(
1 − �o

)
b
4
+ b

3
y
1

)
n
25

)
+ (1 − �)�o

((
1 − �d

)
b
3
+
(
1 − �o

)
b
1

)(
n
21
+ n

22

)
− (1 − �)�o

(
1 − �d

)
n
18

+ (1 − �)�o
(((

1 − �d
)
b
2
+
(
1 − �o

)
b
3

)
n
29

)
+ (1 − �)�o

(((
1 − �d

)
b
4
+ b

1
y
1

)
n
11
+
)

+ (1 − �)�o
((
1 − �d

)
b
4
+ b

1
y
2

)
n
12

+ (1 − �)�o
((
1 − �d

)
b
16
+ b

4
y
1

)
n
17
,

m
19

= (1 − �)�o
((
1 − �d

)
b
3
+
(
1 − �o

)
b
1

)
n
25

+ (1 − �)�o
((
1 − �d

)
b
4
+ b

1
y
1

)
n
17

+ (1 − �)�o
(
1 − �d

)
b
1

(
n
11
+ n

12

)
,

m
20

= (1 − �)�o
(
b
6
y
2
n
19
+ y

2
n
20

)
+ (1 − �)�o

((
1 − �o

)
b
6
+ b

5
y
2

)
n
27

+ (1 − �)�o
(
1 − �o

)
n
28

+ (1 − �)�o
((
1 − �o

)
b
5
+ b

2
y
2

)
n
33
,



Modeling Earth Systems and Environment	

m
21

= (1 − �)�o
(
b
6

(
y
1
n
21
+ y

2
n
22

)
+ y

1
n
23
+ y

2
n
24

)
+ (1 − �)�o

((
1 − �d

)
b
6
+ b

4
y
2

)
n
27

+ (1 − �)�o
((
1 − �o

)
b
6
+ b

5
y
1

)
n
30

+ (1 − �)�o
((
1 − �o

)
b
6
+ b

5
y
2

)
n
31

+ (1 − �)�o
((
1 − �o

)
n
32
+
(
1 − �d

)
n
28

)
+ (1 − �)�o

(((
1 − �d

)
b
5
+
(
1 − �o

)
b
4
+ b

3
y
2

)
n
33

)
,

m
22

= (1 − �)�o
((
1 − �d

)
b
6
+ b

4
y
1

)
n
21

+ (1 − �)�o
(((

1 − �d
)
b
5
+
(
1 − �o

)
b
4
+ b

3
y
1

)
n
30

)
+ (1 − �)�o

(((
1 − �d

)
b
5
+
(
1 − �o

)
b
4
+ b

3
y
2

)
n
31

)
+ (1 − �)�ob6y1n25 + (1 − �)�o

(
1 − �o

)
n
13

+ (1 − �)�o
(((

1 − �d
)
b
3
+
(
1 − �o

)
b
1

)
n
33

)
+ (1 − �)�o

((
1 − �d

)
b
4
+ b

1
y
2

)
n
27

+ (1 − �)�o
((
1 − �o

)
b
6
+ b

5
y
1

)
n
29

+ (1 − �)�o
(
1 − �d

)(
n
23
+ n

24

)
+ (1 − �)�o

(((
1 − �d

)
b
6
+ b

4
y
2

)
n
22
+ y

1
n
26

)
,

m
23

= (1 − �)�o
((
1 − �d

)
b
4
+ b

1
y
1

)
n
21

+ (1 − �)�o
(((

1 − �d
)
b
5
+
(
1 − �o

)
b
4
+ b

3
y
1

)
n
29

)
+ (1 − �)�o

(((
1 − �d

)
b
3
+
(
1 − �o

)
b
1

)(
n
30
+ n

31

))
+ (1 − �)�o

(
1 − �d

)
n
26

+ (1 − �)�o
((
1 − �d

)
b
4
+ b

1
y
2

)
n
22

+ (1 − �)�o
((
1 − �d

)
b
6
+ b

4
y
1

)
n
25

+ (1 − �)�o
((
1 − �d

)
b
1
n
27

)
,

m
24

= (1 − �)�o
((
1 − �d

)
b
3
+
(
1 − �o

)
b
1

)
n
29

+ (1 − �)�o
(
1 − �d

)
b
1

(
n
21
+ n

22

)
+ (1 − �)�o

((
1 − �d

)
b
4
+ b

1
y
1

)
n
25
,

m
25

= (1 − �)�o
(((

1 − �o
)
b
6
+ b

5
y
2

)
n
33
+ b

6
y
2
n
27

)
+ (1 − �)�o

(
y
2
n
28
−
(
1 − �o

)
n
34

)
,

m
26

= (1 − �)�oy1n32

+ (1 − �)�o
(
b
6

(
y
1
n
30
+ y

2
n
31

)
−
(
1 − �d

)
n
34

)
+ (1 − �)�o

((
1 − �d

)
b
6
+ b

4
y
2

)
n
33
,

m
27

= (1 − �)�oy1
(
b
6
n
29
+ n

13

)
+ (1 − �)�o

((
1 − �d

)
b
6
+ b

4
y
1

)
n
30

+ (1 − �)�o
((
1 − �d

)
b
6
+ b

4
y
2

)
n
31

+ (1 − �)�o
((
1 − �d

)
n
32
+
((
1 − �d

)
b
4
+ b

1
y
2

)
n
33

)
,

m
28

= (1 − �)�o
((
1 − �d

)
b
6
+ b

4
y
1

)
n
29

+ (1 − �)�o
((
1 − �d

)
b
4
+ b

1
y
1

)
n
30

+ (1 − �)�o
(((

1 − �d
)
b
4
+ b

1
y
2

)
n
31
+
(
1 − �d

)
n
13

)
+ (1 − �)�o

(
1 − �d

)
b
1
n
33
,

m
29

= (1 − �)�o
((
1 − �d

)
b
4
+ b

1
y
1

)
n
29

+ (1 − �)�o
((
1 − �d

)
b
1

(
n
30
+ n

31

))
,

r
1
= (1 − �)�dK6

b
2

(
1 − �o

)(
U

4
+ U

5

)
,

r
2
= (1 − �)�dK6

((
1 − �o

)(
b
2
U

6
+ b

3

(
U

4
+ U

5

)))
+ (1 − �)�dK6

(
1 − �d

)
b
2

(
U

4
+ U

5

)
,

r
3
= (1 − �)�dK6

(
1 − �o

)(
b
2

(
U

1
+ U

2

)
− b

5

(
U

4
+ U

5

))
− (1 − �)�dK6

b
2

(
y
1
U

4
+ y

2
U

5

)
,

r
4
= (1 − �)�dK6

((
1 − �o

)(
b
2
U

7
− b

5
U

6

)
− b

2
y
1
U

6

)
− (1 − �)�dK6

((
1 − �d

)
b
5
+
(
1 − �o

)
b
4

)(
U

4
+ U

5

)
− (1 − �)�dK6

(
b
3

(
y
1
U

4
+ y

2
U

5

))
+ (1 − �)�dK6

(((
1 − �d

)
b
2
+
(
1 − �o

)
b
3

)(
U

1
+ U

2

))
,

r
5
= (1 − �)�dK6

((
1 − �d

)
b
3
+
(
1 − �o

)
b
1

)(
U

4
+ U

5

)
+ (1 − �)�dK6

(((
1 − �d

)
b
2
+
(
1 − �o

)
b
3

)
U

6

)
,

r
6
= (1 − �)�dK6

((
1 − �o

)
b
5
+ b

2
y
1

)
U

1

+ (1 − �)�dK6

((
1 − �o

)
b
5
+ b

2
y
2

)
U

2

+ (1 − �)�dK6
b
2

(
1 − �o

)(
U

9
+ U

10

)
− (1 − �)�dK6

(
1 − �o

)
b
6

(
U

4
+ U

5

)
− (1 − �)�dK6

b
5

(
y
1
U

4
+ y

2
U

5

)
,



	 Modeling Earth Systems and Environment

r
7
= (1 − �)�dK6

((
1 − �d

)
b
5
+
(
1 − �o

)
b
4

)(
U

1
+ U

2

)
+ (1 − �)�dK6

(
b
3

(
y
1
U

1
+ y

2
U

2

)
− b

4

(
y
1
U

4
+ y

2
U

5

))
− (1 − �)�dK6

b
6

(
1 − �d

)(
U

4
+ U

5

)
− (1 − �)�dK6

((
1 − �o

)
b
6
+ b

5
y
1

)
U

6

+ (1 − �)�dK6

((
1 − �o

)
b
5
+ b

2
y
1

)
U

7

+ (1 − �)�dK6

(
1 − �o

)
b
2
U

13

+ (1 − �)�dK6

((
1 − �d

)
b
2
+
(
1 − �o

)
b
3

)(
U

9
+ U

10

)
,

r
8
= (1 − �)�dK6

((
1 − �d

)
b
2
+
(
1 − �o

)
b
3

)
U

7

+ (1 − �)�dK6

((
1 − �d

)
b
3
+
(
1 − �o

)
b
1

)(
U

1
+ U

2

)
− (1 − �)�dK6

((
1 − �d

)
b
5
+
(
1 − �o

)
b
4
+ b

3
y
1

)
U

6

− (1 − �)�dK6

(
1 − �d

)
b
4

(
U

4
+ U

5

)
− (1 − �)�dK6

b
1

(
y
1
U

4
+ y

2
U

5

)
,

r
9
= (1 − �)�dK6

((
1 − �d

)(
b
1

(
U

4
+ U

5

)
+ b

3
U

6

))
+ (1 − �)�dK6

(
1 − �o

)
b
1
U

6
,

r
10

= (1 − �)�dK6

(
1 − �o

)
b
6

(
U

1
+ U

2

)
+ (1 − �)�dK6

(
b
5

(
y
1
U

1
+ y

2
U

2

)
−
(
1 − �o

)
U

3

)
+ (1 − �)�dK6

(
1 − �o

)
b
5

(
U

9
+ U

10

)
+ (1 − �)�dK6

b
2

(
y
1
U

9
+ y

2
U

10

)
+ (1 − �)�dK6

(
1 − �o

)
b
2

(
U

16
+ U

17

)
− (1 − �)�dK6

b
6

(
y
1
U

4
+ y

2
U

5

)
,

r
11

= (1 − �)�dK6

(
1 − �d

)(
b
6

(
U

1
+ U

2

)
− U

3

)
+ (1 − �)�dK6

(
1 − �d

)
b
4

(
y
1
U

1
+ y

2
U

2

)
+ (1 − �)�dK6

((
1 − �o

)
b
2
U

19
− b

6
y
1
U

6

)
+ (1 − �)�dK6

((
1 − �d

)
b
5
+
(
1 − �o

)
b
4

)(
U

9
+ U

10

)
+ (1 − �)�dK6

b
3

(
y
1
U

9
+ y

2
U

10

)
+ (1 − �)�dK6

((
1 − �o

)
b
5
+ b

2
y
1

)
U

13

+ (1 − �)�dK6

((
1 − �o

)(
b
6
U

7
− U

8

)
+ b

5
y
1
U

7

)
+ (1 − �)�dK6

((
1 − �d

)
b
2
+
(
1 − �o

)
b
3

)(
U

16
+ U

17

)
,

r
12

= (1 − �)�dK6

(
1 − �d

)
b
4

(
U

1
+ U

2

)
+ (1 − �)�dK6

b
1

(
y
1
U

1
+ y

2
U

2

)
+ (1 − �)�dK6

(((
1 − �d

)
b
5
+
(
1 − �o

)
b
4
+ b

3
y
1

)
U

7

)
+ (1 − �)�dK6

((
1 − �d

)
b
3
+
(
1 − �o

)
b
1

)(
U

9
+ U

10

)
+ (1 − �)�dK6

((
1 − �d

)
b
2
+
(
1 − �o

)
b
3

)
U

13

− (1 − �)�dK6

((
1 − �d

)
b
6
+ b

4
y
1

)
U

6
,

r
13

= (1 − �)�dK6

(
1 − �d

)
b
1

(
U

1
+ U

2

)
− (1 − �)�dK6

((
1 − �d

)
b
4
+ b

1
y
1

)
U

6

+ (1 − �)�dK6

((
1 − �d

)
b
3
+
(
1 − �o

)
b
1

)
U

7
,

r
14

= (1 − �)�dK6

(
1 − �d

)
b
1
U

6
,

r
15

= (1 − �)�dK6
b
1

(
y
1
U

1
+ y

2
U

2

)
+ (1 − �)�dK6

((
1 − �o

)
b
2
U

21
− y

1
U

3

)
+ (1 − �)�dK6

(
1 − �o

)
b
6

(
U

9
+ U

10

)
+ (1 − �)�dK6

b
5

(
y
1
U

9
+ y

2
U

10

)
+ (1 − �)�dK6

(
1 − �o

)
b
5

(
U

16
+ U

17

)
+ (1 − �)�dK6

(
1 − �o

)(
U

11
− U

12

)
+ (1 − �)�dK6

(
1 − �o

)
b
5

(
U

16
+ U

17

)
+ (1 − �)�dK6

b
2

(
y
1
U

16
+ y

2
U

17

)
,

r
16

= (1 − �)�dK6

((
1 − �d

)(
b
6

(
U

9
+ U

10

)
+
(
U

11
− U

12

)))
+ (1 − �)�dK6

(
y
1

(
b
6
U

7
− U

8

)
+ b

4

(
y
1
U

9
+ y

2
U

10

))
+ (1 − �)�dK6

((
1 − �d

)(
b
6
U

13
+
(
U

14
+ U

15

)))
+ (1 − �)�dK6

((
1 − �d

)
b
5
+
(
1 − �o

)
b
4

)(
U

16
− U

17

)
+ (1 − �)�dK6

b
3

(
y
1
U

16
+ y

2
U

17

)
+ (1 − �)�dK6

((
1 − �o

)
b
5
+ b

2
y
1

)
U

19

+ (1 − �)�dK6

((
1 − �d

)
b
2
+
(
1 − �o

)
b
3

)
U

21
,

r
17

= (1 − �)�dK6

((
1 − �d

)(
b
6
U

7
− U

8

)
+ b

4
y
1
U

7

)
+ (1 − �)�dK6

((
1 − �d

)
b
2
+
(
1 − �o

)
b
3

)
U

19

+ (1 − �)�dK6

((
1 − �d

)
b
5
+
(
1 − �o

)
b
4
+ b

3
y
1

)
U

13

+ (1 − �)�dK6

(
1 − �d

)
b
4

(
U

9
+ U

10

)
+ (1 − �)�dK6

b
1

(
y
1
U

9
+ y

2
U

10

)
+ (1 − �)�dK6

((
1 − �d

)
b
3
+
(
1 − �o

)
b
1

)(
U

16
+ U

17

)
,

r
18

= (1 − �)�dK6

(
1 − �d

)(
b
4
U

7
+ b

1

(
U

9
+ U

10

)
+ b

3
U

13

)
+ (1 − �)�dK6

(
b
1
y
1
U

7
+
(
1 − �o

)
b
1
U

13

)
,

r
19

= (1 − �)�dK6

(
1 − �d

)
b
1
U

7
,



Modeling Earth Systems and Environment	

and

r
20

= (1 − �)�dK6
b
6

(
y
1
U

9
+ y

2
U

10

)
+ (1 − �)�dK6

(
y
2
U

11
− y

1
U

12

)
+ (1 − �)�dK6

(
1 − �d

)(
b
6

(
U

16
+ U

17

)
+ U

18

)
+ (1 − �)�dK6

b
5

(
y
1
U

16
+ y

2
U

17

)
+ (1 − �)�dK6

((
1 − �o

)
b
5
+ b

2
y
1

)
U

21
,

r
21

= (1 − �)�dK6

(
1 − �d

)(
b
6

(
U

16
+ U

17

)
+ U

18

)
+ (1 − �)�dK6

b
4

(
y
1
U

16
+ y

2
U

17

)
+ (1 − �)�dK6

(
y
1
U

13
+
(
U

14
− U

15

))
+ (1 − �)�dK6

(
1 − �o

)(
b
6
U

19
+ U

20

)
+ (1 − �)�dK6

(
b
5
y
1
U

19
+ b

3
y
1

)
U

21

+ (1 − �)�dK6

((
1 − �d

)
b
5
+
(
1 − �o

)
b
4

)
U

21
,

r
22

= (1 − �)�dK6

(
1 − �d

)(
b
6
U

13
+
(
U

14
+ U

15

))
+ (1 − �)�dK6

b
4
y
1
U

13

+ (1 − �)�dK6

((
1 − �d

)
b
3
+
(
1 − �o

)
b
1

)
U

21

+ (1 − �)�dK6

(
1 − �d

)
b
4

(
U

16
+ U

17

)
+ (1 − �)�dK6

(
b
1

(
y
1
U

16
+ y

2
U

17

)
+ b

3
y
1
)U

19

)
+ (1 − �)�dK6

((
1 − �d

)
b
5
+
(
1 − �o

)
b
4

)
U

19
,

r
23

= (1 − �)�dK6

((
1 − �d

)
b
4
+ b

1
y
1

)
U

13

+ (1 − �)�dK6

(
1 − �d

)
b
1

(
U

16
+ U

17

)
+ (1 − �)�dK6

((
1 − �d

)
b
3
+
(
1 − �o

)
b
1

)
U

19
,

r
24

= (1 − �)�dK6

(
1 − �d

)
b
1
U

13
,

r
25

= (1 − �)�dK6

(
b
6

(
y
1
U

16
+ y

2
U

17

)
+ y

2
U

18

)
+ (1 − �)�dK6

((
1 − �o

)
b
6
+ b

5
y
1

)
U

21
,

r
26

= (1 − �)�dK6
y
1

(
b
6
U

19
+ U

20

)
+ (1 − �)�dK6

+
((
1 − �d

)
b
6
+ b

4
y
1

)
U

21
,

r
27

= (1 − �)�dK6
y
1

(
b
4
U

19
+ b

1
U

21

)
+ (1 − �)�dK6

(
1 − �d

)(
b
6
U

19
+ U

20
+ b

4
U

21

)
,

r
28

= (1 − �)�dK6

((
1 − �d

)(
b
1
U

21
+ b

4
U

19

)
+ b

1
y
1
U

19

)
,

r
29

= (1 − �)�dK6

(
1 − �d

)
b
1
U

19
,

r
30

= (1 − �)�dK6
b
6
y
1
U

21
,

b1 =
(
1 − �d

)(
K2K3K4 − ��dK3

)
,

b2 =
(
1 − �o

)(
K2K3K4 − ��oK2

)
,

b3 =
(
1 − �d

)(
K2K3K4 − ��oK2

)
+
(
1 − �o

)(
K2K3K4 − ��oK3

)
,

b4 =
(
� + (1 − �d)K1

)
K2K3K4

−
(
� + (1 − �d)�

)
��dK3,

b5 =
(
� + (1 − �o)K1

)
K2K3K4

−
(
� + (1 − �o)�

)
��oK2,

b6 = �K1K2K3K4,

n1 = �
(
�3a14 − �2e14e19

)
− e27a1,

n2 = �
(
�3a15 − �2e15e19

)
− e28a5,

n3 = �
(
�3a16 − �1e14e19

)
− e27a2,

n4 = �
(
�3a17 + �2a8

)
+ K5(�3a14 − �2e14e19) − e29a1

+ e27a3,

n
5
= e

10
e
22
e
27
,

n
6
= �

(
�
3
a
18
+ �

2
a
9

)
+ K

5
(�

3
a
15
− �

2
e
15
e
19
) − e

10
e
22
e
28
+ e

28
a
3
),

n
7
= �

(
�
3
a
19
+ �

1
a
8

)
+ K

5
�
3
a
16
− e

29
a
2
− e

11
e
22
e
27

+ e
27
a
4
,

n
8
= �

(
�
3
a
20
− �

1
e
15
e
19

)
− e

28
a
2
,

n
9
= �

(
�
3
a
21
+ �

2
a
10

)
+ K

5
(�

3
a
17
+ �

2
a
8
) + e

29
a
3

+ e
27
a
5
,

n
10

= ��
2
e
1
− e

12
e
22
e
27
,

n
11

= �
(
�
3
a
22
+ �

2
a
11

)
+ K

5
(�

3
a
18
+ �

2
a
9
) + e

28
a
5
,

n
12

= �
(
�
3
a
23
+ �

1
a
10

)
+

K
5
�
3
a
19
+ e

29
a
4
+ e

27
a
6
,

n
13

= ��
1
e
4
,

n
14

= ��
2
e
2
− e

12
e
22
e
28
,

n
15

= ��
1
e
1
− e

11
e
22
e
29
,

n
16

= e
13
e
22
e
27
,

n
17

= �
(
�
3
a
24
+ �

1
a
9

)
+ K

5
�
3
a
20
+ e

28
a
4
,

n
18

= e
11
e
22
e
28
,

n
19

= K
5
(�

3
a
21
+ �

2
a
10
) + ��

2
e
16
e
20
+ e

27
a
7
+ e

29
a
5
,

n
20

= K
5
�
2
e
1
+ ��

2
e
3
− e

12
e
22
e
29
,

n
21

= �(�
3
(e

4
e
9
+ a

25
) + �

2
e
17
e
20
) + K

5
(�

3
a
22

+ �
2
a
11
) + e

7
e
28
,



	 Modeling Earth Systems and Environment

n
22

= ��
1
e
16
e
20
+ K

5
�
3
a
23
+ e

8
e
20
e
27
+ e

29
a
6
,

n
23

= K
5
�
2
e
2
+ ��

2
e
4
,

n
24

= ��
1
e
3
− e

13
e
22
e
29
,

n
25

= e
28
a
6
+ ��

1
a
11
+ K

5
�
3
a
24
,

n
26

= ��
1
e
2
− e

13
e
22
e
28
,

n
27

= K
5
(�

3
e
3
e
9
− �

2
e
16
e
20
) + e

9
e
20
e
27
+ e

29
a
7
,

n
28

= K
5
�
2
e
3
,

n
29

= ��
1
e
17
e
20
+ e

8
e
20
e
28
,

n
30

= K
5
(�

3
(e

4
e
9
+ a

25
) + �

2
e
17
e
20
) + e

9
e
20
e
28
,

n
31

= e
8
e
20
e
29
, n

32
= K

5
�
2
e
4
,

n
33

= e
9
e
20
e
29
, n

34
= e

10
e
22
e
29
,

a
1
= e

5
e
19
+ e

10
e
21
, a

2
= e

6
e
19
+ e

11
e
21
,

a
3
= e

5
e
18
− e

7
e
19
− e

12
e
21
,

a
4
= e

6
e
18
− e

8
e
19
− e

13
e
21
,

a
5
= e

7
e
18
+ e

5
e
20
− e

9
e
19
, a

6
= e

8
e
18
+ e

6
e
20
,

a
7
= e

9
e
18
+ e

7
e
20
, a

8
= e

14
e
18
− e

16
e
19
,

a
9
= e

15
e
18
− e

17
e
19
, a

10
= e

16
e
18
+ e

14
e
20
,

a
11

= e
17
e
18
+ e

15
e
20
, a

14
= e

1
e
5
+ e

10
e
14
,

a
15

= e
2
e
5
+ e

10
e
15
, a

16
= e

1
e
6
+ e

11
e
14
,

a
17

= e
1
e
7
+ e

3
e
5
+ e

10
e
16
+ e

12
e
14
,

a
18

= e
2
e
7
+ e

4
e
5
+ e

10
e
17
+ e

12
e
15
,

a
19

= e
1
e
8
+ e

3
e
6
+ e

11
e
16
+ e

13
e
14
,

a
20

= e
2
e
6
+ e

11
e
15
,

a
21

= e
1
e
9
+ e

3
e
7
+ e

12
e
16
,

The structure of the polynomial W
(
�∗∗
d
, �∗∗

o

)
 in (42) is sug-

gestive of the phenomenon of backward bifurcation.
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