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Abstract
The defined epidemiologicalmodel systemexplaining the spread of infectious diseases
characterized with SARS-CoV-2 is analysed. The resulting SEIQR model is analysed
in a closed system. It considers the basic reproductive value, the equilibriumpoint, local
subclinical stability of the disease-free equilibrium point and local subclinical stability
of the endemic equilibrium point. This is examined and the asymptotic dynamics of the
appropriatemodel systemare investigated. Further, a sensitivity analysis supplemented
by simulations is prepared in advance to impose how changes in parameters involve
the dynamic behaviours of the model.

Keywords Stability · Basic reproductive number · Mathematical model · Numerical
simulations · Asymptotic dynamics

Mathematics Subject Classification 65C20 · 34K20

1 Introduction

Coronaviruses be a group of viruses that cause illnesses such as respiratory or gas-
trointestinal illnesses. Respiratory illnesses range out of the common cold to more
serious illnesses such as the Middle East Respiratory Syndrome (MERS-CoV). The
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severe acute Respiratory Syndrome (SARS-CoV). The novel coronavirus (nCoV) be
a strain that has never been identified in humans. When scientists have tested and
predicated exactly what type of coronavirus it is, they give it a name, such as in the
case of COVID-19, contains the virus that causes the transmission of SARS-CoV-2
[1–6].

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by a new
coronavirus called “SARS-CoV-2 virus”. Most people infected with the virus will
experience mild to moderate respiratory illness and recover without requiring special
treatment. The World Health Organization (WHO) is responsible for monitoring and
monitoring the spread of the coronavirus, as well as monitoring outbreaks that occur
continuous andwidespread outbreak of disease,whichwas the first searched inWuhan,
China, in late 2019. Since subsequently, it has been spread by travellers to well-nigh
every country in the world, and was declared a pandemic byWHO onMarch 22, 2020
[1–6]. As of November 23, 2020, there are more than 59,002,152 confirmed cases of
infection in 210 countries, more than 1,393,879 people have died from the pandemic,
and more than 40,776,358 people have recovered (COVID-19 Dashboard, 2020). This
COVID-19 outbreak has affected the health and lives ofmany people around theworld,
not including the economic damage that has occurred around the world [2–5]. The
behaviour of COVID-19 It can range for mild to drastic. Someone recover clearly
while others become seriously ill. If you test positive for COVID-19, you will have:
Fever Cough, Sore throat, Shortness of breath. Some people are asymptomatic but can
still spread the virus [5–8].

WHO describes “Quarantine of persons as the restriction of activities or separation
of persons who are not ill, but who may have been exposed to an infectious agent or
disease, with the primary objective of monitoring symptoms and the early detection
of cases.” Isolation, on the other hand, can be described as the parting of ill or infected
persons from others, to avert the spread of infection or contamination. As an agreement
in the public health sector, isolation is an effective approach in dealing with contagious
diseases like COVID-19, which may spread from droplets in the air. It is also argued
that compulsory quarantine and extensive travel restrictions may do more harm than
good. Although the current estimated case fatality rate for this disease (approximately
3.4%) is much less than that of SARS (11%), its rate of transmission is much faster
[12]. Hence, it is more likely to spread from one person to another. This rate, however,
seems to be dependent on region and the average age of the community [1–7, 14–25].

COVID-19 outbreak drains health care resources. Not only in poor or developing
countries. But it also affects developed countries, this causes a shortage of health
resources both in terms of finances and readiness in all aspects related to medical care.
Including utilities, consumer products and tourism for tourists. Therefore, early non-
pharmaceutical preventive measures such as lockdown, social distancing are required
and disease hygiene measures but later on the COVID-19 disease. This results in a
shortage of medical equipment, shortage of medical personnel hospital bed Intensive
care room (ICU room) Diagnostic safety equipment and oxygen tanks. In addition,
factors such as the migration of large numbers of workers, unemployment, the edu-
cation system, and the management of non-COVID- 19 crisis patients. It has become
a concern amid the pandemic [6, 7, 9–11]. It is important to diagnose the infection
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and the causative organism as early and accurately as possible so that the right inter-
vention (including measures such as isolation and quarantine) can be put in place
to confine the infection and prevent its spread [1–3, 5–9]. Preventive measures are
the present strategy to limit the spread of disease. Screening is required, diagnosis,
isolation, and treatment are necessary to prevent further spread. Prevention strategies
focus on patient isolation and careful infection control. This including appropriate
measures to be adopted during the diagnosis and the provision of clinical care to an
infected patient. Measures to prevent and control COVID-19 disease Important in the
community [1–3, 7–15].

From studying various impacts from the COVID-19 outbreak has seen the impor-
tance of economic and social impacts that directly affect tourism in all sectors related
to national development. As a result of this impact, the number of both Thai and
Domestic Tourists decreased rapidly. Compared to the past period, this causes a great
loss to economic agility. In response to this many governments and international orga-
nizations have promoted domestic tourism as a strategy for economic recovery. By
planning domestic tourism to outperform international tourism inmany countries amid
the pandemic. But there are many risks of COVID-19contamination, such as the rela-
tionship between population mobility and the spread of COVID-19, broad population
movements and movement patterns, change tourism type and non-tourism type, etc.

Finally, the researcher studied mathematical models to create a model that predicts
the actual situation and related factors that affect the spread of the disease for both
Thai and foreign tourists. To be used in creating measures to prevent the spread of
disease and control epidemics caused by this virus.

2 Materials andmethods

In this section,we study aSEIQR ten dimensionalCOVID-19 transmission of infection
in the model consisting of two groups of two populations, host humans in Thai and
host humans in Domestic Tourists [8, 11–13, 16]. The host population is divides into
five compartment: S1 humans susceptible in Thai to COVID-19 infection at time t , E1
humans exposed in Thai to COVID-19 infection at time t , I1 humans infectious in Thai
at time t , Q1 humans quarantined in Thai to COVID-19 infection at time t , R1 humans
recovered in Thai at time t , S2 humans susceptible in Domestic Tourists to COVID-19
infection at time t , E2 humans exposed in Domestic Tourists to COVID-19infection at
time t , I2 humans infectious in Domestic Tourists at time t , Q2 humans quarantined in
Domestic Tourists to COVID-19infection at time t , R2 humans recovered in Domestic
Tourists at time t . The systems of ordinary differential equations (ODE) modelling the
correspondence of two groups’ populations with nonlinear event functions studied in
[12–15, 17–23] follows;

dS1
dt

�μNh − ψ1S1(I1 + Q1) − δ1S1 + α1R1

dE1

dt
�ψ1S1(I1 + Q1) − δ1E1 − 1

I I P1
E1
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dI1
dt

� 1

I I P1
E1 − q1T I1 + q2T Q1 − (δ1 I1 + ρ1 I1)

dQ1

dt
�q1T I1 − q2T Q1 − γ1Q1 − δ1Q1

dR1

dt
�γ1Q1 − (δ1 + α1)R1

dS2
dt

�C NT − ψ2S2(I2 + Q2) − (δ2 + υ)S2 + α2R2

dE2

dt
�ψ2S2(I2 + Q2) − (δ2 + υ)E2 − 1

I I P2
E2

dI2
dt

� 1

I I P2
E2 − q1 f I2 + q2 f Q2 − (δ2 + ρ2 + υ)I2

dQ2

dt
�q1 f I2 − q2 f Q2 − γ2Q2 − (δ2 + υ)Q2

dR2

dt
�γ2Q2 − (δ2 + υ)R2 − α2R2 (1)

with initial densities:

S1(0) > 0, E1(0) > 0, I1(0) > 0, Q1(0) > 0, R1(0) > 0 in Thai and
S2(0) > 0, E2(0) > 0, I2(0) > 0, Q2(0) > 0, R2(0) > 0 in Domestic Tourists.

All the parameters and corresponding biological meaning are Table 1 given below.
We rescale the condition variables for the formulation model system (1) with nor-

malizing as follows:

S1
Nh

�S′
1,

E1

Nh
� E ′

1,
I1
Nh

� I ′
1,

Q1

Nh
� Q′

1,
R1

Nh
� R′

1,

S2
NT

�S′
2,

E2

NT
� E ′

2,
I2

NT
� I ′

2,
Q2

NT
� Q′

2,
R2

NT
� R′

2,

So that S′ + E ′ + I ′ + Q′ + R′ � 1 and S′
2 + E ′

2 + I ′
2 + Q′

2 + R′
2 � 1. Thus, after

discard of model system (1) leads to the following:

dS′
1(t)

dt
�μ − ψ1S′

1(t)(I
′
1(t) + Q′

1(t)) − δ1S′
1(t) + α1R′

1(t)

dE ′
1(t)

dt
�ψ1S′

1(t)(I
′
1(t) + Q′

1(t)) − δ1E ′
1(t) − 1

I I P1
E ′
1(t)

dI ′
1(t)

dt
� 1

I I P1
E ′
1(t) − q1T I ′

1(t) + q2T Q′
1(t) − (δ1 I ′

1(t) + ρ1 I ′
1(t))

dQ′
1(t)

dt
�q1T I ′

1(t) − q2T Q′
1(t) − γ1Q′

1(t) − δ1Q′
1(t)

dR′
1(t)

dt
�γ1Q′

1(t) − (δ1 + α1)R
′
1(t)
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Table 1 The explanation of the state variables and parameters of the model

Description Symbol

Recruitment term of the susceptible human in Thai μ

Total Thai human population Nh

Recruitment term of the susceptible human in domestic tourists C

Total domestic tourists human population NT

Transmission rate of virus between human in Thai human ψ1

Transmission rate of virus between human in domestic tourists human ψ2

Per capita rate of progression of Thai human from the exposed state to the infectious state I I P1

Per capita rate of progression of domestic tourists human from the exposed state to the
infectious state

I I P2

Rate at which infected Thai human changed to quarantine Thai human q1T

Rate at which quarantine Thai human changed to infected Thai human q2T

Rate at which infected domestic tourists human changed to quarantine domestic tourists
human

q1 f

Rate at which quarantine domestic tourists human changed to infected domestic tourists
human

q2 f

Per capita recovery rate for humans in Thai from the infectious state to the recovered state γ 1

Per capita recovery rate for humans in domestic tourists from the infectious state to the
recovered state

γ 2

Natural death rate of Thai humans δ1

Natural death rate of domestic tourists humans δ2

Per capita rate of loss of immunity in Thai humans α1

Per capita rate of loss of immunity in domestic tourists humans α2

Rate at which domestic tourists humans move out the country υ

Death rate due to COVID-19 of Thai human ρ1

Death rate due to COVID-19 of domestic tourists human ρ2

dS′
2(t)

dt
�C − ψ2S′

2(t)(I
′
2(t) + Q′

2(t)) − (δ2 + υ)S′
2(t) + α2R′

2(t)

dE ′
2(t)

dt
�ψ2S′

2(t)(I
′
2(t) + Q′

2(t)) − (δ2 + υ)E ′
2(t) − 1

I I P2
E ′
2(t)

dI ′
2(t)

dt
� 1

I I P2
E ′
2(t) − q1 f I ′

2(t) + q2 f Q′
2(t) − (δ2 + ρ2 + υ)I ′

2(t)

dQ′
2(t)

dt
�q1 f I ′

2(t) − q2 f Q′
2(t) − γ2Q′

2(t) − (δ2 + υ)Q′
2(t)

dR′
2(t)

dt
�γ2Q′

2(t) − (δ2 + υ)R′
2(t) − α2R′

2(t) (2)
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2.1 Positivity of solutions

In systems that the model Eqs. (2) are biologically and epidemiologically meaningful
and well posed it is appropriate to show that the solutions of all the condition variables
have non-negative for all time. Therefore, we possess the following proof theorem
[12–15, 17–23].

Theorem 1 The solution a group to set {S, E, I, Q, R} of the epidemiological for
the Eqs. (2) with non-negative initial data when S1(0) > 0, E1(0) > 0, I1(0) > 0,
Q1(0) > 0, R1(0) > 0 and S2(0) > 0, E2(0) > 0, I2(0) > 0, Q2(0) > 0, R2(0) > 0
still receive non-negative for all time non-negative t > 0.

Proof of Theorem 1 Give that initial data S1(0), E1(0), I1(0), Q1(0), R1(0) and S2(0),
E2(0), I2(0), Q2(0), R2(0) be non-negative. It is obvious for the first sub-equation of
the Eqs. (2) thatso as

dS′
1(t)

dt
+

[
ψ1S′

1(t)(I
′(t)1 + Q′

1(t)) + δ1S′
1(t)

] ≥ 0

d

dt

⎡

⎣S′
1(t) exp

⎛

⎝δ1t + ψ1

t∫

0

I ′
1(ζ1) + Q′

1(ζ1)

⎞

⎠dζ1

⎤

⎦ ≥ 0 (3)

Integrating (3) gives

S′
1(t) ≥ S′

1(0) exp

⎡

⎣−δ1t + ψ1

t∫

0

I ′
1(ζ1) + Q′

1(ζ1))dζ1

⎤

⎦ > 0, ∀t > 0 (4)

In addition, only check for the second sub-equation of the Eqs. (2) that
dE ′

1(t)
dt

[
δ1E ′

1(t) +
1

I I P1
E ′
1(t)

]
≥ 0

so aswhere of on integration yields

d

dt

[
(E ′

1(t) exp

(
δ1 +

1

I I P1

)]
≥ 0

E ′
1(t) ≥ E ′(0) exp

[(
δ1 +

1

I I P1

)
t

]
− ≥ 0, ∀t > 0 (5)

In addition, only check for the third sub-equation of the Eqs. (2) that

dI ′
1(t)

dt

[
q1T I ′

1(t) + (δ1 I ′
1(t) + ρ1 I ′

1(t))
] ≥ 0

so aswhere of on integration yields

d

dt

[
I ′
1(t) exp(q1T + δ1 + ρ1)

] ≥ 0
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I ′
1(t) ≥ I ′

1(0) exp[−(q1T + δ1 + ρ1)t] ≥ 0, ∀t > 0 (6)

In addition, only check for the fourth sub-equation of the Eqs. (2) that

dQ′
1(t)

dt

[
q2T Q′

1(t) + γ1Q′
1(t) + δ1Q′

1(t)
] ≥ 0

so aswhere of on integration yields

d

dt

[
Q′

1(t) exp(q2T + γ1 + δ1
] ≥ 0

Q′
1(t) ≥ Q′

1(0) exp[−(q2T + γ1 + δ1)t] ≥ 0, ∀t > 0. (7)

In addition, only check for the fifth sub-equation of the Eqs. (2) that

d R′
1(t)

dt
[δ1R′

1(t) + α1R′
1(t)] ≥ 0

so as
d1
dt [R

′
1(t) exp(δ1 + α1] ≥ 0.

Where of on integration yields

R′
1(t) ≥ R′

1(0) exp[−(δ1 + α1)t] ≥ 0, ∀t > 0 (8)

Within a resembling homologous, it can be shown that S′
2(t) > 0, E ′

2(t) > 0,
I ′
2(t) > 0, Q′

2(t) > 0 and R′
2(t) > 0 for all time t > 0. This concludes the proof. It

is decisive to note that model system (2) will be analysed in a practicable region 	

given by
	 � {(S1, E1, I1, Q1, R1, S2, E2, I2, R2) ∈ �10

+ : S1 + E1 + I1 + Q1 + R1+S2 +
E2 + I2 + R2 � 1} (But divided into two groups S1 + E1 + I1 + Q1 + R1 � 1and S2 +
E2 + I2 + R2 � 1. Whereof can be certainly endorsed to be positively invariant
with consider to the Eqs. (2). In the following, systems (2) is epidemiologically and
mathematically well-positioned in 	.

Theorem 2 The solution of the model system (1) are feasible for all
t > 0, if they enter the invariant region 
 � 
1 × 
2, where

1 � {(S1, E1, I1, Q1, R1 ∈ �5

+ : 0 < Nh(t) ≤ μNh
θ1

} As t → ∞, when θ � min{δ1,
δ1 +ρ1} and 
2 � {(S2, E2, I2, Q2, R2 ∈ �5

+ : 0 < NT (t) ≤ C NT
θ2

} As t → ∞, when

θ2 � min{δ2 + υ, δ2 + ρ2 + υ}.
Moreover, every solution for systems (1) with initial states in 
 residues in 
 for

all t > 0. Therefore, the dynamics of our model will be considered in 
.
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2.2 Analysis of themodel

2.2.1 Basic reproduction number

The next generation matrix approach gives the following statute for the purpose of the
basic number, R0 (Van den Driessche andWatmough 2002). The number of secondary
infections produced by a typical infectious individual in a completely susceptible two
group population (in Thai and in Domestic Tourists), will be used to define the all
systems behaviour of the model (2) [15–19, 24–28]. R0 can be obtained as

R0 � √
R0T R0F (9)

where

R0T � (q1T + q2T + γ1 + δ1)μψ1

δ1(1 + I I P1δ1)(q1T (γ1 + δ1) + (q2T + γ1 + δ1)(δ1 + ρ1))

Describing the number of Thai infections population and

R0F � C(q1 f + q2 f + γ2 + δ2 + υ)ψ2

(δ2 + υ)(1 + I I P2(δ2 + υ))(q1 f (γ2 + δ2 + υ) + (q2 f + γ2 + δ2 + υ)(δ2 + υ + ρ2))

Describing the number of foreign infections population.

Lemma1 To encounter the basic reproduction number for our proposed this model (2).
We take the assistance of next- generation matrix model [15–23, 31–35] formulation.
Initially, we define η � (E ′

1, I ′
1, Q′

1, R′
1, S′

1)
T and η1 � (E ′

2, I ′
2, Q′

2, R′
2, S′

2)
T . The

model (2) is rewritten in the following form

dy

dt
� F(y) − υ(y).

where F(y) is the non-negative matrix of new infectious (Thai and Domestic Tourists
populations) and υ(y) is the non-singular matrix for the transfers between the sections
in the infective equations (Thai and Domestic Tourists populations). As follows;

F(y) �

⎡

⎢⎢⎢⎢
⎢
⎣

ψ1S′
1(t)(I

′
1(t) + Q′

1(t))
0
0
0
0

⎤

⎥⎥⎥⎥
⎥
⎦

and υ(y)

�

⎡

⎢⎢⎢⎢
⎢⎢
⎣

(
δ1 + 1

I I P1

)
E ′
1(t)

− 1
I I P1

E ′
1(t) − q2T Q′

1(t) + (q1T + δ1 + ρ1)I ′
1(t)

−q1T I ′
1(t) + (q2T + γ1 + δ1)Q′

1(t)
−γ1Q′

1(t) + (δ1 + α1)R′
1(t)

−μ + ψ1S′
1(t)(I

′
1(t) + Q′

1(t)) + δ1S′
1(t) − α1R′

1(t)

⎤

⎥⎥⎥⎥
⎥⎥
⎦
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in Thai.

F(y) �

⎡

⎢⎢⎢⎢⎢
⎣

ψ2S′
2(t)(I

′
2(t) + Q′

2(t))
0
0
0
0

⎤

⎥⎥⎥⎥⎥
⎦

and υ(y) �

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

(
1

I I P2
+ δ2 + υ

)
E ′
2(t)

− 1
I I P2

E ′
2(t) − q2 f Q′

2(t)

+(q1 f + δ2 + ρ2 + υ)I ′
2(t)

−q1 f I ′
2(t)

+(q2 f + γ2 + δ2 + υ)Q′
2(t)

−γ2Q′
2(t) + (α2 + δ2 + υ)R′

2(t)
−C + ψ2S′

2(t)(I
′
2(t) + Q′

2(t))
+(δ2 + υ)S′

2(t) − α2R′
2(t)

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

and in Domestic Tourists.

The basic reproductive number (R0) is the threshold for the stability of the disease
free equilibrium B0. It can be calculated by R0 � ρ(Fυ−1). Where, Fυ−1 is called

the next generation matrix and ρ(Fυ−1) is the spectral radius of the matrix Fυ−1.
Then we get reproduction number (R0) where,

R0 �
(

(q1T + q2T + γ1 + δ1)μψ1

δ1(1 + I I P1δ1)(q1T (γ1 + δ1) + (q2T + γ1 + δ1)(δ1 + ρ1))

)

·
(

C(q1 f + q2 f + γ2 + δ2 + υ)ψ2

(δ2 + υ)(1 + I I P2(δ2 + υ))(q1 f (γ2 + δ2 + υ) + (q2 f + γ2 + δ2 + υ)(δ2 + υ + ρ2))

)

(10)

In ordinary, the basic reproduction number R0 of an epidemiological model can be
imposed as “The anticipatory number of associated by cases occurring in an entirely
vulnerable population by infected persons in general”. Therefore, the R0 value can
predict whether the disease will last or disappear. As stated in all mathematical epi-
demiology, when R0 < 1 the number of infected people decreases over time and the
disease disappears. Populations converge under the augmented hypothesis. Toward a
disease-free balance, there are no infected people. On the other hand, when R0 > 1,
the number of infected people increases. It peaks and then drops to 0 for the epidemic
model or converge to endemic equilibrium for endemic models.

R0 is the prominent eigenvalue of thematrix R0 � ρ(Fυ−1). By SEIQRmodel epi-
demic, consider a Susceptible-Exposed-Infected-Quarantined-Removed. Which the
basic reproductive number, R0, has played a central role in epidemiological theory for
SARS-CoV-2 because it provides an index of transmission intensity and establishes
threshold criteria.

Finally, Routh–Hurwitz standard is used for setting the stabilities of the model sys-
tem. If R0 > 1, subsequently the endemic equilibrium is local asymptotically stable,
but if R0 < 1, subsequently the disease free equilibrium point is local asymptotically
stable.

2.2.2 Equilibrium points

The standard method is used to analyse the model. The equilibrium points are found
by setting the right-hand side of Eq. (2) equal to zero. By doing this, equilibrium points
are obtained as follows [25–29]:
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(A) The disease free equilibrium of the systems (2) exists and then given by

φ0(S1, E1, I1, Q1, R1, S2, E2, I2, Q2, R2)�φ0

(
μ

δ1
, 0, 0, 0, 0,

C

δ2 + υ
, 0, 0, 0, 0

)

(The disease-free equilibrium is defined as the point at which no disease is present
and shown as E1 � 0, I1 � 0, Q1 � 0, R1 � 0, E2 � 0, I2 � 0, Q2 � 0, R2 � 0.)

(B) The endemic equilibrium state of the model systems (2) contains with infection
and then given by φ1(S∗

1 , E∗
1 , Q∗

1, R∗
1 , S∗

2 , E∗
2 , Q∗

2, R∗
2)

S∗
1 � I ∗

1 q1T γ1α1 + (q2T + γ1 + δ1)(α1 + δ1)μ

(α1 + δ1)(δ1(q2T + γ1 + δ1) + I ∗
1 (q1T + q2T + γ1 + δ1)ψ1

E∗
1 �

(
I I P1ψ1

(
I ∗
1 +

I ∗
1 q1T

q2T +γ1+δ1

)(
I ∗
1 q1T γ1α1 + (q2T + γ1 + δ1)(α1 + δ1)μ

))

((α1 + δ1)(1 + I I P1δ1)(δ1(q2T + γ1 + δ1) + I ∗
1 (q1T + q2T + γ1 + δ1)ψ1))

Q∗
1 � I ∗

1 q1T

q2T + γ1 + δ1

R∗
1 � I ∗

1 q1T γ1

(q2T + γ1 + δ1)(α1 + δ1)

S∗
2 �

C +
I ∗
2 q1 f γ2α2

(q2 f +γ2+δ2+υ)(α2+δ2+υ)

δ2 + υ + I ∗
2

(
q1 f

q2 f +γ2+δ2+υ

)
ψ2

E∗
2 �

(
I I P2ψ2

(
I ∗
2 +

I ∗
2 q1 f

q2 f +γ2+δ2+υ

)(
C +

I ∗
2 q1 f γ2α2

(q2 f +γ2+δ2+υ)(α2+δ2+υ)

))

(1 + I I P2(δ2 + υ)
(
δ2 + υ + I ∗

2

(
q1 f

q2 f +γ2+δ2+υ

)
ψ2

)

Q∗
2 � I ∗

2 q1 f

q2 f + γ2 + δ2 + υ

R∗
2 � I ∗

2 q1 f γ2

(q2 f + γ2 + δ2 + υ)(α2 + δ2 + υ)
(11)

In theSEIQRmodel for SARS-CoV-2, the equilibriumpoints are typically identified
as the points where the rates of change for each compartment (Susceptible, Exposed,
Infected, Quarantined, Recovered) are equal to zero. These points represent stable
states where the system remains unchanged over time. The specific equilibrium points
can vary depending on the parameters and assumptions of the model being used.

2.3 Local asymptotically stability of disease—free equilibrium point

Theorem 3 If R0 < 1, then the disease free equilibrium point φ0 of the model system
(2) is local asymptotically stable and unstable otherwise [12–18, 26–29].
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Proof of Theorem 3 To determine the local stability of J0, we determine the Jacobian
matrix evaluated at disease free is given by

J1 �

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣

−δ1 0 −ψ1 S′
1(t) −ψ1 S′

1(t) α1 0 0 0 0 0

0 −
(
δ1 + 1

I I P1

)
ψ1 S′

1(t) ψ1 S′
1(t) 0 0 0 0 0 0

0 1
I I P1

−(q1γ + δ1 + ρ1) q2γ 0 0 0 0 0 0

0 0 q1γ −(q1γ + γ1 + δ1) 0 0 0 0 0 0

0 0 0 γ1 −(δ1 + α1) 0 0 0 0 0

0 0 0 0 0 −(δ2 + υ) 0 −ψ2 S′
2 (t) −ψ2 S′

2 (t) α2

0 0 0 0 0 0 −
(
δ2 + υ + 1

I I P2

)
ψ2 S′

2 (t) ψ2 S′
2 (t) 0

0 0 0 0 0 0 1
I I P2

−(q1 f + δ2 + ρ2 + υ) q2 f 0

0 0 0 0 0 0 0 q1 f −(q2 f + γ2 + δ2 + υ) 0

0 0 0 0 0 0 0 0 γ2 −(δ1 + υ + α2 )

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣

� 0

(12)

The eigenvalues of the J0 are obtained by solving Det(J0 − λI ) � 0. We obtain
the characteristic equation, where λ is an eigenvalue of the matrix J0. Therefore, root
of the model system (2) i.e., eigenvalue of the matrix J0 are

(13)

(λ + δ2 + υ + α2)(λ + δ1 + α1)(λ + δ1)(λ
7 + A1λ

6

+ A2λ
5 + A3λ

4 + A4λ
3 + A5λ

2 + A6λ + A7) � 0

The third of tenth eigenvalues of (13) are λ1 � −δ2 − υ − α2, λ2 � −δ1 − α1 and
λ3 � −δ1, which has negative real part. The seven eigenvalues, we check the stability
of disease free equilibrium state by using the Routh–Hurwitz criteria required for all of
the eigenvalues defined by (12) are negative real parts and the coefficients must satisfy
all conditions, when A1, A2, A3, A4, A5, A6, A7 > 0.This display for R0 < 1,
disease free equilibrium will be stable as is seen in Fig. 1.
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Fig. 1 The parameter spaces for disease free equilibrium state which satisfies
the Routh–Hurwitz criteria with the value of parameters: respectively, for with
(λ7 + A1λ

6 + A2λ
5 + A3λ

4 + A4λ
3 + A5λ

2 + A6λ + A7) � 0
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In the SEIQRmodel, the disease-free equilibrium point is characterized by all com-
partments except for the susceptible compartment being empty. This means that there
are no individuals in the Exposed, Infected, Quarantined, or Recovered compartments,
and the disease is not present in the population. At this equilibrium point, the trans-
mission of the disease has been effectively halted, and the population is considered
disease-free.

For the disease-free equilibrium point in the SEIQR model to be locally sub clin-
ically stable, the basic reproduction number (R0) must be less than 1. The basic
reproduction number is a measure of the average number of secondary infections
produced by a single infected individual in a completely susceptible population, it
indicates that the disease is not able to sustain itself in the population, leading to the
disease-free equilibriumpoint being locally sub clinically stable. Thismeans that small
perturbations around the disease-free equilibrium point will not lead to an outbreak of
the disease.

2.4 Local asymptotically stability of disease endemic equilibrium point

Theorem 4 If R0 > 1, then the endemic equilibrium point φ1 of the model system (2)
is local asymptotically stable and unstable otherwise [12–18, 26–29].

Proof of Theorem 4 The Jacobian matrix of the Eqs. (2) at

J0 �

∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣

−δ1 0 −ψ1 S′
1(t) −ψ1 S′

1(t) α1 0 0 0 0 0

0 −
(
δ1 + 1

I I P1

)
ψ1 S′

1(t) ψ1 S′
1(t) 0 0 0 0 0 0

0 1
I I P1

−(q1γ + δ1 + ρ1) q2γ 0 0 0 0 0 0

0 0 q1γ −(q2γ + γ1 + δ1) 0 0 0 0 0 0

0 0 0 γ1 −(δ1 + α1) 0 0 0 0 0

0 0 0 0 0 −(δ2 + υ) 0 −ψ2 S′
2 (t) −ψ2 S′

2 (t) α2

0 0 0 0 0 0 −
(
δ2 + υ + 1

I I P2

)
ψ2 S′

2 (t) ψ2 S′
2 (t) 0

0 0 0 0 0 0 1
I I P2

−(q1 f + δ2 + ρ2 + υ) q2 f 0

0 0 0 0 0 0 0 q1 f −(q2 f + γ2 + δ2 + υ) 0

0 0 0 0 0 0 0 0 γ2 −(δ1 + υ + α2 )

∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣

� 0

(14)

The endemic equilibrium point (φ1) exists and is positive, if R0 > 1. The eigenval-
ues of J1 are obtained by solving Det(J1 − λI ) � 0. The characteristic equation is as
follows:

(g11g8q1 f γ2α2 + (−g15 − λ)(−q1 f (g11g12g9 + g10g8q2 f + g10g9q2 f + g11g12λ + g10q2 f λ

+ g8q2 f λ + g9q2 f λ + q2 f λ2) + (−g14 − λ)(−g11(−g12g9 − g12λ) + (−g13 − λ)(g10g8 + g10g9

+ g10λ + g8λ + g9λ + λ2))))(g1g4q1T γ1α1 + (−g7 − λ)(−q1T (g1g2q2T + g3g4δ1 + g2q2T δ1

+ g3g4λ + g1q2T λ + g2q2T λ + q2T δ1λ + q2T λ2) + (−g6 − λ)(−g4(−g3δ1 − g3λ)

+ (−g5 − λ)(g1g2 + g2δ1 + g1λ + g2λ + δ1λ + λ2)))) � 0 (15)

where.
g1 � ψ1(I ∗

1 + Q∗
1), g2 � 1

I I P1
+ δ1, g3 � ψ1 ∗ S∗

1 , g4 � 1
I I P1

, g5 � q1T + δ1 + ρ1,

g6 � q2T + γ1 + δ1, g7 � δ1 + α1, g8 � ψ2(I ∗
2 + Q∗

2), g9 � δ2 + υ, g10 � 1
I I P2

− g9,
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Fig. 2 The parameter spaces for endemic equilibrium point which satisfies the
Routh–Hurwitz criteria with the value of parameters: respectively, for with
λ10 + W1λ

9 + W2λ
8 + W3λ

7 + W4λ
6 + W5λ

5 + W6λ
4 + W7λ

3 + W8λ
2 + W9λ

1 + W10 � 0

123



Mathematical modeling and stability of SARS-CoV-2 transmission…

g11 � 1
I I P2

, g12 � ψ2 ∗ S∗
2 ,

1
I I P2

, g13 � q1 f + δ2 + ρ2 + υ, g14 � q2 f + γ2 + δ2 + υ,

g15 � δ2 + υ + α2.
We obtain the characteristic equation.
λ10 + W1λ

9 + W2λ
8 + W3λ

7 + W4λ
6 + W5λ

5 + W6λ
4 + W7λ

3 + W8λ
2 + W9λ

1+W10 �
0. Where λ is an eigenvalue of the matrix J1. To determine the local stability of the
endemic equilibrium state, we check the stability of endemic equilibrium state by
using the Routh–Hurwitz criteria required for all of the eigenvalues defined by (14)
are negative real parts and the coefficients must satisfy all condition, when W1, W2,
W3, W4, W5, W6, W7, W8, W9, W10 > 0. When this display for R0 > 1, endemic
equilibrium point will be stable as is seen in Fig. 2.

In the SEIQR model, the endemic equilibrium point is characterized by a stable
state where the disease persists in the population at a constant level over time. At this
equilibrium point, all compartments (Susceptible, Exposed, Infected, Quarantined,
and Recovered) have non-zero values, indicating that the disease is circulating within
the population. The endemic equilibrium point represents a balance between the trans-
mission of the disease and the recovery or removal of individuals from the infected
compartments, leading to a steady state of disease prevalence.

For the endemic equilibrium point in the SEIQR model to be locally subclinically
stable, the basic reproduction number (R0) must be greater than 1. The basic reproduc-
tion number is a measure of the average number of secondary infections produced by a
single infected individual in a completely susceptible population. When R0 is greater
than 1, it indicates that the disease is able to sustain itself in the population, leading to
the endemic equilibriumpoint being locally sub clinically stable. Thismeans that small
perturbations around the endemic equilibrium point will not lead to the extinction of
the disease, and the disease prevalence will remain constant over time.

3 Numerical results

In this study, we show the numerical simulations of the impacts of the system control
strategies on COVID-19 transmission. The parameter and values used in the numerical
solution are shown in Table 2. Data and collected form the official website of the
Ministry of Public Health and World Health Organization (WHO) [1–6, 18–31].

123



R. Sungchasit, P. Pongsumpun

Table 2 Values of the parameter of the model system (2) on COVID-19 transmission

Parameter Description Value/range (units) References

δ1 Natural death rate of Thai humans 0.057 [2, 9, 16]

δ2 Natural death rate of domestic
tourists humans

0.087 [1, 9–11]

α1 Per capita rate of loss of immunity
in Thai humans

0.017 Assumed

α2 Per capita rate of loss of immunity
in domestic tourists humans

0.008 Assumed

I I P1 Per capita rate of progression of
Thai human from the exposed
state to the infectious state

0.056 Assumed

I I P2 Per capita rate of progression of
domestic tourists human from
the exposed state to the
infectious state

0.34 Assumed

q1T Rate at which infected Thai human
changed to quarantine Thai
human

0.0006 Assumed

q2T Rate at which infected Thai human
changed to quarantine Thai
human

0.000078 Assumed

q1 f Rate at which infected domestic
tourists human changed to
quarantine domestic tourists
human

0.0075 Assumed

q2 f Rate at which quarantine domestic
tourists human changed to
infected domestic tourists human

0.095 Assumed

γ1 Per capita recovery rate for
humans in Thai from the
infectious state to the recovered
state

0.0078 Assumed

γ2 Per capita recovery rate for
humans in domestic tourists
from the infectious state to the
recovered state

0.050 Assumed

ρ1 Death rate due to Covid-19 of Thai
human

0.0054 [1, 2, 9, 16]

ρ2 Death rate due to Covid-19 of
domestic tourists human

0.083 [1, 9–11]

ψ1 Transmission rate of virus between
human in Thai human

0.74 Assumed

ψ2 Transmission rate of virus between
human in domestic tourists
human

0.45 Assumed

υ Rate at which domestic tourists
humans move out the country

0.0089 [1, 9–11]
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To determine the local asymptomatic stability of the disease-free equilibrium point
in the SEIQRmodel, one commonmethod is to analyze the eigenvalues of the jacobian
matrix evaluated at the disease-free equilibrium point. The jacobian matrix arrest
the differential equations dynamics of a system around the equilibrium point and
provides information about the system’s stability. Especially, the stability of disease-
free equilibrium can be assessed by calculating the eigenvalues of the jacobian matrix.
If all eigenvalues have negative real parts the equilibrium point is asymptotically
stable. This indicates that small perturbations around the disease-free equilibriumpoint
will not cause disease outbreaks. Jacobian matrix eigenvalue analysis is an important
method used in mathematical epidemiology to determine the stability properties of
the equilibrium point in partition models such as the SEIQR model.

To determine the local asymptomatic stability of the endemic equilibrium point in
the SEIQR model, methods such as linear stability analysis are often used and calcu-
lation of jacobian matrices. Linear stability analysis involves linearizing a system of
differential equations around a local equilibrium point and analysis of the eigenvalues
of the resulting jacobian matrix. The eigenvalues provide information about the sta-
bility of the equilibrium point. The negative real part indicates stability, and a positive
real part indicates instability. The jacobian matrix is a matrix of partial derivatives
that describes how small changes in individual parts affect the rate of change of the
parts in the system by estimating the eigenvalues of the jacobian matrix at the local
equilibrium point. The researchers were able to determine that the equilibrium point
is asymptotically stable.

3.1 Sensitivity analysis

To determine dependencies between inputs parameter affect the transmission and
spread of the COVID-19 disease and results of the model. The sensitivity analysis
of the model system (2) is taken out in the realize of [28–33].

Definition 1 The normalized forward sensitivity index of the variable (ϕ), that depend
differential on a parameter, ζ is defined as:

Eϕ
δ � ∂�

∂δ
x

δ

�

The apparent expression of R0 is given follow:
R0 � (((C(q1T + q2T + γ1 + δ1)

.μ(q2 f + q1 f + γ2 + δ2 + υ)ψ1ψ2))/((δ1(1 + I I P1δ1)(δ2 + υ)

(1 + I I P2(δ2 + υ))(q1T (γ1 + δ1)

+ (q2T + γ1 + δ1)(δ1 + ρ1))(q1 f (γ2 + δ2 + υ)

+ (q2 f + γ2 + δ2 + υ)(δ2 + υ + ρ2)))

.
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In particular, sensitivity indices of the basic reproduction number (R0), with respect
to the system model depends on the nineteenth parameter are computed as below.

�
R0
δ1

�
(

∂ R0

∂δ1

)(
δ1

R0

)

� (q2
1T (γ1 + 2I I P1γ1δ1 + δ1(2 + 3I I P1δ1))

+ (q2T + γ1 + δ1)
2(ρ1 + δ1(2 + 3I I P1δ1 + 2I I P1ρ1))

+ q1T ((γ1 + 2I I P1γ1δ1 + δ1(2 + 3I I P1δ1))(γ1 + 2δ1 + ρ1)

+ q2T (γ1 + 2I I P1δ1 + ρ1 + 2δ1(2 + 3I I P1δ1 + I I P1ρ1))))

/((q1T + q2T + γ1 + δ1)(1 + I I P1δ1)(q1T (γ1 + δ1)

+ (q2T + γ1 + δ1)(δ1 + ρ)))

� R0
α1

�
(

∂ R0

∂α1

)(
α1

R0

)
� 0

�
R0
I I P1

�
(

∂ R0

∂ I I P1

)(
I I P1

R0

)
� −1 +

1

1 + I I P1δ1

� R0
q1T

�
(

∂ R0

∂q1T

)(
q1T

R0

)

� q1T (q2T + γ1 + δ1)(γ1 − ρ)

(q1T + q2T + γ1 + δ1)(q1T (γ1 + δ1) + (q2T + γ1 + δ1)(δ1 + ρ))

� R0
q2T

�
(

∂ R0

∂q2T

)(
q2T

R0

)

� q1T q2T (γ1 − ρ)

(q1T + q2T + γ1 + δ1)(q1T (γ1 + δ1) + (q2T + γ1 + δ1)(δ1 + ρ))

� R0
γ1

�
(

∂ R0

∂γ1

)(
γ1

R0

)

� q1T γ1(q1T + q2T + δ1 + ρ)

(q1T + q2T + γ1 + δ1)(q1T (γ1 + δ1) + (q2T + γ1 + δ1)(δ1 + ρ))

� R0
ρ �

(
∂ R0

∂ρ

)(
ρ

R0

)
� (γ1 + q2T + δ1)ρ

q1T (γ1 + δ1) + (q2T + γ1 + δ1)(δ1 + ρ)

�
R0
ψ1

�
(

∂ R0

∂ψ1

)(
ψ1

R0

)
� 1

� R0
μ �

(
∂ R0

∂μ

)(
μ

R0

)
� 1

�
R0
δ2

�
(

∂ R0

∂δ2

)(
δ2

R0

)

� (δ2(−(δ2 + υ)(q1 f + q2 f + γ2 + δ2 + υ)

(1 + I I P2(δ2 + υ))(q1 f + q2 f + γ2 + 2(δ2 + υ) + ρ2)

− I I P2(δ2 + υ)(q1 f + q2 f + γ2 + δ2 + υ)

(q1 f (γ2 + δ2 + υ) + (q2 f + γ2 + δ2 + υ))

+ (δ2 + υ)(1 + I I P2(δ2 + υ))(q1 f (γ2 + δ2 + υ) + (q2 f + γ2 + δ2 + υ))
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− (q1 f + q2 f + γ2 + δ2 + υ)(1 + I I P2(δ2 + υ))(q1 f (γ2 + δ2 + υ)

+ (q2 f + γ2 + δ2 + υ)(δ2 + υ + ρ2))))/((δ2 + υ)(q1 f + q2 f + γ2 + δ2 + υ)

(1 + I I P2(δ2 + υ))(q1 f (γ2 + δ2 + υ)

+ (q2 f + γ2 + δ2 + υ)(δ2 + υ + ρ2)))

� R0
α2

�
(

∂ R0

∂α2

)(
α2

R0

)
� 0

�
R0
I I P2

�
(

∂ R0

∂ I I P2

)(
I I P2

R0

)

� −1 +
1

1 + I I P2(δ2 + υ)

� R0
q1 f

�
(

∂ R0

∂q1 f

)(
q1 f

R0

)

� q1 f (q2 f + γ2 + δ2 + υ)(γ2 − ρ2)

(q1 f + q2 f + γ2 + δ2 + υ)(q1 f (γ2 + δ2 + υ) + (q2 f + γ2 + δ2 + υ)(δ2 + υ + ρ2))

� R0
q2 f

�
(

∂ R0

∂q2 f

)(
q2 f

R0

)

� q1 f q2 f (γ2 − ρ2)

(q1 f + q2 f + γ2 + δ2 + υ)(q1 f (γ2 + δ2 + υ) + (q2 f + γ2 + δ2 + υ)(δ2 + υ + ρ2))

� R0
γ2

�
(

∂ R0

∂γ2

)(
γ2

R0

)

� q1 f γ2(q1 f + q2 f + δ2 + υ + ρ2)

(q1 f + q2 f + γ2 + δ2 + υ)(q1 f (γ2 + δ2 + υ) + (q2 f + γ2 + δ2 + υ)(δ2 + υ + ρ2))

� R0
ρ2

�
(

∂ R0

∂ρ2

)(
ρ2

R0

)
� (q2 f + γ2 + δ2 + υ)ρ2

q1 f (γ2 + δ2 + υ) + (q2 f + γ2 + δ2 + υ)(δ2 + υ + ρ2)

�
R0
C �

(
∂ R0

∂C

)(
C

R0

)
� 1

�
R0
ψ2 �

(
∂ R0

∂ψ2

)(
ψ2

R0

)
� 1

� R0
υ �

(
∂ R0

∂υ

)(
υ

R0

)

� (υ(−(δ2 + υ)(q1 f + q2 f + γ2 + δ2 + υ)(1 + I I P2(δ2 + υ))(q1 f + q2 f + γ2 + 2(δ2 + υ) + ρ2)

− I I P2(δ2 + υ)(q1 f + q2 f + γ2 + δ2 + υ)(q1 f (γ2 + δ2 + υ)

+ (q2 f + γ2 + δ2 + υ)(δ2 + υ + ρ2)) + (δ2 + υ)(1 + I I P2(δ2 + υ))(q1 f (γ2 + δ2 + υ)

+ (q2 f + γ2 + δ2 + υ)(δ2 + υ + ρ2))

− (q1 f + q2 f + γ2 + δ2 + υ)(1 + I I P2(δ2 + υ))(q1 f (γ2 + δ2 + υ)

+ (q2 f + γ2 + δ2 + υ)(δ2 + υ + ρ2))))/((δ2 + υ)((q1 f + q2 f + γ2 + δ2 + υ)

(1 + I I P2(δ2 + υ))(q1 f (γ2 + δ2 + υ)

(q2 f + γ2 + δ2 + υ)(δ2 + υ + ρ2)))

The parameters affect the effort to curtail the disease among the tourists, according
to the sensitivity analysis are the parameter that have positive sign, i.e. I I P1, q1T ,
q2T , μ, ψ1, I I P2, q1 f , q2 f , C and ψ2 have a positive effect on R0. We can estimate
the sensitivity indices (S.I) of the basic reproduction number (R0), with the respect to
the parameter of the system model (2). The signs of S.I. are shows in the Table 3.
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Table 3 The sensitivity index
(S.I) Parameter S.I Parameter S.I

δ1 Negative δ2 Negative

α1 Negative α2 Negative

I I P1 Positive I I P2 Positive

q1T Positive q1 f Positive

q2T Positive q2 f Positive

γ1 Negative υ Negative

ρ Negative γ2 Negative

μ Positive ρ2 Negative

ψ1 Positive C Positive

ψ2 Positive

The sensitivity indices (S.I) of the parameter that have positive sign, i.e. I I P1,
q1T , q2T , μ, ψ1, I I P2, q1 f , q2 f , C and ψ2 have a positive effect on R0. It determine
that the increase in the number of two exposed human (E1, E2) and two infectious
host human (I1, I2) with the value I I P1, q1T , q2T , I I P2, q1 f , q2 f may lead to an
outbreak. On the other hand, the negative sign of the sensitivity indices (S.I) in the
R0 i.e. δ1, α1, γ1, ρ, δ2, α2, υ, γ2 and ρ2 have a negative effect to the endemic of
disease of system model (2). Thus, sensitivity indices (S.I) of the COVID-19 (2)
supply a very good depth into the transmission the system of the disease. In particular,
it helps the public health potentate in focusing on a reasonable interference strategy
for preventing and controlling the spread of the disease. The purpose of conducting a
sensitivity analysis in the context of the COVID-19model, provide a suitable approach
to reduce the number of infected people by identifying several factors that affect virus
transmission and prevalence. This is determined by calculating the sensitivity index
for each parameter of the model. It is related to basic reproductive values. Therefore,
this index is used to identify parameters that influence basic reproductive costs in the
COVID-19 epidemic and can also be used to design mitigation strategies to slow the
spread of the disease by reducing reproductive costs. Basic, it also helps determine
the level of change for incoming parameters to predict the desired parameters.

3.2 Parameter estimation, model inspection and prognosis

The nonlinear mathematic model in (1) can be solved using the numerical methods
and we can observe the dynamics of the model. By means with respect to numerically
solve the data we estimated the parameters first [1–4, 9–15, 24].

3.2.1 Case 1: Thailand population

The estimated model parameters and their sensitivity indices are given in Tables 2
and 3. To checking the model, we respect the real case of COVID-19 infection of
Thailand. The values that affect the change of the model are as follows: q1T (rate at
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which infected Thai human change to become quarantine Thai human) and q2T (rate
at which infected Thai human changed to become quarantine Thai human). As for
the other values of the model, they will have a decreasing effect on the duration of
the COVID-19 epidemic, which is based on the spread for the patient’s individual
immunity, environment and surveillance of disease incidence in Thailand. Group I1
(Infectious means showing symptoms of illness and can spread the disease). Both
groups are prevalence of the COVID-19 pandemic and group Q1 (dedicated to the
quarantined population (hospitalized or isolated from the general population)).

3.2.2 Case 2: domestic tourists population

In this section, we are of broad interest to consider all countries and territories in the
world for broad application and study our proposed model. Using parameters from
Tables 2 and 3 with initial conditions. The system of equations can be solved by
Runge—Kutta 4th order method of the model in Eq. (1), then graphs are generated to
analyse the population dynamics affecting infection, exposure, and patient recovery.
to understand the widespread outbreak. Therefore, we have the condition 1 � S +
E + I + Q + R is the population in each group. From Fig. 4, it can be seen that the
virus COVID-19 spreads rapidly over time, thus affecting the increase in the number
of infected people in the population. making it impossible to control the situation
of the spread of COVID-19 By considering the parameters that cause the change of
the dynamic system, namely q1 f ( rate at which infected Domestic Tourists human
changed to become quarantine Domestic Tourists human) and q2 f (rate at which
quarantine Domestic Tourists human changed to become infected Domestic Tourists
human). Group I2 (Infectious means showing symptoms of illness and can spread
the disease). Both groups are prevalence of the COVID-19 pandemic and group Q2
(dedicated to the quarantined population (hospitalized or isolated from the general
population)).

After that, numerical analysis revealed that the weak population was decreasing
over time. But the number of people infected increases over time, which can lead
to outbreaks in a short time and quickly. Using the parameters in Table 2, we can
determine the base reproductive value R0 > 1. Meaning that the COVID-19 outbreak
is still occurring due to the effects of both parameters and other values, which is a
factor in the spread of disease [18–25].

4 Conclusion and discussion

In this study,wehaveused theSEIQRmathematicalmodel for the transmission dynam-
ics of COVID-19 infection by dividing the spread among Thailand and Domestic
Tourists (who are susceptible to the disease). By examining the impact of the factors
that cause the change of the COVID-19 epidemic. We have analysed the basic repro-
ductive number and we find that our model has a stable infection-free equilibrium
when the basic reproduction number is less than one. The model indicated an exis-
tence of multiple endemic equilibrium. In epidemiological, the implication is always
less than unity [16–28, 32–35].
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The outbreak of the Covid-19 virus from the first outbreak in China and then
spreading around the world leading to the suspension of both domestic and interna-
tional commercial flights. Border crossing and emergency declaration to control the
spread of COVID-19 by having every sector have measures to support the spread, such
as social distancing, hygiene, a stay-at-home campaign to stop the spread of the virus,
work from home, social responsibility as well as controlling the movement of citizens
and close service establishments that are crowded with users or activities that cause
contact and spread various diseases. Especially, tourist attractions, Department stores,
amusement parks, entertainment venues, etc. With the fear of people around the world
over the spread of the virus, the behaviour of people both in Thailand and abroad
has changed. There have been changes in a short period of time. It has had a severe
impact on the sudden disruption of tourism, both Thailand and the world refrain from
traveling across countries. Suspension of both domestic and international flights. As a
result, tourism came to a sudden halt. From the measures to refrain from traveling both
domestically and internationally. Suspension of flights on all airlines, Cancellation of
travel program. As a result, hotels, accommodations, restaurants, and various tourist
attractions will lose income, including tourism businesses related to the production
chain that will be affected by the shutdown of business. Continuously affecting the
economy and government revenue collection.When examining the impact of Thailand
populations andDomestic Tourists’ populations, by considering for the dynamic of the
COVID-19 epidemic. We used a mathematical model (1), a set of parameters derived
from other recently published articles. This, while other parameters were assumed
under epidemiology as listed in Table 2. Since, the researchers did not go to the data
collections, then the assumed initial data were used in the model simulations basing
on the actual environment of Thai and Domestic Tourists people in the health care in
the of the transmission dynamics of COVID-19. From Figs. 1 and 2, show that the
parameters in disease free equilibrium state and epidemic equilibrium point which
satisfies the Routh – Hurwitz criteria with the value of parameters, see Figs. 3 and 4,
show that numerical simulations of each human population for the disease-free state,
we will see that the solutions converge to the disease free state and the disease state,
we will see that the solutions converge to the endemic disease state. And Fig. 5, show
that, the numerical projected onto the 2D and planes when there is no vertical trans-
mission and equilibrium state the endemic state respectively [27–35]. Mathematical
modelling plays as an important role in every field of epidemiology. This is because
it helps explain the scope of the disease under consideration mathematical modelling,
they help policy makers and public health planners in a variety of other ways. Models
are used to formulate hypotheses and design experiments to test them. Interpret results
Diagnosis based on observable symptoms and signs. It is a guideline for decision mak-
ing and test results, etc. The model uses the results of numerical analysis to check the
stability of the variables that affect the spread of the disease. To find an approximate
answer to the equation that has been defined. Numerical analysis is a reliable method
used to consider systems of equations for solving problems compared to standard
techniques. Numerical analysis also helps to observe COVID-19 changes in the long
run through the estimation of such models.

Sensitivity analysis of the basic reproductive number was performed to either of
the parameters to define which parameter is more sensitive to dynamics systems than
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Fig. 3 Numerical simulations of each human population for the disease free state
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Fig. 4 Numerical simulations of each human population for the disease state
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Fig. 5 The trajectories of the numerical projected onto the 2D (S1, E1), (S1, I1), (S1, Q1), (E1, I1), (E1,
Q1), (I1, Q1), (S2, E2), (S2, I2), (E2, I2) and (E2, Q2) planes when there is no vertical transmission
and equilibrium state the endemic state
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Fig. 5 continued

the other. Our analysis shows that the rate of recovery rate for Thailand and Domestic
Tourists will decrease with recruitment rates and death rates. This results in an increas-
ing the human recovery rate for Thailand and Domestic Tourists with recruitment rates
and death rates would decrease the basic reproductive number. However, I I P1 (capita
rate of progression of Thai human from the exposed state to the infectious state), I I P2
(capita rate of progression of Domestic Tourists human from the exposed state to the
infectious state), q1T (rate at which infected Thai human changed to quarantine Thai
human), q2T (rate at which infected Thai human changed quarantine Thai human),
q1 f (rate at which infected Thai human changed to quarantine Thai human), q2 f (rate
at which quarantine Domestic Tourists human changed infected foreign human), ψ1
(transmission rate of virus between human in Thai human), ψ2 (transmission rate of
virus between human in Domestic Tourists human),μ (recruitment term of the suscep-
tible human in Thai) and C (recruitment term of the susceptible human in Domestic
Tourists) will affect the number of basic reproductive number will increase according
to Table 3 [29–35]. Then, we can control significantly the number of new confirmed
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cases, new infectious and thus can reduce the transmission risk. Form all the three
control strategies considered in this study, we realized that the strategy which captures
all the dependent control of the environment and factors affecting the epidemic yields
better results. The results of the study, which parameters in the COVID-19 model
affect the outbreak and control the spread of the disease. This result can be used as a
strategy for creating disease control measures.

The basic reproductive value (R0) plays an important role in determining the spread
of SARS-CoV-2 in a closed system. R0 represents the average number of secondary
infections caused by a single infected person in a susceptible population. If an R0
greater than 1 indicates that each infected person on average infects more than one
other person. This leads to exponential growth of disease within the population. This
results in the rapid spread of SARS-CoV-2 and a potential outbreak or epidemic. On
the other hand, if R0 is less than 1, it means that each infected person is spreading
the virus on average less than the other people. In this case, the disease cannot sur-
vive in the population. The spread of SARS-CoV-2 will eventually decrease and die
out. Therefore, basic reproductive value is an important factor in understanding and
controlling the spread of SARS-CoV-2 in closed systems, as it directly influences the
transmission potential and disease dynamics within a population. The impact of R0
on the spread of SARS-CoV-2 in closed systems is critical to implementing effec-
tive public health measures, such as vaccination, social distancing, and quarantine, to
control the spread of viruses and epidemic prevention. The basic reproductive value
(R0) in the SEIQRmodel is influenced by several factors. Including the rate of disease
spread. Duration of the infection period, interpersonal contact rate the effectiveness of
control measures, such as quarantine or vaccination, and the size and structure of the
population. Together, these factors determine the likelihood that a disease will spread
within a population and affect the overall dynamics of the epidemic. By understand-
ing and quantifying these factors, researchers can estimate R0 and assess the potential
impact of control measures on controlling the spread of disease.

Local subclinical stability in the context of public health intervention for SARS-
CoV-2 indicates that small perturbations around an equilibrium point, such as a
disease-free or endemic equilibrium point will lead to a significant outbreak of the
disease. This information can inform public health intervention, emphasizing the
importance of maintaining control measures even when disease prevalence is low.
Public health interventions such as vaccination campaigns testing and contact tracing
and social distancingmeasures, it should be continued and adapted based on the stabil-
ity of local asymptomatic disease. By understanding the stability of disease dynamics
public health authorities can then make informed decisions about when to reinforce
interventions to prevent potential outbreaks. Overall, local asymptomatic stability pro-
vides valuable insight into the ability to Resurgence of disease within a population
and guide public health strategies to effectively control and manage the spread of
SARS-CoV-2.

The asymptotic dynamics of the SEIQR model for SARS-CoV-2 depends on the
specific parameters and assumptions of the model. In general, the models may exhibit
different behaviours, such as convergence towards disease-free equilibrium. If the
basic reproductive number (R0) is less than 1, this eventually leads to the elimination
of the disease from the population. Alternatively, if R0 is greater than 1, themodel may
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exhibit oscillatory behaviour or converge to a local equilibrium point where disease
persists at a constant level in the population. The exact asymptotic dynamics of the
SEIQRmodel for SARS-CoV-2 can be analysed through mathematical modelling and
simulation techniques.

The asymptotic dynamics in the SEIQRmodel help in understanding the long-term
behaviour of SARS-CoV-2 spread by providing insights into the eventual outcomes
and trends of the disease over time. By analysing the stability and behaviour of equi-
librium points, such as the disease-free and endemic equilibrium points, researchers
can predict how the spread of the virus will evolve in the long term. Understanding
the asymptotic dynamics allows for the assessment of factors such as the effectiveness
of control measures, the impact of vaccination campaigns, and the potential for recur-
rent outbreaks. By studying the long-term behaviour of SARS-CoV-2 spread through
asymptotic dynamics, policymakers and public health officials can make informed
decisions to mitigate the impact of the disease and protect public health.
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