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Abstract
In this article, we present least fractional nonlinearity for exhibiting chaos in a
memristor-based hyper-chaotic multi-stable hidden system. When implementing
memristor-based systems, distinct dimensions/order define the memristor nonlinear-
ity. In this work, the memristor dimension has been changed fractionally to identify
the lowest order of nonlinearity required to induce chaos in a proposed system. The
two-parameter frequency scanning helps in understanding both oscillation and non-
oscillation regimes. The system fractional nonlinearity strength will help in deeper
understanding of mathematical modelling and control. In addition, multistability and
hidden oscillations were thoroughly investigated in the proposed system. The current
work combines analytical, numerical, and experimental methods to demonstrate the
system dynamics.
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1 Introduction

Recently, it has been discovered that a rising number of physical systems are best
characterised by fractional order differential equations rather than traditional integer
order equations. In particular mass diffusion, heat conduction processes, distributed
lines, electrochemical processes, dielectric polarisation, viscoelastic materials like
polymers and rubbers, relaxation phenomena of organic dielectric materials, flexible
structures, traffic in information networks, and biological systems [29, 32, 38, 48]. As
a result, the scientific community is becoming increasingly interested in identifying
fractional order systems. However, these models present a more complex identifica-
tion challenge, necessitating not only the estimate of model coefficients but also the
determination of fractional orders via the time-consuming calculation of fractional
order derivatives. Despite the loss of integer order, which complicates the identifi-
cation process, certain identification approaches for fractional order systems in the
frequency and time domains have been presented [27].

Moreover, there has been an increasing interest in fractional order complex sys-
tems, notably memristor-based fractional order systems, which have revealed various
hitherto undiscovered dynamics [3, 20, 39]. The fractional order idea connects the
mathematical tool of fractional calculus with the mathematical branch of chaos the-
ory. Munoz et al. discovered multiple hidden attractors in the basin of a fractional
order chaotic system using frac-memristors [23]. Prakash et al. [31] studied fractional
order backstepping control using a memristor-based chaotic jerk system. All studies
on dynamical systems focus on understanding their dynamics and stability by altering
the state variable ordering as fractions [14, 22, 28].

On the other hand, in recent years, many articles on hidden complex systems
addressed the key characteristics of the hidden dynamics [19]. Hidden attractors have
been discovered in numerous natural and biological systems. Hidden characteristics
in complex systems can be found in isolated and coupled configurations of Chua,
Lorenz, Roseller, Sprott oscillators, etc. [15, 48, 49]. These studies are extremely
useful in identifying and understanding various types of stability, attractors, and so
on. Even though the mechanism and justification for such hidden attractors are still
unclear in general. However, there are few studies in the literature on the reasons and
methods behind the hidden dynamics [42]. Several articles in various domains have
reported on the memristor-based hidden attractor [1, 9, 10, 17, 21, 36, 37, 40, 50].
Wang et al. found hidden and coexisting attractors in a modified Chua’s circuit [46]
and Sprott-A system with perpetual points [47]. Chen et al. reported the memristor-
based Chua circuit and studied both self-excited and hidden dynamics [8]. Pham et
al. reported hidden attractors in the memristor-based hyperchaotic system and report
its synchronisation and circuit constructions [30]. Similarly, the multistability of hid-
den attractors was reported by Chang et al. [7] and Musha et al. [16]. The memristor
conceptual, the boosting behaviour of hyperchaotic systems, was studied by Wu et al.
[51]. Xu et al. examined multiple attractors in a memristor-based Chua circuit [54].
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Fig. 1 A sketch of the current
manuscript’s workflow

Wang et al. investigate hidden dynamics, synchronisation, and circuit implementation
of their article on fractional order memristor-based chaotic systems [45].

Furthermore, nonlinearity is very important for modelling, design, and structural
analysis in many fields, from engineering to biological nonlinear models. It plays a
key role in the system sensitivity, structural variations, and boundedness [35]. The
nonlinearity plays a role in dynamical systems take place of phase shift, exponential
grow or decay and chaotic. Additionally, experimental validation must be able to
identify, characterise, and quantify nonlinearities. Assessing nonlinearities is another
challenge since many nonlinear dynamical systems consist of more than one nonlinear
components, which are difficult to calculate. However, in a memristor-based nonlinear
system, the nonlinearity gets individual dimension/order. In this article, we propose
a hidden hyperchaotic memristor system to determine the least-order nonlinearity
strength for generating chaos. This manuscript addresses the subject, “What is the
minimum order of nonlinearity needed to achieve chaos?" To the author’s knowledge,
this is the first study of fractional nonlinearity inmemristor-based hidden hyperchaotic
dynamical systems. Figure 1 illustrates the study’s outline.

The manuscript is organised as follows: Section 2 describes the structure of frac-
tional order derivatives as well as the formation of memristor-based systems. Section 3
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shows how to build a fractional order hyperchaotic oscillator using memristors. The
stability and multistability are performed in the same section. Section 4 discusses the
numerical and experimental results. The two parameter scanning are also discussed in
the same section. Finally, Section 5 summarises the results of the manuscript.

2 Fractional derivatives and integrals

Several definitions for fractional derivatives and integrals have been employed in recent
years, for example, inworks like [12, 41], see also somedefinitions in older source [25].
Riemann-Liouville (RL) fractional operator [27] and Caputo’s fractional operators
[6] are commonly used by researchers to formulate fractional order systems. In this
manuscript, we used the Riemann-Liouville (RL) fractional operator to construct the
memristor-based fractional hyperchaotic system.

As for the RL operator, it meets the mathematical principle of fractional calculus.
A new series formula, Dq y(t), 0 < q < 1 for approximating the fractional derivative
operator in the sense of RL is presented in this manuscript. We derive this formula
from the weighted mean value theorem (WMVT) and some direct computations. It is
extremely difficult to find solutions to some linear and nonlinear fractional differential
equations; this formula is very useful for establishing new approaches. In many cases,
these series of solutions can be used to determine the analytic solutions.

2.1 Riemann–Liouville differential and integral operators

We remind the definitions and properties of these operators. Assuming [A, B] is a
finite interval, −∞ < A < B < ∞, the left-sided Riemann-Liouville (lsRL) integral
of order q ∈ R+ is defined:

Kq
A+ f (x) = 1

�(q)

∫ A

x

f (τ )

(x − τ)1−q
dτ, x > A, (1)

and the right-sided Riemann-Liouville (rsRL) fractional integral of order q ∈ R+:

Kq
B− f (x) = 1

�(q)

∫ B

x

f (τ )

(τ − x)1−q
dτ, x < B. (2)

We have confined the fractional order values to real positive numbers, which is needed
for some practical applications, but one may find that q is a complex number [34].
The lsRL fractional derivative of order q ∈ R+ is defined:

Dq
A+ f (x) = 1

�(n − q)

dn

dxn

∫ A

x

f (τ )

(x − τ)q−n+1 dτ, x > A, (3)
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2506 S. Sabarathinam et al.

Fig. 2 The schematic circuit of (a) the memristive hyperchaotic system, (b) memristor component, (c)
fractional order tree shape model, and (d) the v − i characteristic of fractional order memristor at (i)
q4 =0.9 (ii) q4 =0.7 (iii) q4 =0.4

and the rsRL fractional derivative of order q ∈ R+ is:

Dq
B− f (x) = (−1)n

�(n − q)

dn

dxn

∫ B

x

f (τ )

(τ − x)q−n+1 dτ, x < B. (4)

Here n = �q� and �.� represents the Ceiling function. There are some other popular
denotations for the RL fractional integral and derivative of order q ∈ R+ whose forms
are defined as follows, see e.g. [18]:

Kq
A f (x) = 1

�(q)

∫ x

A

f (τ )

(x − τ)1−q
dτ, x > A, (5)
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and

Dq
A f (x) = 1

�(n − q)

dn

dxn

∫ x

A

f (τ )

(x − τ)q−n+1 dτ, x > A. (6)

It should be mentioned that the integral operators Kq
A+ , K

q
B− and Kq

A in (1), (2),
and (5), respectively, defined on the Laplace transform of L p(A, B) ≡ the space of
integrable functions, where p ∈ [1,∞) [4]. Whereas the differential operators Dq

A+ ,
Dq

B− , and Dq
A in (3), (4) and (6) respectively, are defined on C[A, B] ≡ the space

of continuous functions. Next, some important properties of the integral operator are
stated for completeness.

1. Letq, β ≥0 andφ ∈ L1[A, B]. Then Kq
A, K

q
Bφ = Kq+β

A φ holds almost everywhere
on [A,B]. If additionally φ ∈ C[A, B] or q + β ≥1, then the identity holds
everywhere on [A,B].

2. Let q, β > 0 and φ ∈ L1[A, B]. Then Kq
A, K

q
Bφ = Kq

BK
β
Aφ.

3. The RL fractional integral Kq
A of the power function satisfies,

Kq
A(x − A)μ = �(μ + 1)

�(μ + q + 1)
(x − A)μ+q , q > 0, μ > −1. (7)

Having mentioned some fundamental properties of RL integral operator, next we
are ready to state some properties of the corresponding RL differential operator.

4. Let q ≥ 0. Then for every f ∈ L1[A, B], we have Dq
A, Kq

A f (x) = f (x), which
exists almost everywhere [11].

5. Let q ≥ 0, if there exists some φ ∈ L1[A, B] such that f = Kq
Aφ, then,

Dq
A, Kq

A f (x) = f (x) almost everywhere [11].

6. Let q > 0 and n − 1 ≤ q < n, n ∈ N . Assume that f is such that K (n−q)
A f ∈

Cn[A, B] ≡ the set of all functions with an absolutely continuous (n − 1)th

derivative [11], we get

Dq
AK

q
A f (x) = f (x) −

n−1∑
k=0

(x − A)q−k−1

�(q − k)
lim

z→A+ D(n−k−1)K (n−q)
A f (z). (8)

In particular, for 0 < q < 1, we have

Dq
AK

q
A f (x) = f (x) − (x − A)q−1

�(q)
lim

z→A+ K (1−q)
A f (z). (9)

7. Then the RL fractional derivatives Dq
A of the power function satisfy [11]:

Dq
A(x − A)μ = �(μ + 1)

�(μ − 1 − q)
(x − A)μ−q , if q − μ /∈ N . (10)
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From (6), the Euler Gamma function is �(·) and considered by (n − 1) ≤ q < n.
At t = 0, all initial conditions are considered to be zero. Here, the Laplace transform
of the RL fractional derivative can be written as,

L

{
dq f (t)

dtq

}
= Sq L { f (t)} . (11)

In the above, the order of the fractional derivative is described by ‘q’. The operator
‘q’ is a transfer function that is written in the frequency domain, i.e., F(s) = 1

Sq . The
definitions of fractional integrals do not allow for direct execution of the operator of
complex systems with fractional elements in time-domain simulations. To investigate
the system, the fractional operators should be approximated using standard integer-
order operators. The linear transfer method for fractional integrator approximations
of the order from 0.1 to 0.9, constructed using frequency domain statements, and the
corresponding counterpart representations are presented in [2, 13, 44].

In experiments, the electronic circuit representative of tree shape circuit is shown
in Figure 2(c), is developed to recognise the fractional order operator in [26, 52]
by varying the resistance and capacitance values by adding new RC layers gives
the changes in the fractional derivatives. Established with the fractional frequency-
domain approximation 1

Sq can be modelled using a cascade of the tree shape model.
One can obtain approximation of 1

S0.9
with an error of 2dB as follows: 1

S0.9
=

2.2675(s+1.292)(s+215.4)
(s+0.01292)(s+2.154)(s+359.4) . The values of the capacitors and resistors for obtaining
the fractional order of q4 =0.7 are mentioned in Table 1. Figure 2(d) shows the exper-
imentally observed v− i characteristic of fractional order at (i) q4 =0.99, (ii) q4 =0.7,
(iii) q4 =0.4 of the memristor emulator. The regime of the pinched hysteresis loop
lowers as the fractional order of the memristor emulator is reduced, as seen in Figure
2. The external waveform generator was used to generate the v−i characteristic curve,
which had a amplitude of 2V and frequency of 1KHz.

2.2 Construction of memristor nonlinearity (cubic)

The memristor is defined by two types of nonlinear constitutive interactions between
its voltage (v) and current (i): {

v = M(q)i,

i = W (φ)v,
(12)

where W (φ) and M(q) are nonlinear functions of flux (φ) and charge (q), which are
called memductance and memristance [24] defined by:⎧⎨

⎩
M(q) = dφ(q)

dq ,

W (φ) = dq(φ)
dφ

.
(13)

The memristor developed in this manuscript is a charge-controlled memristor, rep-
resented by the association in (12). The link between the terminal voltage and the
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terminal current of the memristor is acquired by:⎧⎨
⎩

v = dφ
dt = dφ

dq
dq
dt = dφ

dq i = M(q)i,

i = dq
dt = dq

dφ
dφ
dt = dq

dφ
v = W (φ)v.

(14)

The cubic nonlinearity is considered to transform as a memristor emulator and is
defined as: {

φ(q) = ξq + νq3,

q(φ) = ξφ + νφ3.
(15)

The memristance and memductance is connected to flux and charge as:⎧⎨
⎩

M(q) = dφ
dq = ξ + 3νq2,

W (φ) = dq
dφ

= ξ + 3νφ2.
(16)

Notice that M(q) and W (φ) are the memristance and memductance emulators [33].
The cubic nonlinearity is employed in this manuscript to create a memristor-based
hidden hyperchaotic system.

3 Hidden hyperchaotic dynamical system

To begin, this section investigates the four-dimensional hyperchaotic memristor-based
hidden system is under consideration and study the effect of fractional order nonlin-
earity [5]. The memristive hyperchaotic hidden system is described as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx1
dt = εW (x4)x2 − ηx1,
dx2
dt = γ x1 − x1x3 + μ,

dx3
dt = x1x2 − ζ x3,
dx4
dt = x2,

(17)

where W (x4) = ξ + 3νx21 is memristor (memductance) emulator. The state variable
x4 is considered flux φ. The parameter values of the system (17) are η =35, ζ =3,
γ =35, ε =40, and μ =1 and the nonlinearity coefficients are ξ =1, ν =0.02 fixed
throughout the manuscript. The initial conditions are fixed as x1(0), x2(0), x3(0), and
x4(0) =(0.1, 0.1, 0, 0) for numerical results.

3.1 Hidden attractors andmultistability

To calculate the stability of the system (17) by considering the derivatives are zero, the
system has four equilibrium points, i.e, x1(0), x2(0), x3(0), and x4(0) = 0. Further,
eigenvalues are calculated in the trivial equilibrium point to identify the stability of the
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2510 S. Sabarathinam et al.

Fig. 3 Numerically computed
three-phase chaotic attractor in
the x1, x2, x3 plane of system
(17) with fixed parameters. The
trivial equilibrium of the system,
S0 is mentioned in the blue dot
in the Figure

-20 -10 0 10 20 30
X2

0

10

20

30

40

50

X 3

S0 x4*=4.0

x4*=10.0

x4*=20.0

Fig. 4 Numerically computed multistability of system (17) with respect to the initial condition x4(0) and
the rest IC’s: (x1(0),x2(0),x3(0)) are (0.1, 0.1, 0.0). Chaotic (blue), periodic (black) attractor with different
IC:x4(0)

system.The eigenvalues are,λ1 =0,λ2 =0.9730,λ3 = −35.9730, andλ4 = −3.0000.
From this eigenvalues, the system has saddle node in its trivial equilibrium at zero.

From this stability, the systemcould not have attractor. But, far from the equilibrium,
the system has chaotic oscillation, which is shown in Figure 3 in the three-dimensional
visual and the trivial equilibrium point is mentioned as S0. The attractor is oscillating
far from the origin never comes to an equilibrium, called as ‘hidden attractor’ [43].

Figure 4 shows the multistability of the system (17) with respect to the initial
condition x4(0). The three colours represent the chaotic (blue) and periodic (black)
attractors with different ICs: x4(0). Similarly, the trivial equilibrium’s are also replot-
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Fig. 5 Multistability: Different projections of (a) chaotic attractor (hidden) at x4(0) =2.0 and (b) periodic
attractor at x4(0) =20.0. The trivial equilibrium point S0 mentioned as blue and red dot. The other ICs:
x1(0), x2(0), x3(0) are (0.1, 0.1, 0)

ted in Figure S0. Figure 5 shows the confirmation of the multistability of the hidden
attractor with respect to the initial condition x4(0). By changing the initial conditions
the system exhibits different behaviour as shown in Figures 5(a) chaotic and 5(b) peri-
odic oscillation at different x4(0). The other parameters are fixed and initial conditions
(x1(0),x2(0),x3(0)) are (0.1, 0.1, 0.0). The trivial equilibrium point S0 is also replotted
as a blue and red dot in Figure 5. Further, we could get a variety of attractors when
the other initial conditions are varied.

3.2 Construction of fractional order memristor system

The memristive hyperchaotic system (17) constructs the fractional system using the
RL fractional derivative of (11). The mathematical equations for the fractional order-
based memristive hyperchaotic system is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx
q1
1

dtq1 = W (x4)x2 − ηx1,

dx
q2
2

dtq2 = γ x1 − x1x3 + μ,

dx
q3
3

dtq3 = x1x2 − ζ x3,

dx
q4
4

dtq4 = x2.

(18)

Here, q1, q2, q3, and q4 are fractional orders of the state variables x1, x2, x3, and x4
respectively. Themain aim is to find the least nonlinearity strength that exhibits chaotic
oscillations in the system (18). Here, q4 represents the fractional nonlinearity strength.
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Table 1 The experimental
circuit component names and
values are listed in accordance
with the normalisation
parameters specified in the
numerical section

Component name Values

C1,C2,C3,Cw 100µF

Rx ,Ry ,Rz 350k, 1.09k,8.75k

R2, R3, R 10k

R4, R6 17.5k

R5, R7 7M, 116.7k

Fractional sub circuit For q4 = 0.7

CA,CB ,CC 0.76µF, 0.52µF, 1.1µF

Ra , Rb, Rc 1.5M, 6M, 2.2k

We fixed q1, q2, q3 =1, and q4 <1 to determine the fractional rate of change of flux
or charge, defining the nonlinearity of the memristor.

In the experiments, we constructed the appropriate analogue circuit of our system
(18) as shown in Figure 2(a). The system enforces four state variables using four
integrators. The operational amplifier OP071P performs addition, subtraction, and
integration. Figure 2(b) shows how the multiplier IC AD633JN controls the mem-
ristor nonlinear function. The memristor component employs the tree shape model
of the fractional order operator circuit (Figure 2(c)) instead of the ‘fractional order’
represented in Figure 2(b), which displays the replacement of the capacitor Cw with a
red dashed line. The dual voltage power supply provides external biasing (±1V ) based
on the system physical condition. The relevant circuit parameters are established in
accordancewith the numerical parameters listed above. Table 1 shows the values of the
components and subcircuit fractional order tree-shaped circuit components. The gains
of two multipliers (M1 and M2) are set to one within the system (18). The elements
have been carefully chosen within ±1% tolerance.

4 Numerical and experimental results

To compute the fractional order system (18), we used fractional forward Euler’s
Method for the RL fractional derivative. Figure 6 shows the one-parameter bifur-
cation diagram with fractional order q4 in ranges q4 ∈ (1.0, 0.4) of system (18). This
bifurcation produces chaotic oscillations up to the fractional order of q4 = 0.4, which
exceeds the parameter value; the chaotic nature is no longer present, and the system
stays in a boundary condition. It is important to remember that in this case, the chaotic
oscillations are the hidden oscillations.

Nonetheless, the bifurcation diagram shows many dynamical behaviours. For
another set of parameter values, we could foresee the period doubling scenario. From
q4 ∈ (0.4, 0.55), the chaotic oscillations increase denser and widen their basin with
respect to the fractional order q4. Figure 7 depicts phase portraits for various projec-
tions of q4 = 0.95 and q4 = 0.4. These two comparisons demonstrate that the size of

123



Least fractional order memristor nonlinearity... 2513

Fig. 6 One parameter bifurcation diagram of the (q4 − |x1|) plane for the system (18). |x1| represents the
maxima of variable x1

the chaotic attractor increases as it approaches the border. The remaining fractional
orders in system (18) are set at q1, q2, q3=1.0.

To confirm the least fractional order nonlinearity chaotic attractor in experiments,
the ladder network subcircuit of Figure 2(c) is constructed. For attain q4 = 0.7 the
first two layer of RC ladder is used. The RC ladder network further extended depends
on the fractional derivative values (See tree shape model in [53]). For instance the
resistance Ra, Rb, Rc and the capacitance C1,C2,C3 is fixed in Table 1 for q4 =0.7
of the circuit. The rest of the circuit parameters are fixed as per the text in experimental
circuit confirmations which is given in Table 1.

Figure 8 shows phase portraits and time series for the least order of nonlinearity at
q4 =0.4, which produces chaotic oscillations. Chaotic oscillations do not occur above
fractional order levels. Furthermore, reducing the order of q4 increases the volume of
the chaotic attractor, causing it to intersect the boundary at q4 =0.4. These experiments
show that the numerical results are compatible with the results of the experiment. The
data was collected from the real-time circuit via the Agilent data acquisition card at a
rate of 2 GSa/s and processed in MATLAB.

4.1 Multistability

This section defines and clarifies the multistability behaviour in the fractional order
system (18). Figure 9 shows the bifurcation plot between the initial condition x4(0)
and the maximum of the state variable x2(t). The initial condition of x4(0), which
corresponds to the flow of the memristor, changed along the range of x4(0) ∈ (−1, 1).
The multistability can also be identified by changing the other initial conditions such
as x1(0), x2(0), and x3(0). However, for the purpose of clarity, we will not include
such plots here.

123



2514 S. Sabarathinam et al.

-50 0 50
x1

-20

0

20

x2

-50 0 50
x1

20

30

40

50

x3

-50 0 50
x1

-5

0

5

x4

-20 0 20
x2

20

30

40

50

x3

-20 0 20
x2

-5

0

5

x4

20 30 40 50
x3

-5

0

5
x4

-100 -50 0 50 100
x1

-20

-10

0

10

20

x2

-100 -50 0 50 100
x1

20

30

40

50

60

x3

-100 -50 0 50 100
x1

-10

-5

0

5

10

x4

-20 -10 0 10 20
x2

20

30

40

50

60

x3

-20 -10 0 10 20
x2

-10

-5

0

5

10

x4

20 30 40 50 60
x3

-10

-5

0

5

10

x4

Fig. 7 Numerical computation of phase portraits in the different projections of chaotic oscillations. (upper
panel) chaotic oscillation at q4 = 0.95 and (lower panel) at q4 = 0.4
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Fig. 8 Least fractional order: (a)
numerical and (b) experimental
observations of the different
projections of phase portrait (i)
x1 − x2 and (iii) x2 − x3 planes
and the corresponding time
series of (ii) x1 and (iv) x2
variables, respectively, by fixing
q4 = 0.4

Fig. 9 One parameter bifurcation diagram in (x4(0) − |x2|) plane of system (18). |x2| denotes maxima of
state variable x2
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2516 S. Sabarathinam et al.

Fig. 10 Numerical observations of various phase portrait projections. The periodic attractors obtained at
x4(0) = 0.4 are represented in the block line through the chaotic oscillation at x4(0) = 0.9

The bifurcation plot depicts both periodic and chaotic regimes. The system parame-
ters and fractional orders are fixed, but the initial conditions only vary. The bifurcation
diagram demonstrates multistability.

Figure 10 depicts the phase portraits from different projections for better under-
standing. The chaotic attractor is shown with different colours, and the periodic
attractors are mentioned in the black line on the chaotic attractor for the sake of
demonstration.

4.2 Two parameter scanning

Two-parameter scanning is used to identify the limit of basin’s oscillation regime
in order to acquire a global understanding. Figure 11(a,b) depicts a two-parameter
scanning plot that shows how the fractional nonlinearity q4 varies in relation to the
other fractional state variables q1 and q2.

The frequency of the oscillation is computed and it is mentioned in colour bar. The
nonzero frequency regions of the two-parameter scanning plots identify the oscillatory
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Fig. 11 Two parameters of the
system (18) are scanned: (a) q1
vs q4 fractional order plane and
(b) q2 versus q4 fractional order
plane. The numerical frequency
is calculated to separate chaotic
and boundary motions

portions, while the zeroth frequency portions identify the non-oscillatory portions. The
oscillatory portion, named (OS) is mentioned in the coloured region. The white colour
symbolises the system absence of oscillation, named (NO). This basin plot highlighted
the global dynamical features as well as the lowest order of functioning. However,
this two-parameter plot shows the presence of a ‘multistability’ phenomenon in the
suggested system (18). In addition, a third fractional order variable scan is performed.
It is avoided here in order to maintain things simple.

5 Conclusions

The least fractional nonlinearity for showing chaos in amemristor-based hyper-chaotic
multistable hidden system is studied. The nonlinearity dimension varied fractionally,
and the minimal order of nonlinearity required to generate chaos in our proposed sys-
tem is identified. Furthermore, the multistability of the systems is thoroughly studied,
and the hidden attractors are investigated in several projections with interpretations.
The proposed system global dynamics can be better understood by employing the
two-parameter frequency scanning method. This study examines the system dynam-
ics through analytical, numerical, and experimental methods.
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