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Abstract: This paper delves into a novel category of nonlocal boundary value problems concerning
nonlinear sequential fractional differential equations, coupled with a unique form of generalized
Riemann-Liouville fractional differential integral boundary conditions. For single-valued maps, we
employ a transformation technique to convert the provided system into an equivalent fixed-point
problem, which we then address using standard fixed-point theorems. Following this, we evaluate
the stability of these solutions utilizing the Ulam—-Hyres stability method. To elucidate the derived
findings, we present constructed examples.

Keywords: Caputo fractional derivative; generalized Riemann-Liouville fractional integral; existence
and uniqueness; nonlocal conditions; sequential derivatives; fixed-point theorem

1. Introduction

Fractional-order differential equations (FDEs) generalize traditional differential equa-
tions that extend the notions of differentiation and integration to non-integer orders. With
this generalization, researchers offer a powerful tool for modeling complex systems that
display anomalous behaviors that integer-order models are unable to adequately reflect,
such as memory effects and hereditary features. FDEs have found applications in diverse
fields such as engineering, fluid mechanics, nonlinear optics, image processing, mathe-
matical biology, and plasma physics [1-4]. These equations introduce advanced concepts
that are valuable to researchers. The foundational work on fractional derivatives was
formally introduced by Liouville and Riemann in the nineteenth century, although the
idea dates back to Leibniz and L'Hospital in 1695. Several definitions of FDEs are now
often used as alternatives to integer-order models; the introduction to fractional calculus
is provided in [5], and a few applications in dynamic systems are examined in [6], which
provides a wide range of uses for FDEs. A thorough framework for their theory and
applications is discussed in [7], and the research work [8] emphasizes the significance of
FDEs in mathematical physics.

The mathematical models have been greatly improved by the recent developments in
FDEs, especially when considering different boundary conditions, including various forms
of types such as classical, Riemann-Liouville, Hadamard, Erdélyi-Kober, and Katugampola,
and used for nonlinear analytic techniques. For example, Ahmad et al. successfully
synthesized and extended previous results [9,10] using fixed-point theory to show that
unique solutions exist for nonlinear FDEs with nonlocal generalized fractional integral
boundary conditions. In related work, the Mawhin continuation theorem was utilized to
investigate the possibility of finding solutions for nonlinear fractional-order boundary value
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problems with generalized Riemann-Liouville integral boundary conditions and nonlocal
Erdélyi-Kober boundary conditions [11]. FDEs are very versatile in reflecting a range of
situations that extend numerous scientific and technical disciplines, as demonstrated by a
thorough review that examines the significant contributions to the field [11,12]. Building
on these foundations, recent work has introduced novel techniques and requirements for
solving FDEs, including the use of fractional integral boundary conditions and Stieltjes.
The ongoing studies being conducted to further the mathematical research and practical
applications have the dual benefit of strengthening our theoretical understanding of FDEs
and creating new opportunities for innovative applications in pressing real-world problems.

The generalized Riemann-Liouville or Katugampola fractional integral introduced
by Katugampola [13] combines the Riemann-Liouville and Hadamard integrals into a
single framework. The generalized fractional derivative associated with this integral was
developed as a result of this novel technique [14]. The Lyapunov-type inequality for
fractional boundary value problems using the Katugampola fractional derivative has been
recently attempted to be derived using this framework [15]. Advances in the definition and
use of nonlocal integral boundary conditions for fractional differential equations are also
highlighted in the literature. For instance, thorough research has expanded the theoretical
landscape by introducing more generalized nonlocal integral border conditions [16-19].
A prominent study analyzed such boundary conditions for systems and offered insights
that guided further research [20]. A further study examined whether there are solutions
to fractional differential equations with Liouville-Caputo types that included integral
and multi-point boundary conditions in [21]. In [11], the authors applied the tool of the
Mawhin continuation theorem to study the nonlinear fractional-order boundary value with
nonlocal Erdélyi-Kober-type and generalized Riemann-Liouville-type integral boundary
conditions. Recently, in [20], solutions were presented for the following coupled system of
nonlinear fractional differential equations containing Caputo with a new kind of coupled
boundary condition:

CDMO(t) = a1(t, O(1),E(1)), t € Q1 := [0, %],
CD“ZO(f) = J1(t, O(t),E()),

(O+E)(0) = —(0+E)(T),

/j(o _E)(s)ds = A.

Sequential fractional differential equations (SFDEs) provide the idea of fractional cal-
culus to systems where derivatives are computed sequentially and have gained importance
in recent years. Scholars like [7,22,23] have offered basic ideas and examples of such deriva-
tives. SFDEs have attracted significant interest because of their versatility in simulating
complicated events in various fields. Many researchers have investigated the existence and
uniqueness of solutions for SFDEs under different boundary conditions [16,20,24,25] using
continuation theorems and fixed-point theory. To further develop the theoretical frame-
work, authors have recently addressed initial value issues using Riemann-Liouville SFDs
in [26] and the periodic boundary value condition in [27]. Furthermore, the investigation of
the existence of solutions for Caputo tripled fractional differential inclusions with integrals
and multi-point boundary conditions was discussed in [24,28-30].

In Ref. [30], the authors investigated the existence of solutions for the nonlinear SFD
system with coupled boundary conditions:

(CDM 4+ KD HO(t) = 01(t, O(1),E()), 0<t<1,
DM+ KEDUTHE®) = Lo(LO(1), (), 0<t<1,
0(0)=0'(0) =0,  O(1) =aE(),

E(0)=E(0)=0, E(1)=b0(n),
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where K is a parameter; 2 < a1, a7 < 3, (CD"‘l ), (CD“2) are the Caputo fractional deriva-
tives; ¢, # satisfy ¢, € (0,1); and the nonlinearity terms 01, 77 : [0,1] X Re X Re — Re
represent the provided continuous function.

Furthermore, researchers have investigated both single-valued and multi-valued
maps to comprehend the solutions of nonlinear coupled sequential fractional differential
equations (SFDEs) with coupled boundary conditions [19,29,31]. UH stability, originally
introduced by the authors in [32], and later refined by the authors in [33], then after, con-
cerns the concept of stability. This stability concept has been further extended by various
researchers, including [34]. Recently, many authors have been studying Ulam-Hyers sta-
bility and generalized stability in various research articles, such as [35-37], which have also
employed UH stability criteria to investigate the stability of solutions in various fractional
differential equations, highlighting its importance in contemporary mathematical research.

In this work, we explore a system of nonlinear coupled SFDEs of the Caputo type
accompanied by a novel set of boundary conditions [21], namely

(FCD)O(1) = a1(t, O(1),E(t)), t € Q1 := [0,%],
(mD“Z)E(f) = 7t O(1),E(Y),te Q1:=[0,5],
(0+E)(0) =—(0 ”)(5), (1)

)=
/j(O—E) qu(o—a Zu] (O —E)(5) =P,

where D% denotes the Caputo fractional derivative operator of order a;i = 1,2.
x1,& € (1,2], 0 < ¢ < 0 < § < (5] <%i=1,-- ,m,j =1,---,n, and erjl :
Q1 X Re X Re — R, are continuous functions.

With inspiration from the previously described work, we want to develop the literature
on boundary value issues of order (1,2] using Caputo fractional differential equations. To be
more specific, we look at and analyze the following nonlocal RL boundary value problem:

D% 4+ KD NO(t) = o1 (8, O(), E(1)), t € Oy := [0,5],
(€D 4 DR VER) = Fi(t, O1), E(1), t € Oy := [0,F],
(O+E)(0) = —(0+E)(T), @

1-q ¢ -1
b | o (O~ D@)ia =P,

where €Dy, CD2 represent the Caputo fractional derivative of order 1 < ay,a2 < 2,01, 71 :
[0,%] X Re X R, are a continuous function, Z9 is the Generalized Riemann-Liouville
fractional of order q > 0,0 > 0, and P is a constant.

We use the Banach contraction mapping principle and Schaefer’s fixed-point the-
orem in this article to explore the existence and uniqueness of solutions for system (2)
under integral boundary conditions. Additionally, we analyze the system’s stability using
Ulam-Hyers (UH) stability. So, the novelty of our system (2) is provided by the existence of
the integral term and different positive parameters in system (2), and by the RL boundary
conditions. For new results obtained in recent years and for the applications of fractional
calculus and fractional differential equations in various fields, we refer to the books [32-34]
and their associated references [36-39] for the new findings in recent years.

The main contributions of this work are provided as follows:

1.  Fundamental concepts and auxiliary lemmas related to the linear variant of prob-
lem (2), providing a solid theoretical foundation for our subsequent analysis.

2. The concerning problem (2), derived using standard fixed-point theorems. This section
demonstrates the rigorous application of these mathematical tools to establish the
existence and uniqueness of solutions.

3. Weinvestigate the stability properties of the system of nonlinear coupled SFDEs of the
Caputo type through UH stability analysis. This section highlights the robustness of
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the solutions and their resilience to small perturbations, which is essential for practical
implementations.

4. Finally, we provide detailed proofs and examples to further illustrate our findings. The
numerical section ensures that the theoretical results are well-supported by concrete
instances, enhancing the understanding and applicability of our work.

2. Preliminaries

In this section, we recall some basic concepts of fractional calculus [7] and present the
known results that are needed in our forthcoming analysis.

Definition 1 ([40]). The fractional integral of the RL type of order «y is defined by

1t (e
(3 —
I%h(t) = () /O (—o)l® dw, a1 >0,

where I'(+) is the gamma function.

Definition 2 ([40]). The Caputo fractional derivative (CFD) of order ay > 0 of the function hy(t)
is defined by

t
DYy (1) = F(nl—le)/o (t— @) W (@)dw, n—1<ay<n n=/|a]+1.

Definition 3 ([40]). The fractional integral of generalized RL type with order a1 > 0and p > 0,
of a function h1(t), V0 < t < oo, is defined as

1-q ,t oP-1
") = 5 | g (@)e,

provided the right-hand side is point-wise defined on (0,00).

Lemma 1. Let g > 0and p > 0 be the given constants. Then,

| ete
pTaP — P pea

q
T P+PP+P> p
P

The following lemma aims to investigate the linear version of the problem described
in Equation (2).
Lemma 2. Let H1, Hy € C(Q1, Re). The solution of the SFDEs,

(C’Dl)q +]ClC’D“1_1)O(t) = Hl(t), te Q] = [0/{{]/
(CDIXZ +K16D“2*1)E(t) = Hz({;), te Ql = [0/{3:]/

(O+E)(0) = —(0+E)(3), (4)
it b _a . _
ﬁF(q) /0 (CP—(DP) (O_‘—‘)((D)dw—Pll

is provided by

(Lo e

- [Ferat-o ( J (;1“1“21;2%(1;)@) dw)
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(P8 [y (e () S o Jau)ao
w8t [y (e e ([ el o aw)ao )

N /0* K (t-@) ( /O @ %Hl(u)du) do, )

5(1) :eft [{All ( _ /; K (T-a) (/Ow %Hl(u)@ i@
[T ( A (;1“1“;2%2@)@) dco)
- Aiz (Pl - ﬁfl)—’l(;; /Og (g;oii;p) </O‘D 37K1<w7u) (/Ou (;@fofllgz’ﬂl((P)d?) du> dw

e [ ([ e ([ U g ) dw> H

t 7K1(t7w)( @ (@—u)*22 )
n /0 e /O Ty o1y ol ) do, ©)
where
A= (14T, Ay =peTPe @) £, ?)
and
@
T =<— < ) 1—'0(1—1 7‘[1( )du)d(i)

_/ zq:w(o Fal_“zlz ()du>dw>

1—q e o—1 @ u _ w1 —2
_(p, _gP @ lcl(wu>< (u—g)m—* > )
T, <771 'Bf(q)/o @ =) (/0 e /0 Tl 1) Hi(p)de |du )do
1—q z o—1 ) u _ wy—2
4 @ Kl(cou)< (u—¢) > > >
B h & ° T =1y Haloie )i ).
Proof. Equation (4) can be equivalently written as

(€D + KDY HO(t) = Ha(t),
(D% + KD HE (1) = Ha(1).

Rewriting Equation (4) as D% (1 4+ K€D~ 1)O(t) = Hy(t) and D*2(1 + KD E(Y)
= H,(t), and then applying the integral operators 7! o+ and Igﬁ, respectively, we obtain
the following;:

K b k(o t(s—a)@1-2)
O®) = ce ict+/0 o Kalt )(/0 m}ll(q)dq dw, (8)
t t(g— q)(®2—2)
(1) :aoeficlth/O o—Ki(t-a) (/0 %H2(q)dq>dw, )

where ¢p, 0g are constants. Using boundary conditions (4) in (8) and (9), we obtain

c+0 =21 (10)
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¢ — 09 = Is. (11)

Solving (10) and (11) for ¢y and 9 yields

. :;{All ( - /O'Te—’ﬁ(‘f—‘f’) (/O‘D M?—Ll (u)du) do
— /O‘I e f1(T-a@) (/Ow mﬂz(u)du> dw)
+ Ai2 (771 - ﬁ?l(_q; /0g (g;oi_;p) (/Ow e K@) (/Ou (;(_al(p)_all_)z Hl(ﬁ”)f#P) du) do

+ 5‘}1(5 [ : gf’);ﬂ) < [ et ( [ <;{(‘a 24””1)2 Hz(fl’)dq)) du) d(@) }

and

. :;{All ( - /O'T K (T-0) (/0‘” M?{l (u)du) do
_ /0‘I e Ki(T-a) </0(D (‘1?(;;‘)“21)2 Hz(u)du) d@)
- Aiz (791 - /5’}1(;; /Og (gf)o i_;p) ( /O " Hate-y ( /Ou (?(_D(IP )_all_)ZHl(Go)d(P> du) do

+ /sf(qq) I : gf’p;p) ( [ o ( [ <;1(‘“ 24’)“21)2 7'12(4’)61({?) du) d@) }

Solutions (5) and (6) are derived by substituting the values of ¢y and 9( into Equation (8),
respectively. [

3. Main Results

Let us introduce the space E = C(Q1, R.) x C(Q1, R.) endowed with the norm
[(O,E)[| = supicq, [O(t)| +supg, [E(t)] for (O,E) € E. The product space is also a
Banach space.

Based on Lemma 2, we define the operator A : E — E corresponding to system (2)
as follows:

A(0,B)(1) = @Egg%g) "

where

Z1(0,2)(Y)

_ g*;C]t {;(_/: e Ki(T-a) (/Ow %Ql(mo(u)ﬂ(u))du)dw
_ /0‘Z e Ki(T-a) (/O‘D %(ﬁ (u, O(u),E(u))du) d(@)
* Aiz <Pl - /3?1(;; /0é (Q(’Diic;f’) (/OLO e-fal@m) (/Ou %91(% O(cp),.’E(q)))dq)) du) do

+/3¢(;; /Og @;DT;F) (/Ow e Kil@—u) (/O'u %Jl(@(’)(q))ﬂ((p))dq)) du)dco) H
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a0\ —2
N /O* K1 (t-@) ( /O “ %Ql(u,O(u),E(u))du) do, (13)
and
(0, E)(1)
oKt

: {All ( - [Feme ([T @ 2 4 0w, 3w o

_/OT e Ki(T-w) (/Ow %jl(u,o(u),s(u))du) dco)

-5 (7»1 - ﬁp;(_q; [ :,:p) ([femew([ i(‘}(_,xl"’)_“f)z 01(9,0(g), Zlg))dg ) ) de

85 | e U ([ Sty e 0t 2o ) da>> H

t @ — )22
Jr/o e~ Ki(t—@) (/0 %Jﬂu,(’)(u),&(u)du)d@. (14)

Next, we establish hypotheses that form the basis for our primary findings.
(W1) 3 continuous non-negative functions ¥; and k; € C(Q1, R)) fori = 1,2,3, such that

lo1(t, 0,2)] < ¥1(t) + ¥2(1)|O] + ¥3|E| forall (t, 0,E) € Q1 x RZ,
|71t O,8)| < ki(t) + ko ()| O + k3|E| forall (£, O,2) € Q; x R2.

(W>) 3 positive constants S1, Sy, 21, and Z; such that Vit € 91, O, &; € R,,i =1,2.

l01(t, 01,81) —01(t, 02, E2)| < (51|01 — Oz + 82|81 — Ep|),V t € Qy,
|J1(t, O01,81) — J1(t, O2,82)| < (21|01 — Oa| + 25|81 — Fy|),V t € Q5.

To streamline calculations and improve computational efficiency, we introduce the
following notation:

_ e*Klf 1 (3:06171 ]Cla')
e ] "

T (a1 —1+p)
1 { ﬁ ! —1+pq p

’C%F(D‘l) P F<a1—1+pq+p>

A (K1 +6K1§—1)H,
0

_ef/ﬁt 1 cs:azfl Ko
@ —[Al{mwl“’ >} (16

T (x2—1+p)
‘B Ca2—1+pq P
A KT q
2 il(az) p F<a2—1+pq+p>

(g1 +eMé - 1)H,

and

tﬂél—l tt)éz—l
®=min{1— |[[E]|[ 20 + ———(1—e XY | +||k||{ 20 + ———~(1—c 1Y) ]|,
{ { 2|< 1 lCll"(oq)( )) I 2|( 2 Ile(ucz)( )
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tDL -1

1 ar—1
1- {I‘F3|<201+ e (M)u—e’“)) +|k3(202+ % (az)u—e’“))]}.

The initial existence result for problem (2) is derived from the following fixed-point
theorem [40].

Theorem 1. Assume that (W) holds. Furthermore, it is assumed that

| (201 T e’“*)) T el (202 T —e’<1*>) <1,
KCqT (1) ICiT (a2) (17)
tle—l K taz—l
Y5l 20 +1e—1f>+k (m)+1e—&‘)<<L
1911 (200 + s )+ ksl (20 + s )

where Oy, () are defined by (15) and (16). Then, problem (2) has at least one solution in Q.

Proof. In the first step, the operator A : E — E defined by (12) is completely continuous.
The continuity of the functions ¢; and J; implies that the operator A is continuous and
maps any bounded subset of E. Let Q1 C IE be a bounded set.

Next, the bounded set iz C E. Consequently, 3 positive constants S, and Sy, such that

01(t, O(t), 2(1))[ < Sy,
[71(t O1), E(1)| < Sz,

V(0,B) €rrand t € Q.

21(0,E)(1)]

(o

. /Ox o Ki(T-0) (/Ow Mjl(u, (’)(u),E(u))du) d@)

e*lclt

<
- 2

/T e ki(T-@) (/w %Ql (u,O(u), 5(“))du) do

0 0

F(Dézfl)

b (Pl - /sp;(;; [ i;p) (fFemem( [ %el(@o(@,sw))w) i o
ol [ ([T ([ 2 g6, 000) 30 ) dw) H
# [lenee ([0 0 0w, 2w ) da,

sod 2 [an {0}

r (a1 —1+p)
1 g gm—lte e
+ Aiz

—Kig _
K%F(al) o4 F<ﬂé11+pq+p> (CKq1+e 1)}:| }

0
—Klt 062—1
e 1 T K@
JrSjl{ 2 Al{lclr(“2)(1 ‘ )}

F((azpw))
TIPS, s D
+— Ky +e k81
AY) { /C%T(lxz) 09 F<a2_1+pq+p) (K1 +e )

0
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S+ e kty)) 80,4 0
@\ KT () mRETAy
Hence,
50,85 <5 (0 + - 1 —e k1)) 45,0, 4+ D1 18
OB <80 (n+ s (- e9) + S50+ 22, (19
and
[22(0,8)(1)]
E*Klt

<

/g e ki(T-@) (/w %Ql (u,O(u), E(u))du) deo

0 0

B
Aq

N /Og —Ki(T-0) ( /O “ %jl(u, O(u),E(u))du) da))

| e

8 [y (e ([ S ate. ot 2lenagJanaa )

N /0‘ o Ki(t-@) ( /0 « %Ql(u,O(u),E(u))du) do,

2

F((“l;+P)>
g a1t K H }
K1 +e ™Mo —1
K%F(al) 04 F<a11+pq+p> (CKA )

e Kl _
IC%T(M) pq r <a2—1+pq+p> (élcl i 1)}:| }

11271 —IC ¢ 7)1
<SQ101+8$<02+’W(D€2)(1_6 1)>+A2
Hence,
- tDQ—l —]C ¢ 7)1
||22(O,EJ)H Ssglﬂl +S‘71 <02+]C1F(062) (17(3 1 )) +—2A2, (19)

Thus, from Equations (18) and (19), we obtain

tle—l

B)|| = E B)|| < (1 ekt
A0, B = [121(0, B)[| + [[22(O, )||—891(201+IC1F(“1)(1 e ))
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21 K 2P,
20 + ——(1—¢ Kt =1
#87,(200 4 =) + 50

Thus, it follows from the above inequalities that the operator A is uniformly bounded.
Next, we show that A is equicontinuous on E.
Lett, tp € [0,T] with ty < tp, and (O, E) € ;. Then,

21(0,5)(t

(0
e fat —’Cm{HAl< ~0”~‘efzcl<w> (/0‘” %Ql(m(’)(u),&(u))du)ﬂh@

b [FemE ([0 F(Mﬁ)zmu,o@),a(u))du)dw)

s e ([ S o o)

0% (e (] Sy e 0o 0)ie ) du)dw) H H

t ) a2
/0 1(67}C1(t2*w) _ e*Kl(h*tD))( /0 %S@du)d@

=)
®
,2) ()]

—_

* (g —1)
fz @ ((D_u)txl—z

~Ki(t2-@) / WO ", du)do
+tle (0 I'(ag —1) S u) ¢

S,

Q1 aq aq a ,—Kity a1 ,—Kit
—_— —t t — 0,
< ey 16— 1 e - gre )

and

1%2(0,E)(t2) —X2(0,E)(t)]

Rt (- e ([ e o, 2 ia
+ /jewm ( [t 0, 200 )
e ’}1(;,; /f (zgf :w (e ([ sy oot 2lone ) d“)) H ’

)1)(2—2

/Otl (eflCl(fZ*‘D) — eilCl(tli(D)) ( /Ow %S‘% du) de

tz "D _ 06272
7}C1(’L27(@) / ((D u)
+ e () T =T Sz,du)deo

—e
2

+

3.7 o ay ,— Kyt ar ,—Kit
/C1( )(|t“2—t22\+|t12e 1t — 2o~ M) — 0.

As t; — t, notice that the right-hand side of the above inequalities tends to zero,
regardless of (O, E) € .

This implies that A(O, E) is equicontinuous. Applying the Arzela—Ascoli theorem, we
can conclude that the operator A(O, E) is c.c.

Next, we consider the set @ = {(0,E) € E | (O,E) =IIA(O,E),0 < I1 < 1} and
show that it is bounded. Let (0,Z) € ©, and (O, &) = IIA(O, E),0 < I1 < 1. Therefore
Vt € Q1, we have

O(t) = 151 (0, E) (1), E(t) = I1%(0, E)(1).
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Using ()1 and ) provided by (15) and (16), we obtain

(09| = H[Z1(0,E)(Y)]

e—IClt X @ —u 2
. [{i(/f”“”)(/o @ (¥4 + Y2 O] + ¥ 2w )i ) o
@ _uoc272
N /sz o Ki(T-) (/0 %mukﬂ 4 k| O(u)] +k33(u)|)du)dco>
pl_q O
(7’1 ﬁrm)/ @ — )

A
([Tetes ([ g )+ 210(0) + () g )i o

1=q 7 pr-1
+’3r<q>/ @ =)
@ (@—u u (u—gl))‘x272 -
< ([T (| Mmkl+k20<¢>|+k3|~<¢>>d¢>du)dw)H

# [leme ([T @S 0 (| + w0+ ¥afE )i ) da,

aq
1 ‘3:“171 K10
Al{’C1T(0¢1)(1_e )

tlefl . Kot
* ’le(ﬂél)( —e)
1 [ gu-l Ko
Al{lclf(lxz)(le )}

(GKy+e™Mé - 1)}

- e
<(|‘I’1|+|‘Yz|||<9|+||‘1’3||al){

2

r (a1 —1+p)
1 { g gm—ltea P

A e
Kir(w) o F(Mww)
1Y

(GKy +e e - 1)}

Ay

- e
+(|Ik1|+kzlll(9+|k3|||a|){

r ( (zxzp1+p)>
1 { ‘B (;txz—l-}—pq

2
Kil(ag) — pf F(a2—1+pq+p>

0

= th —Knt
< = — 1
<!l + YA NO1 + 13| |)<Ql+lcr(le)(l e ))

- P
+(Ilkl\l+szl\IIOH+Hk3||\la\l)ﬂz+j

and

(0] = %2(0,2)(1)
e*/C]t @ o 2
{;(-/fewm ([ (1 + 0l 0w + iz o

2
) —u ap—2
N /Oz —Ki(T-@) (/0 ((ﬁ(azzl)jlﬂkﬂ O] + k3|E(u)|)du) dco)

1 plfq ¢ (Dpfl
s (7’1 geiol cery

@ u(y— )2
([Tt ([ ]+ Yal0) + Halz(e))dg ) ) de

<
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o @
P / @ — )

([femen ([ Mwm +ks|O(g)] +k3|a<¢>|>d¢)du)dw) H

-2

t @ (0 — )%

Ky (t-) (@—u) -
+/0 e k1 </0 T 1) j1(|k1|+k2|(9(u)+k3|u(u)|)du)da),
<([[¥1]l + [IF2{I[|O1] + [[¥3][I[Z])2

(k] + ke O + el (02 (1 — ety ) 4 2L
! 2 = 2T KT () 20,
As a result, we obtain
10| + ]/
w20 LR 59) + il (20 L 69) + 2
< (1 - ) + b (1—efty) 4 2L
! VKA (ag) ! 2T K () Ay
%2l (20 “@ 7 59) + izl (20 7 59l
+ (1Y ) ¢ o (1—e”
2 YUK (ag) 2 2T KT (ag)

tal_l 1 —Kqt k 200 taz_l 1 —Kqt —
=) #llll (2004 a1

By Equation (17), we can deduce that

+ [H‘Ps (201 i

1

x — ay—1 _
1111 (2001 + 2y (1= e7519) + k|l (200 + s (1 e 1Y) ) + 1
< T '

10,8 <

Therefore, the set © is bounded. This shows that ||(O, E)|| is bounded for t. Conse-
quently, by applying Schaefer’s fixed-point theorem, we can conclude that there is at least
one fixed point. Thus, a solution to Equation (2) exists. [

The statement of Theorem 1 simplifies to the following special form by setting ¥»(t) =
Tg,(f) =0and kz(f) = k3(f) =0

Remark 1. 3 non-negative functions ¥1,k; € C(8,R;}) and 01, J1 : & x R2 — R, which are
continuous functions, such that

lo1(t, O,8)| <Y¥1(t), |t O,E)| <ki(t) V(t,O,E) € & x R?
Then, system (2) has at least one solution on &.

Remark 2. Assume the Theorem 1, if ¥;(t) = 1; and k;(t) = ¢; for i = 1,2,3 (where ¢; and 1; are
non-negative constants), and if the conditions for the functions o1, Jp take the following form:
(O1) 3 real constants 1;,e; > 0 for i = 1,2,3 such that

|Q1(f,O,E)| <n +12|O| ~|—l3|E| V(f,O,E) e B x Rg,
|71(t, 0,8)| < &1 +£|O| + €3]] V(t,0,E) € & x R2,

and then (17) becomes

20y 4 B e 2t ey <1
2200+ gy 1= ) +ea(2+ - <1
gt K1t g2l K1t
- _ p M - _ p M
13 (201 + Ile(txl) (1 e )) + &3 <202 + Ile(txz) (1 e )) <1

Now, we introduce our second result, which utilizes Banach’s fixed-point theorem.
This theorem guarantees the existence and uniqueness of solution (2).
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Theorem 2. Assume that (W) holds. Then, (2) has a unique solution on E if

toq -1 tﬂlzfl

)(1 - e’le)> +z<202 + W(l —e’le)) <1, (0

s (201 N 1T (aq

where S = max{S1, 82}, Z = max{ 2y, Z,} and Q;,i = 1,2 are provided by (15) and (16).
Proof. Let us take My = sup,‘e[0 5] lo1(t,0,0)| and M, = SUpc(o,5] |71(t,0,0)| and fix

My (201 + )(1 — 1) + My (205 + ,C“;( 1=k

(s e ) + 2 (a0 e )

Now, AB, C B, where B, = {(O,E) e E : ||(O,E)|| < t}, and then

(Z1(0,5))
e*}clt
2

<

{A11 ( - /Ose_’cl@_w) (/Ow %Hel(u O(u),E(u)) — 01(1,0,0)] +M1]du>da)
- [rets e ([, 0w, 3) - (9, 0.0) +M2]du)dw>
ca(rot [

( efalemu ( A %“Ql(?’r (4’)/5(4’))—Q1(§0/0/0)|+M1]d§0)du)dco

80 | e
(et ([ e 215106, 001, 20) ~ 01(9,0,0) + Mol ) dw) H
* /Ote_’cl(t_w) (/Ow %H@(uz@(u)ﬂ(u)) —01(1,0,0)| + Mﬂdu) da,

a—1
< (5 (01 + chfi(le)(l e’“)) +Zﬂz) (o1 +11Z[D

tﬂllfl

+ My (Ql + 7K1F(D{1

) (1- e_}clt)> + Mo,

which, when the norm is applied to ¢, results in
= ! - =

(21(0,2) (800 + prs (- ) + 202 ) (0] + 12l

{"‘271

+ MO+ ————(1
1< ! ’le(“z)(

- e’le)) + Moy,

Similarly, we obtain

ap—1
(£(0,)) s(z (Qz-l- T —e’“)) +sol)<||0|| El)

tﬂ(z*l

+ M, <Qz + K@) (

1-—- €K1t)) + M0y

Consequently, V (O, E) € B, , we find
1(A(0,2))]] = [[(Z1(0,8))]] +[(Z2(0,E))]]

< (s(200+ s @-em) 4 2 (2004 0 -e9) Yol + i)
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0(1—1 062—1

t =Kt t Kt
+M1<201+ Ile(le)(l e )) +M2<202+ KT (2) (1—e )) <t

This shows that A maps B into itself.

To demonstrate that the operator A is a contraction, let (Oy,E1), (O, E;) € E and
t € Q1. By considering the relation (W), we obtain

[(Z1(01,E1)) — (£1(02,E2))|
et T Ki(T-o)
<& (-4

@ —u a1 —2
(7 B a1 (0,21 () — o1 (1, O2(0), ) )

+ [Tt ([0 0,01, 1) - G20 O, Eafw) dw)
1 pl=a & @1
+A2<Pl_ﬁr<q>/o (&P — )
@ u(y — @)*1—2
([ et ([ a0, 010, E1(0) - x(0, Oalo) Zale) g ) ) o
pl—q 14 (Dp—l
b @ e
@ u(y — )22
< ([ emta (M G150, 0r0) Ei ) m,oz<¢>,zz<qo>>|d<p)du)dw> H
et ([T 1,010, 21(0) — (0, 020, B2 ) o

-1

< (5(01 =) + ZQz) 11011+ l1811),

we have

wg—1
[(Z1(01,E1)) — (Z1(02,E2))| < (S(Ql + ]CJLT(M)(l - let)) + ZQZ) (1O + I1E]])-

and

[(£2(01,E1)) — (22(02,E2))|

e*}C1t 1 < I
< - _ —K1 (T—(ﬂ)
- 2 [{ Aq ( /O ¢

( |el<u 01 (w), 1 (1)) — 1 (1, oz<u>,az<u>>|du) do

[

(] 190 00, 2400~ 0, Ot o
0 q 7 r-1

’ ( P <>/ @ —a)

1
&

-u u— w1 —2
( o ([ O 019, 01(9),21(9) — a9, Oa(g), B9l ) ) o

g P~ 1
+B7 r<q> ol @ — )
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([Tt ([ 110,010, 21(9) — 10, O0) Zal) du)dw) H

"t @ ay—2
+ et ([T O 7 0,010, 21(0) - i, Oa(a), B2 ) do

1)(271

< <z<02 ety ) +snl) 1011+ IIEl).

In the like manner, we have

wy—1
[(Z2(01,E1)) — (Z2(02,E2))| < <Z<Qz + m(l - eflclt)) +301> (O[] + [I1E]])-

As a consequence of the preceding inequalities,

[[(A(O1,E1)) = (A(O2, En))[| = [(£1(01,E1)) — (£1(O2, E2))| + [(Z2(O01, E1)) — (£2(O2, Er))|

tle—l thz—l
<8201+ — Q-+ 2+ (1 - Kt O — 0y, 51 — 5|
_< ( 1 IC1F(1X1)( )) ( 2 /C1F(ocz)( )| |01 =02 2)ll

Consequently, given (20), it follows that A is a contraction mapping. Therefore, by
Banach'’s contraction mapping principle, A has a unique fixed point. This implies that the
problem (2) has a unique solution on Q;. The proof is thus completed. [

4. Stability Results
In this section, we focus on the investigation of the stability of the coupled SFDEs

represented by (2). We analyze the following inequality:
{ [(€D¥ + KD 1) O(t) — 01(4, O(t), E(1)| < &1 t€ Q1 :=10,F],

21
|(¢D%2 + ICCD2N)E() — J1(t, O(1),E()| < e t€ Q1 :=[0,%]. @D

Here, €1, €7 are provided positive real numbers.

Definition 4. [32] The problem (2) is UH-stable if 3 Q); > 0,i = 1,2, such that, given e1,e5 > 0,
and for each solution (O, E) € E([0,T] x R2, Re) of the inequality (21), 3 (O*,E*) € E([0,F] x
R2,R.) of system 2 with

{om—owm§nm+oﬁz te 0,9,

- - (22)
‘\:‘(t) — L*(f)| < e + Ooey, te [0,‘3:]

Remark 3. (O, E) is a solution of inequality (21) if 3 the functions A; € ([0, %], R.),i = 1,2,
which depend upon (O, E), respectively, such that

A1) <&, [A(D)] < e, €[0,%]. (23)
(6D 4+ K EDM 1 O(t) = Ql(f O(t),E(1))| + A1 (t) te Q1:=[0,%], (24)
(CD% + K, CDR1)E() = Ji(t, O(1), 2(1)] + As(8) € Oy = [0,%].

Remark 4. If (O, E) represent a solution of inequality (21), then (O, E) is a solution of follow-
ing inequality

{ou O*(1)] < Oyer + Opes, €0,
|2(t) = E*(t)| < Oeq + Doey, te[0,%],

forall (O,E) € E([0,%], Re) of inequality.

Theorem 3. Assume that (W,) holds. Then, (2) is UH-stable.
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Proof. With the assistance of Definition 4 and Remark 3, we confirmed Remark 4 as
demonstrated in the following lines.

(CDM 4+ KDY HO(1) = 04(t, O(1),
(D2 + IC,CD2 " HE() = J1(, O(t),

(1) +A(t) te Q:=1[0,%],
() + A (1) te O :=[0,%].

[x1 [1

Implying

e—Klt
2

O(t) = O*(t) +

{ & ( e (/Ow %em O(uw), E(u))du) dao
e [ e 0, 2w o

(e L e

([Tt ([ U . 0000 2l ) o

P ?1@; s @ :p) (f e ([" %mw,owxaw»d(p) ) dw) H

N /0‘ o Ki(t-@) < /‘D %Ql(ux)(u),a(u))du) do

0

It follows that

[

0 -0 ) < " H . (— [Fema ([T @S 4w ) de
_ /0 * Ki(5-0) ( /0 « % | Ay (u) \du) dw)
5 (Pl el e
% (/Ow e Ki(@—u) (/o.u %|Al(<p)|d¢)du>dw
ol [ (e ([ U gty ) dw) H
+ [l ( [ (;1“1“;;2 [ Ar(u) \du) do,

E_K:lt 1 30(1—1 /Cl(D
361{ Al{iclrm) (1=

2
F<(‘X11+P)>
1 a1 —1+pq P
. { B¢

1 S|
Ay | K2I'(ay)  pf f("‘l—l';PQ-Fp) 1

e*Kﬁt 1 50(271 K

2[A1{K1T(oc2)(1_e w)}

F((zxz—pl-&-p))
ar—1+pq
s { NS

Ki+e k-1
AZ ’C%F(IXZ) pq F(oc21+pq+p> (g e )}:|:|
0

+ €2
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<1 + Mey. (25)
Similarly,
[2(0) —E%(9)] (26)
et 1 T ks—a) [C(@—u)?
< {A1<_/o . (@ i o

_/s K1 (T-o) (/Ow (cl?wczu))AZ( )|du>dw>

Al< i h T

( o Ki(@—u </()“(1{(—D(1fi’))A1( )|d(p)du>d@
62 [ ([T ([ U gl ) dw) H
+/0te7’cl(‘*ﬁ7) (/Ow(r(;zu))flz( )|du)da)

<M1 + ey, (27)

where ()1 and (); are defined in (15)-(20), respectively. Hence, problem (2) is UH-stable. [

5. Examples

In this section, we provide numerical examples to support the aforementioned analysis.
Example 1. Consider the following system

(€D + DU O(t) = 01(t, O(t),E(Y)), t € Q; := [0,%],
(D2 + D2 HE(L) = J1(t, O(t), E
(O+E)(0) =—(0+E)(%), (28)

1- -1
'B?(q; /Oé (g;oi ) (O —E)(@)do = Py,

where xy =3/2,0p =4/3,0=2/3,0=3/4,T=2,P1 =1=1/2,q =3/2. Utilizing the
above data, we obtain (Y1 = 0.26746 )y = 0.18564, where () and )y are provided by (15) and
(16). To illustrate Theorem 1, we use

et

01(t, O(1),E(t)) = W(Ot—%—sinE—}-cost), (29)
Ji(t, O(1), E(t )):Bit)z<sino+§‘+e—‘>. (30)

Next, 01 and Jy are continuous and accomplish hypothesis (W, ) with

Y0 P L) B ) B 61
oo re 2\/900+t 21900 + €’
k= — ¢ andky— (32)

(3+t)2’k2 (3+1)? 2(341)2°

Also,
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k4 ||<20 el (1 Kl‘)) ||k ||(20 L (1 Kl‘)) 0.067854 (33)
+ (1 —e" + + (1 —e" ~ 0.
2 ! K1T (aq) 2 2 K1l (a2)
and
tlxl—l Kt taz—l it
Y| 20 + =~ (1 —e ™! >+ k (20 +———0—-e™ >z0.034436. 34
01 (200 + s 0= )l (200 o ps 1= e Y 9
Thus, by Theorem 1, 3 a solution is achieved to problem (28) on [0, 2].
Example 2. For the application of Theorem 2, we take into account
1 0] 1
t,O(t),E(t)) = t 2,
Ji(t, O(1),E(t)) = ———=(sinE+2tan"' O0), 35
16,00, 8(0) = o= ) (35)
here, 91 and Jy are continuous and fulfil hypothesis (W,) with S = S, = 1/40 = S and
21 =1/15,2,=1/30,and Z =1/15.
Further, we acquire
! Kyt 2! Kyt
S22+ —————1—-e™ )—i—Z(zQ +———0—-e™ ))%0.07457796<1. 36
( ( ' Klr(“l)( ) ? ’le(az)( ) %)

Thus, all the conditions of Theorem 2 are satisfied.

Remark 5. Our result improves the results in the theory of fractional-order systems and may
encourage multidisciplinary research and provide ideas for novel avenues of investigation into
a variety of subjects. Examining the use of fractional-order control in medical therapies and
technologies, such as patient-specific therapy and medicine delivery systems, would be feasible with
the help of medical specialists. Our techniques may be applied to tackle challenging control issues,
perhaps resulting in advancements across several fields. Furthermore, by demonstrating the efficacy
of fractional-order control techniques in chaotic systems, our work opens up new avenues for analysis
and promotes further research into the application of fractional calculus in control theory.

Remark 6. Fundamental differences are presented between a traditional system and a fractional-
order system by the ways in which they represent dynamic processes. In a conventional approach,
the operations are represented by integrals and derivatives of integer order that are restricted
to whole integers. This traditional non-integer model does not take memory effects or previous
states into account, making it modeling for instantaneous behavior. For the non-integer values for
differentiation and integration orders, allowing fractional orders offers a more flexible framework.
The representation of complex behaviors requiring memory and nonlocal interactions is made
feasible by this flexibility. Also, traditional models are well-understood in stimulating systems with
integer-order behaviors, but they could have trouble exploring complex dynamics like viscoelasticity,
anomalous diffusion, and characteristics like fractals [3,41]. In these kinds of situations, fractional-
order systems perform well because they provide memory-driven responses and a broader variety of
response patterns, such as power-law decays and growths. Therefore, the selection of these systerms
depends on the type of phenomenon under investigation; fractional-order systems provide higher
levels of precision for systems exhibiting fractional-order dynamics, while traditional systems are
still useful in situations exhibiting integer-order behaviors.

6. Conclusions

In this paper, we establish the existence and uniqueness of solutions for coupled
nonlinear Caputo sequential fractional differential equations with generalized Riemann—
Liouville fractional integral boundary conditions. Our results are derived using Schaefer’s
fixed-point theorem and the Banach contraction mapping principle, which provide a rigor-
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ous framework for addressing these complex problems. Additionally, we conduct a UH
stability analysis to assess the robustness of the solutions under perturbations, offering
deeper insights into the stability characteristics of the system. These findings enhance
our understanding of coupled fractional-order boundary value problems and offer new
perspectives in this field. Numerical examples are provided to validate and illustrate the
theoretical results, demonstrating the practical applicability of our approach. Our future
research into various integral boundary conditions may be applied to coupled fractional dif-
ferential equations, including the Hadamard, Caputo-Hadamard, and Hilfer types. Future
investigations could benefit from employing Monch’s and Darbo’s fixed-point theorems to
explore the existence and uniqueness of solutions more extensively. Additionally, examin-
ing generalized Hyers-Ulam and Ulam-Hyers—Rassias stability criteria could provide a
more comprehensive understanding of fractional differential equations. We also plan to
extend this research by incorporating neural time delays into the system and exploring
analogous results in that context.
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Abbreviations

The following abbreviations are used in this manuscript:

c.c completely continuous

BVP Boundary Value Problems

UH Ulam-Hyers

FDEs  Fractional Differential Equations

SFD Sequential Fractional Differential

CFDs  Caputo Fractional Derivatives

SFDEs  Sequential Fractional Differential Equations
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