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This research introduces a sophisticated mathematical model for understanding

the transmission dynamics of COVID-19, incorporating both integer and

fractional derivatives. The model undergoes a rigorous analysis, examining

equilibrium points, the reproduction number, and feasibility. The application of

fixed point theory establishes the existence of a unique solution, demonstrating

stability in the model. To derive approximate solutions, the generalized

Adams-Bashforth-Moulton method is employed, further enhancing the study’s

analytical depth. Through a numerical simulation based on Thailand’s data, the

research delves into the intricacies of COVID-19 transmission, encompassing

thorough data analysis and parameter estimation. The study advocates for

a holistic approach, recommending a combined strategy of precautionary

measures and home remedies, showcasing their substantial impact on pandemic

mitigation. This comprehensive investigation significantly contributes to the

broader understanding and e�ective management of the COVID-19 crisis,

providing valuable insights for shaping public health strategies and guiding

individual actions.
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mathematicalmodeling, epidemiology,COVID-19, fractional di�erential equation (FDE),
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1 Introduction

The novel coronavirus, later identified as SARS-CoV-2, was first reported in Wuhan,

China, in December 2019. Investigations suggested that the virus may have originated in

bats and was potentially transmitted to humans through an intermediate host, possibly

from a wild animal traded at a seafood market in Wuhan. Zoonotic diseases, where

pathogens jump from animals to humans, are not uncommon, and past infectious disease

outbreaks have similarly had zoonotic origins. Examples include the H1N1 influenza

virus, Ebola virus, and Middle East Respiratory Syndrome (MERS) coronavirus. These

viruses undergo genetic mutations or reassortment, enabling them to adapt and infect

humans. Studying the origins of such diseases is crucial for prevention and control, and

ongoing international research aims to comprehend the circumstances leading to the initial

transmission of SARS-CoV-2 to humans Mathematical models play an important role

in understanding the transmission dynamics of diseases, providing policymakers with a

valuable tool for assessing and evaluating potential health risks.
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Mathematical modeling in epidemiology plays a crucial role

in understanding and predicting the spread of infectious diseases

within populations. By employing mathematical equations and

statistical techniques, epidemiologists can simulate the dynamics

of disease transmission, assess the impact of interventions, and

formulate informed public health strategies. These models often

consider factors such as the rate of infection, recovery, and contact

between individuals to simulate the progression of an outbreak.

Through mathematical modeling, researchers can explore different

scenarios, evaluate the Impact of various control measures,

and ultimately contribute to the development of evidence-

based policies targeted at mitigating the influence of infectious

diseases on society. Mathematical models in epidemiology serve

as powerful tools for decision-makers in their efforts to prevent,

manage, and regulate the transmission of disease in society.

Indeed, mathematical modeling has been extensively applied to

study various infectious diseases, including malaria, chickenpox,

and COVID-19. Each disease presents unique challenges, and

mathematical models help researchers and public health officials

understand the dynamics of transmission, evaluate the impact of

interventions, and make informed decisions. For malaria, models

might focus on factors like mosquito breeding habitats, vector

behavior, and the impact of insecticide-treated bed nets. In the

case of chickenpox, models may consider the age structure of the

population and the waning immunity over time. The COVID-19

pandemic has witnessed a surge in mathematical modeling efforts

to predict the course of the disease, evaluate the influence of non-

pharmaceutical interventions, and guide vaccination strategies.

These models provide valuable insights that aid policymakers

in designing strategies to control and prevent the spread of

contagious diseases. In 2023, the study examined the effectiveness

of precautionary measures in managing chickenpox in Phuket

by utilizing mathematical modeling and conducting bifurcation

analysis to evaluate potential outcomes [1], and also in Jose et al.

[2] the authors have developed and analyzed a deterministic

mathematical model to investigate the transmission dynamics of

co-infection involving Dengue Fever (DF) and Zika virus (ZIKV),

also Van den Driessche and Watmough [3] presents a two-

strain epidemic mathematical model that incorporates vaccination

strategies, as discussed in the journal Computer Methods in

Biomechanics and Biomedical Engineering and also in Joseph et al.

[4] discusses a fractional-order density-dependent mathematical

model aimed at identifying the superior strain of Wolbachia,

available as an open access article with options for ordering

article reprints and citations. Similarly in 2022, a stuy focused

on the computational dynamics of a fractional order substance

addictions transfer model incorporating the Atangana-Baleanu-

Caputo derivative was conducted [5]. And Thomas et al. [6]

delves into modeling and analyzing SEIRS epidemic models,

specifically focusing on the 2019-nCoV outbreak in India, utilizing

the homotopy perturbation method. In 2022, Jose et al. [7]

conducts stability analysis and a comparative study on various

eco-epidemiological models, particularly focusing on impulsive

control strategies, with a stage structure considered for both prey

and predator dynamics and the study in Jose et al. [8] explores

the impact of strong determination and awareness on substance

addictions through a mathematical modeling approach.

After exposure to the virus, symptoms typically manifest in

individuals within a range of two to 14 days. The insidious nature

of the coronavirus reveals a concerning aspect as individuals

harboring the virus may become contagious up to 48 h before

symptoms materialize. This contagious phase extends for a variable

span of 10 to 20 days, influenced by the intricacies of one’s immune

response and the severity of the illness. The initial signs of the virus

present a diverse array of symptoms, encompassing the familiar

culprits such as cough, fever, and shortness of breath. However,

the subtlety lies in the nuanced manifestations including, muscle

aches, sore throat, loss of taste or smell, and a range of other

discomforts. This temporal intricacy and symptomatic diversity

underscore the challenges in identifying and containing the spread

of the virus effectively. COVID-19 can manifest as mild illness in

some individuals, while othersmay remain asymptomatic. In severe

cases, the disease can lead to respiratory distress. Lingering impact

resonates within, leaving lasting impressions on the lungs, heart

muscles, and intricacies of the nervous system. Renal failure or, in

extreme instances, death.

The detailed study of disease momentum is a prevailing

theme for many mathematicians and biologists. We can observe

numerous works, such as those by Haq et al. [9], Koca [10], and

Rida et al. [11]. Many researchers have explored the extensions

of mathematical models into fractional dimensions from their

original integer order, representing genuine data in a proficient

manner, as evidenced in the approaches of Akbari Kojabad and

Rezapour [12], Talaee et al. [13], and Qureshi [14]. In recent years,

numerous papers have delved into the intricacies of the Caputo-

Fabrizio fractional derivative, similar to works by Ali Dokuyucu

et al. [15] and Koca [10]. Moreover, in recent years, a multitude

of published works based on the fractional derivative, such as

Jan et al. [16–18], and Alharbi et al. [19] have emerged. Also in

2021, a paper was published, presenting a predictive model for

breast cancer that integrates tolerance-based intuitionistic fuzzy-

rough set feature selection with artificial neural network (ANN)

algorithms [20], and a paper regarding the analysis of a novel

coronavirus model (COVID-19) through the lens of the Caputo-

Fabrizio fractional operator represents a pioneering endeavor in

applied and computational mathematics [21]. The primary purpose

of employing a mathematical model is to simulate the intricate

dynamics of disease transmission, with a particular focus on

ailments such as coronavirus disease. We can explore a myriad of

paper-related topics in fractional calculus, such as Shah et al. [22],

Jan et al. [23], Tang et al. [24], Jan et al. [25], Jan et al. [26] Jan et al.

[27], and Anggriani et al. [28].

The fractional-order derivative is a broader interpretation,

extending beyond the conventional scope of the integer-order

derivative. The Caputo fractional derivate has been chosen not

only because of its capability to integrate the memory effect on the

model but also the completeness of the analytical tools to provide

the dynamical behaviors of the model which does not exist on the

other fractional derivative such as the Caputo-Fabrizio [29, 30]

and Atangana-Baleanu [31] operators. In recent years, fractional-

order derivatives have demonstrated superior performance in

mathematical modeling compared to other approaches. Therefore,

our focus is on investigating the transmission model of COVID-

19 utilizing the Caputo fractional-order derivative. Given the
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global pervasiveness of COVID-19 and its status as the latest

global disease, we aim to present predictions based on published

statistical and numerical information. Considering that limiting

interpersonal interactions in the community is one of the strategies

for epidemic control, our study explores the influence of the

proportion of contact between infected and wholesome individuals

on the circulation of COVID-19.

From a mathematical standpoint, the diffusion of the disease

is expected to reduce when the effective reproduction number

remains bounded by 1. Additionally, a research on controlling

the Spread mechanisms of a virus has been proposed by Edward

et al. [32] using a mathematical model. De la Sen et al. [33]

presented a novel SEIR epidemic model to investigate the impact

of double-dose vaccination feedback. In their study in 2022, Gomes

et al. [34] examined the role of the vaccine in contributing to the

establishment of immunity in individuals in a population. In 2020,

Annas et al. [35] developed a COVID-19 model to investigate the

spread of the virus, incorporating factors such as vaccination and

isolation. Additionally, in 2021, Moore et al. [36] utilized a certain

mathematical model to measure the influence of the vaccine in

supervising the sustained momentum of coronavirus.

The study of COVID-19 transmission in Thailand is pivotal in

predicting the spread of the disease, offering invaluable insights

for estimating healthcare resource requirements such as hospital

beds, ventilators, and medical staff. By comprehensively analyzing

transmission rates, incubation periods, and the effectiveness of

public health interventions, this research illuminates strategies to

curtail further spread and maintain control over the outbreak.

Through identifying patterns of virus transmission, including peak

infection periods and potential hot spots, the study provides

essential guidance for mitigation efforts. Moreover, it enhances our

understanding of the multifaceted factors influencing viral spread,

empowering us to make informed decisions. Utilizing metrics like

the reproduction number, we can forecast future transmission rates

with greater accuracy. Notably, recognizing the impact of various

parameters in the model is crucial, as it can significantly alter

outcomes, underscoring the importance of precision in pandemic

modeling and response strategies.

This paper is divided into several sections. Second section

provides fundamental definitions and concepts of calculus in

fractions. In Section 3, we delve into the fractional model of

COVID-19 transmission. The discussion of the uniqueness and

existence of the solution is presented in Section 4. Finally, Section

5 outlines the numerical method employed for solving the model,

accompanied by the presentation of numerical results.

The main highlights:

• Novel mathematical model incorporating integer and

fractional derivatives:

The study introduces a unique mathematical model for

COVID-19 transmission that goes beyond traditional models

by incorporating both integer and fractional derivatives. This

innovation allows for a more accurate representation of the

complex dynamics involved in the spread of the virus.

• Evaluation of equilibrium points and reproduction

number:

The research conducts a thorough analysis of the

mathematical model, specifically examining equilibrium

points and the reproduction number. This provides a deeper

understanding of the stability and characteristics of the

system, offering insights into critical aspects of COVID-19

transmission dynamics.

• Establishment of existence of a unique solution using fixed

point theory:

The study employs fixed point theory to rigorously establish

the occurrence of a unique solution to the proposed

mathematical model. This contributes to the mathematical

foundation of the model and enhances confidence in its

predictive capabilities, demonstrating the robustness of the

approach.

• Application of the generalized adams-bashforth-moulton

method for approximate solutions:

The research utilizes the generalized Adams-Bashforth-

Moulton method to obtain estimated solutions for the

mathematical model. This computational technique allows

for practical implementation and analysis, facilitating the

exploration of the model’s behavior and outcomes.

• Real-world application through numerical simulation

with Thailand’s data: The study goes beyond theoretical

developments by applying the mathematical model to real-

world scenarios. A numerical simulation based on data from

Thailand is conducted, offering a practical examination of

COVID-19 transmission dynamics. This application provides

valuable insights into the specific context of the pandemic,

including data analysis and parameter estimation.

2 Model formation

In this model, individuals can be categorized into six

groups: susceptible individuals (S), exposed individuals (E),

quarantined individuals(Q), symptomatic infected individuals (I),

asymptomatic infected individuals (A), and removed individuals

(R), including cured and dead individuals. In the SEQIAR

epidemiological model, the quarantine compartment plays a crucial

role in representing individuals who have been exposed to the

infectious agent but are temporarily isolated from the general

population. The Quarantine compartment accounts for those who

have closely interacted with individuals carrying the infection

and are placed under quarantine to avoid the potential spread

of the disease. This compartment acknowledges the incubation

period during which individuals may not yet exhibit symptoms

but can transmit the infection. The inclusion of a quarantine

compartment enhances the SEIARmodel’s realism by capturing the

impact of public health measures, such as isolation and quarantine,

in controlling the transmission of infectious illness. Through

the incorporation of the quarantine compartment, the SEQIAR

model becomes a valuable tool for emulating and understanding

the momentum of epidemics and assessing the effectiveness

of interventions in mitigating disease transmission. The entire

population is represented by N, where N = S+ E+Q+ I +A+ R

this model is represented as below;

dS

dt
= 3− µS−

αS((I + xA))

N
,

dE

dt
=
αS((I + xA))

N
− (θ + γ + µ)E,
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TABLE 1 Detailed description of parameters of the model (Equation 1).

Variables Descriptions

3 = nN N is the total number of individuals and n is the birth rate

µ The death rate of individuals

α The transmission rate of S to E

γ The transmission rate of E to Q

σ The proportion of transmission rate of individuals from E to A

θ Transmission rate of individuals from E to A

π The proportion of transmission rate of individuals from Q to A

φ Transmission rate of individuals from Q to I

µ1 The death rate of individuals in Q

µ2 The death rate of individuals in A

µ3 The death rate of individuals in I

χ1 Recovery rate of individuals from A to R

χ2 Recovery rate of individuals from I to R

ψ Transmission rate of individuals from Q to R

ψ1 Proportion of individuals who take home remedies

x Transfer coefficient from A to I

dQ

dt
= γE− (φ + µ+ µ1 + ψ + ψ1)Q,

dA

dt
= σθE+ πφQ− (χ1 + µ+ µ2)A, (1)

dI

dt
= (1− σ )θE+ (1− π)φQ− (µ+ µ3 + χ2)I,

dR

dt
= χ1A+ χ2I + (ψ + ψ1)Q− µR,

with,

S(0) = S0,E(0) = E0, I(0) = I0,A(0) = A0,Q(0) = Q0 are the

initial conditions of the system.

Referencing the detailed provided in Table 1, one can find

an exhaustive compilation of the parameters alongside their

comprehensive descriptions, facilitating a thorough understanding

of the system’s intricacies.

3 Quantitative evaluation of the
model

In this section, we’ve examined the invariant region, the

positivity of the solution, the presence of equilibria, disease-free

and disease-endemic equilibrium points, the basic reproduction

number and also conducted stability analysis.

3.1 Positive invariance

Using the following theorem we can demonstrate the

nonnegativity,

Theorem 3.1. Solutions of the all dynamic attribute

(S(t),E(t),Q(t),A(t),I(t),R(t)) with initial condition satisfy

S(t) > 0,E(t) > 0,Q(t) > 0,A(t) > 0, I(t) > 0,R(t) > 0

for every t > 0, then the system (Equation 1) is positively invariant

Proof. now choose the equation of dS
dt

from the system

(Equation 1),

dS

dt
= 3− µS−

αS(I + xA)

N
dS

dt
= 3− yS

where,

y = µ+
α(I + xA)

N

Now, we get the following expression from integrating the

above equation

S(t) = S0 exp (−

∫ t

0
y(v)dv)+3 exp (−

∫ t

0
y(v)dv)

S(t) ≥ S0 exp (−

∫ t

0
y(v)dv) > 0

Now we can show the positive invariance for all variables

dE

dt
=
α(I + xA)

N
− (θ + γ + µ)E

dE

dt
≥− (θ + γ + µ)E

by integrating the above equation, we get

E(t) ≥E0 exp (−

∫ t

0
(θ + γ + µ)dv) > 0

Q(t) ≥Q0 exp (−

∫ t

0
(φ + µ+ µ1 + ψ + ψ1)dv) > 0

A(t) ≥A0 exp (−

∫ t

0
(χ1 + µ+ µ2)dv) > 0

I(t) ≥I0 exp (−

∫ t

0
(µ+ µ3 + χ2)dv) > 0

R(t) ≥R0 exp (−

∫ t

0
µdv) > 0

Hence the proof.

3.2 Boundedness

We examined the model (Equation 1) to obtain the a

biologically feasible solution set. now, the following theorem

assures that the system’s solutions find their realmwithin a specified

set, elegantly abiding by conditions of non-negativity.

Theorem 3.2. The set of feasible solution of the system of

Equation 1 with the initial conditions which initiate in R6+ are

bounded uniformly in 1, where 1 = (S,E,Q,A, I,R) belongs

R6+ : S+ E+ Q+ A+ I + R = N is the positively invariant region.
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Proof. By using the non-negative initial conditions in the system

(Equation 1), it is noticed that each of the Varying parameter

remains non-negative, by Theorem 3.1. Now, when we sum each

equation in Equation 1 to determine the overall population size,

N(t), one must consider the scenario where there are no fatalities

attributed to COVID-19.

dN

dt
=
dS

dt
+

dE

dt
+

dQ

dt
+

dA

dt
+

dI

dt
+

dR

dt

H⇒
dN

dt
= µN − µS− µE− µQ− µ1Q− µA−

µ2A− µI − µ3I − µR

H⇒
dN

dt
= 0

Upon integration of the aforementioned equation, the result is

obtained as, N(t) is a constant.

Accordingly, with the constantmagnitude of the population, we

obtain that all feasible solutions of each of the system of Equation 1

with variable parameters i.e., S,E,Q,A,I, and R are bounded in the

invariant region.

3.3 Evaluation of equilibrium points and its
stability

In examining the transmission of an infection, the

disease-free equilibrium (DFE) represents a population

state crucial for understanding when the disease is not

widespread. The determination of the disease-free equilibrium

involves setting E, Q, A, I, and R to zero in the system of

Equation 1. Therefore, the disease-free equilibrium for model

(Equation 1) is characterized by the following system of equations

being satisfied:

dS

dt
=

dE

dt
=

dQ

dt
=

dA

dt
=

dI

dt
=

dR

dt
= 0

The solution to the algebraic equations allows us to identify the

system’s equilibrium points. The disease-free equilibrium point is

reached when the absence of any ailment prevails, given by E0 =

(3
µ
, 0, 0, 0, 0, 0).

And also, if R0 > 1, then the system (Equation 1) also has a

positive endemic equilibrium E∗1 = (S∗,E∗, I∗,A∗,R∗,Q∗),

E∗ =
φ + µ+ µ1 + ψ + ψ1

γ
Q∗

A∗ =
σθφ + σθµ+ σθµ1 + σθψ + σθψ1 + γπφ

γχ1 + γµ+ γµ2
Q∗

I∗ =

φ + µ+ µ1 + ψ + ψ1 − σθφ − σθµ− σθµ1 − σθψ

−σθψ1 + θγ − πφγ

γµ+ γµ3 + γχ2
Q∗

R∗ =
χ1β + χ2δ + (ψ + ψ1)

µ
Q∗

S∗ =
(θ + γ + µ)Nκ

α(δ + βx)

Q∗ =
3− µυ

αυ(δ + βx)

where,

β =
σθφ + σθµ+ σθµ1 + σθψ + σθψ1 + γπφ

γχ1 + γµ+ γµ2

δ =

φ + µ+ µ1 + ψ + ψ1 − σθφ − σθµ− σθµ1 − σθψ

−σθψ1 + θγ − πφγ

γµ+ γµ3 + γχ2

κ =
φ + µ+ µ1 + ψ + ψ1

γ

υ =
(θ + γ + µ)Nκ

α(δ + βx)

The stability of E0 relies on the basic reproductive number R0,

which represents the average number of secondary cases generated

by a COVID-19 infected individual throughout their contagious

period when introduced to a population of susceptible individuals

without any interventions. We examine the equilibrium’s stability

using the next-generation operator. Referring to the notations in

Van den Driessche and Watmough [3] for model (Equation 1), the

matrices F, representing new infections, and V , representing the

remaining transfer terms, are provided as follows.

F =











αS(t)((I(t)+xA(t))
N

0

0

0











and

V =











(θ + γ + µ)E(t)

−γE(t)+ (φ + µ+ µ1 + ψ + ψ1)Q(t)

−σθE(t)− πφQ(t)+ (χ1 + µ+ µ2)A(t)

−(1− σ )θE(t)− (1− π)φQ(t)+ (µ+ µ3 + χ2)I(t)











The Jacobian matrix for F and V at E0 obtained as

JF(E0) =











0 0 αx 3
µN α 3

µN

0 0 0 0

0 0 0 0

0 0 0 0











and

JV (E0)

= λη−1









θ + γ + µ 0 0 0

−γ φ + µ+ µ1 + ψ + ψ1 0 0

−σθ −πφ χ1 + µ+ µ2 0

−(1− σ )θ −(1− π)φ 0 µ+ µ3 + χ2









FV−1 is known as the next generation matrix for the system,

then the basic reproduction number is defined as R0 = ρ(FV−1),

i.e.,

αx3(θσ (φ + µ+ µ1 + ψ + ψ1))

µN(θ + µ+ γ )(φ + µ+ µ1 + ψ + ψ1)(χ1 + µ+ µ2)

+
α3(γ (1− π)φ + (φ + µ+ µ1 + ψ + ψ1)(1− σ )θ)

µN(θ + µ+ γ )(φ + µ+ µ1 + ψ + ψ1)(µ+ µ3 + χ2)
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3.4 Stability analysis of the equilibrium
point

Theorem 3.3. The disease-free equilibrium, E0 =

(S0, 0, 0, 0, 0, 0) = (3
µ
, 0, 0, 0, 0, 0), of the system (Equation 1)

is globally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. We consider the following Lyapunov functional L0 as in

Yaagoub et al. [37], given by

L0 = S0
(

S

S0
− ln

(

S

S0

)

− 1

)

+ E+
(θ + γ + µ)

γ
Q

+
(φ + µ+ µ1 + ψ + ψ1)(θ + γ + µ)

γπφ
A

+
(φ + µ+ µ1 + ψ + ψ1)(θ + γ + µ)

γ (1− π)φ
I. (2)

Then,

L̇0 ≤

(

1−
S

S0

)

+ Ė+
(θ + γ + µ)

γ
Q̇

+
(φ + µ+ µ1 + ψ + ψ1)(θ + γ + µ)

γπφ
Ȧ

+
(φ + µ+ µ1 + ψ + ψ1)(θ + γ + µ)

γ (1− π)φ
İ.

Then, after calculation, we will have

L̇0 ≤ µS0
(

2−
S

S0
−

S0

S

)

+
(θ + γ + µ)(φ + µ+ µ1 + ψ + ψ1)(χ1 + µ+ µ2)

γπφ
(

αS0γπφ

N(θ + γ + µ)(φ + µ+ µ1 + ψ + ψ1)(χ1 + µ+ µ2)
− 1

)

+
(θ + γ + µ)(φ + µ+ µ1 + ψ + ψ1)(µ+ µ3 + χ2)

γ (1− π)φ
(

αS0γ (1− π)φ

N(θ + γ + µ)(φ + µ+ µ1 + ψ + ψ1)(µ+ µ3 + χ2)
− 1

)

≤ µS0
(

2−
S

S0
−

S0

S

)

+

(θ + γ + µ)(φ + µ+ µ1 + ψ + ψ1)

(χ1 + µ+ µ2)

γπφ

(C1 − 1)+

(θ + γ + µ)(φ + µ+ µ1 + ψ + ψ1)

(µ+ µ3 + χ2)

γ (1− π)φ
(C2 − 1)

Since the arithmetic mean either exceeds or equals the

geometric mean, so

2−
S

S0
−

S0

S
≤ 0, (3)

Moreover, if R0 < 1, then we will have C1 < 1 and C2 < 1,

therefore we will have L̇0 < 0. So the disease-free equilibrium point

E0 is globally asymptotically stable.

4 Caputo fractional model

Within this section, we usher in a moderating influence into

the system,initiating a transformation where the conventional

time derivative yields to the nuanced impact of the Caputo

fractional derivative. This shift, however, induces a dimensional

incongruity between the right and left facets of the equation.

To harmonize this dissonance, we introduce a pivotal auxiliary

parameter, aptly labeled as ξ and characterized by dimensions in

seconds. This strategic introduction of ξ serves as a calibrated lever,

skillfully adjusting the fractional operator. The overarching goal

is to orchestrate a balanced equation where both sides coalesce

seamlessly, sharing a harmonized dimensionality.

In light of the explained methodology, the fractional model

for coronavirus transmission, valid for u > 0 and η ∈ (0, 1), is

expressed as follows

ξη−1cDηuS(t) = 3− µS(u)−
αS((I + xA))

N

ξη−1cDηuE(t) =
αS((I + xA))

N
− (θ + γ + µ)E(u)

ξη−1cDηuQ(u) = γE(u)− (φ + µ+ µ1 + ψ + ψ1)Q(u)

ξη−1cDηuA(u) = σθE(u)+ πφQ(u)− (χ1 + µ+ µ2)A(u) (4)

ξη−1cDηuI(u) = (1− σ )θE(u)+ (1− π)φQ(u)

−(µ+ µ3 + χ2)I(u)

ξη−1cDηuR(u) = χ1A(u)+ χ2I(u)+ (ψ + ψ1)Q(u)− µR(u)

with initial conditions of the system of Equation 1 let, 1 =

(S,E,Q, I,A,R)ǫR+6 : S+ E+ Q+ I + A+ R ≥ 3
µ
, now we show

that the region of feasibility of the system is the closed set1.

4.1 Equilibrium points and reproduction
number

The equilibrium points of the fractional order system are

determined by solving the given equations.

cDηS(u) =c DηE(u) =c DηQ(u) =c DηA(u) =c DηI(u)

=c DηR(u) = 0

we obtain equilibrium points same as in model (Equation 1) by

solving the algebraic equations mentioned above. Also, R0 is known

as the basic reproduction number which is obtained using the next-

generation method. So, to find R0, first we have to consider the

system as follows,

cDη�(u) = F(�(u))− V(�(u))

Then the basic reproduction number of the Fractional model is

the same as the model (Equation 1).
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4.2 Existence and uniqueness of the
solution

In this section, we are going to show that the system has a

unique solution, we write the equation as follows,















































ξη−1cDn
uS(u) = W1(u, S(u))

ξη−1cDn
uE(u) = W2(u,E(u))

ξη−1cDn
uI(u) = W3(u, I(u))

ξη−1cDn
uA(u) = W4(u,A(u))

ξη−1cDn
uQ(u) = W5(u,Q(u))

ξη−1cDn
uR(u) = W6(u,R(u))

By basic definitions we can write these as,















































S(u)− S(0) =
ξ1−η

Ŵ(η)

∫ u
0 W1(λ, S)(t − λ)

η−1dλ

E(u)− E(0) =
ξ1−η

Ŵ(η)

∫ u
0 W2(λ,E)(u− λ)η−1dλ

I(u)− I(0) =
ξ1−η

Ŵ(η)

∫ u
0 W3(λ, I)(u− λ)η−1dλ

A(u)− A(0) =
ξ1−η

Ŵ(η)

∫ u
0 W4(λ,A)(u− λ)η−1dλ

Q(u)− Q(0) =
ξ1−η

Ŵ(η)

∫ u
0 W5(λ,Q)(u− λ)η−1dλ

R(u)− R(0) =
ξ1−η

Ŵ(η)

∫ u
0 W6(λ,R)(u− λ)η−1dλ

Now we will show that the kernels Wm, 1 ≤ m ≤ 6 fulfill the

Lipschitz condition and contraction.

Theorem 4.1. The kernel W1 fullfil the Lipchitz condition and

contraction if the inequality holds 0 ≤ µ+ α(δ3 + xδ4) < 1

Proof.

‖W1(u, S)−W1(u, S1)‖ = ‖ − µ(S(u)− S1(u))− α(I(u)

+ xA(u))(S(u)− S1(u))‖

≤ µ‖(S(u)− S1(u))‖ + α‖(I(u)

+ kA(u))‖‖(S(u)− S1(u))‖

≤ (µ+ α‖I(u)‖

+ k‖A(u)‖)(‖(S(u)− S1(u))‖)

≤ µ+ α(δ3 + xδ4)‖S− S1‖

let, a1 = (µ + α(δ3 + kδ4)), where, ‖I(u)‖ ≤ δ3, ‖A(u)‖ ≤ δ4, is

function with boundary, so ‖W1(u, S) −W1(u, S1)‖ ≤ a1‖(S(u) −

S1(u))‖ Thus, for W1 the Lipchitz condition is satisfied and if 0 ≤

(µ+ α(δ3 + xδ4)) < 1, thenW1 is a contraction.

Similarly, the Lipschitz condition for Wm, 1 ≤ m ≤ 6 is given

as follows,

‖W2(u,E)−W2(u,E1)‖ ≤ a2‖(E(u)− E1(u))‖

‖W3(u, I)−W3(u, I1)‖ ≤ a3‖(I(u)− I1(u))‖

‖W4(u,A)−W4(u,A1)‖ ≤ a4‖(A(u)− A1(u))‖

‖W5(u,Q)−W5(u,Q1)‖ ≤ a5‖(Q(u)− Q1(u))‖

‖W6(u,R)−W6(u,R1)‖ ≤ a6‖(R(u)− R1(u))‖

where, ‖S(u)‖ ≤ δ1, ‖E(u)‖ ≤ δ2, ‖I(u)‖ ≤ δ3, ‖A(u)‖ ≤

δ4, ‖Q(u)‖ ≤ δ5, ‖R(u)‖ ≤ δ6 and a2 = (θ+γ +µ), a5 = (φ+µ+

µ1+ψ+ψ1), a4 = (χ1+µ+µ2), a3 = (µ+µ3+χ2), a6 = µ are

bounded functions, if 0 ≤ am < 1,m = 2, 3, 4, 5, 6 then Wm, 2 ≤

m ≤ 6 are contraction from the above system of equations, we can

construct these recursive forms as shown in below,

K1n(u) = Sn(u)− Sn−1(u) =
ξ 1−η

Ŵ(η)

∫ u

0
(W1(λ, Sn−1)

−W1(λ, Sn−2)(u− λ)η−1dλ

K2n(u) = En(u)− En−1(u) =
ξ 1−η

Ŵ(η)

∫ u

0
(W2(λ,En−1)

−W2(λ,En−2)(u− λ)η−1dλ

K3n(u) = In(u)− In−1(u) =
ξ 1−η

Ŵ(η)

∫ u

0
(W3(λ, In−1)

−W3(λ, In−2)(u− λ)η−1dλ

K4n(u) = An(u)− An−1(u) =
ξ 1−η

Ŵ(η)

∫ u

0
(W4(λ,An−1)

−W4(λ,An−2)(u− λ)η−1dλ

K5n(u) = Qn(u)− Qn−1(u) =
ξ 1−η

Ŵ(η)

∫ u

0
(W5(λ,Qn−1)

−W5(λ,Qn−2)(u− λ)η−1dλ

K6n(u) = Rn(u)− Rn−1(u) =
ξ 1−η

Ŵ(η)

∫ u

0
(W6(λ,Rn−1)

−W6(λ,Rn−2)(u− λ)η−1dλ

with initial conditions of the system Equation 1.

Proceeding, we evaluate the norm of the first equation within

the described system of equations, then

‖K1n(u)‖ = ‖S(u)− Sn−1‖

= ‖
ξ 1−η

Ŵ(η

∫ u

0
(W1(λ, Sn−1)−W1(λ, Sn−2)(u− λ)η−1dλ‖

≤
ξ 1−η

Ŵ(η

∫ u

0
‖(W1(λ, Sn−1)−W1(λ, Sn−2)(u− λ)η−1‖dλ

From Lipchitz conditions, we have

‖K1n(u)‖ ≤
ξ 1−η

Ŵ(η)
a1

∫ u

0
‖K1(n−1)(λ)‖dλ

similarly, we obtain

‖K2n(u)‖ ≤
ξ 1−η

Ŵ(η)
a2

∫ u

0
‖K2(n−1)(λ)‖dλ

‖K3n(u)‖ ≤
ξ 1−η

Ŵ(η)
a3

∫ u

0
‖K3(n−1)(λ)‖dλ

‖K4n(u)‖ ≤
ξ 1−η

Ŵ(η)
a4

∫ u

0
‖K4(n−1)(λ)‖dλ

‖K5n(u)‖ ≤
ξ 1−η

Ŵ(η)
a5

∫ u

0
‖K5(n−1)(λ)‖dλ

‖K6n(u)‖ ≤
ξ 1−η

Ŵ(η)
a6

∫ u

0
‖K6(n−1)(λ)‖dλ
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thus we can write,

Sn(u) =

n
∑

j=1

K1j(u),En(u) =

n
∑

j=1

K2j(u), In(u) =

n
∑

j=1

K3j(u),

An(u) =

n
∑

j=1

K4j(u),Qn(u) =

n
∑

j=1

K5j(u),Rn(u) =

n
∑

j=1

K6j(u)

Now, we are going to show that the uniqueness of the solution

Theorem 4.2. A system of solutions given by the fractional

COVID-19 model exist if there exist t1 such that ξ
1−η

Ŵ(η)
u1ai < 1

Proof. from the recursive technique, we can say

‖K1n(u)‖ ≤ ‖Sn(0)‖(
ξ 1−η

Ŵ(η)
a1u)

n

‖K2n(u)‖ ≤ ‖En(0)‖(
ξ 1−η

Ŵ(η)
a2u)

n

‖K3n(u)‖ ≤ ‖In(0)‖(
ξ 1−η

Ŵ(η)
a3u)

n

‖K4n(u)‖ ≤ ‖An(0)‖(
ξ 1−η

Ŵ(η)
a4u)

n

‖K5n(u)‖ ≤ ‖Qn(0)‖(
ξ 1−η

Ŵ(η)
a5u)

n

‖K6n(u)‖ ≤ ‖Rn(0)‖(
ξ 1−η

Ŵ(η)
a6u)

n

Thus, we can say the system has a continuous solution. Now we

show that the above functions establish a solution,

we assucume that,

S(u)− S(0) = Sn(u)− C1n(u)

E(u)− E(0) = En(u)− C2n(u)

I(u)− I(0) = In(u)− C3n(u)

A(u)− A(0) = An(u)− C4n(u)

Q(u)− Q(0) = Qn(u)− C5n(u)

R(u)− R(0) = Sn(u)− C6n(u)

so,

‖C1n(u)‖ = ‖
ξ 1−η

Ŵ(η)

∫ u

0
(W1(λ, S)−W1(λ, Sn−1dλ‖

≤
xi1−η

Ŵ(η)

∫ u

0
‖(W1(λ, S)−W1(λ, Sn−1‖dλ

≤
ξ 1−η

Ŵ(η)
a1‖S− Sn − 1‖u

Now we repeat the method and we obtained,

‖C1n(t)‖ ≤ (
λ1−η

Ŵ(η)
t)n+1an+1

1 p

at t1, we get

‖C1n(t)‖ ≤ (
λ1−η

Ŵ(η)
t1)

n+1an1 + 1p

Now take the limit on the recent equation and let n tends to∞,

we obtain

‖C1n(u)‖ → 0

similarly we can show that ‖Cin(u)‖ → 0, 2 ≤ i ≤ 6.

Hence the proof.

Now, we going to show the uniqueness of the solution,

we consider that the system has another solution say

S1(u),E1(u), I1(u),A1(u),Q1(u) and R1(u), then we can write

S(u)− S1(u) =
ξ 1−η

Ŵ(η)

∫ u

0
(W1(λ, S)−W1(λ, S1))dλ

now we take the norm of the equation

‖S(u)− S1(u)‖ =
ξ 1−η

Ŵ(η)

∫ u

0
‖(W1(λ, S)−W1(λ, S1))‖dλ

By using lipschitz condition

‖S(u)− S1(u)‖ ≤
ξ 1−η

Ŵ(η)
a1u‖S(u)− S1(u)

Then

‖S(u)− S1(u)‖(1−
ξ 1−η

Ŵ(η)
a1u) ≤ 0

Theorem 4.3. the solution of the model (Equation 1) is unique if it

satisfies the following condition

1−
ξ 1−η

Ŵ(η)
a1 > 0

Proof. let the above condition is satisfied

‖S(u)− S1(u)‖(1−
ξ 1−η

Ŵ(η)
a1u) ≤ 0

Then we can say, ‖S(u) − S1(u)‖ = 0. So, this implies S(u) =

S1(u). Likewise, we can establish the equivalence for E, I,A,Q, and

R.

5 Numerical investigations and
outcomes

5.1 Numerical method

In this context, we employ the numerical technique known as

the Generalized Adams-Bashforth-Moulton (ABM) method [38].

Since we are focusing on the dynamical behaviors, the numerical
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ABM scheme is employed rather than other analytical solutions

such as Srivastava polynomials [39] and modified double Laplace

transform method [40]. The ABM method works on any explicit

Caputo fractional-order differential equation with small error and

time efficiency. To initiate this method, we start by addressing a

specific nonlinear equation.

cD
η
t =g(u,m(u)), 0 ≤ u ≤ U

m(f )(0) =m
f
0, f = 0, 1, 2, .......ϒ ..,ϒ = [η]

Now, the equation mentioned above can be expressed as an

equivalent Volterra integral.

m(u) =

ϒ−1
∑

f=0

m
(f )
0

uf

f !
+

1

Ŵ(η

∫ u

0
(u− s)η−1g(s,m(s))ds

When tackling integration challenges, the Adams-Bashforth-

Moulton method stands out as a reliable numerical technique. Let

z = U
N , tn = nz, nǫZ+, so we can express the system through its

representation.

Sn+1 =S0 +
zηξ 1−η

Ŵ(η + 2)
[3− µS

p
n+1 −

αS
p
n+1(I

p
n+1 + xA

p
n+1)

N
]

+
zηξ 1−η

Ŵ(η + 2)

n
∑

i=0

di,n+1[ξ − µSi −
αSi(Ii + xAi)

N
]

En+1 =E0 +
zηξ 1−η

Ŵ(η + 2)
[
αS

p
n+1(I

p
n+1 + xA

p
n+1)

N

− (θ + γ + µ)E
p
n+1]+

zηξ 1−η

Ŵ(η + 2)

n
∑

i=0

di,n+1[
αSi(Iip+ xAi)

N

− (θ + γ + µ)Ei]

Qn+1 =Q0 +
zηξ 1−η

Ŵ(η + 2)
[γE

p
n+1 − (φ + µ+ µ1 + ψ + ψ1)Q

p
n+1]

+
zηξ 1−η

Ŵ(η + 2)

n
∑

i=0

di,n+1[γEi − (φ + µ+ µ1 + ψ + ψ1)Qi]

An+1 =A0 +
zηξ 1−η

Ŵ(η + 2)
[σθE

p
n+1 + πφQ

p
n+1

− (χ1 + µ+ µ2)A
p
n+1]+

zηξ 1−η

Ŵ(η + 2)

n
∑

i=0

di,n+1[σθEi

+ πφQi − (χ1 + µ+ µ2)Ai]

In+1 =I0 +
zηξ 1−η

Ŵ(η + 2)
[(1− σ )θE

p
n+1 + (1− π)φQ

p
n+1

− (µ+ µ3 + χ2)I
p
n+1]+

zηξ 1−η

Ŵ(η + 2)

n
∑

i=0

di,n+1[(1− σ )θEi

+ (1− π)φQi − (µ+ µ3 + χ2)Ii]

Rn+1 =R0 +
zηξ 1−η

Ŵ(η + 2)
[χ1A

p
n+1 + χ2I

p
n+1 + (ψ + ψ1)Q

p
n+1

− µR
p
n+1]+

zηξ 1−η

Ŵ(η + 2)

n
∑

i=0

di,n+1[χ1Ai + χ2Ii

+ (ψ + ψ1)Qi − µRi]

where,

S
p
n+1 = S0 +

ξ 1−η

Ŵ(η)

n
∑

i=0

9i,n+1[3− µSi −
αSi(Ii + xAi)

N
]

E
p
n+1 = E0 +

ξ 1−η

Ŵ(η)

n
∑

i=0

9i,n+1[
αSi(Ii + xAi)

N
− (θ + γ + µ)Ei]

Q
p
n+1 = Q0 +

λ1−η

Ŵ(η)

n
∑

i=0

9i,n+1[γEi − (φ + µ+ µ1 + ψ + ψ1)Qi]

A
p
n+1 = A0 +

ξ 1−η

Ŵ(η)

n
∑

i=0

9i,n+1[σθEi + πφQi − (χ1 + µ+ µ2)Ai]

I
p
n+1 = I0 +

ξ 1−η

Ŵ(η)

n
∑

i=0

9i,n+1[(1− σ )θEi + (1− π)φQi

− (µ+ µ3 + χ2)Ii]

R
p
n+1 = R0 +

ξ 1−η

Ŵ(η)

n
∑

i=0

9i,n+1[χ1Ai + χ2Ii + (ψ + ψ1)Qi − µRi]

in which,

di,n+1 =























nηk+1 − (n− ηk)(n+ 1)nk , i = 0

(n− i+ 2)nk+1 + (n− i)nk+1

−2(n− i+ 1)nk+1
, 1 ≤ i ≤ n

1, i = n+ 1

and

9i,n+1 =
Zηk

ηk

(

(n− i+ 1)ηk − (n− i)ηk
)

,

0 ≤ i ≤ n with j = 1, 2, 3.

5.1.1 Data analysis and parameter estimation
In this section, initially, we conducting a data exploration

by plotting a bar chart of Daily Cumulative Cases with Slope

Lines (Figure 1) and a Violin plot of COVID Cases Distribution

(Figure 2). In Figure 1, a bar chart is constructed to depict the

cumulative COVID-19 cases observed between May 19, 2022, and

June 22, 2022, inclusive, incorporating slope lines for enhanced

interpretation. This graphical representation offers an insightful

perspective on the progression of COVID-19 cases throughout the

specified time frame. Notably, the initial 15 days from May 19,

2022, exhibit a pronounced upward trajectory in COVID-19 cases.

Subsequently, over the ensuing 20 days leading up to June 22, 2022,

there is a discernible attenuation in the rate of COVID-19 spread,

as elucidated by the trend lines in Figure 1.

The integrated violin and box plot depicted in Figure 2 offers a

comprehensive visualization of the COVID data, presenting both

the distribution characteristics and summary statistics within a

unified representation. The white dot within the violin serves as

a visual cue for the median, while the distinct central gray bar

graphically represents the interquartile range. Adjacent to this bar,

a subtle gray line extends to illustrate the broader data distribution.

Kernel density estimations on either side of this central gray line

delineate the shape of the data’s distribution. The varying width of

the violin dynamically conveys the density or frequency of data
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FIGURE 1

Daily cumulative COVID cases with slope lines.

FIGURE 2

COVID cases distribution illustrated with violin plot.

points, with a broader section indicating a higher concentration

within the given range. The symmetry of the violin plot indicates

the absence of skewness in the dataset.

Subsequently, we conduct a numerical modeling simulation

utilizing authentic data to model the transference momentum of

COVID-19 in Thailand. The approach involves the estimation

of certain parameters, drawing from existing literature, while the

remaining parameters are meticulously adjusted to enhance model

accuracy. We fitted the COVID-19 Model (Equation 1) to the

increasing cases of COVID-19 in Thailand. Specifically, we focus

on the Daily Cumulative cases of COVID-19 spanning from May

19, 2022, to June 22, 2022, as reported by the World Health

Organization (WHO).1 The fitting of the model was executed

utilizing the fmincon algorithm within the MATLAB environment.

This integration of real-world data into our simulation not only

bolsters the reliability of our model but also facilitates a more

extensive comprehension of the COVID-19 transmission dynamics

within the context of Thailand during the specified time.

In this study, we conducted numerical simulations to

validate the outcomes of our proposed model, employing

the Caputo fractional derivative and solvers implemented

in the MATLAB programming language. The purpose of

1 https://covid19.who.int/region/searo/country/th
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these simulations was to complement and validate the

analytical results obtained. To provide a visual illustration,

we chose baseline values of parameter (refer to Table 2) that

align with the characteristics of COVID-19 contamination

and transmission.

For data fitting, we gathered daily authenticated cases of

COVID-19 in Thailand from May 19, 2022, to June 22, 2022,

sourced from the World Health Organization (WHO), as outlined

in Table 3. The results of the data fitting process are visually

presented in Figure 3, utilizing the values derived from this dataset.

TABLE 2 Parameter values of model.

Parameter Value References

3 0.009718 [41]

µ 0.008159 [42]

α 1.0791 Fitted

γ 1/7 [43]

σ 0.8 Fitted

θ 1/5.2 [44]

π 0.5 Fitted

φ 1/15 Fitted

µ1 0.015 [45]

µ2 0.015 [45]

µ3 0.015 [45]

χ1 0.13978 [45]

χ2 0.13978 [45]

ψ 0.65 Fitted

ψ1 1/7 [45]

x 0.001 Fitted

The model was initialized with the initial conditions (Equation 3)

S(0) = 7× 107, E(0)=8× 103, Q(0)=2× 103, A(0)=3× 102,

I(0) = 5005, R(0) = 0.

Figure 4 displays the variations observed in the numerical

simulation of Model (Equation 2), initialized with values specified

in Equation 3 and utilizing parameter values from Table 2. The

simulation involves varying the order of the fractional derivative,

denoted as η, with values ranging from 0 to 1. Specifically, we

explore the impact on the dynamics of S(t), A(t), I(t), Q(t), E(t),

and R(t) over time. In this analysis, η is considered with discrete

values of 0.4, 0.6, 0.8, and 1, allowing us to observe and analyze the

resulting changes in the model’s outputs.

FIGURE 3

Daily cumulative cases of COVID-19 from May 19, 2022 to June 22,

2022.

TABLE 3 The daily confirmed cases of COVID-19 in Thailand from May 19, 2022, to June 22, 2022.

Day Confirmed cases Day Confirmed cases Day Confirmed cases

19-May 6,305 1-Jun 4,563 14-Jun 1,833

20-May 6,463 2-Jun 2,560 15-Jun 2,263

21-May 5,377 3-Jun 2976 16-Jun 2,153

22-May 4,739 4-Jun 3,001 17-Jun 1,967

23-May 4,099 5-Jun 3,236 18-Jun 2,272

24-May 4,144 6-Jun 2,162 19-Jun 1,892

25-May 5,013 7-Jun 2,224 20-Jun 1,784

26-May 4,813 8-Jun 2,688 21-Jun 1,714

27-May 4,837 9-Jun 3,165 22-Jun 2,387

28-May 4,488 10-Jun 2,836

29-May 3,649 11-Jun 2,501

30-May 3,854 12-Jun 2,475

31-May 3,955 13-Jun 1,801
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FIGURE 4

Numerical simulation of model (Equation 4) with initial values (Figure 3) using parameter values given by Table 2 and varying the order of the

derivative η.

FIGURE 5

Numerical simulation of model (Equation 4) with initial values (Figure 3) using parameter values given by Table 2, α = 0.85, and varying the parameter

ψ1.
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5.1.2 Impact of parameters
The importance of home remedies in influencing the

spread rate of COVID-19 is crucial, particularly during times

of quarantine. By employing a combination of precautionary

measures and home remedies, individuals can observe a noticeable

shift toward recovery. This section aims to demonstrate the

impact of a specific parameter, denoted as ψ1. Through the

implementation of various levels of ψ1, we can analyze and

understand how these home-based interventions contribute to the

overall trajectory of recovery. Home remedies, ranging from herbal

infusions and nutritional supplements to respiratory exercises, not

only bolster the immune system but also play a significant role in

managing symptoms and reducing the severity of the illness. As we

explore the effectiveness of different levels of ψ1 in this context,

it becomes evident that personalized and targeted home-based

interventions can be instrumental in mitigating the transmission

of the virus and expediting the recovery procedure for individuals

affected by COVID-19.

TABLE 4 Results of fractional model with various of ψ1.

ψ1 0.1 0.2 0.3 0.4

A(t) 6, 285.03 5, 944.44 5, 683.46 5, 477.44

I(t) 1, 860.46 1, 749.55 1, 665.07 1, 598.71

R(t) 98, 424.3 100, 149 102, 286 105, 001

In Figure 5, we represent the outcome of the numerical

simulation of Model (Equation 2) with initial values specified in

Equation 3, employing parameter values from Table 2, and setting

α = 0.85 The simulation involves varying the parameter ψ1,

and we observe corresponding variations in all compartments.

Specifically, we consider values for ψ1 as 0.1, 0.2, 0.3, and 0.4. The

graph illustrates that an increment in the ψ1 parameter leads to a

decline in the populations of compartments A, I, Q, and E, while

the number of recovered individuals increases. Detailed numerical

data supporting these observations can be found in Table 4. This

graphical representation underscores the significance of the ψ1

parameter in influencing the dynamics of the model and its impact

on the various compartments.

Figure 6 illustrates the outcome of the numerical simulation

for Model (Equation 2) with initial values specified in Equation 3,

utilizing parameter values from Table 2 and setting α to 0.85. The

simulation involves varying the parameter γ , which represents the

transmission of the population from E (exposed) to Q (quarantine).

Specifically, we consider γ values of 0.1, 0.2, 0.3, and 0.4. It

becomes evident from the graph that an increase in the γ parameter

corresponds to a higher number of individuals transitioning to

quarantine over time. This, in turn, leads to a decrease in the

populations of symptomatic (A and I) and asymptomatic (E)

compartments, while the number of cured people increases. The

observed dynamics highlight the influence of the γ parameter on

the distribution of individuals across different compartments and

underscore its role in shaping the outcomes of the model.

FIGURE 6

Numerical simulation of model (Equation 4) with initial values (Figure 3) using parameter values given by Table 2, α = 0.85, and varying the parameter

γ .
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FIGURE 7

Numerical simulation of model (Equation 4) with initial values (Figure 3) using parameter values given by Table 2, α = 0.85, and varying the

parameter φ.

Figure 7 depicts the numerical simulation outcome of Model

(Equation 2) with initial values specified in Equation 3, utilizing

parameter values from Table 2 and setting α to 0.85. The simulation

involves varying the parameter φ, which shows the transmission

rate of individuals from the quarantine compartment (Q) to the

infected compartment (I). Specifically, we examine the impact of

φ by assigning values of 0.01, 0.06, 0.11, and 0.16. The graphical

representation indicates that a decrease in the transmission rate

corresponds to a reduction in the compartments containing

COVID-19 positive individuals over time. This observation

suggests that maintaining a low value for the φ parameter is

crucial for the stability of the system. The figure underscores

the importance of carefully tuning this parameter to control the

dynamics of the model and ensure its stability.

In Figure 8, we present the results of numerical simulations

for Model (Equation 2) with initial values specified in Equation 3,

employing parameter values from Table 2 while setting α to

0.85. The simulations involve the variation of the parameter θ ,

representing the decease spreading rate of individuals from the

exposed compartment (E) to the asymptomatic compartment (A).

The graphs depict the behavior of the model as θ takes values of 0.1,

0.2, 0.3, and 0.4. Notably, an increase in θ leads to a corresponding

increase in the population across all compartments. To maintain

stability, it becomes apparent that a smaller value for θ is necessary.

This observation emphasizes the critical role of parameter tuning,

particularly for θ , in governing the stability of the model and

influencing the dynamics within each compartment over time.

6 Conclusion

This study has investigated the intricate momentum of

COVID-19 spreading by formulating a mathematical model

that incorporates the integer fractional-order Caputo derivative.

Our exploration encompassed crucial aspects such as identifying

the region of feasibility, pinpointing equilibrium points, and

calculating the fundamental reproduction number R0. The

application of fixed-point theory robustly established the existent

of a unique solution to the model. Utilizing the Adams-Bashforth

scheme, we derived approximate solutions for the system, allowing

for a practical understanding of its behavior. Our simulations,

based on real-world COVID-19 reports from Thailand, spanning

from May 19, 2022, to June 22, 2022, provided valuable insights

into equilibrium points and the reproduction number. Our findings

confirm that the disease is anticipated to dwindle within the

populace when the basic reproduction number is bounded by one,

while persistence prevails when R0 exceeds one. Moreover, our data

analysis has deepened our understanding of disease transmission

dynamics, offering a nuanced perspective on how COVID-19

behaves in the specific context of Thailand. Notably, our study

sheds light on the impact of home remedies and precautionary

measures on diminishing the disease and enhancing recovery rates,

from Table 4, it is clear that home remedies influence the recovered

individuals, as the value of ψ1 increases from 0.1 to 0.4, causing

individuals in compartments like A(t) and I(t) to decrease. This

indicates how home remedies influence the rate of recovery even
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FIGURE 8

Numerical simulation of model (Equation 4) with initial values Figure 3 using parameter values given by Table 2, α = 0.85, and varying the parameter θ .

before individuals enter the asymptotically or symptomatically

infected classes. In a similar vein, each graphical representation

depicting the impact of a parameter provides a detailed insight into

how that specific parameter influences the number of individuals

involved in a given scenario. These representations serve as visual

tools, offering a clear understanding of the dynamics at play within

the system under consideration. By observing these graphs, we can

discern the trends and patterns associated with the parameter’s

effect on the population dynamics. Furthermore, these graphical

depictions offer valuable information on how we can effectively

manage and control the spread of a certain phenomenon. By

analyzing the trends illustrated in the graphs, we can identify

strategies and interventions that prove effective in mitigating

the spread of the phenomenon in question. Whether it involves

adjusting certain parameters, implementing targeted interventions,

or adopting preventive measures, these graphical representations

serve as essential guides in devising strategies to curb the spread

and maintain control over the situation. The comprehensive

nature of our investigation not only contributes to the theoretical

understanding of COVID-19 dynamics but also provides practical

implications for managing and mitigating the impact of the

pandemic. As we continue to navigate the complexities of the

ongoing health crisis, these insights offer valuable guidance for

public health strategies and individual actions in the pursuit

of controlling and eventually overcoming the challenges posed

by COVID-19.
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