
Verification of Relational Database Languages Codes Generated
by ChatGPT

Putsadee Pornphol
Department of Digital Technology, Faculty of science and

Technology, Phuket Rajabhat University
putsadee.p@pkru.ac.th

Suphamit Chittayasothorn
School of Engineering, and School of Information

Technology, King Mongkut’s Institute of Technology
Ladkrabang

suphamit.ch@kmitl.ac.th

ABSTRACT
The potential of using large language model artificial intelligence
systems to generate program codes for application development is
significant. Database codes in SQL (Structured Query Language),
which is the standard relational database language, can be generated
by such systems. Generative AI systems know database languages
syntax through their training data and the text patterns from var-
ious sources that include SQL queries and related text. Thus, the
generated codes may not be perfect and need verification before
usage. This paper verifies the relational completeness of the SQL
codes generated by ChatGPT, one of the most widely used large
language model systems. Relational algebra operators are used for
the relational complete verification. An equivalent relational cal-
culus statement is generated for each SQL and relational algebra
statement. The results confirmed that ChatGPT has the ability to
generate relational complete SQL, relational algebra, and relational
calculus codes.

CCS CONCEPTS
• Information systems → Data management systems; Query
languages; Relational database query languages; • Computing
methodologies → Artificial intelligence; Natural language pro-
cessing; Natural language generation.

KEYWORDS
ChatGPT, SQL, Relational Algebra, Relational Calculus
ACM Reference Format:
Putsadee Pornphol and Suphamit Chittayasothorn. 2023. Verification of
Relational Database Languages Codes Generated by ChatGPT. In 2023 4th
Asia Service Sciences and Software Engineering Conference (ASSE 2023), Octo-
ber 27–29, 2023, Aizu-Wakamatsu City, Japan. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3634814.3634817

1 INTRODUCTION
The emergence of large language models [1, 2] is considered a
breakthrough that starts a new era of human-computer interaction
and communication. These models, such as ChatGPT [3], are the
results of many years of research and innovation. ChatGPT is one of

This work is licensed under a Creative Commons Attribution International
4.0 License.

ASSE 2023, October 27–29, 2023, Aizu-Wakamatsu City, Japan
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0853-4/23/10.
https://doi.org/10.1145/3634814.3634817

the most well-known large language models. It is trained on a large
number of textual sources and possesses the ability to generate
relevant responses. ChatGPT finds various applications and assists
human user interactions. One of the useful applications includes
code generations, including the Structured Query Language (SQL)
codes [4, 5].

ChatGPT can generate SQL code. It is a large languagemodel that
is trained on amassive dataset of text and code, including SQL codes.
SQL code can be generated by the following steps: First, ChatGPT
first needs to understand the query that we want it to generate.
This includes understanding the tables that we want to query, the
columns that we want to select, and the conditions that we want to
apply. Then, it generates the SQL code. Data manipulation as well
as retrieval statements can be generated.

ChatGPT knows SQL syntax through its training data and the pat-
terns it has learned from various sources that include SQL queries
and related text. During the pre-training phase of its training pro-
cess, ChatGPT is exposed to a wide range of text data from the
internet, books, articles, technical documentation, and more. This
data includes examples of SQL queries, discussions about databases,
and related content.

ChatGPT’s exposure to a diverse range of SQL-related text allows
it to learn how SQL queries are constructed, even though it may
not possess an in-depth comprehension of the semantic meanings
of individual column names or the specifics of database schemas.

Since the knowledge of generating SQL statements is based on
the training sets which are supposed to be big enough to cover
semantically correct cases, semantic verification of the generated
SQL statements needs to be done. This paper presents the review
and verification of database retrieval statements which are gener-
ated by ChatGPT. Relational algebra, relational calculus, and SQL
are considered. SQL is a relational complete language and the most
widely used database language. The ability to employ ChatGPT to
generate SQL codes from given natural language statements is very
significant. There are also several informal articles and discussions
on the internet on the use of ChatGPT to generate SQL statements,
but not on the relational completeness issue. This paper verifies that
ChatGPT is able to generate SQL and relational calculus statements
which are equivalent to essential relational algebra operators.

2 RELATIONAL COMPLETE LANGUAGE
Apart from the relational data structure, and the entity and referen-
tial integrity constraints, the third part of the relational data model
is the relational complete language. For a DBMS to be considered
as a Relational DBMS (RDBMS), it must support all the three parts
of the relational database model.

17

https://doi.org/10.1145/3634814.3634817
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3634814.3634817
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3634814.3634817&domain=pdf&date_stamp=2024-03-26

ASSE 2023, October 27–29, 2023, Aizu-Wakamatsu City, Japan Putsadee Pornphol and Suphamit Chittayasothorn

A language is a relational complete language if it is at least
equivalent to relational calculus or relational algebra.

Codd published his 1972 paper “Relational Completeness of Data
Base Sublanguages” [6] which introduced relational algebra and
relational calculus, together with the concept of relational com-
pleteness.

Relational calculus is a non-procedural language. It is used to
describe the desired query result. It is a “what” type of language
based on predicate logic. The search conditions must be in well-
formed formula. Existential and universal quantifiers are required;
thus, the relational calculus statements look formal. In fact, there
are there are two variations: The Tuple Relational Calculus, and
the Domain Relational Calculus. The first one has tuple variables
whose instantiated values are tuples (rows). The second one has
domain variables whose instantiated values are domain (column)
values.

Both of them are declarative in nature and the users define pre-
cisely what they want, not how to obtain the result. Performance
has nothing to do with calculus-based languages.

Codd worked with IBM at the time of the relational model and
languages invention. He proposed to IBM the commercial potential
of his inventions. However, the two relational calculus languages
are too formal to market as they are. An IBM team led by Chamber-
lin developed SEQUEL (Structured English Query Language) [7]
based on the Tuple Relational Calculus. SEQUEL works on the IBM
prototype DBMS System*R, which later became DB2. This language
later became SQL (Structured Query Language), the standard rela-
tional database language. A user-friendly version of the Domain
Relational Calculus was also developed at IBM by a team led by
Zloof. The language is called Query By Examples (QBE) [8]. QBE
was marketed before SQL but is much less popular.

After rigorous competitions, IBM’s SQL was selected to be the
standard relational database language by ANSI in 1986, and ISO
in 1987 [9]. The SQL language which is a direct descendent of the
Tuple Relational Calculus, is a relational complete language. SQL
completely represents Tuple Relational Calculus. There is no com-
mercial RDBMS that supports the Tuple or the Domain Relational
Calculus in their original format.

3 RELATIONAL ALGEBRA
Relational algebra is a procedural language whose sole data struc-
ture is relation. The operands must be relations and the results are
relations. In Codd’s original paper that introduces the Relational
Algebra language, it originally comprises eight operators [10]. How-
ever, it has been later extended and some operators can be derived
from other operators. Different literatures may give different num-
ber of relational algebra operators. In this section, we follow Codd’s
original paper and therefore refer to the original eight operators.

Unlike the relational calculus languages which is now replaced
by SQL and QBE, the relational algebra is still widely used internally
by the DBMS. It is intended to be used as the machine language
of relational database machines. All relational DBMSs translate
statements in the relational calculus-based languages such as SQL
and QBE, into equivalent relational algebra statements and further
process them at the relational algebra level. Query optimization is
also done at the relational algebra level. Some high-end database

machines such as Oracle’s Exadata Database Machines execute
relational algebra statements at the storage server level. The rela-
tional algebra comprises two parts: a set of four operators which
are traditional set operations union, intersection, difference, and
Cartesian product; and four relational operators select, project, join,
and divide.

4 RELATIONAL COMPLETENESS
VERIFICATION OF CHATGPT-GENERATED
DATABASE STATEMENTS

In this section, we ask ChatGPT to generate database queries in
relational algebra, relational calculus, and SQL based on the popular
sample relational database tables VENDOR, ITEM, SALE which are
shown in Figure 1. For relational completeness verification purpose,
five test questions are set up. Question 1 verifies that ChatGPT can
correctly generate relational algebra, relational calculus, and SQL
statements which are equivalent to relational algebra select and
project operations. Question 2 verifies the relational algebra join
operation. Question 3 verifies the relational algebra union operation.
Question 4 verifies the relational algebra intersection operation,
and question 5 verifies the relational algebra divide operation.

Question 1: This is a query which verifies the relational algebra
select and project operations.

List vendor name of vendors who are in Bangkok.
Prompt:
Given the following schemas:
VENDOR (V#, VNAME, LOCATION, STATUS)
ITEM (I#, INAME, COLOR)
SALE (V#, I#, AMOUNT)
Write a relational algebra query: List vendor name of vendors who

are in Bangkok.
ChatGPT:
The relational algebra query to list the vendor names of

vendors who are in Bangkok can be expressed as follows:
𝜋 (VNAME)(𝜎(LOCATION=’Bangkok’)(VENDOR))

Explanation: 𝜎(LOCATION=’Bangkok’)(VENDOR): This opera-
tion selects the rows from the VENDOR relation where the LOCA-
TION is ’Bangkok’. 𝜋 (VNAME): This operation projects the VNAME
attribute from the result obtained above, giving the list of vendor
names.

So, the complete query reads as follows:
𝜋 (VNAME)(𝜎(LOCATION=’Bangkok’)(VENDOR))

This query uses the 𝜎 (selection) operation to filter the VENDOR
relation based on the condition that the LOCATION attribute is
’Bangkok’, and then uses the 𝜋 (projection) operation to retrieve
the VNAME attribute from the filtered rows, which gives the list of
vendor names of vendors who are in Bangkok.

Prompt:
Write a relational calculus query: List vendor name of vendors who

are in Bangkok.
ChatGPT:
Certainly, here’s the relational calculus query to list the vendor

names of vendors who are located in Bangkok: {v.VNAME | ∃v ∈
VENDOR (v.LOCATION = ’Bangkok’)}

Prompt:

18

Verification of Relational Database Languages Codes Generated by ChatGPT ASSE 2023, October 27–29, 2023, Aizu-Wakamatsu City, Japan

Figure 1: The sample relational database tables VENDOR, ITEM, SALE

Write a SQL query: List vendor name of vendors who are in
Bangkok.

ChatGPT:
Certainly, here’s the SQL query to list vendor names of vendors

who are located in Bangkok:
SQL code:
SELECT VNAME FROM VENDOR WHERE LOCATION =

’Bangkok’;
Question 2: This is a query which verifies the relational algebra

select, project, and join operations.
List vendor name, item name, and amount supplied of vendors who

are in Bangkok.
Prompt:
Given the following schemas:
VENDOR (V#, VNAME, LOCATION, STATUS)
ITEM (I#, INAME, COLOR)
SALE (V#, I#, AMOUNT)
Write a relational algebra query: List vendor name, item name,

and amount supplied of vendors who are in Bangkok.
ChatGPT:
Of course, here’s the relational algebra query to retrieve the ven-

dor name, item name, and amount supplied for vendors located in
Bangkok: 𝜋 VNAME, INAME, AMOUNT (𝜎 LOCATION=’Bangkok’
(VENDOR SALE ITEM))

In this query: 𝜋 VNAME, INAME, AMOUNT specifies the pro-
jection of columns: Vendor Name, Item Name, and Amount: 𝜎
LOCATION=’Bangkok’ represents the selection condition where
the LOCATION is ’Bangkok’.

VENDOR SALE ITEM denotes the natural join operation
between the VENDOR, SALE, and ITEM relations, linking them
based on the common attributes (V# and I#). This ensures that we
are getting the relevant information from all three tables for the
desired output.

Prompt:
Write a relational calculus query: List vendor name, item name,

and amount supplied of vendors who are in Bangkok.
ChatGPT:
Here’s the relational calculus query to retrieve the vendor name,

item name, and amount supplied for vendors located in Bangkok:
{v.VNAME, i.INAME, s.AMOUNT | ∃v ∈ VENDOR, ∃s ∈ SALE, ∃i ∈
ITEM ((v.LOCATION = ’Bangkok’) ∧ (v.V# = s.V#) ∧ (s.I# = i.I#))}

Prompt:
Write an SQL query: List vendor name, item name, and amount

supplied of vendors who are in Bangkok.
ChatGPT:
Certainly, here’s the SQL query to list the vendor name, item

name, and amount supplied for vendors who are located in Bangkok:
SELECT V.VNAME, I.INAME, S.AMOUNT FROM VENDOR V

JOIN SALE S ON V.V# = S.V# JOIN ITEM I ON S.I# = I.I# WHERE
V.LOCATION = ’Bangkok’;

Question 3: This is a query which verifies the relational algebra
union operation.

List rows of vendors who are in Bangkok or Paris. Use the relational
algebra union.

Prompt:

19

ASSE 2023, October 27–29, 2023, Aizu-Wakamatsu City, Japan Putsadee Pornphol and Suphamit Chittayasothorn

Given the following schemas: VENDOR (V#, VNAME, LOCATION,
STATUS) ITEM (I#, INAME, COLOR) SALE (V#, I#, AMOUNT) Write
a relational algebra query: List rows of vendors who are in Bangkok
or Paris. Use the relational algebra union.

ChatGPT:
Here’s the relational algebra query using the UNION operation

to list rows of vendors who are in Bangkok or Paris. (𝜋 V#, VNAME,
LOCATION, STATUS (𝜎 LOCATION=’Bangkok’ (VENDOR))) ∪ (𝜋
V#, VNAME, LOCATION, STATUS (𝜎 LOCATION=’Paris’ (VEN-
DOR)))

Prompt:
Write a relational algebra query: List rows of vendors who are in

Bangkok or Paris.
ChatGPT:
Certainly, here’s the relational algebra query to list rows of ven-

dors who are in Bangkok or Paris: 𝜎 LOCATION=’Bangkok’ ∨
LOCATION=’Paris’ (VENDOR)

Prompt:
Write a relational calculus query: List rows of vendors who are in

Bangkok or Paris. Use the relational algebra union.
ChatGPT:
Here’s the relational calculus query to list rows of vendors who

are in Bangkok or Paris using the union operation: {t | ∃t ∈ VENDOR
(t.LOCATION = ’Bangkok’ ∨ t.LOCATION = ’Paris’)}

Prompt:
Write an SQL query: List rows of vendors who are in Bangkok or

Paris. Use the relational algebra union.
ChatGPT:
Sure, here’s the SQL query that uses the UNION operator to list

rows of vendors who are in Bangkok or Paris:
SELECT * FROM VENDOR WHERE LOCATION = ’Bangkok’

UNION SELECT * FROM VENDOR WHERE LOCATION = ’Paris’;
This query retrieves all rows from the VENDOR table where

the LOCATION is either ’Bangkok’ or ’Paris’ using the UNION
operator to combine the results from the two separate SELECT
statements.

Prompt:
Write an SQL query: List rows of vendors who are in Bangkok or

Paris.
ChatGPT:
Certainly, here’s the SQL query to list rows of vendors who are

in Bangkok or Paris:
SELECT * FROM VENDOR WHERE LOCATION IN (’Bangkok’,

’Paris’);
This query selects all rows from the VENDOR table where the

LOCATION is either ’Bangkok’ or ’Paris’. The IN operator allows
you to specify multiple values for the condition.

Question 4: This is a query which verifies the relational algebra
intersection operation.

List sale V# of vendors who supply both I1 and I2.
Prompt:
Write a relational algebra query: List sale V# of vendors who supply

both I1 and I2.
ChatGPT:

Here’s the relational algebra query to list the vendor numbers
(V#) of vendors who supply both I1 and I2: 𝜋 V# (𝜎 I#=’I1’ (SALE))
∩𝜋 V# (𝜎 I#=’I2’ (SALE))

This query first selects the vendor numbers for sales of item I1,
then intersects them with the vendor numbers for sales of item I2,
resulting in the vendor numbers of vendors who supply both items.

Prompt:
Write a relational calculus query: List sale V# of vendors who

supply both I1 and I2.
ChatGPT:
Relational calculus has its limitations in expressing complex

operations like intersection directly. However, you can achieve the
desired result using nested quantifiers: { s.V# | ∃s ∈ SALE, ∃v1 ∈
VENDOR, ∃v2 ∈ VENDOR ((s.I# = ’I1’ ∧ v1.V# = s.V#) ∧ (s.I# = ’I2’
∧ v2.V# = s.V#) ∧ (v1.V# = v2.V#)) }

This query retrieves the vendor numbers (V#) of vendors who
supply both I1 and I2 by ensuring there exist sales records for both
items with the same vendor number.

Please note that relational calculus might become more complex
for set operations like intersection compared to relational algebra.

Prompt:
Write an SQL query: List sale V# of vendors who supply both I1

and I2.
ChatGPT:
Certainly, here’s the SQL query to list the vendor numbers (V#)

of vendors who supply both I1 and I2:
SELECT DISTINCT s1.V#
FROM SALE s1 WHERE s1.I# = ’I1’
AND EXISTS (SELECT 1
FROM SALE s2
WHERE s2.V# = s1.V# AND s2.I# = ’I2’);
This query first selects the vendor numbers for sales of item I1

(’I1’), then checks if there exists another sale record for the same
vendor number (V#) but with item I2 (’I2’). The EXISTS subquery
ensures that vendors who supply both I1 and I2 are included in the
result.

Question 5: This is a query which verifies the relational algebra
difference operation.

List sale V# of vendors who supply I1 but not I2.
Prompt:
Write a relational algebra query: List sale V# of vendors who supply

I1 but not I2.
ChatGPT:
Here’s the relational algebra query to list the vendor numbers

(V#) of vendors who supply I1 but not I2: 𝜋 V# ((𝜎 I#=’I1’ (SALE)) -
(𝜋 V# (𝜎 I#=’I2’ (SALE)))).

In this query: (𝜎 I#=’I1’ (SALE)) selects the rows of sales where
the item is I1 and (𝜋 V# (𝜎 I#=’I2’ (SALE))) selects the vendor
numbers for sales of item I2.

The set difference operator - subtracts the set of vendor numbers
who supply I2 from the set of vendor numbers who supply I1,
resulting in the vendor numbers who supply I1 but not I2.

Prompt:
Write a relational calculus query: List sale V# of vendors who

supply I1 but not I2.
ChatGPT:

20

Verification of Relational Database Languages Codes Generated by ChatGPT ASSE 2023, October 27–29, 2023, Aizu-Wakamatsu City, Japan

Here’s the relational calculus query to list the vendor numbers
(V#) of vendors who supply I1 but not I2: { s.V# | ∃s ∈ SALE, ∃v ∈
VENDOR ((s.I# = ’I1’ ∧ v.V# = s.V#) ∧ ¬ (∃s’ ∈ SALE (s’.I# = ’I2’ ∧
s’.V# = s.V#))) }

This query retrieves the vendor numbers (V#) of vendors who
supply I1 and then checks if there is no sale record for the same
vendor number that supplies I2, using the negation (¬) operator.
This ensures that only vendors who supply I1 but not I2 are included
in the result.

Prompt:
Write an SQL query: List sale V# of vendors who supply I1 but not

I2.
ChatGPT:
Certainly, here’s the SQL query to list the vendor numbers (V#)

of vendors who supply I1 but not I2:
SELECT DISTINCT s1.V#
FROM SALE s1
WHERE s1.I# = ’I1’ AND s1.V# NOT IN (SELECT s2.V#
FROM SALE s2
WHERE s2.I# = ’I2’);
This query selects the distinct vendor numbers for sales of item I1

(’I1’), and then excludes the vendor numbers that have sales records
for item I2 (’I2’) using a subquery with the NOT IN condition. The
result will contain the vendor numbers who supply I1 but not I2.

Question 6: This is a query which verifies the relational algebra
divide operation.

List sale V# of vendors who supply all I# from item using the
relational algebra divide.

Prompt:
Write a relational algebra query: List sale V# of vendors who supply

all I# from item using the relational algebra divide.
ChatGPT:
To list the sale V# of vendors who supply all I# from the item

using the relational algebra divide operation, you can use the fol-
lowing query: 𝜋 V# ((𝜋 V#, I# (SALE)) ÷𝜋 I# (ITEM))

In this query: (𝜋 V#, I# (SALE)) selects the V# and I# columns
from the SALE relation, representing the set of vendor-item combi-
nations in the sales: (𝜋 I# (ITEM)) selects the I# column from the
ITEM relation, representing the set of all items.

The divide operation ÷ finds those vendors whose sale combina-
tions cover all items in the ITEM relation.

This query retrieves the vendor numbers (V#) of vendors who
supply all items from the ITEM relation.

Prompt:
Write a relational calculus equivalent of the following relational

algebra statement: 𝜋 V# ((𝜋 V#, I# (SALE)) ÷𝜋 I# (ITEM))
ChatGPT:
The relational algebra division operation is not directly express-

ible in relational calculus due to its complexity. However, I can
provide a relational calculus expression that captures the essence
of the given relational algebra statement using nested quantifiers: {
v.V# | ∀v ∈ VENDOR, ∀i ∈ ITEM, ¬ (∃s ∈ SALE ((s.V# = v.V#) ∧ ¬
(∃s’ ∈ SALE ((s’.V# = v.V#) ∧ (s’.I# = i.I#))))) }

This relational calculus expression checks for each vendor and
each item whether there does not exist any sale record for which a
vendor supplied the item but did not supply any other items. This

captures the idea of dividing the set of sales by the set of items to
find vendors who supply all items.

Please note that while this relational calculus expression captures
the essence of the division operation, the actual division operation
is more intricate and may require different structures or approaches.

Prompt:
Write an SQL equivalent of the following relational algebra state-

ment: 𝜋 V# ((𝜋 V#, I# (SALE)) ÷𝜋 I# (ITEM))
ChatGPT:
SQL does not have a direct equivalent to the relational algebra

division operation. However, you can achieve a similar result using
a combination of SQL operations. Here’s an approximation of the
given relational algebra statement:

SELECT DISTINCT s.V#
FROM SALE s
WHERE NOT EXISTS (SELECT i.I#
FROM ITEM i
WHERE NOT EXISTS (SELECT s2.I#
FROM SALE s2
WHERE s2.V# = s.V# AND s2.I# = i.I#));
This SQL query approximates the division operation by selecting

the distinct vendor numbers from the SALE table where there does
not exist an item from the ITEM table that is not supplied by the
vendor. It checks if for each item in the ITEM table, there is a
corresponding sale record for the same vendor in the SALE table.

Please note that while this query approximates the division op-
eration, the actual division operation is more intricate and may
require different structures or approaches.

5 CONCLUSION
Five natural language test questions which cover all the essential
relational operators are designed and submitted to ChatGPT for
the generation of relational algebra, relational calculus, and SQL
statements. We verified each of them and found that ChatGPT gen-
erates correct queries for all test questions. The ability to generate
relational algebra and relational calculus statements is remarkable.
It should be noted that the prompt should refer to relevant table
names to avoid confusion. We also test more complex queries on
more detailed database tables and obtain satisfactory results. It can
be concluded that ChatGPT is a useful tool which has the potential
to be employed as a database programming assistant.

REFERENCES
[1] A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I. (2019). Language Models

are Unsupervised Multitask Learners. arXiv:1901.02860
[2] Veres and Csaba. (2022). Large Language Models are Not Models of Natural

Language: They are Corpus Models.10, 61970-61979.
[3] OpenAI. (2023). ChatGPT (Aug 01 version) [Large language model]. https://chat.

openai.com/chat.
[4] Immanuel Trummer. (2022). Generating Code for Processing SQL Queries using

GPT-3 Codex. 2204.08941. arXiv. cs.DB
[5] Raul Castro Fernandez and Aaron J. Elmore and Michael J. Franklin and Sanjay

Krishnan and Chenhao Tan.(2023). How Large Language Models Will Disrupt
Data Management. Proc. VLDB Endow.16. 3302-3309. https://api.semanticscholar.
org/CorpusID:261193780

[6] Codd, E.F. (1972). Relational Completeness of Data Base Sublanguages. Research
report // San Jos{é} Research Laboratory: Computer sciences. IBM Corporation.
https://books.google.co.th/books?id$=$vwJrHAAACAAJ

[7] Chamberlin, D.D. and Boyce, R.F. (1974). SEQUEL: A Structured English Query
Language. In: Proceedings of the 1974 ACM SIGFIDET (Now SIGMOD)Workshop

21

arXiv:1901.02860
https://chat.openai.com/chat
https://chat.openai.com/chat
https://api.semanticscholar.org/CorpusID:261193780
https://api.semanticscholar.org/CorpusID:261193780
https://books.google.co.th/books?id$=$vwJrHAAACAAJ

ASSE 2023, October 27–29, 2023, Aizu-Wakamatsu City, Japan Putsadee Pornphol and Suphamit Chittayasothorn

on Data Description, Access and Control (SIGFIDET’ 74).ACM Press. Ann Aarbor.
249-264.

[8] Moshé M. Zloof. (1975). Query-by-Example: the Invocation and Definition of
Tables and Forms. Proceedings of the International Conference on Very Large
Data Bases, September 22-24, 1975, Framingham, Massachusetts, USA. Douglas
S. Kerr. ACM. Page 1-24. https://researchr.org/publication/Zloof75

[9] ISO/IEC 9075-2:2016. Information technology — database languages — SQL —
part 2: Foundation (SQL/Foundation). Standard, ISO/IEC, August 2021. https:
//www.iso.org/standard/63556.html.

[10] E. F. Codd. (1979). Extending the Database Relational Model to Capture More
Meaning. ACM} Trans. Database Syst. Volum4. Issue 4. Pages 397-434. https:
//doi.org/10.1145/320107.320109

22

https://researchr.org/publication/Zloof75
https://www.iso.org/standard/63556.html
https://www.iso.org/standard/63556.html
https://doi.org/10.1145/320107.320109
https://doi.org/10.1145/320107.320109

	Abstract
	1 INTRODUCTION
	2 RELATIONAL COMPLETE LANGUAGE
	3 RELATIONAL ALGEBRA
	4 RELATIONAL COMPLETENESS VERIFICATION OF CHATGPT-GENERATED DATABASE STATEMENTS
	5 CONCLUSION
	References

