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Summary
The challenge of adaptive event-triggered based filter design for complex dynam-
ical networks with time-varying coupling delays under hybrid attack is studied
in this research. A new model of complex dynamical networks with input
constraints, involving denial-of-service (DoS) attack, replay attack, and decep-
tion attack is designed. An adaptive event-triggered scheme is applied to filter
design, which adaptively modifies the communication threshold level in order
to reduce the effect of the transmission load. By using Lyapunov theory and
inequality techniques, a novel necessary condition is proposed that guarantees
mean-square asymptotically stability with extended dissipative performance.
The proposed filter parameters are then given an explicit expression, which is
solved using a set of linear matrix inequalities. Finally, two numerical results are
presented to demonstrate the validity of the theoretical result suggested.
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1 INTRODUCTION

Due to the significant development in the size and complex of dynamical systems, more research has been directed on
the modeling and control of complex dynamical networks (CDNs).1 A complex network, in general, is a huge collection
of interconnected nodes, each of which is a fundamental unit that can have different meanings in different situations.
In the field of complex dynamical networks over the last few decades, controllers have mostly been applied to nodes to
achieve desired dynamic characteristics such as stabilization, filtering, and so on.2-4 Complex networks have received
much attention in recent years due to their potential applications in a wide variety of fields, including biological systems,
networked control systems, economic systems, power networks, information processing, financial networks, traffic net-
works, harmonic oscillation generation, food webs, secure communications, and biological networks.5-9 This is the main
reason for this paper, as many real world applications of complex dynamical networks are still unexplored.

In investigating CDNs, time delay is an essential consideration.10 Delayed systems are frequent in our everyday lives,
such as the stock exchange and communication.11 When studying CDNs with filtering design, it is critical to consider the
influence of coupling delays. Thus many experts investigates coupling delay issues.12-14 Also a huge number of research
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results around the time variable coupling delay with the filtering of delayed dynamical networks has become a focal point
in investigating complex networks, which is an essential research content of complex dynamical networks.14-17 Some
recent articles about input constraints in Reference 18 show that input constraints can secure components and ensure
good system performance to a considerable extent.

The study of CDNs brings certain difficulties in terms of theories and applications as an essential method to reduce
the frequency of signal transfer between systems and controllers.19 In regards to the event-triggered control (ETC),
one goal is to ensure that the properties of systems under continuous channel can still be guaranteed by the ETC
while communication resources are employed as efficiently as feasible and Zeno behavior is avoided. As a result, the
ability to transmit data via a network is solely based on the system’s limited resources. It has become an important
and challenging problem to address how to minimize the signal transmission burden. Many experts have proposed
an event-triggered scheme to solve the difficulties of the time-triggered scheme in order to reduce the strain of net-
worked transmission more efficiently.20-23 Event-triggered control (ETC) has been proposed and investigated in many
fields to improve the performance of control systems and mitigate network communication usage.24-26 In ETC, the
control task is executed after the occurrence of an event that is triggered by some well-designed triggering condi-
tion.27,28 The superiority of event-triggered control in decreasing information transmission and utilizing communication
range has been demonstrated by researchers.29,30 Relaxed resilient T-S fuzzy control of discrete-time systems via a
higher order time-variant balanced matrix method discussed in Reference 31. Few research papers have been writ-
ten about adaptive event-triggered strategies in complex dynamical networks, so this paper proposes a new adaptive
event-triggered scheme.

With the advancement of network and modern technology, cyber security has subsequently become more crucial.32

When it comes to system security, cyber-attacks are one of the most popular offenders, with the goal of weakening
CDNs stability and reducing system performance.33-35 However, hacker can easily target open and public networks, pos-
ing potential security vulnerabilities. The disruption of the stability and regular operation of networked facilities such
as electricity network systems would have serious consequences for public safety and result in large economic losses.
More importance is being given to the consequences of numerous cyber attacks, such as denial of service attacks,36 replay
attacks,37 and deception attacks.38 DoS attacks degrade data availability in control systems, causing in packet loss and a
considerable delay in information interchange. In deception attacks, the adversary hijacks and interfere with the trans-
mitted packets, forcing the next endpoints to receive misleading information.39 As previously stated, there are still studies
that investigate adaptive event-triggered control for the system when it is subjected to hybrid attacks, which randomly
combines various kinds of attacks.40 Simultaneously, the notion of hybrid cyber attacks, which combine several differ-
ent cyber attack, was proposed.41-43 Furthermore, many results have been presented to examine cyber-attacks when an
event-triggered strategy is used to solve the stabilization problem of a networked control system.42-44 So far as our author
knows, no one has proposed an adaptive event-triggered filter method for complex dynamical networks that could be
attacked by hybrid cyber attacks.

Inspired by the previous considerations, in this article, adaptive event-triggered filtering problem is investigated for a
class of complex dynamical networks subject to the hybrid cyber-attacks. The following are the primary features of this
article:

1. A novel adaptive-event-triggered filter error model for complex dynamical networks is first constructed based on the
event-triggered scheme, taking into account hybrid cyber-attacks.

2. First time complex dynamical networks under hybrid attacks including deception attack, reply attack and DoS attack
is proposed, which is different from existing works.32,33,38

3. In contrast to previous work,16,41 the adaptive event-triggered filter design is proposed, which adaptively modifies the
communication threshold level in order to reduce the effect of the transmission load.

4. For filtering error systems with a defined extended dissipative performance, efficient mean-square asymptotically
stable criteria are achieved using the LMI technique.

5. Finally, the tunnel diode circuit application is employed to show the usefulness and efficiency of the obtained
theoretical results.

Notations: Throughout the paper, Rl is the l-dimensional Euclidean space and Rl×m denotes the set of all l ×m real
matrices. ⊗ is kronecker product. I is an identity matrix with proper dimension. || ⋅ || stands for the Euclidean vector
norm. The symmetric elements of the symmetric matrix are represented by ∗. If is a positive definite matrix, then > 0.
The expectation of 𝜔 is indicated by E{𝜔}.
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2 PRELIMINARIES AND MODEL FORMULATIONS

Filtering-based complex dynamical networks under hybrid cyber attacks are examined in this paper. The proposed
complex dynamical networks take the following form:

⎧
⎪
⎨
⎪
⎩

�̇�i(𝜌) = D𝜑i(𝜌) + Ewi(𝜌) + (1 − 𝜂(𝜌))
∑N

j=1𝜆ijΥ𝜑j(𝜌) + 𝜂(𝜌)
∑N

j=1𝜆ijΥ𝜑j(𝜌 − a(𝜌)),
𝜉i(𝜌) = F𝜑i(𝜌),
zi(𝜌) = G𝜑i(𝜌).

(1)

where zi(𝜌) is actual output vector,𝜑i(𝜌) ∈ Rn is the state vector, 𝜉i(𝜌) is the measurement of the sensor, and w(𝜌) represents
the external disturbance. G,F,E and D are constant matrices. Υ and Υ are diagonal matrices representing non-delayed
and delayed states of inner coupling matrices, respectively. 𝜆ij and 𝜆ij are non-delayed and delayed states of outer coupling
matrices, respectively. Let Λ = [𝜆ij]N×N , Λ = [𝜆ij]N×N . The continuous function a(𝜌) denotes the time-varying delay that
satisfies the conditions: 0 ≤ a1 ≤ a(𝜌) ≤ a2 and ȧ(𝜌) < 𝜈 < 1. Where a1, a2, a(𝜌) and 𝜈 are known real constant matrices.

The filter is constructed as follows,
{

�̇�f (𝜌) = Df𝜑f (𝜌) + Ef 𝜉(𝜌),
zf (𝜌) = Cf𝜑f (𝜌)

(2)

where 𝜉(𝜌) is the real input of the filter, zf (𝜌) is the estimation of z(𝜌), and 𝜑f (𝜌) is the filter state. The filtering parameters
Ef ,Df ,Gf will be designed later.

A sensor, as we all know, monitors the condition information of a plant. However, data supplied by the sensor is fre-
quently limited due to the influence of its own hardware and environment. The following restriction function is addressed
in this article:

𝜉(𝜌) =
⎧
⎪
⎨
⎪
⎩

𝜉max, if 𝜉(𝜌) > 𝜉max

𝜉(𝜌), if −𝜉max ≤ 𝜉(𝜌) ≤ 𝜉max

−𝜉max, if 𝜉(𝜌) < −𝜉max.

(3)

Inspired by Reference 44, the signal can be written as,

𝜉(𝜌) = 𝜉(𝜌) − 𝜋(𝜉(𝜌)), (4)

𝜙(𝜉(𝜌)) is a non-linear function and also satisfies the condition for 𝜈 ∈ (0, 1):

𝜈𝜉
T(𝜌)𝜉(𝜌) ≥ 𝜙

T(𝜉(𝜌))𝜌(𝜉(𝜌)). (5)

An adaptive ET scheme is used to solve resource restrictions by taking into consideration the restricted network
resources. The triggering conditions scheme is given by,

𝜌k+1h = 𝜌kh + infp≥1
{

ph|eT(𝜌kh)Θe(𝜌kh) − 𝜚(𝜌)𝜉T (
𝜌

p
kh
)
Θ𝜉

(
𝜌

p
kh
)
≥ 0

}
(6)

where h denotes sampling period, 𝜌kh represents the triggering instants, andΘ > 0 is the weighting matrix to be designed.
𝜌

p
kh = 𝜌kh + ph and e(𝜌kh) = 𝜉(𝜌kh) − 𝜉(𝜌kh + ph) represents the threshold error, p = 1, 2, … , and 𝜚(𝜌) is given trigger

threshold, then the adaptive law satisfies the following requirements:

�̇�(𝜌) = 𝛿

𝜚(𝜌)

[
1

𝜚(𝜌)
− 𝜋

]

eT(𝜌)Θe(𝜌) (7)

with 𝛿 > 0 and 0 < 𝜚(𝜌) ≤ 1.
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Remark 1. Adaptive ETS is introduced, which is determined by a varying threshold 𝜚(𝜌). The adaptive law
allows the release frequency to be adjusted by changing the threshold parameter. Furthermore, when the sys-
tem is stable, the adaptive law (7) states that 𝜚(𝜌)will remain constant, suggesting that the system will regress
to the traditional event-triggered scheme. The adaptive event-triggered scheme switches to the time-triggered
scheme if 𝜚(𝜌) = 0.

Similar to the analysis in Reference 28, the interval [𝜌kh + 𝜈𝜌k , 𝜌k+1h + 𝜈𝜌k+1) can be divided into several subinter-
vals. which can be expressed as [𝜌kh + 𝜈𝜌k , 𝜌k+1h + 𝜈𝜌k+1)=

⋃𝜃

i=0[𝜌i
kh + 𝜈𝜌k , 𝜌

i
k + h + 𝜈𝜌k+1 ). The equivalent network-induced

delay is 𝜈𝜌k , 𝜃 = 𝜌k+1 − 𝜌k − 1. Define b(𝜌) = 𝜌 − 𝜌
p
kh, and the range is simple to obtain if b(𝜌) as 0 ≤ 𝜈𝜌k ≤ b(𝜌) ≤ h +

b𝜌k+q+1 ≜ bN .
The signal sent to the network can then be described as

𝜉(𝜌) = 𝜉(𝜌 − b(𝜌)) + e(𝜌). (8)

where e(𝜌) = colN{ei(𝜌)}.
When data is sent over a network, the first thing to consider is a deception attack. The deception attack signal ℏ(⋅)

which satisfies Assumption 1 can completely replace the normal transmission data in this work. Let 𝛾(𝜌) is a stochas-
tic Bernoulli variable, which is represent the occurring of deception attacks and its expectation, variance is denoted as
E{𝛾(𝜌)} = 𝛾 , E{(𝛾(𝜌) − 𝛾)2} = 𝜏2

1 , respectively.
The data sent as an outcome of the deception attack can then be written as

𝜉1(𝜌) = (1 − 𝛾(𝜌))ℏ(𝜉(𝜌 − c(𝜌))) + 𝛾(𝜌)𝜉(𝜌), (9)

where, 𝜉(𝜌) denoted as the data transferred through the network.

Assumption 1 (44). The attackers’ modified nonlinear function ℏ(𝜉(𝜌)) satisfies:

||ℏ(𝜉(𝜌))||2 ≤ ||H𝜉(𝜌)||2.

where H is a given matrix.

Remark 2. From (9), one knows that if 𝛾(𝜌) = 0, it means that deception attacks occur, with ℏ(𝜉(𝜌 − c(𝜌)))
replacing the transmitted signal. If 𝛾(𝜌) = 1, it indicates that the network is secure of deception attacks, such
that 𝜉1(𝜌) = 𝜉(𝜌).

When a reply attack happens, the data transmitted is replaced with previously transmitted data. Bernoulli variable
𝜗(𝜌) is introduced to represent the uncertainty of attack occurrences. Then, the signal sent through the network can be
rewritten as

𝜉2(𝜌) = (1 − 𝜗(𝜌))𝜉o(𝜌) + 𝜗(𝜌)𝜉1(𝜌). (10)

where 𝜉o(𝜌) = 𝜉(𝜌 − o(𝜌)) is the replay signal. The o(𝜌) denotes the data that has been replayed from the previous o(𝜌)
seconds. Let 𝜗(𝜌) is a stochastic Bernoulli variable, which is represent the occurring of replay attacks. Its expectation
E{𝜗(𝜌)} = 𝜗 and the variance E{(𝜗(𝜌) − 𝜗)2} = 𝜏2

2 . It should be noted that the data taken by attackers is usually limited
in time, that is, o(𝜌) has an upper bound oN . Then we have 0 < o(𝜌) < oN .

Assumption 2 (34). The transmission data are supposed to be recorded from 𝜌0 to the present instant 𝜌,
and then data from any random instant in the series is taken for replay.

Finally DoS attack is taken into consideration when the communication network transmits the measurement signals.
The signal is generally transmitted to the filter when the DoS attack is sleeping. While the DoS attack is occurring, no
signal can be transferred to the filter. The data that has been vulnerable to a DoS attack can be written as follows:

𝜉3(𝜌) =

{
𝜉2(𝜌), 𝜌 ∈ [xn, dn)
0, 𝜌 ∈ [dn, xn+1),

(11)
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where xn denotes the start time of the DoS attack, when it enters sleeping for the nth time. tn indicates the duration of the
nth sleeping. dn is the ending instant of the nth sleeping, that is, dn = xn + tn, and the condition 0 < x0 < x1 < d1 < x2 <

d2 < … < dn is satisfied.

Assumption 3 (37). Assume that there exist uniform bounds on the lengths of the DoS sleeping and active
periods, respectively, as:

{
tmin ≤ infn∈N{tn}
ymax ≥ supn∈N{xn − dn−1}.

(12)

Assumption 4 (37). Let d(𝜌) denote the number of DoS attack sleep/active transitions occurring in the
interval [0, 𝜌). For given real number 𝜛 > h, 𝜇1 ≥ 0, the DoS frequency d(𝜌) satisfies the following condition:

d(𝜌) ≤ 𝜇1 +
𝜌

𝜛
. (13)

The actual input filter can be obtained by combining (9)–(11), as

𝜉(𝜌) =

{
(1 − 𝜗(𝜌)𝜉r(𝜌) + 𝜗(𝜌)(1 − 𝛾(𝜌))ℏ(𝜉(𝜌 − c(𝜌))) + 𝛾(𝜌)𝜗(𝜌)𝜉(𝜌), 𝜌 ∈ [xn, dn),
0, 𝜌 ∈ [dn, xn+1).

(14)

Remark 3. In this article, we use the attack detection methods to determine the attacks occur and its sequence,
then adjusting the corresponding control strategies.

By combining (2), (4) and (15), we can obtain

�̇�(𝜌) =
⎧
⎪
⎨
⎪
⎩

Df𝜑f (𝜌) + Ef [(1 − 𝜗(𝜌))𝜉o(𝜌) + (1 − 𝛾(𝜌))𝛽(𝜌)ℏ(𝜉(𝜌 − c(𝜌))) + 𝛾(𝜌)𝜗(𝜌)F𝜑(𝜌 − o(𝜌))
+ 𝛾(𝜌)𝜗(𝜌)e(𝜌) − 𝛾(𝜌)𝜗(𝜌)𝜌(u(𝜌 − o(𝜌)))], 𝜌 ∈ [xn, dn).
0, 𝜌 ∈ [dn, xn+1).

(15)

Define 𝜛(𝜌) =
[
𝜑(𝜌)
𝜑f (𝜌)

]

, z(𝜌) = z(𝜌) − zf (𝜌).

The filtering error based complex dynamical system can be written in the following compact form using the Kronecker
product:

�̇�(𝜌) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

D𝜛(𝜌) + Ēw(𝜌) + (1 − 𝜗(𝜌))BL𝜛(𝜌 − o(𝜌)) + (1 − 𝜗(𝜌))Be(𝜌 − o(𝜌))
+ (1 − 𝛾(𝜌))𝜗(𝜌)Bℏ(𝜉(𝜌 − c(𝜌))) + 𝛾(𝜌)𝜗(𝜌)F(L(𝜛(𝜌 − o(𝜌))) + e(𝜌))
− 𝛾(𝜌)𝜗(𝜌)B𝜋(𝜉(𝜌 − d(𝜌))) + D𝜛(𝜌 − a(𝜌)), 𝜌 ∈ [xn, dn),
D𝜛(𝜌) + Ēw(𝜌) 𝜌 ∈ [dn, xn+1)

(16)

z = G𝜛(𝜌)

where D =
[
(I ⊗ D) + (1 − 𝜂)(Λ⊗ Υ) 0

∗ (I ⊗ Df )

]

, Ē =
[
(I ⊗ E)

0

]

, F =
[

0
(I ⊗ Ef F)

]

,L =
[
I 0

]
,B =

[
0 (I ⊗ Ef )

]
,

G =
[
(I ⊗ G) −(I ⊗ Ff )

]
,K =

[
𝜂(Λ⊗ Υ) 0

∗ 0

]

.

Definition 1 (24). For given real matrices Ψ1 = ΨT
1 ≤ 0,Ψ2,Ψ3 = ΨT

3 > 0,Ψ4 = ΨT
4 , and a known constant

𝛼 ∈ [0, 1], the over all-closed loop system (16) achieves extended dissipativity with mean-square asymptoti-
cally stable, if for any  > 0 and non-zero w(𝜋) ∈  ∈ [0,∞) the following inequality satisfies:

∫

∞

0
𝚿(Ψ1,Ψ2,Ψ3, 𝜌)d𝜌 ≥ 𝛼 sup0≤𝜌≤zT(𝜌)Ψ4z(𝜌) (17)

where,𝚿(Ψ1,Ψ2,Ψ3, 𝜌) ≜ (1 − 𝛼)
[

zT(𝜌)Ψ1z(𝜌) + 2zT(𝜌)Ψ2w(𝜌)
]

+ wT(𝜌)Ψ3w(𝜌).

Remark 4. The condition (17) can be degradedly into a standard dissipative property index (or) l2 − l∞ per-
formance index (or) H∞ performance index (or) passive property index by tuning 𝛼,Ψ1,Ψ2,Ψ3 and Ψ4. The
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details are given as follows: (1) Let 𝛼 = 0 and Ψ1 = 0 the condition (17) could turn into a passive property
index, ifΨ2 = ΨT

2 ≤ 0 andΨT
3 = Ψ3 = �̃�2I > 0. (2) Let 𝛼 = 0 andΨ2 = 0 the condition (17) could turn into a H∞

performance index, ifΨ1 = ΨT
1 ≤ 0 andΨT

3 = Ψ3 = �̃�2I > 0. (3) Let 𝛼 = 0, the condition (17) could turn into a
l2 − l∞ performance index, if ΨT

3 = Ψ3 = �̃�2I > 0. (4) Let 𝛼 = 0, the condition (17) could turn into a standard
dissipative property index, if Ψ1 = ΨT

1 ≤ 0 and ΨT
3 = Ψ3 = �̃�2I > 0.

Lemma 1 (15). For any positive definite matrix O1 ∈ Rn×n, scalar a1 > 0 and vector function 𝜛(𝜌) ∈ Rn, the
following integral inequality holds:

−a1
∫

𝜌

𝜌−a1

�̇�
T(r)(I ⊗ O11)�̇�(r)dr ≤

[
𝜛(𝜌)

𝜛(𝜌 − a1)

]T[
−(I ⊗ O11) ∗
(I ⊗ O11) −(I ⊗ O11)

][
𝜛(𝜌)

𝜛(𝜌 − a1)

]

. (18)

Lemma 2 (15). Suppose that 𝜛(𝜌) ∈ Rn, 0 ≤ a1 ≤ a(𝜌) ≤ a2 and 0 ≤ 𝛽 ≤ 1, then for any positive definite
matrix O1 the following inequality holds:

(a2 − a1)
∫

𝜌−a1

𝜌−a2

�̇�
T(r)(I ⊗ O11)�̇�(r)dr ≤

⎡
⎢
⎢
⎢
⎣

𝜛(𝜌 − a1)
𝜛(𝜌 − a(𝜌))
𝜛(𝜌 − a2)

⎤
⎥
⎥
⎥
⎦

T
⎡
⎢
⎢
⎢
⎣

𝜅1 𝜅2 0
∗ 𝜅3 𝜅4

∗ ∗ 𝜅5

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝜛(𝜌 − a1)
𝜛(𝜌 − a(𝜌))
𝜛(𝜌 − a2)

⎤
⎥
⎥
⎥
⎦

. (19)

where, 𝜅1 = −(I ⊗ O1) − (1 − 𝛽)(I ⊗ O1), 𝜅2 = (I ⊗ O1) + (1 − 𝛽)(I ⊗ O1), 𝜅3 = −2(I ⊗ O1) − 𝛽(I ⊗ O1) −
(1 − 𝛽)(I ⊗ O1), 𝜅4 = (I ⊗ O1) + 𝛽(I ⊗ O1), 𝜅5 = −(I ⊗ O1) − 𝛽(I ⊗ O1).

Lemma 3 (10). For a matrix J > 0, 0 ≤ c1 ≤ c(𝜌) ≤ cN and any known matrix  with proper dimension, which

satisfy
[

J 

∗ J

]

≥ 0, the following inequality holds.

−cN
∫

𝜌

𝜌−cN

�̇�
T(r)(I ⊗ J)�̇�(r)dr

≤

[
𝜛(𝜌) −𝜛(𝜌 − c(𝜌))

𝜛(𝜌 − c(𝜌)) −𝜛(𝜌 − cN)

]T[
−(I ⊗ J) −(I ⊗ 1)

∗ −(I ⊗ J)

][
𝜛(𝜌) −𝜛(𝜌 − c(𝜌))

𝜛(𝜌 − c(𝜌)) −𝜛(𝜌 − cN)

]

. (20)

Lemma 4. Let and  be a positive definite matrices and 𝜖 be a scalar, the following inequality holds:

−−1
≤ −2𝜖 + 𝜖

2
 . (21)

3 MAIN RESULTS
Theorem 1. For given positive scalar 𝜖j, j = {1, 2, 3, 4} and 𝜂(𝜌), 𝜗(𝜌), 𝛾(𝜌) ∈ [0, 1]. The filter parameters
are Df ,Cf ,Ff . The complex dynamical system (16) under the adaptive event triggered filter design subject to
hybrid-cyber-attacks is asymptotically stable with extended dissipative performance, if the positive definite matri-
ces Pz,Vzx,Qzx,Rzx,Wzz,Mzz,Ozz (z = 1, 2), (x = 1, 2, 3) with the proper dimension and event-triggered weighting
matrix Θ exist, such that the following conditions hold.

𝛼G
T
Ψ4G − P1 < 0, (22)

Π =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Γ17×17 ℜ1W11 ℜ2W12 ℜ3R11 ℜ4R12 ℜ5R13

∗ −W11 0 0 0 0
∗ ∗ −W12 0 0 0
∗ ∗ ∗ −R13 0 0
∗ ∗ ∗ ∗ −R12 0
∗ ∗ ∗ ∗ ∗ −R13

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (23)

With
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Γ1,1 = (I ⊗ V11) + (I ⊗ V12) + (I ⊗ V13) + (I ⊗ W11) + (I ⊗ T11) + (I ⊗ M11) − (I ⊗ O11) − (I ⊗ R11) +
FT

1 HTHF1+2(I ⊗ P1)D− (1− 𝛼)G
T

G,Γ1,2 = (I ⊗ O11),Γ1
1,3 = (I ⊗ P1)K,Γ1

1,6 = (I ⊗ 11),Γ1,5 =−(I ⊗ 1)+
(I ⊗ R11), Γ1,7 = −(I ⊗ 2) + 𝛾(𝜌)𝜗(𝜌)(I ⊗ P1)FL, Γ1,9 = −(I ⊗ 3) + (I ⊗ P1)BL, Γ1,8 = (I ⊗ 2), Γ1,10 =
(I ⊗ 3), Γ1,11 = 𝛾(𝜌)𝜗(𝜌)(I ⊗ P1)F,Γ1

1,12 = (1 − 𝜗(𝜌))(I ⊗ P1)B,Γ1,14 = (1 − 𝛾(𝜌))𝜗(𝜌)(I ⊗ P1)B, Γ1,16 = −𝛾(𝜌)

𝜗(𝜌)(I ⊗ 2P1)B, Γ1,17 = −(1−𝛼)(I ⊗ G
T
)Ψ2,Γ2,2 = −(I⊗V11) − 2(I⊗O11) − (1−𝛽)(I⊗O11),Γ2,3 = (I ⊗ O11)+

(1 − 𝛽)(I ⊗ O11),Γ3,3 = −(1 − 𝜈1)(I ⊗ V12) − (I ⊗ O11) − 𝛽(I ⊗ O11),Γ3,4 = (I⊗ O11)+𝛽(I ⊗ O11),Γ4,4 = −(I ⊗
V13) − (I ⊗ O11) − 𝛽(I⊗O11),Γ5,6= (I⊗R11) − (I⊗1),Γ5,5= −(1 − 𝜈2)(I ⊗W11)+(1−𝜈2)(I ⊗W12)−2(I⊗R11)
+ 2(I ⊗ 1),Γ6,6 = −(I ⊗ W12) − (I ⊗ R11),Γ7,7 =−(1 − 𝜈3)(I ⊗ T11)+(1− 𝜈3)(I ⊗ T12)−2(I ⊗ R12)+2(I ⊗ 2)
+𝜍FT

1 F1 + LTΘL,Γ7,8 = (I⊗R12) − (I⊗2),Γ8,8 = −(I⊗T12) − (I ⊗ R12),Γ1
12,12 = −(I⊗ Q11),Γ9,9 = −(1 − 𝜈4)

(I⊗T11)+(1− 𝜈4)(I ⊗ T12) − 2(I⊗R13)+2(I⊗3),Γ9,10 = (I⊗R13)− (I⊗3),Γ10,10 =−(I⊗M12)− (I ⊗ R13),
Γ11,11 = −(I ⊗ 𝜋Θ) + (I ⊗ Q1),Γ13,13 = −I + (I ⊗ Q12),Γ14,14 = −(I ⊗ Q12), Γ15,15 = −I + (I ⊗ Q13),Γ16,16 =
(I ⊗ Q13),Γ17,17 = −Ψ3,ℜ1 = a1ℑ,ℜ2 = (a2 − a1)ℑ,ℜ3 = cNℑ,ℜ4 = bNℑ,ℜ5 = oNℑ andℑ = [D 0 K 0 0
0 𝛾(𝜌)𝜗(𝜌)FL 0 (1 − 𝜗(𝜌))BL 0 𝛾(𝜌)𝜗(𝜌)F (1 − 𝜗(𝜌))B 0 (1 − 𝛾(𝜌))𝜗(𝜌)B 0 − 𝛾(𝜌)𝜗𝜌B Ē].

Proof. Choose the Lyapunov–Krasovskii functional candidate as follows:

V j
1(𝜌) = 𝜛

T(𝜌)(I ⊗ Pj)𝜛(𝜌),

V j
2(𝜌) = ∫

𝜌

𝜌−a1

𝜛
T(r)(I ⊗ Vj1)𝜛(r)dr +

∫

𝜌

𝜌−a(𝜌)
𝜛

T(r)(I ⊗ Vj2)𝜛(r)dr +
∫

𝜌

𝜌−a2

𝜛
T(r)(I ⊗ Vj3)𝜛(r)dr,

V j
3(𝜌) = ∫

𝜌

𝜌−c(𝜌)
𝜛

T(r)(I ⊗ Wj1)𝜛(r)dr +
∫

𝜌−c(𝜌)

𝜌−cN

𝜛
T(r)(I ⊗ Wj2)𝜛(r)dr,

V j
4(𝜌) = ∫

𝜌

𝜌−b(𝜌)
𝜛

T(r)(I ⊗ Tj1)𝜛(r)dr +
∫

𝜌−b(𝜌)

𝜌−bN

𝜛
T(r)(I ⊗ Tj2)𝜛(r)dr,

V j
5(𝜌) = ∫

𝜌

𝜌−o(𝜌)
𝜛

T(r)(I ⊗ Mj1)𝜛(r)dr +
∫

𝜌−o(𝜌)

𝜌−oN

𝜛
T(r)(I ⊗ Mj2)𝜛(r)dr,

V j
6(𝜌) = a1

∫

0

−a1
∫

𝜌

𝜌+s
�̇�

T(r)(I ⊗ Oj1)�̇�(r)drds + (a2 − a1)
∫

−a1

−a2
∫

𝜌

𝜌+s
�̇�

T(r)(I ⊗ Oj1)�̇�(r)drds,

V j
7(𝜌) = cN

∫

0

−cN
∫

𝜌

𝜌+s
�̇�

T(r)(I ⊗ Rj1)�̇�(r)drds + bN
∫

0

−bN
∫

𝜌

𝜌+s
�̇�

T(r)(I ⊗ Rj2)�̇�(r)drds

+ oN
∫

0

−oN
∫

𝜌

𝜌+s
�̇�

T(r)(I ⊗ Rj3)�̇�(r)drds,

V j
8(𝜌) = ∫

𝜌

𝜌−o(𝜌)
eT(r)(I ⊗ Qj1)e(r)dr +

∫

𝜌

𝜌−c(𝜌)
ℏ

T(𝜉(r))(I ⊗ Qj2)h(𝜉(r))dr

+
∫

𝜌

𝜌−b(𝜌)
𝜙

T(𝜉(r))(I ⊗ Qj3)𝜙(𝜉(r))dr.

where,

j =

{
1, 𝜌 ∈ [−h, 0] ∪ (∪n∈N[xn, dn)) ,
2, 𝜌 ∈ ∪n∈N[dn, xn+1).

When j = 1, calculating the time derivative of V(𝜌) along the system’s trajectory (16), we obtain to

E(V̇ 1
1(𝜌)) = 𝜛

T(𝜌)(I ⊗ P1)�̇�(𝜌) + �̇�(𝜌)(I ⊗ P1)𝜛T(𝜌), (24)

E(V̇ 1
2(𝜌)) = 𝜛

T(𝜌)[(I ⊗ V11) + (I ⊗ V12) + (I ⊗ V13)]𝜛(𝜌) −𝜛
T(𝜌 − a1)(I ⊗ V11)𝜛(𝜌 − a1)

− (1 − 𝜈1)𝜛T(𝜌 − a(𝜌))(I ⊗ V12)𝜛(𝜌 − a(𝜌)) −𝜛
T(𝜌 − a2)(I ⊗ V13)𝜛(𝜌 − a2), (25)

E(V̇ 1
3(𝜌)) = 𝜛

T(𝜌)(I ⊗ W11)𝜛(𝜌) − (1 − 𝜈2)𝜛T(𝜌 − c(𝜌))(I ⊗ W11)𝜛(𝜌 − c(𝜌))
+ (1 − 𝜈2)𝜛T(𝜌 − c(𝜌))(I ⊗ W12)𝜛(𝜌 − c(𝜌)) −𝜛

T(𝜌 − cN)(I ⊗ W12)𝜛(𝜌 − cN), (26)
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E(V̇ 1
4(𝜌)) = 𝜛

T(𝜌)(I ⊗ T11)𝜛(𝜌) − (1 − 𝜈3)𝜛T(𝜌 − b(𝜌))(I ⊗ T11)𝜛(𝜌 − b(𝜌))
+ (1 − 𝜈3)𝜛T(𝜌 − b(𝜌))(I ⊗ T12)𝜛(𝜌 − b(𝜌)) −𝜛

T(𝜌 − bN)(I ⊗ T12)𝜛(𝜌 − bN), (27)

E(V̇ 1
5(𝜌)) = 𝜛

T(𝜌)(I ⊗ M11)𝜛(𝜌) − (1 − 𝜈4)𝜛T(𝜌 − o(𝜌))(I ⊗ M11)𝜛(𝜌 − o(𝜌))
+ (1 − 𝜈4)𝜛T(𝜌 − o(𝜌))(I ⊗ M12)𝜛(𝜌 − o(𝜌)) −𝜛

T(𝜌 − oN)(I ⊗ M12)𝜛(𝜌 − oN), (28)

E(V̇ 1
6(𝜌)) = �̇�

T(𝜌)[a2
1(I ⊗ O11) + (a2 − a1)2(I ⊗ O11)]�̇�(𝜌) − a1

∫

𝜌

𝜌−a1

�̇�
T(r)(I ⊗ O11)�̇�(r)dr

− (a2 − a1)
∫

𝜌−a1

𝜌−a2

�̇�
T(r)(I ⊗ O11)�̇�(r)dr. (29)

By applying Lemmas 1 and 2, we get

−a1
∫

𝜌

𝜌−a1

�̇�
T(r)(I ⊗ O11)�̇�(r)dr ≤

[
𝜛(𝜌)

𝜛(𝜌 − a1)

]T[
−𝜅11 ∗
𝜅11 −𝜅11

][
𝜛(𝜌)

𝜛(𝜌 − a1)

]

(30)

(a2 − a1)
∫

𝜌−a1

𝜌−a2

�̇�
T(r)(I ⊗ O11)�̇�(r)dr ≤

⎡
⎢
⎢
⎢
⎣

𝜛(𝜌 − a1)
𝜛(𝜌 − a(𝜌))
𝜛(𝜌 − a2)

⎤
⎥
⎥
⎥
⎦

T
⎡
⎢
⎢
⎢
⎣

𝜅1 𝜅2 0
∗ 𝜅3 𝜅4

∗ ∗ 𝜅5

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝜛(𝜌 − a1)
𝜛(𝜌 − a(𝜌))
𝜛(𝜌 − a2)

⎤
⎥
⎥
⎥
⎦

. (31)

where, 𝜅11 = (I ⊗ O11), 𝜅1 = −(I ⊗ O1) − (1 − 𝛽)(I ⊗ O1), 𝜅2 = (I ⊗ O1) + (1 − 𝛽)(I ⊗ O1), 𝜅3 = −2(I ⊗ O1) −
𝛽(I ⊗ O1) − (1 − 𝛽)(I ⊗ O1), 𝜅4 = (I ⊗ O1) + 𝛽(I ⊗ O1), 𝜅5 = −(I ⊗ O1) − 𝛽(I ⊗ O1).

E(V̇ 1
7(𝜌)) = c2

N�̇�
T(𝜌)(I ⊗ R11)�̇�(𝜌) − cN

∫

𝜌

𝜌−cN

�̇�
T(r)(I ⊗ R11)�̇�(r)dr + b2

N�̇�
T(𝜌)(I ⊗ R12)�̇�(𝜌)

+ o2
N�̇�

T(𝜌)(I ⊗ R13)�̇�(𝜌) − dN
∫

𝜌

𝜌−dN

�̇�
T(r)(I ⊗ R12)�̇�(r)dr

− oN
∫

𝜌

𝜌−oN

�̇�
T(r)(I ⊗ R13)�̇�(r)dr. (32)

By applying Lemma 3, we get

−cN
∫

𝜌

𝜌−cN

�̇�
T(r)(I ⊗ R11)�̇�(r)dr

≤

[
𝜛(𝜌) −𝜛(𝜌 − c(𝜌))

𝜛(𝜌 − c(𝜌)) −𝜛(𝜌 − cN)

]T[
−(I ⊗ R11) −(I ⊗ 1)

∗ −(I ⊗ R11)

][
𝜛(𝜌) −𝜛(𝜌 − c(𝜌))

𝜛(𝜌 − c(𝜌)) −𝜛(𝜌 − cN)

]

, (33)

− bN
∫

𝜌

𝜌−bN

�̇�
T(r)(I ⊗ R12)�̇�(r)dr

≤

[
𝜛(𝜌) −𝜛(𝜌 − b(𝜌))

𝜛(𝜌 − b(𝜌)) −𝜛(rho − bN)

]T[
−(I ⊗ R12) −(I ⊗ 1)

∗ −(I ⊗ R12)

][
𝜛(𝜌) −𝜛(𝜌 − b(𝜌))

𝜛(𝜌 − b(𝜌)) −𝜛(𝜌 − bN)

]

, (34)

−oN
∫

𝜌

𝜌−oN

�̇�
T(r)R13�̇�(r)dr

≤

[
𝜛(𝜌) −𝜛(𝜌 − o(𝜌))

𝜛(𝜌 − o(𝜌)) −𝜛(𝜌 − oN)

]T[
−(I ⊗ R13) −(I ⊗ 3)

∗ −(I ⊗ R13)

][
𝜛(𝜌) −𝜛(𝜌 − o(𝜌))

𝜛(𝜌 − o(𝜌)) −𝜛(𝜌 − oN)

]

, (35)

E(V̇ 1
8(𝜌)) = eT(𝜌)(I ⊗ Q11)e(𝜌) − eT(𝜌 − o(𝜌))(I ⊗ Q11)e(𝜌 − o(𝜌)) + ℏ

T(𝜉(𝜌))(I ⊗ Q12)ℏ(𝜉(𝜌))
− ℏ

T(𝜉(𝜌 − c(𝜌)))(I ⊗ Q12)ℏT(𝜉(𝜌 − c(𝜌))) + 𝜙
T(𝜉(𝜌))(I ⊗ Q13)𝜙(𝜉(𝜌))

− 𝜙
T(𝜉(𝜌 − b(𝜌)))(I ⊗ Q13)𝜙T(𝜉(𝜌 − c(𝜌))). (36)
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It is possible to obtain the input constraint from (5) as

𝜍𝜛
T(𝜌 − b(𝜌))(I ⊗ FT

1 F1)𝜛(𝜌 − b(𝜌)) − 𝜙
T(𝜉(𝜌))𝜙(𝜉(𝜌)) > 0. (37)

From the Equations (6) and (7), adaptive event-triggered scheme we get

𝜛
T(𝜌 − b(𝜌))(I ⊗ LT)Θ(I ⊗ L)𝜛(𝜌 − b(𝜌)) − 𝜋eT(t)Θe(t) > 0. (38)

From the Assumption 1, we have

𝜛
T(𝜌)(I ⊗ FT

1 HT)(I ⊗ HF1)𝜛(𝜌) − ℏ
T(𝜉(𝜌))h(𝜉(𝜌)) ≥ 0. (39)

Denote 𝜁T(𝜌) =
[

𝜛T(𝜌) 𝜛T(𝜌−a1) 𝜛T(𝜌 − a(𝜌)) 𝜛T(𝜌−a2) 𝜛T(𝜌−c(𝜌)) 𝜛T(𝜌−cN) 𝜛T(𝜌−b(𝜌)) 𝜛T(𝜌−bN)
𝜛T(𝜌 − o(𝜌)) 𝜛T(𝜌 − oN) eT(𝜌) eT(𝜌 − o(𝜌)) ℏT(𝜉(𝜌)) ℏT(𝜉(𝜌 − c(𝜌)))𝜙T(𝜉(𝜌)) 𝜙T(𝜉(𝜌 − b(𝜌)))
wT(𝜌)

]

. Furthermore combining (24)–(39), we have

E{V̇ 1(𝜌)) −𝚿(Ψ1,Ψ2,Ψ3, 𝜌)} ≤ 𝜁
T(𝜌)Π𝜁(𝜌). (40)

According to (23), for any small scalar 𝜀 > 0 under the initial condition, the following inequality holds

E{V̇ 1(𝜌) −𝚿(Ψ1,Ψ2,Ψ3, 𝜌)} ≤ −𝜀1||𝜉(𝜌)||2, (41)

In this similarly, when j = 2 then we can obtain

E{V̇ 2(𝜌) −𝚿(Ψ1,Ψ2,Ψ3, 𝜌)} ≤ −𝜀2||𝜉(𝜌)||2,

which means lim𝜌→∞||𝜉(𝜌)|| = 0. Therefore, based on Definition (2.4), the over all closed loop system (16) is
mean-square asymptotically stable.

Furthermore, it follows from (41) that

E{V̇ j(𝜌) − (1 − 𝛼)[zT(𝜌)Ψ1zT(𝜌) + 2zT(𝜌)w(𝜌)] − wT(𝜌)Ψ3w(𝜌)} ≤ 0. (42)

Let 𝜁 = 0, for any 0 < 𝜋 < S under zero initial conditions, we have

E{V̇ j(𝜋)} = E{𝚿(Ψ1,Ψ2,Ψ3, 𝜋)},

0 ≤ E{V j(𝜋)} ≤ E
{

∫

𝜃

0
𝚿(Ψ1,Ψ2,Ψ3, 𝜋)d𝜋

}

.

This means that

0 ≤ E{𝜉T(𝜋)𝜉(𝜋)} ≤ E
{

∫

X

0
𝚿(Ψ1,Ψ2,Ψ3, 𝜋)d𝜋

}

,

which implies

0 ≤ E
{

∫

X

0
𝚿(Ψ1,Ψ2,Ψ3, 𝜋)d𝜋

}

. (43)

Let 𝛼 = 1, for any 0 < 𝜌 < X , we can get

E{V j(𝜌)} ≤ E
{

∫

𝜌

0
wT(𝜋)Ψ3w(𝜋)d𝜋

}

≤ E
{

∫

X

0
wT(𝜋)Ψ3w(𝜋)d𝜋

}

,
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which means

E{𝜉T(𝜋)𝜉(𝜋)} ≤ E
{

∫

X

0
wT(𝜋)Ψ3w(𝜋)d𝜌

}

,

then, from (23), we get

E{𝛼GTΨ4G − P} ≤ 0,
E{𝛼𝜉T(𝜌)GTΨ4G𝜉(𝜌) − 𝜉

T(𝜌)P𝜉(𝜌)} ≤ 0. (44)

It means that

E{𝛼zT(𝜌)Ψ4z(𝜌)} ≤ E
{

∫

X

0
wT(𝜌)Ψ3w(𝜌)d𝜌

}

. (45)

The entire closed-loop system (16) is mean-square asymptotically stable and satisfy an extended dissipative
performance, according to Definition 2. The proof of Theorem 1 is therefore completed. ▪

Theorem 2. For given positive scalar 𝜖j, j = {1, 2, 3, 4} and 𝜂(𝜌), 𝜗(𝜌), 𝛾(𝜌) ∈ [0, 1]. Df ,Cf ,Ff are filter
parameters. The complex dynamical system (16) under the adaptive event triggered filter design subject to
hybrid-cyber-attacks is asymptotically stable with extended dissipative performance, if positive definite matrices
Pz,Vzx,Qzx,Rzx,Wzz,Mzz,Ozz (z = 1, 2), (x = 1, 2, 3)with proper dimension and event-triggered weighting matrix
Θ exist, such that the following conditions hold.

Wi < 𝜖iP1, R𝜏 < 𝜖𝜏+2P1, (46)

where i = {1, 2} and 𝜏 = {1, 2, 3}

Π̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Γ̂17×17 ℜ̂1 ℜ̂2 ℜ̂3 ℜ̂4 ℜ̂5

∗ −W11 0 0 0 0
∗ ∗ −W12 0 0 0
∗ ∗ ∗ −R13 0 0
∗ ∗ ∗ ∗ −R12 0
∗ ∗ ∗ ∗ ∗ −R13

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (47)

With Γ̂1,1 =
[
𝓁1 𝓁2
∗ 𝓁3

]

,𝓁1 = (I ⊗ V11) + (I ⊗ V12) + (I ⊗ V13) + (I ⊗ W11) + (I ⊗ T11) + (I ⊗ M11)

−(I ⊗ O11) − (I ⊗ R11) + FT
1 HTHF1 + 2P1D + 2P1(1 − 𝜂)(Λ⊗ Υ) − (1 − 𝛼)GTG,𝓁2 = −GX−1M3,𝓁3 =

(I ⊗ V11) + (I ⊗ V12) + (I ⊗ V13) + (I ⊗ W11) + (I ⊗ T11) + (I ⊗ M11) − (I ⊗ O11) − (I ⊗ R11)

+FT
1 HTHF1 + 2M1 + (1 − 𝛼)[𝜖2I − 2𝜖X−1M3], Γ̂1,2 =

[
(I ⊗ O1) 0

∗ (I ⊗ O1)

]

, Γ̂1,3 =
[
(Λ⊗ Υ)𝜂P1 0

∗ 0

]

,

Γ̂1,5 =
[
−1 +W1 0

∗ −1 +W1

]

, Γ̂1,6 =
[
1 0
∗ 1

]

, Γ̂1,7 =
[

−2 0
𝛾(𝜌)𝜗(𝜌)M2F −2

]

, Γ̂1,8 =
[
2 0
∗ 2

]

,

Γ̂1,9 =
[

−3 0
(1 − 𝜗(𝜌))M2 −3

]

, Γ̂1,10 =
[
3 0
∗ 3

]

, Γ̂1,11 =
[

0 0
𝛾(𝜌)𝜗(𝜌)M2F 0

]

,

Γ̂1,12 =
[

0 0
(1 − 𝜗(𝜌))M2 0

]

, Γ̂1,14 =
[

0 0
(1 − 𝛾(𝜌))𝜗(𝜌))M2 0

]

, Γ̂1,16 =
[

0 0
−𝛾(𝜌)𝜗(𝜌)M2 0

]

,

Γ̂1,17 =
[
−(1 − 𝛼)LT (1 − 𝛼)X−1M3

0 0

]

, Γ̂2,2 =
[
𝓁4 0
0 𝓁4

]

, Γ̂2,3 =
[
𝓁5 0
0 𝓁5

]

, Γ̂3,3 =
[
𝓁6 0
0 𝓁6

]

,

Γ̂3,4 =
[

O1 + 𝛽O1 0
0 O1 + 𝛽O1

]

, Γ̂4,4 =
[
𝓁7 0
0 𝓁7

]

, Γ̂5,5 =
[
𝓁8 0
0 𝓁8

]

, Γ̂5,6 =
[
𝓁9 0
0 𝓁9

]

,
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Γ̂6,6 =
[
𝓁10 0
0 𝓁10

]

, Γ̂7,7 =
[
𝓁11 0
0 𝓁11

]

, Γ̂7,8 =
[
𝓁12 0
0 𝓁12

]

, Γ̂8,8 =
[
𝓁13 0
0 𝓁13

]

, Γ̂9,9 =
[
𝓁14 0
0 𝓁14

]

,

Γ̂9,10 =
[
𝓁15 0
0 𝓁15

]

, Γ̂10,10 =
[
𝓁16 0
0 𝓁16

]

, Γ̂11,11 =
[
𝓁17 0
0 𝓁17

]

, Γ̂13,13 =
[
𝓁18 0
0 𝓁18

]

,

Γ̂12,12 =
[
−(I ⊗ Q11) 0

0 −(I ⊗ Q11)

]

, Γ̂14,14 =
[
−(I ⊗ Q12) 0

0 −(I ⊗ Q12)

]

, Γ̂15,15 =
[
𝓁19 0
0 𝓁19

]

,

Γ̂17,17 =
[
−Ψ3 0

0 −Ψ3

]

, Γ̂16,16 =
[
(I ⊗ Q13) 0

0 (I ⊗ Q13)

]

,

𝓁4 = −(I ⊗ V11)−2(I⊗O11)−(1−𝛽)O1,𝓁5 = (I⊗O11)+(1−𝛽)O1,𝓁6 = −(1−𝜈1)(I ⊗ V12) − 2(I ⊗ O11) −
𝛽O1,𝓁7 =−(I ⊗ V13) − (I ⊗ O11) −𝛽O1,𝓁8 =−(1− 𝜈2)(I⊗ W11) +(1 − 𝜈2)(I ⊗ W12) − 2(I ⊗ R11) + 2(I ⊗ 1),
𝓁9 = (I⊗R11)−(I⊗1),𝓁10 = −(I⊗W12)−(I⊗R11),𝓁11 =−(1−𝜈3)(I ⊗ T11)+(1−𝜈3)(I ⊗T12)−2(I ⊗ R12)+
2(I ⊗ 2) + 𝜍FT

1 F1+LTΘL,𝓁12 = (I ⊗ R12)−(I ⊗ 1),𝓁13 = −(I ⊗ T12)−(I ⊗12),𝓁14 = −(1 − 𝜈4)(I⊗T11) +
(1 − 𝜈4)(I ⊗ T12) − 2(I ⊗ R13) + 2(I ⊗ 3), 𝓁15 = (I ⊗ R13) − (I ⊗ 3), 𝓁16 = −(I ⊗ M12) − (I ⊗13), 𝓁17 =
−(I ⊗ 𝜋Θ) + (I ⊗ Q11),𝓁18 = −I + (I ⊗ Q12),𝓁19 = −I + (I ⊗ Q13). Define ℜ̂i =△i∇iℑ here i = {1, 2, … , 5}.
Where △1 = a1,△2 = (a2 − a1),△3 = cN ,△4 = bN ,△5 = oN and ∇1 = 𝜖1P1,∇2 = 𝜖2P1,∇3 = 𝜖3P1,∇4 =
𝜖4P1,∇5 = 𝜖5P1. ℑ is defined in Theorem 1.

The parameters of the designed filter can be obtained by,

Df = M1P−1
1 ,Ef = M2P−1

1 ,Ff = M2
−1
. (48)

Proof. Define
⎧
⎪
⎨
⎪
⎩

P1Df = M1

P2Ef = M2

Ff = M3.

(49)

Substituting (49) in Equation (23) and using Lemma 4.5, we get

Γ +ℑT(𝜌)
[
a2

1O1 + (a2 − a1)2O1 + c2
N W1 + b2

N W2 + d2
N W1

]
ℑ(𝜌) < 0 (50)

By using Schur complement, (50) is equals to (47). Hence the proof is accomplished. ▪

4 NUMERICAL EXAMPLES

The effectiveness of the proposed approach is illustrated using numerical examples.

Example 1. Consider a complex dynamical networks (16) based on adaptive event-triggered filter method
subject to hybrid cyber-attacks with the following parameters:

D =

[
−3.2 0.4
0.6 −2

]

,E =

[
−1.3 0.5
0.3 −0.6

]

,F =

[
−1.3 0.4
0.4 −1.3

]

,G =

[
−2.7 0.9
0.45 −1.7

]

,

H =

[
1.5 0
0 1.5

]

, I =

[
1 0
0 1

]

,X =

[
−1.5 0

0 −1.5

]

,

Choose the parameters 𝜖 = 3.12, 𝜀1 = 5, 𝜀2 = 2, 𝜀3 = 2, 𝜀4 = 2, a1 = 3, a2 = 3, 𝜇 = 0.16, 𝜇1 = 0.2, 𝜇2 =
0.3, 𝜇3 = 0.5, 𝜇4 = 0.3,F1 = 0.25, cN = 0.08, bN = 0.05, oN = 0.06, 𝜋 = 0.3, 𝛾(𝜌) = 0.2, 𝜗(𝜌) = 0.3, 𝜂(𝜌) = 0.5

The inner coupling matrices are taken as Υ = diag{0.7, 0.7},Υ = diag{1, 1}. The outer coupling matrices are

Λ =
⎡
⎢
⎢
⎢
⎣

−2 1 1
1 −2 1
1 1 −2

⎤
⎥
⎥
⎥
⎦

,Λ =
⎡
⎢
⎢
⎢
⎣

−3 1 2
1 −2 1
1 1 −3

⎤
⎥
⎥
⎥
⎦

.
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The deception attack signal chosen as ℏ(𝜉(𝜌)) = tanh(0.38𝜉(𝜌)) and disturbance signal described as w(𝜌) ={
1, 5 ≤ 𝜌 ≤ 8,
0, else

Case 1: Let Ψ1 = 0,Ψ2 = 1,Ψ3 = 1 the condition (21) can be converted into a passive performance index. The filter
parameters are determined by solving the criteria stated in Theorem 2 as follows:

Df = 10−7

[
−0.0788 0.2828
0.2828 0.7950

]

,Ef = 10−4

[
0.0386 0.1165
0.1165 0.3332

]

,Ff =

[
−0.6468 0.2214
0.2214 −0.2867

]

,

and event-triggered weighting matrix Λ = 13.0094.
Choose the initial state conditions to be𝜑1(0) = [0.7 − 0.7]T , 𝜑1f (0) = [−0.2 0.3]T , 𝜑2(0) = [0.3 − 0.2]T , 𝜑2f (0) =

[−0.26 0.5]T , 𝜑3(0) = [0.67 − 0.3]T , 𝜑3f (0) = [−0.43 0.2]T . Using the filter design and the hybrid attacks into
account, In Figures 1 and 2 illustrates the state trajectories 𝜑i(𝜌) and its estimates 𝜑if (𝜌), respectively. The adaptive
threshold parameter value 𝜚(𝜌) is depicted in Figure 3. Adaptive ETS is introduced, which is determined by a

F I G U R E 1 The state trajectories of 𝜑i(𝜌) and its estimate 𝜑if (𝜌), (i = 1, 2, 3).

F I G U R E 2 The filtering error responses 𝜛i(𝜌).
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varying threshold 𝜚(𝜌). The adaptive law allows the release frequency to be adjusted by changing the threshold param-
eter. The Bernoulli variable 𝛾(𝜌) represents the occurrence of the deception attack depicted in Figure 4. The Bernoulli
variable 𝜗(𝜌) represents the occurrence of the reply attack depicted in Figure 5. In Figure 6, shows the occurrence of DoS
attacks. Figure 7, shows the release instants and intervals of adaptive event-triggered schemes, which demonstrates the
effectiveness of the proposed methodology.

Case 2: Let Ψ1 = −1,Ψ2 = 0,Ψ3 = 1 the condition (21) can be converted into a dissipative performance index. The
filter parameters are determined by solving the criteria stated in Theorem 2 as follows:

Df = 10−4 ∗

[
−0.0276 −0.0248
−0.0248 −0.1619

]

,Ef = 10−3

[
−0.0880 −0.1284
−0.1284 −0.3851

]

,Ff =

[
−2.7874 −0.7496
−0.7496 −4.7355

]

.

and event-triggered weighting matrix Λ = 4.8509.
Choose the initial state conditions to be 𝜑1(0) = [0.4 − 0.4]T , 𝜑1f (0) = [−0.8 0.4]T , 𝜑2(0) =

[0.75 − 0.3]T , 𝜑2f (0) = [−0.38 0.6]T , 𝜑3(0) = [0.3 − 0.5]T , 𝜑3f (0) = [−0.43 0.8]T . Using the filter design and the
hybrid attacks into account, In Figures 8 and 9 illustrates the state trajectories 𝜑i(𝜌) and its estimates 𝜑if (𝜌), respectively.

F I G U R E 3 Values of the adaptive threshold parameter 𝜚(𝜌).

F I G U R E 4 Occurrence of deception attacks.
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F I G U R E 5 Occurrence of reply attacks.

F I G U R E 6 Adaptive event-triggered release instants and intervals.

F I G U R E 7 Occurrence of DoS attacks.
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F I G U R E 8 The state trajectories of 𝜑i(𝜌) and its estimate 𝜑if (𝜌), (i = 1, 2, 3).

F I G U R E 9 The filtering error responses 𝜛i(𝜌).

The adaptive threshold parameter value 𝜚(𝜌) is depicted in Figure 10. The Bernoulli variable 𝛾(𝜌) represents the occur-
rence of the deception attack depicted in Figure 11. The Bernoulli variable 𝜗(𝜌) represents the occurrence of the reply
attack depicted in Figure 12. In Figure 13, shows the occurrence of DoS attacks. In Figure 14, shows the release instants
and intervals of adaptive event-triggered schemes, which demonstrates the effectiveness of the proposed methodology.

Example 2. As shown Figure 15, a tunnel diode circuit system is considered,18 and expressed as follows.

⎧
⎪
⎨
⎪
⎩

V̇(𝜌) = −
V(𝜌)


+ i(𝜌),

i(𝜌) = −V(𝜌) − i(𝜌) + w(𝜌).
(51)

Let 𝜑(𝜌) = [𝜑1(𝜌) 𝜑2(𝜌)]T = [V(𝜌) i(𝜌)]T , then the circuit system can be expressed as

�̇�(𝜌) =
⎡
⎢
⎢
⎣

− 1


− 1


− 1


−E


⎤
⎥
⎥
⎦

𝜑(𝜌) +

[
0
1


]

w(𝜌)
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F I G U R E 10 Values of the adaptive threshold parameter 𝜚(𝜌).

F I G U R E 11 Occurrence of deception attacks.

Consider the circuit system in Figure 1 with  = 2 , = 2Ω, = 1000mH and  = 2Ω. Choose the parameters
of the system as 𝜖 = 2.2, 𝜀1 = 6, 𝜀2 = 2.5, 𝜀3 = 2.5, 𝜀4 = 2.5, a1 = 2, a2 = 2, 𝜇 = 0.26, 𝜇1 = 0.25, 𝜇2 = 0.35, 𝜇3 = 0.55, 𝜇4 =
0.35,F1 = 0.35, cN = 0.18, bN = 0.15, oN = 0.16, 𝜋 = 0.35, 𝛾(𝜌) = 0.25, 𝜗(𝜌) = 0.35, 𝜂(𝜌) = 0.55

The inner coupling matrices are taken as Υ = diag{0.7, 0.7},Υ = diag{1, 1}. The outer coupling matrices are

Λ =
⎡
⎢
⎢
⎢
⎣

−2 1 1
1 −2 1
1 1 −2

⎤
⎥
⎥
⎥
⎦

,Λ =
⎡
⎢
⎢
⎢
⎣

−3 1 2
1 −2 1
1 1 −3

⎤
⎥
⎥
⎥
⎦

.



TAJUDEEN et al. 431

F I G U R E 12 Occurrence of reply attacks.

F I G U R E 13 Adaptive event-triggered release instants and intervals.

The deception attack signal chosen as ℏ(𝜉(𝜌)) = tanh(0.53𝜉(𝜌)) and disturbance signal described as w(𝜌) ={
1, 5 ≤ 𝜌 ≤ 8,
0, else Let Ψ1 = −1,Ψ2 = 0,Ψ3 = 1 the condition (21) can be converted into a dissipative performance index.

The filter parameters are determined by solving the criteria stated in Theorem 2 as follows:

Df = 10−4 ∗

[
−3.5843 −0.0656
−8.7892 −5.7145

]

,Ef = 10−3

[
−0.4307
−0.1408

]

,Ff =
[

−6.9004 −3.7090
]

.

Choose the initial state conditions to be 𝜑1(0) = [0.28 − 0.3]T , 𝜑1f (0) = [−0.25 0.3]T , 𝜑2(0) =
[0.39 − 0.5]T , 𝜑2f (0) = [−0.5 0.2]T , 𝜑3(0) = [0.7 − 0.2]T , 𝜑3f (0) = [−0.2 0.6]T . Using the filter design and the
hybrid attacks into account, In Figures 16 and 17 illustrates the state trajectories 𝜑i(𝜌) and its estimates 𝜑if (𝜌), respec-
tively. The adaptive threshold parameter value 𝜚(𝜌) is depicted in Figure 18. The Bernoulli variable 𝛾(𝜌) represents
the occurrence of the deception attack depicted in Figure 19. The Bernoulli variable 𝜗(𝜌) represents the occurrence
of the reply attack depicted in Figure 20. In Figure 21, shows the occurrence of DoS attacks. Figure 22, shows the
release instants and intervals of adaptive event-triggered schemes, which demonstrates the effectiveness of the proposed
methodology.
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F I G U R E 14 Occurrence of DoS attacks.

F I G U R E 15 Structure of the tunnel diode circuit system.

F I G U R E 16 The state trajectories of 𝜑i(𝜌) and its estimate 𝜑if (𝜌), (i = 1, 2, 3).
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F I G U R E 17 The filtering error responses 𝜛i(𝜌).

F I G U R E 18 Values of the adaptive threshold parameter 𝜚(𝜌).

F I G U R E 19 Occurrence of deception attacks.
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F I G U R E 20 Occurrence of reply attacks.

F I G U R E 21 Adaptive event-triggered release instants and intervals.

F I G U R E 22 Occurrence of DoS attacks.
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5 CONCLUSION

This study investigated adaptive event-triggered-based filter design for complex dynamical networks with time-varying
coupling delays under hybrid cyber-attacks. An adaptive event-triggered strategy reduces bandwidth use while keep-
ing efficiency due to communications system instability and network resource constraints. An adaptive event-triggered
scheme modifies the communication threshold level in the filter design to lower transmission load. A novel required con-
dition is discovered using Lyapunov stability theory, which ensures mean-square asymptotically stable filter error systems
with extended dissipative performance. By using linear matrix inequality methodology, the proposed filter parameters are
determined. Finally, two examples were shown to demonstrate the benefits of the proposed strategy. In the future, sliding
mode control for the filtering system is discussed.
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