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A B S T R A C T

In this investigation, a distinctive chickenpox model incorporating the Caputo fractional derivative is intro-
duced. Equilibrium points and the fundamental reproduction number of the model are systematically computed.
The study also scrutinizes the existence, uniqueness, positivity, and boundedness of solutions. Furthermore, a
comprehensive analysis of both local asymptotic stability and global stability at the disease-free equilibrium is
carried out. To demonstrate the practical utility of the model, a numerical simulation of chickenpox dynamics
in Phuket city is conducted using MATLAB. This research contributes to a better understanding of chickenpox
transmission dynamics, offering valuable insights for disease control and management strategies.
1. Introduction

Varicella-Zoster Virus (VZV), sometimes referred to us the ‘‘Chick-
enpox virus’’, is an extremely infectious illness that affects exclusively
humans. The virus can last for hours in a typical setting [1]. The
Herpes Simplex Virus (HSV) is a part of the human herpesvirus family,
which also includes the VZV, a closely related but separate component.
The cause of two distinct illnesses is VZV. Varicella, often known as
chickenpox, is the primary source of infection and is a communicable
disease. The reactivation of VZV from an inactive condition causes
shingles, or zoster, which is its secondary disease. Most people get
varicella at some time in their lives. The VZV enters a latent condition
after the initial Varicella occurrence and frequently stays dormant for a
long time without exhibiting any symptoms. Nonetheless, the VZV may
reactivate and result in the development of zoster in 20% of individuals.
Immunocompromised and elderly individuals are more likely to have
reactivation [2,3].

The fact that VZV causes approximately 10,000 fatalities each year
is a particularly significant concern [2]. Before the vaccine’s discovery
in 1995, there were annual records of 4 million varicella cases and
1 million zoster cases, with the disease’s spread being influenced by
geographical factors [4]. Varicella is typically diagnosed in children,
while shingles or zoster is more commonly found in adults. This virus
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used to infect nearly everyone worldwide due to its rapid transmission
before the development of vaccines [5].

Adults become resistant to VZV in temperate nations like the United
States and the United Kingdom [6]. Preblud’s study in [7] found that,
in America at least 90% of people at the age of 15, had been infected
with the virus. Muench et al. found 100% seropositivity at age 13 in
a research conducted in Seattle in that same year [7,8]. According to
Wharton’s study, only 6% of people between the ages of 11 and 19 were
at risk of contracting VZV infection [9]. Only 6.7% of recruits for the
U.S. Navy and Marine Corps, aged 15 to 29, tested negative for VZV,
according to [10]. [6] has the review of Chicken Box in its entirety.

Compared to integer-order calculus, fractional calculus provides
a more natural way to comprehend different facets of life. It is an
effective analytical technique for explaining historical behaviors, intri-
cate systems, and interconnections. Fractional-order partial differential
equations (PDEs) are a major component of many models in disciplines
such as fluid dynamics, electricity, ecology, and quantum physics. In
order to tackle contemporary scientific problems, a thorough under-
standing of integrals and derivatives, both fractional and integer, is
required. These mathematical tools are notable for their ability to
be used with unique functions such as Gamma and Beta, and for
convolutions in integrals.
746-8094/© 2024 Elsevier Ltd. All rights reserved.
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Fractional Differential Equations (FDEs) offer more insights on the
suggested scenario’s memory and heredity. Ellipstic functions, elliptic
integrals, and special functions are utilized in a number of biological
systems [11]. They are well understood to be involved in the solution of
nonlinear differential equations. These days, FDEs are robust, rigorous
computational tools that may be used to analyze a variety of ecological
and technological phenomena [12].

Further information on the disease’s heredity can be obtained by
analyzing a mathematical model in the fractional order sense. For
example, the authors of [13–20] used fractional and integer calculus
to study the nonlinear dynamics of prevalent childhood disorders,
mosquito borne disease control and they used the Adams–Bashforth
method, RH criterion and Lyapunov theory for numerical simulations.
More importantly, asymptotic behaviors of chikungunya are exam-
ined in [21], hepatitis C model with Mittag-leffler kernel is described
in [22], and fractional calculus is used in the coronary heart dis-
ease model [23]. In [5], the authors created a compartmental model
of Chicken box virus transmission in order to study the impact of
the varicella-zoster vaccination. They did this by using the notion of
𝐴𝐵𝐶− fractional derivative. The paper by Sayooj et al. [24], introduces
he Integer ordered Chickenpox Model, which aims to investigate the
mpact of implementing preventive measures among individuals who
re infected. In their study, the authors analyze the proposed model
sing real-world data collected from Phuket province, Thailand. In
ight of the findings presented above, our article makes the follow-
ng significant contributions to the understanding and control of VZV
ransmission as categories:

(i) Model Development: We proposed a novel fractional order mathe-
matical model to understand the spread of Chickenpox in Phuket
city, Thailand by incorporating the concept of parameter expo-
nentiation. This model deepens our comprehension of the dis-
ease’s progression mechanisms.

(ii) Model Characteristics: We establish the positive invariant region
and address the existence and uniqueness of the model, thereby
confirming the validity of our infection modeling approach.

(iii) Disease Dynamics: We analyze disease transmission dynamics in
individuals with and without complications at varying fractional
order levels, providing valuable insights into the disease’s be-
havior that the infection rate in population with complication
is higher than that of population without complications. Fur-
thermore, the existence and uniqueness of solution is derived
analytically.

(iv) Equilibrium Points: We investigate the equilibrium points of the
proposed model. The next generation matrix method is utilized
to find the corresponding reproduction number to assess their
local and global dynamics using Lapunov’s method and LaSalle’s
invariance principle.

(v) Preventive Measures: We demonstrate that by implementing dif-
ferent levels of precautionary measures, the basic reproductive
number within fractional orders can be significantly reduced, con-
tributing to disease control. We analyzed the reality of the model
by examine it in various cases. That is, in numerical simulation
we analyzed the model in presence and absence of vaccination
while the parameters are exponentiated and not exponentiated.

(vi) Memory Effect Analysis: Through numerical analysis, we explore
the impact of the memory effect on dynamical behaviors by
examining the influence of derivative orders. From numerical
analysis, the importance of considering parameter exponentiation
is presented.

hese contributions collectively enhance our understanding of VZV
ransmission and offer insights into effective strategies for controlling
ts spread.

The manuscript is organized as follows: In Section 2, we introduce a
ovel fractional-order model by raising it to the power of the fractional-
2

rder derivative 𝛼. Section 3 is dedicated to the analysis of qualitative
properties, specifically examining aspects such as positivity and bound-
edness of the solutions. Section 4 is where we derive the reproduction
number at the model’s equilibrium points. Furthermore, in Section 5,
we establish the global stability of these equilibrium points through
the application of Lyapunov stability theory and Lasalle’s invariance
principle. Section 6 is designated for the numerical analysis of the
model, where we incorporate field data collected from Phuket province,
Thailand. In Section 8, we provide the comparison results which shows
the effectiveness of vaccination. Finally, in Section 8, we provide our
concluding remarks based on the obtained results.

2. Motivation and model formation

Fractional derivatives have emerged as a compelling approach to
model disease epidemics more realistically. This stems from their
unique capacity to incorporate memory effects, which are frequently
observed in the human body’s response to diseases. These memory
effects account for the persistence of immunity, the temporal dynamics
of infections, and other intricate characteristics of epidemics. In light of
this, we present an innovative extension of the traditional chickenpox
model. By introducing fractional orders into this model, we aim to more
accurately capture the intricate dynamics and memory-dependent as-
pects of chickenpox epidemics. This extension allows us to explore the
long-term behavior of the disease, examine the impact of Precautionary
Measures, and provide insights into the potential for outbreak control
strategies. We have examined the mathematical framework presented
in [24] and incorporated the notion of parameter exponentiation within
the fractional-order model in the Caputo sense, as follows:

𝐷𝛼
𝑡 𝐶𝑆 (𝑡) = 𝛬𝛼 − 𝜆𝛼1𝐶𝑆 (𝐶𝐼𝑊 + 𝜂𝛼𝐶𝐼𝑊 ) + 𝜆𝛼3𝐶𝑉

+𝜇𝛼𝐶𝐸 − (𝛾𝛼 + 𝜆𝛼2 )𝐶𝑆 + 𝜓𝛼3𝐶𝑅
𝐷𝛼
𝑡 𝐶𝑉 (𝑡) = 𝜆𝛼2𝐶𝑆 − (1 − 𝜃)𝜆𝛼1𝐶𝐼𝑊 𝐶𝑉 − (1 − 𝜃)𝜆𝛼1𝜂

𝛼𝐶𝐼𝑊 𝐶𝑉
− (𝜆𝛼3 + 𝛾

𝛼)𝐶𝑉
𝐷𝛼
𝑡 𝐶𝐸 (𝑡) = (1 − 𝜃)𝜆𝛼1𝐶𝐼𝑊 𝐶𝑉 + (1 − 𝜃)𝜆𝛼1𝜂

𝛼𝐶𝐼𝑊 𝐶𝑉
+ 𝜆𝛼1𝐶𝑆 (𝐶𝐼𝑊 + 𝜂𝛼𝐶𝐼𝑊 ) − (𝜆𝛼4 + 𝛾

𝛼 + 𝜇𝛼)𝐶𝐸

𝐷𝛼
𝑡 𝐶𝐼𝑊 (𝑡) = 𝜗𝜆𝛼4𝐶𝐸 − (𝜓𝛼1 + 𝛾𝛼 + 𝛾𝛼1 )𝐶𝐼𝑊 (1)
𝛼
𝑡 𝐶𝐼𝑊 (𝑡) = (1 − 𝜗)𝜆𝛼4𝐶𝐸 − (𝜓𝛼2 + 𝛾𝛼 + 𝛾𝛼2 )𝐶𝐼𝑊
𝐷𝛼
𝑡 𝐶𝑅(𝑡) = 𝜓𝛼1𝐶𝐼𝑊 + 𝜓𝛼2𝐶𝐼𝑊 − (𝛾𝛼 + 𝜓𝛼3 )𝐶𝑅.

ere, we propose a novel fractional order variant of the chickenpox
odel (1), which promises to enhance our understanding of chickenpox

pidemics and contribute to the development of more effective disease
anagement strategies. In this context, we represent the city as 𝐶, with

ts population divided into distinct groups: the susceptible population
n the city is denoted as 𝐶𝑆 , vaccinated population as 𝐶𝑉 , the people
ho are exposed to the infection is denoted as 𝐶𝐸 . Significantly, the

nfected compartment is partitioned into two major compartments such
s infected population with complication 𝐶𝐼𝑊 and infected population
ithout complication 𝐶𝐼�̄� . The recovered population is denoted as 𝐶𝑅.
he description of the parameters used in the model is found in Table 1.
he initial conditions are, 𝐶𝑆 (0) = 𝐶𝑆0 > 0, 𝐶𝑉 (0) = 𝐶𝑉0 ≥ 0, 𝐶𝐸 (0) =
𝐸0

≥ 0, 𝐶𝐼𝑊 (0) = 𝐶𝐼0 ≥ 0, 𝐶𝐼𝑊 (0) = 𝐶𝐴0
≥ 0, 𝐶𝑅(0) = 𝐶𝑅0

≥ 0. In
he preceding context, the symbol 𝐷𝛼 represents the Caputo fractional
erivative with an order denoted as 0 < 𝛼 ≤ 1. It is worth mentioning
hat all the model parameters, with the exception of 𝜃 and 𝜗, possess
imensions of 1

𝑡𝛼
. To maintain dimensional consistency, as emphasized

by Ref. [25], we have raised these parameters to the power of 𝛼.

3. Qualitative aspects of solutions

In this section, we explore the mathematical and biological aspects
of the fractional order model. Essentially, we establish that when a
positive initial condition is provided, the solution to the fractional
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Table 1
Description of parameters utilized in the proposed model.
model remains both bounded and positive. Additionally, we establish
the presence of a unique solution for the model.

Let 𝛩(𝑡) = (𝐶𝑆 , 𝐶𝑉 , 𝐶𝐸 , 𝐶𝐼𝑊 , 𝐶𝐼𝑊 , 𝐶𝑅)
⊤ and (𝑡, 𝛩(𝑡)) = (𝛯𝑖)⊤, 𝑖 =

1, 2, 3,…6.
Here,

𝛯1 = 𝛬𝛼 − 𝜆𝛼1𝐶𝑆 (𝐶𝐼𝑊 + 𝜂𝛼𝐶𝐼𝑊 ) + 𝜆𝛼3𝐶𝑉 + 𝜇𝛼𝐶𝐸 − (𝛾𝛼 + 𝜆𝛼2 )𝐶𝑆 + 𝜓𝛼3𝐶𝑅,

𝛯2 = 𝜆𝛼2𝐶𝑆 − (1 − 𝜃)𝜆𝛼1𝐶𝐼𝑊 𝐶𝑉 − (1 − 𝜃)𝜆𝛼1𝜂
𝛼𝐶𝐼𝑊 𝐶𝑉 − (𝜆𝛼3 + 𝛾

𝛼)𝐶𝑉 ,

𝛯3 = (1 − 𝜃)𝜆𝛼1𝐶𝐼𝑊 𝐶𝑉 + (1 − 𝜃)𝜆𝛼1𝜂
𝛼𝐶𝐼𝑊 𝐶𝑉 + 𝜆𝛼1𝐶𝑆 (𝐶𝐼𝑊 + 𝜂𝛼𝐶𝐼𝑊 )

− (𝜆𝛼4 + 𝛾
𝛼 + 𝜇𝛼)𝐶𝐸 ,

𝛯4 = 𝜗𝜆𝛼4𝐶𝐸 − (𝜓𝛼1 + 𝛾𝛼 + 𝛾𝛼1 )𝐶𝐼𝑊 , (2)
𝛯5 = (1 − 𝜗)𝜆𝛼4𝐶𝐸 − (𝜓𝛼2 + 𝛾𝛼 + 𝛾𝛼2 )𝐶𝐼𝑊 ,

𝛯6 = 𝜓𝛼1𝐶𝐼𝑊 + 𝜓𝛼2𝐶𝐼𝑊 − (𝛾𝛼 + 𝜓𝛼3 )𝐶𝑅.

Next, we can express the dynamical system described by Eq. (1) as
follows,

𝐷𝛼
𝑡 𝛩(𝑡) = (𝑡, 𝛩(𝑡)), 𝛩(0) = 𝛩0 ≥ 0, 𝑡 ∈ [0, 𝑚], 0 < 𝛼 ≤ 1. (3)

In the previous, it should be understood that the condition 𝛩(0) ≥ 0
applies to each component individually. Eq. (2), which is equivalent
to the fractional differential equation (1), can be represented as an
integral as well.

𝛩(𝑡) =𝛩0 + 𝛼0+(𝑡, 𝛩(𝑡))

=𝛩0 +
1

𝛤 (𝛼) ∫

𝑡

0
(𝑡 − 𝜍)𝛼−1(𝜍, 𝛩(𝜍))𝑑𝜍 (4)

Subsequently, we will examine model (1) using the integral repre-
sentation provided. To facilitate this, let us define 𝛹 as the Banach
space comprising continuous functions from the interval [0, 𝑚] to R and
equipped with its associated norm.

‖𝛩‖𝛹 = sup
𝑡∈[0,𝑚]

{

∣ 𝛩(𝑡) ∣
}

,

here, ∣ 𝛩(𝑡) ∣=∣ 𝐶𝑆 ∣ + ∣ 𝐶𝑉 ∣ + ∣ 𝐶𝐸 ∣ + ∣ 𝐶𝐼𝑊 ∣ + ∣ 𝐶𝐼𝑊 ∣ + ∣ 𝐶𝑅 ∣.
Note that 𝐶 ,𝐶 , 𝐶 , 𝐶 , 𝐶 , 𝐶 all belongs to 𝐶([0, 𝑚];R). Then the
3

𝑆 𝑉 𝐸 𝐼𝑊 𝐼𝑊 𝑅
operator  ∶ 𝛹 ⟶ 𝛹 by,

(𝛩)(𝑡) = 𝛩0 +
1

𝛤 (𝛼) ∫

𝑡

0
(𝑡 − 𝜍)𝛼−1(𝜍, 𝛩(𝜍))𝑑𝜍. (5)

Observe that the operator  is well-defined because of the clearly
evident continuity of .

3.1. Existence, uniqueness positivity and boundedness of solutions

In this sub-section, we will prove the existence, uniqueness pos-
itivity and boundedness of the solutions of the system (2). Let us
denote

R6
+ =

{(

𝐶𝑆 , 𝐶𝑉 , 𝐶𝐸 , 𝐶𝐼𝑊 , 𝐶𝐼𝑊 , 𝐶𝑅
)

|𝐶𝑆 , 𝐶𝑉 , 𝐶𝐸 , 𝐶𝐼𝑊 , 𝐶𝐼𝑊 , 𝐶𝑅 ≥ 0
}

.

Theorem 3.1 (Solution’s Existence and Uniqueness). Let 𝑡𝐹 ∈ R6
+. The

system (2) has a unique solution on
(

0, 𝑡𝐹
)

for initial conditions satisfying
𝐶𝑆 (0) > 0, 𝐶𝑉 (0) > 0, 𝐶𝐸 (0) > 0, 𝐶𝐼𝑊 (0) > 0, 𝐶𝐼𝑊 (0) > 0, 𝐶𝑅(0) > 0.

Proof. Let 𝑥(𝑡) = (𝐶𝑆 , 𝐶𝑉 , 𝐶𝐸 , 𝐶𝐼𝑊 , 𝐶𝐼𝑊 , 𝐶𝑅)
⊤, then the system (2)

translates as 𝑥′(𝑡) = 𝐺(𝑥(𝑡)) =
(

𝑔1(𝑥), 𝑔2(𝑥)𝑔3(𝑥), 𝑔4(𝑥), 𝑔5(𝑥), 𝑔6(𝑥)
)⊤ with

𝑥(0) =
(

𝐶𝑆 (0), 𝐶𝑉 (0), 𝐶𝐸 (0), 𝐶𝐼𝑊 (0), 𝐶𝐼𝑊 (0), 𝐶𝑅(0)
)⊤ > 0.

The elements of Jacobian matrix of 𝐺, denoted as 𝐽 (𝐺(𝑋)) is given
by

𝐽11 =
𝜕𝑔1
𝜕𝐶𝑆

= 𝜆𝛼1𝐶𝑆 (𝐶𝐼𝑊 + 𝜂𝛼𝐶𝐼𝑊 ) − (𝛾𝛼 + 𝜆𝛼2 ),

𝐽12 =
𝜕𝑔2
𝜕𝐶𝑉

= −(1 − 𝜃)𝜆𝛼1𝐶𝐼𝑊 − (1 − 𝜃)𝜆𝛼1𝜂
𝛼𝐶𝐼𝑊 − (𝜆𝛼3 + 𝛾

𝛼),

𝐽13 =
𝜕𝑔3
𝜕𝐶𝐸

= −(𝜆𝛼4 + 𝛾
𝛼 + 𝜇𝛼), 𝐽14 =

𝜕𝑔4
𝜕𝐶𝐼𝑊

= −(𝜓𝛼1 + 𝛾𝛼 + 𝛾𝛼1 ),

𝐽15 =
𝜕𝑔15
𝜕𝐶𝐼𝑊

= −(𝜓𝛼2 + 𝛾𝛼 + 𝛾𝛼2 ), 𝐽16 =
𝜕𝑔5
𝜕𝐶𝑅

= −(𝜓𝛼3 + 𝛾𝛼), etc.

Then 𝐺 and 𝐽 (𝐺(𝑋)) are continuous for 𝑡 > 0. Due to this, 𝐺 satisfies a
Lipschitz condition on R6

+. Then from the Picard–Lindelof theorem, we
can deduce the existence and uniqueness of solution on

(

0, 𝑡
)

. □
𝐹
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Theorem 3.2. Let 𝛩(𝑡) = (𝐶𝑆 , 𝐶𝑉 , 𝐶𝐸 , 𝐶𝐼𝑊 , 𝐶𝐼𝑊 , 𝐶𝑅)
⊤. Then for 𝛩0 > 0,

he solution 𝛩(𝑡) of (1) is bounded, and remains positive for 𝑡 ≥ 0.

roof. We begin by confirming the positivity of the solution. From
26], consider the trajectory of solution along the 𝐶𝑆 -axis where
𝑉 (0) = 𝐶𝐸 (0) = 𝐶𝐼𝑊 (0) = 𝐶𝐼𝑊 (0) = 𝐶𝑅 and 𝐶𝑆 (0) = 𝐶𝑆0 > 0.

Then 𝐷𝛼
𝑡 𝐶𝑆 (𝑡) = 𝛬𝛼 − (𝛾𝛼 + 𝜆𝛼2 )𝐶𝑆 , its solution is given by 𝐶𝑆 (𝑡) =

𝐶𝑆0𝐸𝛼(−(𝛾
𝛼 +𝜆𝛼2 )𝑡

𝛼)+ 𝛬𝛼

(𝛾𝛼 + 𝜆𝛼2 )
(1−𝐸𝛼(−(𝛾𝛼 +𝜆𝛼2 )𝑡

𝛼)). Similar arguments

ield,

𝐶𝑉 (𝑡) = 𝐶𝑉 (0)𝐸𝛼(−(𝜆𝛼3 + 𝛾
𝛼)𝑡𝛼) > 0,

𝐶𝐸 (𝑡) = 𝐶𝐸 (0)𝐸𝛼(−(𝜆𝛼4 + 𝛾
𝛼 + 𝜇𝛼)𝑡𝛼) > 0,

𝐼𝑊 (𝑡) = 𝐶𝐼𝑊 (0)𝐸𝛼(−(𝜓𝛼1 + 𝛾𝛼 + 𝛾𝛼1 )𝑡
𝛼) > 0,

𝐼𝑊 (𝑡) = 𝐶𝐼𝑊 (0)𝐸𝛼(−(𝜓𝛼2 + 𝛾𝛼 + 𝛾𝛼2 )𝑡
𝛼) > 0,

𝐶𝑅(𝑡) = 𝐶𝑅(0)𝐸𝛼(−(𝛾𝛼 + 𝜓𝛼3 )𝑡
𝛼) > 0,

demonstrating that the axes remain non-negative. Therefore the solu-
tion to the model (1) is positive in the 𝐶𝑉 −𝐶𝐸−𝐶𝐼𝑊 −𝐶𝐼𝑊 −𝐶𝑅 plane,
consider 𝑡⋆ > 0 then 𝐶𝑆 (𝑡⋆) = 0, 𝐶𝑉 (𝑡⋆) > 0, 𝐶𝐸 (𝑡⋆) > 0, 𝐶𝐼𝑊 (𝑡⋆) >
0, 𝐶𝐼𝑊 (𝑡⋆) > 0, 𝐶𝑅(𝑡⋆) > 0 and 𝐶𝑆 (𝑡) < 𝐶𝑆 (𝑡⋆). On this plane,

𝐷𝛼
𝑡 𝐶𝑆 (𝑡)|𝑡=𝑡⋆ = 𝛬𝛼 > 0. (6)

By Caputo fractional mean value theorem, it holds 𝐶𝑆 (𝑡) − 𝐶𝑆 (𝑡⋆) =
1

𝛤 (𝛼)
𝐷𝛼
𝑡 (𝜏)(𝑡−𝑡

⋆)𝛼 , 𝜏 ∈ [𝑡⋆, 𝑡). As a result, by utilizing Eq. (6), we derive
the inequality 𝐶𝑆 (𝑡) > 𝐶𝑆 (𝑡⋆), which contradicts our initial assumption
for 𝑡⋆. Therefore, any solution 𝐶𝑆 (𝑡) is non-negative for all 𝑡 ≥ 0. The
same approach can be applied to the remaining variables, leading to
the conclusion that the solution 𝛩(𝑡) remains positive for all 𝑡 ≥ 0.
To address boundedness, we follow a similar procedure to the integer
order case mentioned in Theorem 2.2 of [24] and obtain the expression
𝑁(𝑡) = 𝐶𝑁0

𝐸𝛼(−𝛾𝛼𝑡𝛼)+
𝛬𝛼

𝛾𝛼
(1−𝐸𝛼(−𝛾𝛼𝑡𝛼)). This, in turn, implies that the

im sup as 𝑡 approaches infinity for 𝑁(𝑡) is less than or equal to 𝛬𝛼

𝛾𝛼
. □

4. Equilibria and the reproduction number

In this section, we will delineate the essential traits of the model
before proceeding to determine its mathematical output through a
stability analysis. Our focus will be on the equilibrium state where
there is an absence of disease, denoted as the ‘‘disease-free equilibrium’’
(DFE) within model (1), symbolized as 𝒟1, and its computation is as
follows:

𝒟1 =
(

𝐶𝑆0, 𝐶𝑉 0, 𝐶𝐸0, 𝐶𝐼𝑊 0, 𝐶𝐼𝑊 0, 𝐶𝑅0

)

=
( 𝛬𝛼(𝜆𝛼3 + 𝛾

𝛼)
(𝛾𝛼 + 𝜆𝛼2 )(𝛾

𝛼 + 𝜆𝛼3 ) − 𝜆
𝛼
3𝜆

𝛼
2
,

𝜆𝛼2𝛬
𝛼

(𝛾𝛼 + 𝜆𝛼3 )(𝛾
𝛼 + 𝜆𝛼2 ) − 𝜆

𝛼
3𝜆

𝛼
2
, 0, 0, 0, 0

)

.

The fundamental determinant in the field of mathematical epidemiol-
ogy that governs the potential spread or containment of a disease is the
basic reproduction number. As a result, in our model (1), we represent
the basic reproduction number as 1, following the approach outlined
in Ref. [27]. We have access to the matrices described in [27],

ℱ =

⎛

⎜

⎜

⎜

⎜

⎝

0
𝜆𝛼1𝛬

𝛼[(𝛾𝛼 + 𝜆𝛼3 ) + (1 − 𝜃)𝜆𝛼2
]

(𝛾𝛼 + 𝜆𝛼2 )(𝛾
𝛼 + 𝜆𝛼3 ) − 𝜆

𝛼
3𝜆

𝛼
2

𝜆𝛼1𝜂
𝛼𝛬𝛼

[

(𝛾𝛼 + 𝜆𝛼3 ) + (1 − 𝜃)𝜆𝛼2
]

(𝛾𝛼 + 𝜆𝛼2 )(𝛾
𝛼 + 𝜆𝛼3 ) − 𝜆

𝛼
3𝜆

𝛼
2

0 0 0
0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,

=
⎛

⎜

⎜

⎝

(𝜆𝛼4 + 𝛾
𝛼 + 𝜇𝛼) 0 0

−𝜗𝜆𝛼4 (𝜓𝛼
1 + 𝛾𝛼 + 𝛾𝛼1 ) 0

−(1 − 𝜗)𝜆𝛼4 0 (𝜓𝛼
2 + 𝛾𝛼 + 𝛾𝛼2 )

⎞

⎟

⎟

⎠

.

n conclusion, the fundamental representation for model (1) is obtained
y examining the spectral radius of the matrix 𝜌(ℱ𝒱 −1),

1 =
[ 𝜆𝛼1𝛬

𝛼𝜗𝜆𝛼4
[

(𝛾𝛼 + 𝜆𝛼3 ) + (1 − 𝜃)𝜆𝛼2
]

𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼

]

4

((𝛾 + 𝜆2 )(𝛾 + 𝜆3 ) − 𝜆3𝜆2 )(𝜓1 + 𝛾 + 𝛾1 )(𝜆4 + 𝛾 + 𝜇 )
+
[ 𝜆𝛼1𝜂

𝛼𝛬𝛼(1 − 𝜗)𝜆𝛼4
[

(𝛾𝛼 + 𝜆𝛼3 ) + (1 − 𝜃)𝜆𝛼2
]

((𝛾𝛼 + 𝜆𝛼2 )(𝛾
𝛼 + 𝜆𝛼3 ) − 𝜆

𝛼
3𝜆

𝛼
2 )(𝜓

𝛼
1 + 𝛾𝛼 + 𝛾𝛼2 )(𝜆

𝛼
4 + 𝛾

𝛼 + 𝜇𝛼)

]

,

=11 +12,

where,

11 =
[ 𝜆𝛼1𝛬

𝛼𝜗𝜆𝛼4
[

(𝛾𝛼 + 𝜆𝛼3 ) + (1 − 𝜃)𝜆𝛼2
]

((𝛾𝛼 + 𝜆𝛼2 )(𝛾
𝛼 + 𝜆𝛼3 ) − 𝜆

𝛼
3𝜆

𝛼
2 )(𝜓

𝛼
1 + 𝛾𝛼 + 𝛾𝛼1 )(𝜆

𝛼
4 + 𝛾

𝛼 + 𝜇𝛼)

]

,

12 =
[ 𝜆𝛼1𝜂

𝛼𝛬𝛼(1 − 𝜗)𝜆𝛼4
[

(𝛾𝛼 + 𝜆𝛼3 ) + (1 − 𝜃)𝜆𝛼2
]

((𝛾𝛼 + 𝜆𝛼2 )(𝛾
𝛼 + 𝜆𝛼3 ) − 𝜆

𝛼
3𝜆

𝛼
2 )(𝜓

𝛼
1 + 𝛾𝛼 + 𝛾𝛼2 )(𝜆

𝛼
4 + 𝛾

𝛼 + 𝜇𝛼)

]

.

If the infection continues to exist within the population ((i.e.,), all
𝐶𝑆 , 𝐶𝑉 , 𝐶𝐸 , 𝐶𝐼𝑊 , 𝐶𝐼𝑊 , 𝐶𝑅 greater that or equal to zero), the model has
an equilibrium point called endemic equilibrium point, denoted by 𝒟⋆

1 .

That is,
(

𝐶⋆𝑆 , 𝐶
⋆
𝑉 , 𝐶

⋆
𝐸 , 𝐶

⋆
𝐼𝑊 , 𝐶

⋆
𝐼𝑊

, 𝐶⋆𝑅1

)

≠ 0. Then we obtain

𝐶⋆𝑆 =
𝑘8 − 𝑘4𝑘7𝐶⋆𝐸
𝑘6 + 𝑘7𝐶⋆𝐸

, 𝐶⋆𝑉 =
𝜆𝛼2𝑘4

𝑘6 + 𝑘7𝐶⋆𝐸
, 𝐶⋆𝐼𝑊 = 𝑘1𝐶

⋆
𝐸 ,

𝐶⋆
𝐼𝑊

= 𝑘2𝐶
⋆
𝐸 , 𝐶

⋆
𝑅 = 𝑘3𝐶𝐸 ,

where,

𝑘1 =
𝜗𝜆𝛼4

(𝜓𝛼1 + 𝛾𝛼 + 𝛾𝛼1 )
, 𝑘2 =

(1 − 𝜗)𝜆𝛼4
(𝜓𝛼2 + 𝛾𝛼 + 𝛾𝛼2 )

,

3 =
𝜓𝛼1 𝑘

𝛼
1 + 𝜓

𝛼
2 𝑘

𝛼
2

𝜓𝛼3 + 𝛾𝛼
, 𝑘4 =

(𝜆𝛼4 + 𝛾
𝛼 + 𝜇𝛼)

𝜆𝛼1 (𝑘1 + 𝜂
𝛼𝑘2)

,

𝑘5 =
((1 − 𝜃)𝜆𝛼1𝑘1 + (1 − 𝜃)𝜆𝛼1𝜂

𝛼𝑘2)
𝜆𝛼1 (𝑘1 + 𝜂

𝛼𝑘2)
, 𝑘6 = 𝑘5 + (𝜆𝛼3 + 𝛾

𝛼),

𝑘7 = (1 − 𝜃)𝜆𝛼1𝑘1 + (1 − 𝜃)𝜆𝛼1𝜂
𝛼𝑘2,

8 = 𝑘4𝑘6 − 𝑘5𝜆𝛼2𝑘4,

nd 𝐶⋆𝐸 is the positive root of the equation 𝑃1𝐶2
𝐸1

+ 𝑃2𝐶𝐸1
+ 𝑃3 = 0.

Here,

1 =𝜆𝛼1𝑘1𝑘4𝑘7 + 𝜂
𝛼𝑘2𝑘4𝑘7 + 𝜇𝛼𝑘7 + 𝜓𝛼3 𝑘3𝑘7,

2 =𝛬𝛼𝑘7 − 𝜆𝛼1𝑘1𝑘8 − 𝜂
𝛼𝑘2𝑘8 − (𝛾𝛼 + 𝜆𝛼2 )𝑘4𝑘7 + 𝜇

𝛼𝑘6 + 𝜓𝛼3 𝑘3𝑘6,

𝑃3 =𝛬𝛼𝑘6 − (𝛾𝛼 + 𝜆𝛼2 )𝑘8 + 𝜆
𝛼
3𝜆

𝛼
2𝑘4 + 𝜇

𝛼𝑘6.

5. Global stability of an equilibria

In this section, we will show the global stability by Lyapunov
stability theory [28] and LaSalle’s invariance principle [29].

To show the global stability of 𝒟1, we assume the following condi-
ion

1 −
𝐶𝑆𝐶𝑉 0
𝐶𝑆0𝐶𝑉

)

≤ 0, ∀ 𝐶𝑆 ≥ 0, 𝐶𝑉 ≥ 0 (𝐶0) (7)

heorem 5.1. The equilibrium point 𝒟1 is globally asymptotically stable
f 1 ≤ 0.

roof. Let the following Lyapunov function 𝐿0

0 = 𝐶𝑆0

(

𝐶𝑆
𝐶𝑆0

− ln
(

𝐶𝑆
𝐶𝑆0

)

− 1
)

+ 𝐶𝑉 0

(

𝐶𝑉
𝐶𝑉 0

− ln
(

𝐶𝑉
𝐶𝑉 0

)

− 1
)

+ 𝐶𝐸 + 𝐶𝐼𝑊 + 𝐶𝐼𝑊 + 𝐶𝑅 (8)

he 𝛼 derivative of 𝐿0 is given by

𝛼𝐿0 ≤
(

1 −
𝐶𝑆0
𝐶𝑆

)

𝐷𝛼𝐶𝑆 +
(

1 −
𝐶𝑉 0
𝐶𝑉

)

𝐷𝛼𝐶𝑉 +𝐷𝛼𝐶𝐸 +𝐷𝛼𝐶𝐼𝑊

+ 𝐷𝛼𝐶𝐼𝑊 +𝐷𝛼𝐶𝑅 (9)
≤ 𝛬𝛼 − 𝛾𝛼𝐶𝑆𝛾𝛼𝐶𝑉 − 𝛾𝛼𝐶𝐸 − 𝛾𝛼𝐶𝐼𝑊 − 𝛾𝛼𝐶𝐼𝑊 − 𝛾𝛼𝐶𝑅

−
𝐶𝑆0𝛬𝛼 + 𝜆𝛼𝐶 𝐶

𝐶𝑆 1 𝑆0 𝐼𝑊
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+ 𝜆𝛼1𝜂
𝛼𝐶𝑆0𝐶𝐼𝑊 − 𝜆𝛼3𝐶𝑉

𝐶𝑆0
𝐶𝑆

− 𝜇𝛼𝐶𝐸
𝐶𝑆0
𝐶𝑆

+ 𝛾𝛼𝐶𝑆0

− 𝜓𝛼3𝐶𝑅
𝐶𝑆0
𝐶𝑆

− 𝜆𝛼2𝐶𝑆
𝐶𝑉 0
𝐶𝑉

− (1 − 𝜃)𝜆𝛼1𝐶𝐼𝑊 𝐶𝑉 0 + 𝜆𝛼1𝜂
𝛼𝐶𝐼𝑊 𝐶𝑉 0 + 𝜆𝛼2𝐶𝑆0 (10)

≤ 𝛬𝛼
(

2 −
𝐶𝑆0
𝐶𝑆

−
𝐶𝑆
𝐶𝑆0

)

+ 𝜆𝛼2𝐶𝑆0

(

1 −
𝐶𝑆𝐶𝑉 0
𝐶𝑆0𝐶𝑉

)

+ 𝛾𝛼
(

𝐶𝐼𝑊 + 𝐶𝐼𝑊
) (

𝑅0 − 1
)

. (11)

ecause the arithmetic mean is either greater than or equal to the
eometric mean,

2 −
𝐶𝑆0
𝐶𝑆

−
𝐶𝑆
𝐶𝑆0

)

≤ 0. (12)

s this equilibrium point checks the condition 𝐶0, then we will have

1 −
𝐶𝑆𝐶𝑉 0
𝐶𝑆0𝐶𝑉

)

≤ 0. (13)

inally, if 𝑅0 ≤ 1, then 𝐷𝛼𝐿0 ≤ 0. Let us define 𝐵0 =
{

(𝐶𝑆 , 𝐶𝑉 , 𝐶𝐸 ,
𝐶𝐼𝑊 , 𝐶𝐼𝑊 , 𝐶𝑅) |𝐷𝛼𝐿0 = 0

}

, then the greatest subset positively invari-
nt of 𝐵0 is given by the singleton 𝒟1. By using the LaSalle’s invari-
nce principle, we conclude that the equilibrium point 𝒟1 is globally
symptotically stable. □

. Numerical interpretation and analysis

In this section, we present a comprehensive analysis of numerical
indings regarding the fractional chickenpox model, drawing mean-
ngful comparisons with outcomes obtained from the classical chicken
odel as studied by Sayooj et al. [24]. To address the system (1), we

mploy the adaptive predictor–corrector algorithm as outlined in [30].
y leveraging this methodology, we can efficiently compute approxi-
ations for various essential variables, including 𝐶𝑆𝑘, 𝐶𝑉 𝑘, 𝐶𝐸𝑘, 𝐶𝐼𝑊 𝑘,

𝐶𝐼𝑊 𝑘, and 𝐶𝑅𝑘, while considering the constraints of 𝑁 ∈ N and 𝑇 > 0.
hese iterative formulas not only facilitate a deeper understanding of
he fractional chickenpox model but also enable insightful comparisons
ith the classical chicken model’s results.

𝐶𝑆𝑘 ≈ 𝐶𝑆 0 +
𝜌𝛼ℎ𝛼

𝛤 (𝛼 + 2)

𝑘
∑

𝑙=0
𝑎𝑙,𝑘+1

{

𝛬𝛼 − 𝜆𝛼1𝐶𝑆 𝑙(𝐶𝐼𝑊 𝑙 + 𝜂
𝛼𝐶𝐼𝑊 𝑙)

+ 𝜆𝛼3𝐶𝑉 𝑙 + 𝜇
𝛼𝐶𝐸𝑙 − (𝛾𝛼 + 𝜆𝛼2 )𝐶𝑆 𝑙

+ 𝜓𝛼3𝐶𝑅𝑙
}

+
𝜌𝛼ℎ𝛼

𝛤 (𝛼 + 2)
{

𝛬𝛼 − 𝜆𝛼1𝐶𝑆
𝑝
𝑘+1(𝐶𝐼𝑊

𝑝
𝑘+1

+ 𝜂𝛼𝐶𝐼𝑊
𝑝
𝑘+1) + 𝜆

𝛼
3𝐶𝑉

𝑝
𝑘+1 + 𝜇

𝛼𝐶𝐸
𝑝
𝑘+1

− (𝛾𝛼 + 𝜆𝛼2 )𝐶𝑆
𝑝
𝑘+1 + 𝜓

𝛼
3𝐶𝑅

𝑝
𝑘+1

}

,

𝐶𝑉 𝑘+1 ≈ 𝐶𝑉 0 =
𝜌𝛼ℎ𝛼

𝛤 (𝛼 + 2)

𝑘
∑

𝑙=0
𝑎𝑙,𝑘+1

{

𝜆𝛼2𝐶𝑆 𝑙 − (1 − 𝜃)𝜆𝛼1𝐶𝐼𝑊 𝑙𝐶𝑉 𝑙

− (1 − 𝜃)𝜆𝛼1𝜂
𝛼𝐶𝐼𝑊 𝑙𝐶𝑉 𝑙 − (𝜆𝛼3𝛾

𝛼)

× 𝐶𝑉 𝑙
}

+
𝜌𝛼ℎ𝛼

𝛤 (𝛼 + 2)
{

𝜆𝛼2𝐶𝑆
𝑝
𝑘+1 − (1 − 𝜃)𝜆𝛼1𝐶𝐼𝑊

𝑝
𝑘+1𝐶𝑉

𝑝
𝑘+1

− (1 − 𝜃)𝜆𝛼1𝜂
𝛼𝐶𝐼𝑊

𝑝
𝑘+1𝐶𝑉

𝑝
𝑘+1

− (𝜆𝛼3 + 𝛾
𝛼)𝐶𝑉

𝑝
𝑘+1

}

,

𝐶𝐸𝑘+1 ≈ 𝐶𝐸0 +
𝜌𝛼ℎ𝛼

𝛤 (𝛼 + 2)

𝑘
∑

𝑙=0
𝑎𝑙,𝑘+1

{

(1 − 𝜃)𝜆𝛼1𝐶𝐼𝑊 𝑙𝐶𝑉 𝑙

+ (1 − 𝜃)𝜆𝛼1𝜂
𝛼𝐶𝐼𝑊 𝑙𝐶𝑉 𝑙 + 𝜆

𝛼
1𝐶𝑆 𝑙(𝐶𝐼𝑊 𝑙 + 𝜂

𝛼

𝐶𝐼𝑊 𝑙) − (𝜆𝛼4 + 𝛾
𝛼 + 𝜇𝛼)𝐶𝐸𝑙

}

+
𝜌𝛼ℎ𝛼

𝛤 (𝛼 + 2)

{

(1 − 𝜃)𝜆𝛼1𝐶𝐼𝑊
𝑝
𝑘+1𝐶𝑉

𝑝
𝑘+1

+ (1 − 𝜃)𝜆𝛼1𝜂
𝛼𝐶𝐼𝑊

𝑝
𝑘+1

× 𝐶 𝑝 + 𝜆𝛼𝐶 𝑝 (𝐶 𝑝 + 𝜂𝛼𝐶 𝑝 )
5

𝑉 𝑘+1 1 𝑆𝑘+1 𝐼𝑊 𝑘+1 𝐼𝑊 𝑘+1
− (𝜆𝛼4 + 𝛾
𝛼 + 𝜇𝛼)𝐶𝐸

𝑝
𝑘+1

}

,

𝐼𝑊 𝑘+1 ≈ 𝐶𝐼𝑊 0 +
𝜌𝛼ℎ𝛼

𝛤 (𝛼 + 2)

𝑘
∑

𝑙=0
𝑎𝑙,𝑘+1

{

(1 − 𝜗)𝜆𝛼4𝐶𝐸𝑙

− (𝜓𝛼2 + 𝛾𝛼 + 𝛾𝛼2 )𝐶𝐼𝑊 𝑙

}

+
𝜌𝛼ℎ𝛼

𝛤 (𝛼 + 2)
{

𝜗𝜆𝛼4𝐶𝐸
𝑝
𝑘+1 − (𝜓𝛼1

+ 𝛾𝛼 + 𝛾𝛼1 )𝐶𝐼𝑊
𝑝
𝑘+1

}

,

𝐶𝐼𝑊 𝑘+1 ≈ 𝐶𝐼𝑊 0 +
𝜌𝛼ℎ𝛼

𝛤 (𝛼 + 2)

𝑘
∑

𝑙=0
𝑎𝑙,𝑘+1

{

(1 − 𝜗)𝜆𝛼4𝐶𝐸𝑙

− (𝜓𝛼2 + 𝛾𝛼 + 𝛾𝛼2 )𝐶𝐼𝑊 𝑙

}

+
𝜌𝛼ℎ𝛼

𝛤 (𝛼 + 2)
{

(1 − 𝜗)𝜆𝛼4𝐶𝐸
𝑝
𝑘+1

− (𝜓𝛼2 + 𝛾𝛼 + 𝛾𝛼2 )𝐶𝐼𝑊
𝑝
𝑘+1

}

,

𝐶𝑅𝑘+1 ≈ 𝐶𝑅0 +
𝜌𝛼ℎ𝛼

𝛤 (𝛼 + 2)

𝑘
∑

𝑙=0
𝑎𝑙,𝑘+1

{

𝜓𝛼1𝐶𝐼𝑊 𝑙 + 𝜓
𝛼
2𝐶𝐼𝑊 𝑙

− (𝛾𝛼 + 𝜓𝛼3 )𝐶𝑅𝑙
}

+
𝜌𝛼ℎ𝛼

𝛤 (𝛼 + 2)
{

𝜓𝛼1𝐶𝐼𝑊
𝑝
𝑘+1 + 𝜓

𝛼
2

× 𝐶𝐼𝑊
𝑝
𝑘+1 − (𝛾𝛼 + 𝜓𝛼3 )𝐶𝑅

𝑝
𝑘+1

}

.

here ℎ = 𝑇 𝜌

𝑁
and

𝐶𝑆𝑘 ≈ 𝐶𝑆 0 +
𝜌𝛼ℎ𝛼

𝛤 (𝛼 + 2)
(

(𝑘 + 1 − 𝑙)𝛼−(𝑘−𝑙)
𝛼 ){

𝛬𝛼 − 𝜆𝛼1𝐶𝑆 𝑙(𝐶𝐼𝑊 𝑙

+ 𝜂𝛼𝐶𝐼𝑊 𝑙) + 𝜆
𝛼
3𝐶𝑉 𝑙 + 𝜇

𝛼𝐶𝐸𝑙
− (𝛾𝛼 + 𝜆𝛼2 )𝐶𝑆 𝑙 + 𝜓

𝛼
3𝐶𝑅𝑙

}

,

𝐶𝑉 𝑘+1 ≈ 𝐶𝑉 0 =
𝜌𝛼ℎ𝛼

𝛤 (𝛼 + 2)
(

(𝑘 + 1 − 𝑙)𝛼−(𝑘−𝑙)
𝛼 ){

𝜆𝛼2𝐶𝑆 𝑙

− (1 − 𝜃)𝜆𝛼1𝐶𝐼𝑊 𝑙𝐶𝑉 𝑙 − (1 − 𝜃)𝜆𝛼1𝜂
𝛼𝐶𝐼𝑊 𝑙

× 𝐶𝑉 𝑙 − (𝜆𝛼3𝛾
𝛼)𝐶𝑉 𝑙

}

,

𝐶𝐸𝑘+1 ≈ 𝐶𝐸0 +
𝜌𝛼ℎ𝛼

𝛤 (𝛼 + 2)
(

(𝑘 + 1 − 𝑙)𝛼−(𝑘−𝑙)
𝛼 ){

(1 − 𝜃)𝜆𝛼1

× 𝐶𝐼𝑊 𝑙𝐶𝑉 𝑙 + (1 − 𝜃)𝜆𝛼1𝜂
𝛼𝐶𝐼𝑊 𝑙𝐶𝑉 𝑙

+ 𝜆𝛼1𝐶𝑆 𝑙(𝐶𝐼𝑊 𝑙 + 𝜂
𝛼𝐶𝐼𝑊 𝑙) − (𝜆𝛼4 + 𝛾

𝛼 + 𝜇𝛼)𝐶𝐸𝑙
}

,

𝐼𝑊 𝑘+1 ≈ 𝐶𝐼𝑊 0 +
𝜌𝛼ℎ𝛼

𝛤 (𝛼 + 2)
(

(𝑘 + 1 − 𝑙)𝛼−(𝑘−𝑙)
𝛼 ){

(1 − 𝜗)𝜆𝛼4𝐶𝐸𝑙

− (𝜓𝛼2 + 𝛾𝛼 + 𝛾𝛼2 )𝐶𝐼𝑊 𝑙

}

,

𝐶𝐼𝑊 𝑘+1 ≈ 𝐶𝐼𝑊 0 +
𝜌𝛼ℎ𝛼

𝛤 (𝛼 + 2)
(

(𝑘 + 1 − 𝑙)𝛼−(𝑘−𝑙)
𝛼 ){

(1 − 𝜗)𝜆𝛼4𝐶𝐸𝑙

− (𝜓𝛼2 + 𝛾𝛼 + 𝛾𝛼2 )𝐶𝐼𝑊 𝑙

}

,

𝐶𝑅𝑘+1 ≈ 𝐶𝑅0 +
𝜌𝛼ℎ𝛼

𝛤 (𝛼 + 2)
(

(𝑘 + 1 − 𝑙)𝛼−(𝑘−𝑙)
𝛼 ){

𝜓𝛼1𝐶𝐼𝑊 𝑙 + 𝜓
𝛼
2𝐶𝐼𝑊 𝑙

− (𝛾𝛼 + 𝜓𝛼3 )𝐶𝑅𝑙
}

.

To validate the outcomes of our analytical experiments, we have con-
ducted numerical experiments to corroborate our findings. In these
experiments, we focus on the population of Phuket in the year 2021,
which amounted to 418,785 individuals. Phuket Province, located in
Thailand, comprises three distinct districts: Kathu, Mueang Phuket,
and Thalang. Remarkably, Mueang Phuket District has recorded more
than 300 cases of chickenpox, as documented in the comprehensive
study by Sayooj [24]. Conversely, Thalang District reports fewer than
300 chickenpox cases, offering valuable insights into the geographical
variation of this disease’s prevalence within Phuket. For our numerical
experiments, we have utilized data from a deterministic model, and
the initial population figures are as follows: Susceptible individuals
amount to 83,812, with 573 individuals having been vaccinated, 604
individuals in the exposed stage, and 70 individuals facing infections
with complications. Moreover, there are 464 individuals dealing with
uncomplicated infections, while 178 individuals have successfully re-
covered from chickenpox. By incorporating this data into our numerical
investigations, we aim to provide a more comprehensive understanding
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Fig. 1. (a) The model simulations for the susceptible class are carried out with different fractional-order values of 𝛼, without exponentiating the parameters (b) The model
simulation for the susceptible class involves various fractional-order 𝛼 values, and the parameters are raised to the power of 𝛼.
Fig. 2. (a) The model simulations for the vaccinated class are carried out with different fractional-order values of 𝛼, without exponentiating the parameters (b) The model
simulation for the vaccinated class involves various fractional-order 𝛼 values, and the parameters are raised to the power of 𝛼.
Fig. 3. (a) The model simulations for the exposed class are carried out with different fractional-order values of 𝛼, without exponentiating the parameters (b) The model simulation
for the exposed class involves various fractional-order 𝛼 values, and the parameters are raised to the power of 𝛼.
of the chickenpox dynamics in Phuket and shed light on potential
strategies for disease management in the region.

To grasp the proposed concept of parameter exponentiation, we
conducted numerical simulations using field data on chickenpox in
Phuket, Thailand. All model parameters were configured according to
the values specified in Table 1. In Figs. 1(a) to 6(a), we illustrate the
6

temporal evolution of the susceptible, vaccinated, infected (with and
without complications), and recovered populations without applying
parameter exponentiation. When comparing Figs. 1(a) to 1(b), we ob-
serve that the susceptible population exhibits exponential decay when
parameter exponentiation is introduced. Crucially, when we exponen-
tiate the parameters with the fractional order 𝛼, there is a notable
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Fig. 4. (a) The model simulations for the infected individuals with complications class are carried out with different fractional-order values of 𝛼, without exponentiating the
parameters (b) The model simulation for the infected individuals with complications class involves various fractional-order 𝛼 values, and the parameters are raised to the power
of 𝛼.
Fig. 5. (a) The model simulations for the infected individuals without complications class are carried out with different fractional-order values of 𝛼, without exponentiating the
parameters (b) The model simulation for the infected individuals without complications class involves various fractional-order 𝛼 values, and the parameters are raised to the power
of 𝛼.
Fig. 6. (a) The model simulations for the recovered class are carried out with different fractional-order values of 𝛼, without exponentiating the parameters (b) The model simulation
for the recovered class involves various fractional-order 𝛼 values, and the parameters are raised to the power of 𝛼.
and rapid upsurge in the rate of vaccination within the population, as
visually depicted in Fig. 2(b). This contrasts sharply with the scenario
where parameters are left unexponentiated, as evident in Fig. 2(a).
The effect of parameter exponentiation on the rate of vaccination
7

becomes particularly striking, underlining the significant impact of this
approach on the dynamics of vaccination within the model. In Fig. 3(a),
the variation in the exposed class is depicted without exponentiating
the powers of the parameters. In Fig. 3(b), on the other hand, the
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Fig. 7. The impact of vaccination and the notable decrease in recovered population in the absence of vaccination is presented for various values of 𝛼.
change in the exposed class is shown after exponentiating the powers
of the parameters. The infected population is divided into two distinct
compartments, namely those with complications and those without
complications. In both of these compartments, a marked and swift
decline in the number of infected individuals is evident when the model
parameters are elevated to the power of the fractional order 𝛼, as
demonstrated in both Figs. 4 and 5. Furthermore, a similar trend can
be observed in the recovered population, where there is a noticeable
increase when the exponentiated model is considered. This highlights
the compelling influence of applying parameter exponentiation on the
dynamics of both infected and recovered populations within the model.

7. Influence of vaccination

In this section, we delve into the profound impact of vaccination
on mitigating the prevalence of chickenpox in Thailand. The pivotal
role played by vaccination becomes evident when considering a time
frame of 500 days. During this period, the population of susceptible
individuals experiences a notable decline due to the protective ef-
fects of vaccination. As a result, the number of exposed individuals,
both with and without complications, shows a discernible increase.
This rise is indicative of the broader coverage and efficacy of the
vaccination strategy. Moreover, the vaccination campaign contributes
significantly to the escalation in the count of individuals with compli-
cations, highlighting the effectiveness of immunization in preventing
severe cases. Simultaneously, the population of recovered individuals
gradually decreases as the incidence of new cases diminishes. This intri-
cate dance between susceptibility, exposure, and recovery underscores
the dynamic influence of vaccination in shaping the epidemiological
landscape of chickenpox in Thailand. These insights affirm the instru-
mental role played by vaccination programs in fostering public health
and curtailing the impact of infectious diseases.

By comparing the figures Figs. 1–6 with Fig. 7, we can observe that
the recovery rate of infected individuals are higher while we incoporate
the vaccination strategy with parameter exponentiation (Ref. Table 2).
While analyzing, the mathematical model with parameter exponentia-
tion that considers effective vaccination we observed drastic increase
in the recovered population.

The impact of considering precautionary measures is depicted in
Fig. 8. In that numerical simulation we get that, for the values of 𝛼 = 0.4
and 𝜇 = 0.06 the basic reproduction number takes the values less than
one. Similarly, 𝑅 < 1 when for 𝛼 = 0.6 and 𝜇 = 0.08, 𝛼 = 0.8 and
8

1

𝜇 = 0.09, and 𝛼 = 1 and 𝜇 = 0.1. That is for the values of 𝜇 ≤ 0.1, our
proposed model is locally stable.

Table 3 provides a statistical summary of 1, offering insights into
its characteristics across different values of 𝛼 such as 0.4, 0.6, 0.8 and 1.
The data for 1 is extracted from Fig. 8. This table allows us to delve
deeper into the behavior of 1 at varying alpha levels. It furnishes a
comprehensive perspective on 1, encompassing key parameters such
as maximum, minimum, mean, median, standard deviation, and range.
In doing so, it illuminates the variability and trends exhibited by 1
under distinct 𝛼 conditions.

In Fig. 9, we gain insights into how changes in the control pa-
rameters 𝜇, ranging from 0 to 5, and 𝜆1, varying between 0 and
5 × 10−6, impact the stability of the proposed Chickenpox model in
Phuket province, Thailand. This investigation is conducted for different
fractional orders 𝛼, and it reveals variations in the reproduction number
1. Fig. 9 assists us in identifying specific combinations of 𝜇 and 𝜆1
values where the basic reproduction number falls below one, signifying
a significant reduction in disease transmission.

8. Conclusion

In summary, this paper presented a fractional order model for
the spread of Chickenpox in Phuket Province, encompassing six dis-
tinct compartments representing the susceptible, vaccinated, exposed,
infected individuals with complications, and infected individuals with-
out complications. We established crucial theorems concerning the
existence, uniqueness, and boundedness of all model variables. Further-
more, we identified two equilibrium points: the disease-free steady state
and the endemic equilibrium and calculated the basic reproduction
number using next generation matrix methods.

Our analysis revealed that the stability of these equilibrium points
depends on the basic reproduction number. Through numerical simu-
lations, we not only validated our theoretical findings but also high-
lighted the impact of the fractional derivative order on the infection
dynamics. The efficacy of the proposed approach is assessed through
an examination of various scenarios, including situations before the
incorporation of parameter exponentiation in the context of vaccina-
tion, after the introduction of parameter exponentiation, and scenarios
without vaccination but with parameter exponentiation. Through these
analyses, it was noted that the recovery rate of infected individuals ex-
hibited a significant increase in the model that incorporated parameter

exponentiation, particularly in the presence of an effective vaccination
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Table 2
The importance of vaccination at three possible cases at various values of 𝛼.
Dynamics of Recovered population 𝛼 = 0.85 𝛼 = 0.90 𝛼 = 0.95 𝛼 = 1.0

With vaccination without exponentiation of parameters 445 428 408 380
Without vaccination with exponentiation of parameters 1725 876 537 389
With vaccination with exponentiation of parameters 2979 1261 617 395
Table 3
Statistical Summary of 1.
𝛼 Minimu Maximum Mean Median Mode Standard deviation Range

0.4 0.1388 1.497 0.3079 0.1779 0.1388 0.3974 1.358
0.6 0.07567 2.749 0.368 0.1131 0.07567 0.792 2.674
0.8 0.04509 5.526 0.5929 0.07803 0.04509 1.638 5.481
1 0.04965 20.43 1.988 0.09907 0.04965 6.116 20.38
Fig. 8. Effect of Precautionary Measures and 1.
Fig. 9. The contour plot of 1 in terms of 𝜇 and 𝜆1 at 𝛼 = 0.2, 0.4, 0.6, 0.8.
9



Biomedical Signal Processing and Control 91 (2024) 105994S.A. Jose et al.
strategy. Specifically, we found that the fractional derivative does not
affect the stability of the equilibria but significantly influences the rate
at which model variables converge to their respective steady states.
Notably, higher fractional derivative orders lead to a faster convergence
of these variables.
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