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used schemes. In Euler forward approximations, the model may undergo period-doubled orbits and
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the center manifold theorem and normal form theory to achieve the existence and directions of flip
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chaos can stabilize in the considered model with a higher value of the Allee parameter. The existence of
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1. Introduction

The intricate ecosystems found in the natural world are mostly the result of predator-prey
interactions. Effective mathematical models are developed to address the problems in predator-prey
interaction. A basic model for two species communities was formulated by Lotka in 1925 and Volterra
in 1931. The predator’s prey feeding rate is one essential component of predator-prey interaction.
In literature, many interaction functions have been modeled, for example, Holling type I, type II
or type III [1], ratio-dependent [2], Crowley-Martin [3] and Beddington-DeAngelis models [4, 5].
In recent years, the predator-prey model of Holling type II with different biological situations has
been considered in the literature. For instance, in [6], the authors considered such a model with prey
refuge and showed that the model parameters have crucial importance in the coexistence, stability and
oscillation of their considered model. In reality, a predator consumes prey at different rates, depending
on the species. Leslie and Gower [7] proposed a predator-prey model in which the predator’s growth
function is given by the ratio of the sizes of predator and prey. Differential equations describe the
evolution of systems in continuous and discrete time. Further, discrete models are more realistic if the
populations are small or if births and deaths occur at discrete times or within certain time intervals,
such as a generation [8, 9].

To model real ecosystems, the term “Allee effect” is unavoidable and meaningful. Thus, many
researchers have paid much attention to studying the dynamics of predator-prey models with the Allee
effect [10, 11]. There are two types of Allee effects: weak and strong. In the weak Allee effect, for the
low population size, the per capita growth rate is positive and there is no threshold to grow [12]. But, in
the case of the strong Allee effect, the per capita growth is negative and there is a population threshold
introduced by the Allee effect, so the population must surpass this threshold to grow [13]. The Allee
effect can be introduced in different ways, namely, multiplicative [14] and additive [13]. Discrete-time
predator-prey model with Allee effects was studied in [15, 16], and some more recent developments in
predator-prey models can be found in [17–19]. Based on the above discussions, the Allee effect term
is incorporated into prey growth for this study.

The study of stability analysis, bifurcation behavior, namely, flip bifurcation and Neimark-Sacker
bifurcation, and control of the chaos of the discrete-time model has long been an issue of significant
interest for researchers [20,21]. Among the mathematics, physics and engineering communities, chaos
control has been extensively studied [22], whereas the problem of controlling chaos in ecology has
been given in [24]. In some nonlinear systems, there is a major route to chaos via period doubling.
In [25], the authors proposed a new hybrid control method to control the chaotic orbits by using state
feedback and parameter perturbation for the period-doubling bifurcation. The chaotic attractor can be
converted into one of the possible attracting time-periodic motions by giving small perturbations to the
system parameters [26]. Recently, the work related to controlling chaos in the predator-prey model
has been of greater interest to researchers. For instance, a predator-prey model with the Allee effect
and cannibalism in the discrete-time model has been found in the literature [27], where the authors
showed that the considered system undergoes flip and Neimark-Sacker bifurcations. Further, they
discussed the various methods to control the chaos. A discrete-time classical Lotka-Volterra model
obtained by applying the method of a piecewise constant argument for differential equations has been
proposed in [28]. The authors studied the stability, bifurcation and chaotic behavior of their proposed
model. Also, they implemented hybrid control and the Ott-Grebogi-Yorke (OGY) method to control
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bifurcation and chaotic behavior.
Since it was an interesting topic for the researchers, we are motivated by the above literature. To the

best of our knowledge, the study of stability, bifurcation and chaos control analysis for a discrete-time
prey-predator model with the additive Allee effect has not been studied. In this article, we aim to study
the discrete-time Holling type II predator-prey model with the additive Allee effect in prey growth. The
main highlights of this paper are listed as follows:
1) We use the method of piecewise constant arguments for the differential equations to obtain the
discrete-time model. The model is a good representation of the populations’ interaction, which has
non-overlapping generations.
2) We study the impact of the Allee effect in terms of the existence and local stability properties of all
positive equilibrium points of the discrete model.
3) We drive the conditions for the existence of flip and Neimark-Sacker bifurcations near the interior
equilibrium point for the discrete model by taking the Allee parameter as a bifurcation parameter.
Further, we discuss the properties of both bifurcations with the help of the center manifold (CM)
theorem and normal form theory.
4) We utilize the state and OGY feedback and hybrid control methods to control the bifurcating and
chaotic behavior of the discrete model. We provide extensive numerical simulations to show the rich
dynamics, including periodic windows, invariant circles and chaos in the discrete model.

The rest of the article is arranged as follows: The discrete-time Holling type II predator-prey model
with the additive type Allee effect is given, and the existence and local stability of equilibrium points
are discussed in Section 2. Furthermore, an analysis of the model’s dynamics is presented, including
the identification of key parameters and their influence on the system’s behavior. In Section 3, the
bifurcation behavior of the proposed model is thoroughly examined. Two types of bifurcations, such
as flip and Neimark-Sacker bifurcations, are investigated to gain a comprehensive understanding of
the system’s response to parameter changes. In Section 4, the state and OGY feedback and hybrid
control techniques for the considered predator-prey model are discussed. The effectiveness of these
control approaches is highlighted, emphasizing their ability to regulate and stabilize system dynamics.
To ensure the validity and reliability of the mathematical results, extensive numerical simulations are
presented in Section 5. Lastly, in Section 6, a comprehensive conclusion and a brief discussion are
presented.

2. Model formation

First, we describe the continuous-time Holling type II prey-predator model with the additive Allee
effect [29], as follows:

dH(t)
dt

= H(t)
(
r
(
1 −

H(t)
k

)
−

α

β + H(t)
−

a1P(t)
1 + a1a2H(t)

)
,

dP(t)
dt

= P(t)
(

γa1H(t)
1 + a1a2H(t)

− d
)
,

(2.1)

where H(t) and P(t) are the population sizes of prey and predator respectively at time t; r and k represent
the growth rate and carrying capacity of prey, respectively; γ and d represent the consumption rate of
the predator on prey and per capita death rate of the predator, respectively. The most common type of
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functional response is Holling type II, which is based on the idea that, if prey species is low, the rate
of predation is proportional to prey density and is of the form a1H(t)

1+a1a2H(t) , where a1 and a2 represent the
predator capture rate and handling time per prey, respectively.

In general, the term α
β+H(t) is known as the additive Allee effect, where α and β represent the

severity of the Allee effect and the prey population size at which fitness is half of its maximum value,
respectively. Many studies have been conducted to understand the dynamics of prey-predator system
models with the additive Allee effect [30–32].

To reduce the complexity, and, for our convenience, after redefining the parameters, the model (2.1)
takes the form 

dH(t)
dt

= H(t)
(
a − bH(t) −

α

β + H(t)
−

cP(t)
e + H(t)

)
,

dP(t)
dt

= P(t)
(

f H(t)
e + H(t)

− d
)
,

(2.2)

where H(t) ≤ 0, P(t) ≤ 0, a = r, b = r
k , c = a1

a1a2
, e = 1

a1a2
and f =

γa1
a1a2

. Note that, in the sense of [33],
if α < aβ (α > aβ), the Allee effect is the weak (strong) one.

Next, based on the appropriate modification of overlapping generations, one can get the difference
equations for modeling a population with non-overlapping generations. Euler approximations, non-
standard finite difference schemes [34] and piecewise constant arguments [35,36] are the most common
methods to obtain discrete versions from the continuous models. In this way, differential equations with
piecewise constant arguments have been useful. Let us assume that the populations have no overlap
between the successive generations and the population growth occurs in discrete steps t ∈ [n, n + 1),
n = 0, 1, 2, 3, . . . . Also, consider that the variables and constants in (2.2) change in regular time
intervals and incorporate this idea; then the corresponding discrete-time model for (2.2) is obtained by
the method of piecewise constant arguments for differential equations, as follows:

H(n + 1) = H(n) exp
[
a − bH(n) −

α

β + H(n)
−

cP(n)
e + H(n)

]
,

P(n + 1) = P(n) exp
[

f H(n)
e + H(n)

− d
]
,

(2.3)

where H(n+1) and P(n+1) denote the populations in generation n+1 that are related to the sizes H(n)
and P(n) of the populations in the preceding generation n and a, b, c, d, e, f , α and β are all positive
constants.

Note, in the absence of a predator P and the Allee effect, the above model (2.3) becomes a one-
dimensional model similar to the Ricker model [37], namely,

H(n + 1) = H(n)ea−bH(n).

This system represents the relationship between the current and previous population size H. In a
logistic map, the population’s rate of per capita growth falls as the population size approaches a limit
set by the availability of resources. On the Ricker map, population growth is almost exponential;
however, as population size increases, the instantaneous growth rate declines linearly; and, eventually,
population size reaches a plateau and oscillates around a mean.

The main aim of this paper is to study the local stability, bifurcation behavior and various chaos
control analyses for the discrete time prey-predator model (2.3) with the additive Allee effect in the
case of the weak one in R = {(H, P)|H > 0, P > 0}.
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2.1. Equilibria

We need to solve the following equations to find the equilibrium points of the model (2.3):
a − bH −

α

β + H
−

cP
e + H

= 0,

f H
e + H

− d = 0.
(2.4)

By direct substitution, from (2.4), we have three positive equilibrium points: The trivial equilibrium
point (0, 0), the predator-free equilibrium point (H̄, 0), where H̄ is the positive root of the equation

bH̄2 + (bβ − a)H̄ + α − aβ = 0, (2.5)

and the interior equilibrium point (H∗, P∗), which is given by

(H∗, P∗) =

(
de

f − d
,

(a − bH∗)(β + H∗)(e + H∗) − α(e + H∗)
c(β + H∗)

)
.

Then from [29], we have the following lemma.

Lemma 1. Consider α < aβ; then, the model (2.3) has a unique boundary equilibrium (H̄, 0) =(
(a−bβ)+

√
(a−bβ)2+4b(aβ+α)

2b , 0
)
. Also, the model (2.3) has a unique interior equilibrium (H∗, P∗) =(

de
f−d ,

(a−bH∗)(β+H∗)(e+H∗)−α(e+H∗)
c(β+H∗)

)
if α < (a − bH∗)(β + H∗) and max

(
β, de

f−d

)
< a

b < β + de
f−d .

2.2. Local stability analysis

Next, the Jacobian matrix for the model (2.3) at arbitrary equilibrium point (H, P) is calculated to
investigate the local stability property:

J =


(
1 − bH +

αH
(β + H)2 +

cHP
(e + H)2

)
A1 −

( cH
e + H

)
A1(

e f P
(e + H)2

)
A2 A2

 , (2.6)

where A1 = exp
(
a − bH −

α

β + H
−

cP
e + H

)
and A2 = exp

(
f H

e + H
− d

)
.

The Jacobian matrix of (2.3) derived at (0, 0) is

J =

[
exp(a) 0

0 exp(−d)

]
, (2.7)

and we have the Jacobian matrix at (H̄, 0) as

J =

[
a1 a2

0 a3

]
, (2.8)

where a1 =
(
1 − bH̄ + αH̄

(β+H̄)2

)
exp

(
a − bH̄ − α

β+H̄

)
, a2 = −

(
cH̄

e+H̄

)
exp

(
a − bH̄ − α

β+H̄

)
and a3 =

exp
(

f H̄
e+H̄ − d

)
.
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The Jacobian matrix of (2.3) evaluated at (H∗, P∗) is

J∗(H∗,P∗) =

 1 − bH∗ + αH∗
(β+H∗)2 + cH∗P∗

(e+H∗)2 −
cH∗

e+H∗
e f P∗

(e+H∗)2 1

 . (2.9)

The characteristic equation of J∗ is given by

λ2 − Tλ + D = 0, (2.10)

where

T = 2 − bH∗ +
αH∗

(β + H∗)2 +
cH∗P∗

(e + H∗)2 ,

D = 1 − bH∗ +
αH∗

(β + H∗)2 +
cH∗P∗

(e + H∗)2 +
ec f H∗P∗

(e + H∗)3 .

From [38], let λ1 and λ2 be the eigenvalues of the Jacobian matrix (2.6) for some arbitrary equilibrium
point (H, P). We recall some topological classifications of the equilibrium points. The equilibrium
point (H, P) is a sink (locally asymptotically stable) if |λ1| < 1 and |λ2| < 1. (H, P) is a source (locally
unstable) if |λ1| > 1 and |λ2| > 1. (H, P) is a saddle if |λ1| > 1 and |λ2| < 1 (or |λ1| < 1 and |λ2| > 1).
And, (H, P) is non-hyperbolic if either |λ1| = 1 or |λ2| = 1. As we know, the eigenvalue of the Jacobian
matrix plays an important role in establishing the stability properties of the equilibrium points. Using
the eigenvalues, we discuss the stability of the equilibrium points in the following lemmas:

Lemma 2. The trivial equilibrium (0, 0) is always a saddle and the predator-free equilibrium (H̄, 0)
is a

(1) sink if |a1| < 1 and |a3| < 1;
(2) source if |a1| > 1 and |a3| > 1;
(3) saddle if |a1| > 1 and |a3| < 1 (or |a1| < 1 and |a3| > 1).

Lemma 3. The coexisting equilibrium point

(1) (H∗, P∗) is a sink if D < 1 and |T | < D + 1;
(2) (H∗, P∗) is a source if D > 1 and |T | < D + 1 or |T | > D + 1;
(3) (H∗, P∗) is a saddle if 0 < |T | + D + 1 < 2|T |;
(4) (H∗, P∗) is non-hyperbolic if |T | = |D + 1|, or D = 1 and |T | ≤ 2.

3. Bifurcations

Previously, we discussed the local stability properties of the equilibrium point (H∗, P∗). Now, we
study the bifurcation behavior, namely, flip and Neimark-Sacker bifurcations, of the model (2.3) at
(H∗, P∗) by varying the parameter α and keeping all model parameters fixed. It should be noted that
further analyses can hold for other parameters also. Also, stability properties of the existing period-
two orbit and the invariant closed curve are discussed with the help of the CM theorem and normal
form theory as in [38, 39]. The conditions for the model (2.3) to undergo both types of bifurcation are
discussed below.
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We know that the model can undergo a flip bifurcation if one of the eigenvalues of J∗ is −1 and the
other not 1 or −1. Hence, we assume one eigenvalue as −1, then, from (2.10),

4 − 2bH∗ +
2αH∗

(β + H∗)2 +
2cH∗P∗

(e + H∗)2 +
ec f H∗P∗

(e + H∗)3 = 0, (3.1)

α =
(H∗ + β)2

2H∗

(
−4 + 2bH∗ −

ce f H∗P∗

(e + H∗)3 −
2cH∗P∗

(e + H∗)2

)
= α f ,

where α = α f is the critical point of α that satisfies (3.1), and it is necessary for the flip bifurcation
near the equilibrium point (H∗, P∗) for the model (2.3).

Let ΩF =
{
(a, b, c, d, e, f , α, β) : α = α f , a, b, c, d, e, f , β > 0

}
; at the critical parameter value α = α f ,

the model exhibits flip bifurcation at (H∗, P∗), when α = α f varies in the neighborhood of ΩF .
Also, the model (2.3) admits the Neimark-Sacker bifurcation if the Jacobian matrix J∗ has complex

conjugate eigenvalues with a modulus value of one, and also satisfies the following conditions

(T (H∗, P∗))2 − 4D(H∗, P∗) < 0 and D(H∗, P∗) = 1, (3.2)

which gives

A1(α) =

(
2 − bH∗ +

αH∗

(β + H∗)2 +
cH∗P∗

(e + H∗)2

)2

− 4(1 − bH∗ +
αH∗

(β + H∗)2 +
cH∗P∗

(e + H∗)2 +
ec f H∗P∗

(e + H∗)3 ) < 0,

A2(α) = − bH∗ +
αH∗

(β + H∗)2 +
cH∗P∗

(e + H∗)2 +
ec f H∗P∗

(e + H∗)3 .

Now A2(α) = 0 gives

α =

(
b −

ce f P∗

(e + H∗)3 −
cP∗

(e + H∗)2

)
(H∗ + β)2 = αh.

Let ΩNS = {(a, b, c, d, e, f , α, β) : α = αh, A1(α) < 0, a, b, c, d, e, f , β > 0}; at the critical parameter
value α = αh, the model (2.3) can exhibit Neimark-Sacker bifurcation near the equilibrium point
(H∗, P∗) , when α = αh changes in the neighborhood of ΩNS . Then, we conclude the above results in
the following theorem:

Theorem 1. (i) If ΩF =
{
(a, b, c, d, e, f , α, β) : α = α f , a, b, c, d, e, f , β > 0

}
exists and satisfies (3.1) at

critical parameter value α = α f , then the model (2.3) undergoes flip bifurcation.
(ii) If ΩNS = {(a, b, c, d, e, f , α, β) : α = αh, A1(α) < 0, a, b, c, d, e, f , β > 0} exists and satisfies (3.2) at
critical parameter value α = αh, then the model (2.3) undergoes Neimark-Sacker bifurcation.

3.1. Flip bifurcation

Now we investigate the possible flip bifurcation of the model (2.3) at (H∗, P∗). From the above
discussion the model (2.3) undergoes flip bifurcation at α = α f , where α varies in ΩF . Given a
perturbation |α1| � 1 of α f , then perturbation of model (2.3) is described as Hn+1 = Hn exp

[
a − bHn −

α f +α1

β+Hn
−

cPn
e+Hn

]
,

Pn+1 = Pn exp
[

f Hn
e+Hn
− d

]
.

(3.3)
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Next by shifting (H∗, P∗) to the origin of (2.3) by using the transform un = Hn − H∗ and zn = Pn − P∗,
we have 

un+1 = γ1un + γ2vn + γ3α1 + γ4u2
n + γ5v2

n + γ6α1
2

+γ7unvn + γ8unα1 + γ9vnα1 + O((|un| + |vn| + |α1|)2),
vn+1 = ρ1un + ρ2vn + ρ3α1 + ρ4u2

n + ρ5v2
n + ρ6α1

2

+ρ7unvn + ρ8unα1 + ρ9vnα1 + O((|un| + |vn| + |α1|)2),

(3.4)

where

γ1 = 1 − bH∗ + cP∗H∗
(e+H∗)2 +

α f H∗

(β+H∗)2 , γ2 = − cH∗
e+H∗ , γ3 = − H∗

β+H∗ ,

γ4 = H∗
2

(
−b + cP∗

(e+H∗)2 +
α f

(β+H∗)2

)2
− b + ceP∗

(e+H∗)3 +
α f β

(β+H∗)3 ,

γ5 = c2H∗
2(e+H∗)2 , γ6 = H∗

2(β+H∗)2 , γ7 = − cH∗
e+H∗

(
−b + cP∗

(e+H∗)2 +
α f

(β+H∗)2

)
− ce

(e+H∗)2 ,

γ8 = − H∗
β+H∗

(
−b + cP∗

(e+H∗)2 +
α f

(β+H∗)2

)
−

β

(β+H∗)2 , γ9 = cH∗
(e+H∗)(β+H∗) ,

ρ1 =
f eP∗

(e+H∗)2 , ρ2 = 1, ρ3 = 0, ρ4 = −
f eP∗

(e+H∗)3 +
f 2e2P∗

2(e+H∗)4 ,

ρ5 = 0, ρ6 = 0, ρ7 =
f e

(e+H∗)2 , ρ8 = 0, ρ9 = 0.

Let us assume that the eigenvalues are λ1 = −1 and λ2 = 3 − bH∗ + cH∗P∗
(e+H∗)2 +

α f H∗

(β+H∗)2 for the matrix J
with |λ1| = 1, |λ2| , 1.

Next, we construct the non-singular matrix L as follows

L =

(
γ2 γ2

−1 − γ1 λ2 − γ1

)
,

and we use the translation
(

un

vn

)
= L

(
Un

Vn

)
; then, (3.4) can be written as

{
Un+1 = −Un + F1(un, vn, α1) + O((|un| + |vn| + |α1|)2),

Vn+1 = λ2Vn + (un, vn, α1) + O((|un| + |vn| + |α1|)2),
(3.5)

where

F1(un, vn, α1) = M1α1 + M2u2
n + M3v2

n + M4α1
2 + M5unvn + M6unα1 + M7vnα1,

F2(un, vn, α1) = N1α1 + N2u2
n + N3v2

n + N4α1
2 + N5unvn + N6unα1 + N7vnα1,

and

M1 =
(λ2−γ1)γ3−γ2ρ3

γ2(1+λ2) , M2 =
(λ2−γ1)γ4−γ2ρ4

γ2(1+λ2) , M3 =
(λ2−γ1)γ5−γ2ρ5

γ2(1+λ2) , M4 =
(λ2−γ1)γ6−γ2ρ6

γ2(1+λ2) ,

M5 =
(λ2−γ1)γ7−γ2ρ7

γ2(1+λ2) , M6 =
(λ2−γ1)γ8−γ2ρ8

γ2(1+λ2) , M7 =
(λ2−γ1)γ9−γ2ρ9

γ2(1+λ2) , N1 =
(1+γ1)γ3+γ2ρ3

γ2(1+λ2) ,

N2 =
(1+γ1)γ4+γ2ρ4

γ2(1+λ2) , N3 =
(1+γ1)γ5+γ2ρ5

γ2(1+λ2) , N4 =
(1+γ1)γ6+γ2ρ6

γ2(1+λ2) , N5 =
(1+γ1)γ7+γ2ρ7

γ2(1+λ2) ,

N6 =
(1+γ1)γ8+γ2ρ8

γ2(1+λ2) , N7 =
(1+γ1)γ9+γ2ρ9

γ2(1+λ2) .

Now, let us assume Gc to be the CM; then, by using the CM theorem, we approximate the CM Gc

of (3.5) at the origin for small changes in α1 = 0:

Gc(0, 0) = {(Un,Vn) : Vn = h(Un, α1)}

=
{
(Un,Vn) : Vn = c1α1 + c2U2

n + c3α1Un + c4α1
2 + O((|Un| + α1)2)

}
. (3.6)
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By substituting (3.5) on both sides of Vn = h(Un, α1), we have

λ2Vn + F2(un, vn, α1) =c1α1 + c2(−Un + F1(un, vn, α1))2 + c3α1(−Un + F1(un, vn, α1))
+ c4α1

2 + O((|Un| + α1)2),

where

un =γ2(Un + Vn) = γ2(Un + h(Un, α1)),
vn =(−1 − γ1)Un + (λ2 − γ1)Vn = (−1 − γ1)Un + (λ2 − γ1)h(Un, α1),

c1 =
N1

1 − λ2
, c2 =

1
1 − λ2

[
N2γ

2
2 + N3(1 + γ1)2 − N5γ2(1 + γ1)

]
,

c3 =
1

1 + λ2

[
−2c2M1 − N6γ2 + N7(1 + γ1) − 2c1N2γ

2
2

+2c1N3(1 + γ1)(λ2 − γ1) − c1N5γ2(ρ2 − γ1)
]
,

c4 =
1

1 − λ2

[
c2

1N2γ
2
2 + c2

1N3(λ2 − γ1)2 + c2
1N5γ2(λ2 − γ1) + c1N6γ2

+c1N7(λ2 − γ1) − c2M2
1 + N4 − M1c3

]
.

Accordingly, on the CM Gc at the origin, we have

u2
n =γ2

2(U2
n + 2UnVn + V2

n ),
unvn = − γ2(1 + γ1)U2

n + γ2(ρ2 − γ1)UnVn + γ2(λ2 − γ1)V2
n ,

v2
n =(1 + γ1)2U2

n − 2(1 + γ1)(λ2 − γ1)UnVn + (λ2 − γ1)2V2
n ,

where

UnVn =c1α1Un + c2U3
n + c3α1U2

n + c4α1
2Un + O((|Un| + |α1|)3),

V2
n =c2

1α1
2 + 2c1c2α1U2

n + 2c1c4α1
3 + O((|Un| + |α1|)3).

Moreover, the map confined to the CM Gc(0, 0) takes the form

G∗(Un) = − Un + F1(un, vn, α1)
= − Un + d1α1 + d2U2

n + d3Ung∗ + d4α1
2 + d5U2

nα1

+ d6Unα1
2 + d7U3

n + d8α1
3 + O((|Un| + |α1|)3),

where

d1 =M1, d2 = M2γ
2
2 + M3(1 + γ1)2 − M5γ2(1 + γ1),

d3 =2c1M2γ
2
2 − 2c1M3(1 + γ1)(λ2 − γ1) + c1M5γ2(ρ2 − γ1) + M6γ2 − M7(1 + γ1),

d4 =c2
1M2γ

2
2 + c2

1M3(λ2 − γ1)2 + M4 + c2
1M5γ2(λ2 − γ1) + c1M6γ2 + c1M7(λ2 − γ1),

d5 =2c3M2γ
2
2 + 2c1c2M2γ

2
2 − 2c3M3(1 + γ1)(λ2 − γ1) + 2c1c2M3(λ2 − γ1)2

+ c3M5γ2(ρ2 − γ1) + 2c1c2M5γ2(λ2 − γ1) + c2M6γ2 + c2M7(λ2 − γ1),
d6 =2c4M2γ

2
2 + 2c1c3M2γ

2
2 − 2c4M3(1 + γ1)(λ2 − γ1) + 2c1c3M3(λ2 − γ1)2

+ c4M5γ2(ρ2 − γ1) + 2c1c3M5γ2(λ2 − γ1) + c3M6γ2 + c3M7(λ2 − γ1),
d7 =2c2M2γ

2
2 − 2c2M3(1 + γ1)(λ2 − γ1) + c2M5γ2(ρ2 − γ1),

d8 =2c1c4M2γ
2
2 + 2c1c4M3(λ2 − γ1)2 + 2c1c4M5γ2(λ2 − γ1) + c4M6γ2 + c4M7(λ2 − γ1).
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Finally, from [40], we define ∆1 and ∆2 as follows:

∆1 =

(
G∗Unα1

+
1
2

G∗α1
G∗UnUn

)
|
(Un,α1)=(0,0)

= d3 + d1d2, (3.7)

∆2 =

1
6

G∗UnUnUn
+

(
1
2

G∗UnUn

)2 |
(Un,α1)=(0,0)

= d7 + d2
2. (3.8)

Therefore, we have the following findings about flip bifurcation from the aforementioned study.

Theorem 2. If ∆1 , 0 and ∆2 , 0, the model (2.3) exhibits a flip bifurcation at (H∗, P∗) while changing
the parameter ∆ nearby ∆1. Moreover, if ∆2 > 0 (or ∆2 < 0) then the existing period two orbits from
(H∗, P∗) are stable (or unstable).

3.2. Neimark-Sacker bifurcation

Now we analyze the properties of possible Neimark-Sacker bifurcation around (H∗, P∗) for
model (2.3) if, for instance, (3.2) holds for some αh. Given a perturbation |α2| � 1 of αh, perturbation
of model (2.3) is described as Hn+1 = Hn exp

[
a − bHn −

αh+α2
β+Hn

−
cPn

e+Hn

]
Pn+1 = Pn exp

[
f Hn

e+Hn
− d

]
.

(3.9)

Let us use the transforms un = Hn − H∗ and vn = Pn − P∗ and shift (H∗, P∗) to (0, 0); the model (3.9)
takes the form 

un+1 = (un + H∗) exp
[
a − bHn −

αh+α2
β+Hn

−
cPn

e+Hn

]
− H∗,

vn+1 = (vn + P∗) exp
[

f Hn

e + Hn
− d

]
− P∗.

(3.10)

Then, the Taylor expansion of (3.10) at the origin, up to order three, is
un+1 = δ1un + δ2vn + δ3u2

n + δ4unvn + δ5v2
n + δ6u3

n

+δ7u2
nvn + δ8unv2

n + δ9v3
n + O((|un| + |vn|)3),

vn+1 = ρ1un + ρ2vn + ρ3u2
n + ρ4unvn + ρ5v2

n + ρ6u3
n

+ρ7u2
nvn + ρ8unv2

n + ρ9v3
n + O((|un| + |vn|)3),

(3.11)
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where

δ1 = 1 − bH∗ + cP∗H∗
(e+H∗)2 + αhH∗

(β+H∗)2 , δ2 = − cH∗
e+H∗ ,

δ3 = H∗
2

(
−b + cP∗

(e+H∗)2 + αh
(β+H∗)2

)2
− b + ceP∗

(e+H∗)3 +
αhβ

(β+H∗)3 ,

δ4 = − cH∗
e+H∗

(
−b + cP∗

(e+H∗)2 + αh
(β+H∗)2

)
− ce

(e+H∗)2 , δ5 = c2H∗
2(e+H∗)2 ,

δ6 = H∗
6

(
−b + cP∗

(e+H∗)2 + αh
(β+H∗)2

)3
+ 1

2

(
−b + cP∗

(e+H∗)2 + αh
(β+H∗)2

)2

−
(

cH∗P∗
(e+H∗)3 + αhH∗

(β+H∗)3

) (
−b + cP∗

(e+H∗)2 + αh
(β+H∗)2

)
− ceP∗

(e+H∗)4 −
αhβ

(β+H∗)4 ,

δ7 = − cH∗
2(e+H∗)

(
−b + cP∗

(e+H∗)2 + αh
(β+H∗)2

)2
− ce

(e+H∗)2

(
−b + cP∗

(e+H∗)2 + αh
(β+H∗)2

)
+ cH∗

e+H∗

(
cP∗

(e+H∗)3 + αh
(β+H∗)3

)
+ ce

(e+H∗)3 ,

δ8 = c2H∗
2(e+H∗)2

(
−b + cP∗

(e+H∗)2 + αh
(β+H∗)2

)
+ c2e−c2H∗

2(e+H∗)3 , δ9 = − c3H∗
6(e+H∗)3 ,

ρ1 =
f eP∗

(e+H∗)2 , ρ2 = 1, ρ3 = −
f eP∗

(e+H∗)3 +
f 2e2P∗

2(e+H∗)4 ,

ρ4 =
f e

(e+H∗)2 , ρ5 = 0, ρ6 =
f e

(e+H∗)4 −
f 2e2P∗

(e+H∗)5 +
f 3e3P∗

6(e+H∗)6 ,

ρ7 = −
f e

(e+H∗)3 +
f 2e2

2(e+H∗)4 , ρ8 = 0, ρ9 = 0.

The characteristic polynomial equation associated with the linearized system of (3.10) at the origin:

λ2 + q1(α2)λ + q2(α2) = 0, (3.12)

where

q1(α2) =

(
−1 + bH∗ −

(α f + α2)H∗

(β + H∗)2 −
cH∗P∗

(e + H∗)2

)
A1 − A2,

q2(α2) =

(
1 − bH∗ +

(α f + α2)H∗

(β + H∗)2 +
cH∗P∗

(e + H∗)2 +
ec f H∗P∗

(e + H∗)3

)
A1A2,

with A1 = exp
(
a − bH∗ − (αh+α2)

β+H∗ −
cP∗

e+H∗

)
and A2 = exp

(
f H∗

e+H∗ − d
)
. Now, the roots of (3.12) are

expressed as a pair of complex conjugates:

λ1,2 =
1
2

[
−q1(α2) ± i

√
4q2(α2) − (q1(α2))2

]
.

Since (a, b, c, d, e, f , α, β) ∈ ΩNS , we have that |λ1,2| =
√

q2(α2) and

d|λ1,2|

dα2

∣∣∣∣∣
α2=0

=
1

2
√

q2(0)

{
H∗

(β + H∗)2 −
1

β + H∗

×

(
1 − bH∗ +

αhH∗

(β + H∗)2 +
cH∗P∗

(e + H∗)2 +
ec f H∗P∗

(e + H∗)3

)}
< 0. (3.13)

Further, we assume that q1(0) = −2 + bH∗ − αhH∗

(β+H∗)2 −
cH∗P∗

(e+H∗)2 , 0,−1 and (2.6) implies that q1(0) ,
± 2, 0,−1, which means that λk

1, λ
k
2 , 1 for k = 1, 2, 3, 4 when α2 = 0. We only require that q1(0) , 0, 1,

which we can attain if it satisfies

bH∗ −
αhH∗

(β + H∗)2 −
cH∗P∗

(e + H∗)2 , 2, 3. (3.14)
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Letting α2 = 0, ξ = −
q1(0)

2 and θ =

√
4q2(0)−q2

1(0)
2 , we construct the non-singular matrix

L =

(
δ2 0

ξ − δ1 θ

)
,

and we use the translation
(

un

vn

)
= L

(
Un

Vn

)
; thus, the model (3.9) takes the form

{
Un+1 = ξUn + θVn + Q(Un,Vn) + O((|Un| + |Vn|)3),
Vn+1 = −θUn + ξVn + R(Un,Vn) + O((|Un| + |Vn|)3),

(3.15)

where

Q(Un,Vn) =
1
δ2

[ {δ3δ2
2 + δ4δ2(ξ − δ1) + δ5(ξ − δ1)2}U2

n + {δ4δ2θ + 2θδ5(ξ − δ1)}UnVn

+ δ5θ
2V2

n + {δ6δ2
3 + δ7δ2

2(ξ − δ1) + δ8δ2(ξ − δ1)2 + δ9(ξ − δ1)3}U3
n

+ {δ7δ2
2 + 2θδ8δ2(ξ − δ1) + 3θδ9(ξ − δ1)2}U2

nVn

+ {θ2δ8δ2 + 3θ2δ9(ξ − δ1)}UnV2
n + θ3δ9V3

n ] ,

R(Un,Vn) =
1
δ2θ

[ {δ2
2(δ3(δ1 − ξ) + δ2ρ3) + δ2(ξ − δ1)(δ4(δ1 − ξ) + δ2ρ4)

+ (ξ − δ1)2(δ5(δ1 − ξ) + δ2ρ5)}U2
n + {θδ2(δ4(δ1 − ξ) + δ2ρ4)

+ 2θ(ξ − δ1)(δ5(δ1 − ξ) + δ2ρ5)}UnVn + θ2{δ5(δ1 − ξ) + δ2ρ5}V2
n

+ {δ2
3(δ6(δ1 − ξ) + δ2ρ6) + δ2

2(ξ − δ1)(δ7(δ1 − ξ) + δ2ρ7)
+ δ2(ξ − δ1)2(δ8(δ1 − ξ) + δ2ρ8) − (ξ − δ1)3(δ9(δ1 − ξ) + δ2ρ9)}U3

n

+ {θδ2
2(δ7(δ1 − ξ) + δ2ρ7) + 2θδ2(ξ − δ1)(δ8(δ1 − ξ) + δ2ρ8)

+ 3θ(ξ − δ1)2(δ9(δ1 − ξ) + δ2ρ9)}U2
nVn + {θ2δ2(δ8(δ1 − ξ) + δ2ρ8)

+ 3θ2(ξ − δ1)(δ9(δ1 − ξ) + δ2η9)}UnV2
n + θ3(δ9(δ1 − ξ) + δ2ρ9)V3

n ] .

Next, we require the non zero quantity a∗ to ensure that (3.9) admits Neimark-Sacker NS bifurcation.

a∗ = −Re
[
(1 − 2λ)λ̄2

1 − λ
ξ11ξ20

]
−

1
2
|ξ11|

2 − |ξ02|
2 + Re(λ̄ξ21), (3.16)

where

ξ20 =
1
8

[(QUnUn − QVnVn + 2RUnVn) + i(RUnUn − RVnVn − 2QUnVn)],

ξ11 =
1
4

[
(QUnUn + QVnVn) + i(RUnUn + RVnVn)

]
,

ξ02 =
1
8

[(QUnUn − QVnVn − 2RUnVn) + i(RUnUn − RVnVn + 2QUnVn)],

ξ21 =
1

16
[(QUnUnUn + QUnVnVn + RUnUnVn + RVnVnVn)

+ i(RUnUnUn + RUnVnVn − QUnUnVn − QVnVnVn)].

Finally, from [38], we can state the following findings:
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Theorem 3. If (3.13) and (3.14) hold and the quantity a∗ is non zero then the model (3.1) admits
Neimark-Sacker bifurcation at (H∗, P∗) when αh changes in the neighborhood of ΩNS . Additionally,
the quantity a∗ < 0 (or resp. a∗ > 0); then, the stable (or resp. unstable) invariant closed curve from
(H∗, P∗) starts to bifurcate.

4. Chaos control

The theory of chaos control and bifurcation is known to be an essential area of current research. In
particular, it has significant uses in biological and engineering sciences. Its features have emerged in
ecological models. The nature of discrete-time population models is mostly unstable and chaotic in
contrast to the continuous-time models. It is known that the logistic difference equation (logistic map)
and the Ricker model [37] are the discrete analogs of the logistic differential equation [9]. The logistic
map is derived from the logistic differential equation by using Euler approximation, taking the finite
difference quotient as ∆t = 1, i.e., the time step is one generation. The sequence of periodic orbits
starts oscillate from stable point like period 2, period 4, period 8, .., cycles and finally enter into the
chaotic regime for many difference equations; this collection of such simple difference equations have
been reported in ecology [41]. The Neimark-Sacker bifurcation is similar to the Hopf bifurcation in
the continuous system. Similarly, there has been a lot of research work on the presence of complex
and chaotic nature in the two-dimensional discrete prey-predator system, this chaotic dynamics absent
in the continuous time system [42]. Further, it is important to introduce the appropriate methods for
controlling chaos to prevent unexpected scenarios.

First, we use the state feedback control method as in [43, 44] to control the chaotic system. For the
model (2.3) we consider the following corresponding controlled model:

 Hn+1 = Hn exp
(
a − bHn −

α
β+Hn
−

cPn
e+Hn

)
− u(Hn, Pn) = f (Hn, Pn),

Pn+1 = Pn exp
(

f Hn
e+Hn
− d

)
= g(Hn, Pn),

(4.1)

where u(Hn, Pn) = h1(Hn − H∗) + h2(Pn − P∗) is the feedback controlling force with feedback gains h1

and h2, and (H∗, P∗) is the unique positive interior equilibrium point of (4.1). Consider the controlled
model (4.1) whose Jacobian matrix at (H∗, P∗) is given as

J(H∗, P∗) =

(
b11 − h1 b12 − h2

b21 b22

)
, (4.2)

where

b11 = 1 − bH∗ +
αH∗

(β + H∗)2 +
cH∗P∗

(e + H∗)2 , b12 = −
cH∗

e + H∗
, b21 =

e f P∗

(e + H∗)2 , b22 = 1.

Then we have the characteristic polynomial of J(H∗, P∗) as

λ2 − (b11 + b22 − h1)λ + b22(b11 − h1) − b21(b12 − h2) = 0. (4.3)

Let λ1 and λ2 be the eigenvalues of (4.3); then, we obtain

λ1 + λ2 = b11 + b22 − h1, λ1λ2 = b22(b11 − h1) − b21(b12 − h2). (4.4)
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Then, the lines of marginal stability are derived by solving λ1 = ±1 and λ1λ2 = 1, assuming that
|λ1,2| << 1. If λ1λ2 = 1, using the second part of (4.4), we have

L1 : b11b22 − b21b12 − 1 = h1b22 − h2b21. (4.5)

Next, if λ1 = 1, and using (4.4), we get

L2 : h1(1 − b22) + h2b21 = b11 + b22 − 1 − b11b22 + b21b12. (4.6)

Also, if λ1 = −1, and using (4.4), we obtain

L3 : h1(1 + b22) − h2b21 = b11 + b22 + 1 + b11b22 − b21b12. (4.7)

Then the triangular region enclosed by lines L1, L2, L3 have stable eigenvalues.
Next, we study a chaos controlling technique based on the OGY control method as in [26]. By

taking α as the control parameter, we rewrite the model (2.3) as follows: Hn+1 = Hn exp
(
a − bHn −

α
β+Hn
−

cPn
e+Hn

)
= f1(Hn, Pn),

Pn+1 = Pn exp
(

f Hn
e+Hn
− d

)
= f2(Hn, Pn).

(4.8)

Further, αmust lie in some interval |α−α0| < δwith δ > 0, and α0 denotes the nominal value, for which
the model (2.3) has chaotic dynamics. Now, we apply the state feedback control strategy to shift the
trajectory to the desired state. Let (H∗, P∗) be the unstable equilibrium point of the model (2.3) in the
chaotic state due to Neimark-Sacker bifurcation; then, model (2.3) can be approximated near (H∗, P∗)
by the following linear map:[

Hn+1 − H∗

Pn+1 − P∗

]
≈ A

[
Hn − H∗

Pn − P∗

]
+ B [α − α0] , (4.9)

where

A =

 ∂ f1(H∗,P∗,α0)
∂Hn

∂ f1(H∗,P∗,α0)
∂Pn

∂ f2(H∗,P∗,α0)
∂Hn

∂ f2(H∗,P∗,α0)
∂Pn

 , B =

[ ∂ f1(H∗,P∗,α0)
∂α

∂ f2(H∗,P∗,α0)
∂α

]
=

[
− H∗
β+H∗

0

]
.

It is easy to see that model (4.8) is controllable provided that the following matrix

C = [B : AB] =

 − H∗
β+H∗

(
∂ f1(H∗,P∗,α0)

∂Hn

)
−H∗
β+H∗

0
(
∂ f2(H∗,P∗,α0)

∂Hn

)
−H∗
β+H∗

 (4.10)

has rank 2. Furthermore, assume that −H∗
β+H∗ , 0 and ∂ f2(H∗,P∗,α0)

∂Hn
, 0; then, model (4.8) is controllable.

Next, we assume that [α − α0] = −K
[

Hn − H∗

Pn − P∗

]
, where K =

[
s1 s2

]
; then, model (4.8) can be

written as [
Hn+1 − H∗

Pn+1 − P∗

]
≈ [A − BK]

[
Hn − H∗

Pn − P∗

]
. (4.11)
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Then, the controller model is given by Hn+1 = Hn exp
(
a − bHn −

α0−s1(Hn−H∗)−s2(Pn−P∗)
β+Hn

−
cPn

e+Hn

)
,

Pn+1 = Pn exp
(

f Hn
e+Hn
− d

)
.

(4.12)

Moreover, equilibrium point (H∗, P∗) is locally asymptotically stable if and only if both eigenvalues of
the matrix A − BK, say, λ1 and λ2, lie in an open unit disk. Then, the matrix A − BK can be written as

A − BK =

[
b11 − θs1 b12 − θs1

b21 b22

]
, (4.13)

where

b11 = 1 − bH∗ +
α0H∗

(β + H∗)2 +
cH∗P∗

(e + H∗)2 , b12 = −
cH∗

e + H∗
, b21 =

e f P∗

(e + H∗)2 ,

b22 = 1, θ = −
H∗

β + H∗
.

Then, the characteristic polynomial of (4.13) is given by

λ2 − (b11 + b22 − θs1)λ + b22(b11 − θs1) + b21(θs2 − b12) = 0. (4.14)

Then, the lines of marginal stability can be obtained, that is,

L1 : b22(b11 − θs1) + b21(θs2 − b12) = 1, (4.15)
L2 : b11 + b22 = 1 + θs1 + b22(b11 − θs1) + b21(θs2 − b12), (4.16)
L3 : θs1 = b11 + b22 + 1 + b22(b11 − θs1) + b21(θs2 − b12). (4.17)

Then, stable eigenvalues lie within the triangular region in the s1, s2-plane bounded by the straight lines
L1, L2, L3 for the model’s parametric values.

Next, we apply a hybrid control feedback methodology [21, 25, 45] for the control of flip and
Neimark-Sacker bifurcations of the model near the equilibrium point (H∗, P∗); then, the controlled
model can be written as Hn+1 = εHn exp

(
a − bHn −

α
β+Hn
−

cPn
e+Hn

)
+ (1 − ε)Hn,

Pn+1 = εPn exp
(

f Hn
e+Hn
− d

)
+ (1 − ε)Pn,

(4.18)

where 0 < ε < 1 is the controlled strategy of a combination of both feedback control and parameter
perturbation. The Jacobian matrix evaluated for the model (4.18) at (H∗, P∗) is given by ε

(
1 − bH∗ + αH∗

(β+H∗)2 + cH∗P∗
(e+H∗)2

)
+ 1 − ε − εcH∗

e+H∗
εe f P∗

(e+H∗)2 1

 . (4.19)

Note, one can select appropriate values for ε to ensure that all eigenvalues of the above matrix satisfy
|λ1,2| < 1.
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5. Numerical simulations

In this section, we provide a numerical simulation to ensure our theoretical analysis. The numerical
iteration used to validate our results is similar to the processes described in [27, 28, 36, 44, 46]. The
mathematical software Matlab (2018a) has been used to plot the numerical graphs. The computational
approach provides fascinating details about how ecological systems function. Analytical approaches
are exact and wide, but they only operate with the most fundamental models. The parameter values
used here are only for illustrative purposes; neither experiments nor field research was used to obtain
them [29–31]. Here, all parameters are considered positive values for which the model (2.3) has at least
one positive interior equilibrium point (coexistence of both populations). Also, the chosen parameter
values for the considered model (2.3) are biologically feasible.

Next, the conditions for the occurrence of two possible bifurcation behaviors of the model (2.3)
were examined by varying the Allee parameter, namely, flip and Neimark-Sacker bifurcation verified
numerically. It is also shown with the help of bifurcation diagrams. For this, we take two sets of
parameter values assuming α < aβ, and described them in the following cases:

Case (i): Show the model (2.3) exhibits flip bifurcation with the fixed parametric values of a = 5.5,
b = 5.5, c = 20, d = 0.1, e = 10, f = 2, β = 0.5, while varying α = (0, 2]. We obtained the
unique interior positive equilibrium points (H∗, P∗) for the various values of α given in Table 1. At
the critical point α = α f = 1.5833188, the model (2.3) has the unique equilibrium point (H∗, P∗) =

(0.526316, 0.559233), and (2.10) becomes

λ2 + 0.0504708λ − 0.949529 = 0,

which shows that, λ1, λ2 = 0.949529,−1 are the eigenvalues of (2.9), Then, it satisfies the condition. It
ensures the occurrence of flip bifurcation near the interior equilibrium point for the model (2.3). Also,
for α = 0.20, the model (2.3) shows chaotic behavior, and by further increasing, it shows period-16
at α = 0.37, period-8 at α = 0.43, period-4 at α = 0.50, period-2 at α = 1.25, and stable equilibrium
point at α = 1.70. The different states of the model (2.3) are plotted for different values of α in the
time plot and phase portrait in Figures 1 and 2, respectively. It indicates that the model becomes
stable from chaos by the reverse period-doubling phenomenon. So, the existence of flip bifurcation
for the model (2.3) is shown in Figure 3(a). Also, the existence of chaos is confirmed by plotting
the corresponding largest Lyapunov exponent in Figure 3(b). Further, from (3.7) and (3.8), we obtain
∆1 = 0.415148 , 0, ∆2 = −2.22965 , 0 and the property of the existing flip bifurcation which is
illustrated in Theorem 2.

Table 1. The equilibrium point values for Case (i).

α H∗ P∗

0.20 0.526316 1.268630
0.37 0.526316 1.181450
0.43 0.526316 1.150680
0.50 0.526316 1.114780
1.25 0.526316 0.730165
1.70 0.526316 0.499396
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Figure 1. Time-series plots of Hn vs n for the occurrence of flip bifurcation, where (a) is
a chaotic orbit, (b) is period-16, (c) is period-8, (d) is period-4, (e) is period-2 and, in (f) it
eventually reaches the non-zero equilibrium point.
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Figure 2. Phase portraits for the occurrence of flip bifurcation where (a) is a chaotic orbit, (b)
is period-16, (c) is period-8, (d) is period-4, (e) is period-2 and, in (f) it eventually reaches the
non-zero equilibrium point. The asterisk symbol represents the unique interior equilibrium
point and its values are given in Table 1.
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Figure 3. (a) Flip bifurcation diagram of the model (2.3) in the (α,H) plane and its largest
Lyapunov exponent in (b), correspondingly, with a = 5.5, b = 5.5, c = 20, d = 0.1, e = 10,
f = 2, β = 0.5 and varying α = (0, 2].

Case (ii): Show that the model (2.3) exhibits Neimark-Sacker bifurcation with the fixed parametric
values of a = 3.71, b = 4.8, c = 10, d = 1, e = 10, f = 29, β = 0.5, and varying values of α = (0, 0.5].
We obtained the unique interior positive equilibrium points (H∗, P∗) for the various values of α given
in Table 2. At the critical point α = αh = 0.4135275, the model (2.3) has the unique equilibrium point
(H∗, P∗) = (0.357143, 1.56731) and the characteristic Eq (2.10) becomes

λ2 + 0.538916λ + 1 = 0,

which shows that λ1, λ2 = 0.269458 ± 0.963012i are the eigenvalues of (2.9). Then, it satisfies the
condition (3.2). It ensures the occurrence of Neimark-Sacker bifurcation near the interior equilibrium
point for the model (2.3). Also, for α = 0.015, the model (2.3) shows chaotic orbit. Further, for
α = 0.045, the result is 13-period; for α = 0.048, it is 13 invariant circles; for α = 0.130, it is 9-period;
for α = 0.410, it is a closed invariant circle and there is a asymptotically stable equilibrium point at
α = 0.450. The different nature of the model around the interior equilibrium point for the model (2.3)
is shown in the time plots and phase portraits in Figures 4 and 5, correspondingly. The figures show
the model undergoes Neimark-Sacker bifurcation. The bifurcation diagram and its largest Lyapunov
exponent are shown in Figure 6(a), (b), correspondingly. Since a∗ = −0.151225 from (3.16), its results
are explained in Theorem 3.

In order to show the effect of Allee parameter α on the growth rate parameter a for the values in
both Cases (i) and (ii), we have plotted the largest Lyapunov exponents in Figure 7(a),(b). This figures
clearly shows the chaotic and stable dynamics of the proposed model.

Table 2. The equilibrium point values for Case (ii).

α H∗ P∗

0.015 0.357143 2.04886
0.045 0.357143 2.01261
0.048 0.357143 2.00899
0.130 0.357143 1.90991
0.410 0.357143 1.57157
0.450 0.357143 1.52324
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Figure 4. Time-series plots of Hn vs n for the occurrence of Neimark-Sacker bifurcation,
where (a) is a chaotic orbit, (b) is period-13, (c) is 13 invariant circles, (d) is period-9, (e) is
a closed invariant circle and (f) shows the asymptotically stable non-zero equilibrium point.
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Figure 5. Phase portrait for the occurrence of Neimark-Sacker bifurcation, where (a)
is a chaotic orbit, (b) is period-13, (c) is 13 invariant circles, (d) is period-9, (e) is a
closed invariant circle and, in (f), asymptotically stable trajectories approach the non-zero
equilibrium point. The asterisk symbol represents the unique interior equilibrium point, and
its values are given in Table 2.
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Figure 6. Neimark Sacker bifurcation diagram of the model (2.3) in the (α,H) plane and its
largest Lyapunov exponent in (b), correspondingly, with a = 3.71, b = 4.8, c = 10, d = 1,
e = 10, f = 29, β = 0.5, and varying values of α = (0, 0.5].

(a) α ∈ (0, 2), a ∈ (0, 8) (b) α ∈ (0, 1), a ∈ (0, 6)

Figure 7. The largest Lyapunov exponents with respect to the parameters in Case (i) as
b = 5.5, c = 20, d = 0.1, e = 10, f = 2, β = 0.5 and various values of α and a. (b) The
largest Lyapunov exponents with respect to the parameters in Case (ii) given b = 4.8, c = 10,
d = 1, e = 10, f = 29, β = 0.5 and various values of α and a.

5.1. Chaos control

For the particular choice of parameter values a = 3.71, b = 4.8, c = 10, d = 1, e = 10, f = 29, β =

0.5, and α = 0.015, we get the positive unstable equilibrium point (H∗, P∗) = (0.357143, 2.0488647)
for the model (2.3) and for its phase portrait (see Figure 5(a)). So, we chose to use the state feedback
control method and want to shift the unstable equilibrium point into stable dynamics. For this, taking
α0 = 0.015 and the corresponding controlled model yields Hn+1 = Hn exp

(
3.71 − 4.8Hn −

0.015
0.5+Hn

−
10Pn

10+Hn

)
− u(Hn, Pn),

Pn+1 = Pn exp
(

29Hn
10+Hn

− 1
)
,

(5.1)

where u(Hn, Pn) = u(Hn, Pn) = h1(Hn−H∗)+h2(Pn−P∗), and h1 and h2 are feedback gains. Furthermore,
the Jacobian matrix of the controlled model is given as follows

J =

(
−0.63878 − h1 −0.344828 − h2

5.539 1

)
.
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Then, we obtain the characteristic equation as

λ2 − (0.36122 − h1)λ + 1.27122 − h1 + 5.539h2 = 0.

Moreover, the lines of marginal stability for the model (5.1) are computed as

L1 : 0.27122 = h1 − 5.539h2, L2 : 5.539h2 = −1.91, L3 : 2h1 − 5.539h2 = 2.63244.

Then, the triangular region enclosed by the lines L1, L2, L3 has stable eigenvalues for the controlled
model (5.1), as shown in Figure 8(a). Clearly, if h2 = −0.3, then (H∗, P∗) = (0.357143, 2.0488647) is
locally stable if and only if h2 ∈ [−0.642, 0.4853]. Taking h1 = −0.3 and h2 = 0.3, then the time-series
plots for the controlled model (5.1) are shown in Figure 8(b),(c).

Second, for a = 3.71, b = 4.8, c = 10, d = 1, e = 10, f = 29, β = 0.5 and α = 0.015, the
model (2.3) yields (H∗, P∗) = (0.357143, 2.0488647) and its phase portrait is shown in Figure 5(a).
So, we chose to use the OGY feedback control method to move the strange chaotic dynamics into the
stable dynamics. For this, taking α = 0.015 and the corresponding controlled model yields Hn+1 = Hn exp

(
3.71 − 4.8Hn −

0.015−s1(Hn−H∗)−s2(Pn−P∗)
0.5+Hn

−
10Pn

10+Hn

)
,

Pn+1 = Pn exp
(

29Hn
10+Hn

− 1
)
,

(5.2)

where s1 and s2 are feedback gains. Furthermore, in this case, we have

A =

(
−0.63878 −0.344828

5.539 1

)
, B =

(
−0.416667

0

)
, C =

(
−0.416667 0.266158

0 −2.30792

)
,

and the Jacobian matrix of the controlled model is given as follows

A − BK =

(
−0.63878 + 0.416667s1 −0.344828 + 0.416667s2

5.539 1

)
.

Then we obtain the characteristic equation

λ2 + (0.36122 + 0.416667s1)λ + 1.27122 + 0.416667s1 − 2.30792s2 = 0.

Moreover, the lines of marginal stability for the model (5.2) are computed as

L1 : 1.27122 + 0.416667s1 − 2.30792s2 = 1,
L2 : 1.91 = 2.30792s2,

L3 : −0.416667s1 = 2.63244 + 0.416667s1 − 2.30792s2.

Then the triangular region enclosed by the lines L1, L2, L3 has stable eigenvalues for the controlled
model (5.2) as shown in Figure 9(a). Clearly, if s1 = 0.1, then (H∗, P∗) = (0.357143, 2.0488647) is
locally stable if and only if s2 ∈ [0.55128, 0.82758]. Taking s1 = 0.1 and s2 = 0.7, then the time-series
plots for the controlled model (5.2) are depicted in Figure 9(b),(c).

Finally, we discuss the hybrid control strategy for some parametric values. In this case, the
controlled model can be written as Hn+1 = εHn exp

(
5.5 − 5.5Hn −

0.20
0.5+Hn

−
20Pn

10+Hn

)
+ (1 − ε)Hn,

Pn+1 = εPn exp
(

2Hn
10+Hn

− 1
)

+ (1 − ε)Pn.
(5.3)
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Moreover, the Jacobian matrix of the model (5.2) at (H∗, P∗) = (0.526316, 1.26863) is given by[
1 − 2.6748ε −ε
0.228987ε 1

]
.

The eigenvalues of the above matrix lie inside the open disk if and only if 0 < ε < 0.773477. For
ε ∈ (0, 1] and (H∗, P∗) = (0.526316, 1.26863), the bifurcation diagram for the controlled model (5.3)
are depicted in Figure 10(a),(b).
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Figure 8. Results for the controlled model (5.1) obtained by the state feedback control
method; (a) depicts the stability triangle, (b) and (c) depict the locally stable time series with
h1 = 0.3 and h2 = −0.3.
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Figure 9. Results for the controlled model (5.2) obtained by the OGY feedback control
method; (a) depict stability triangle, and (b) and (c) depicts the locally stable time series with
s1 = 0.1 and s2 = 0.7.
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Figure 10. The one parameter bifurcation diagrams for the controlled model (5.3) obtained
by the hybrid control method with the control parameter ε ∈ (0, 1].

Remark 1. The model (2.3) is the discrete counterpart of the continuous-time model (2.1) investigated
in [29]. The method of using a piecewise constant argument for the differential equations has been is
adopted to obtain the discrete time model, similar to those in [36, 46]. In the absence of predators,
the resultant model transforms into the classical Ricker stock recruitment model [37]. It is worth
mentioning here that this type of Ricker-type model (2.3) has not been investigated previously. For
instance, in [47], the authors studied a basic discrete predator model with the effect of using Ricker
map for the prey growth by replacing the classical logistic map; they showed the existence of flip
and Neimark-Sacker bifurcations. A Ricker-type predator-prey model with hunting cooperation was
investigated by the authors of [48], who studied the existence of discrete Hopf bifurcation. The
authors of [29] demonstrated that the model (2.1) experiences Hopf bifurcation, while the model (2.3)
undergoes flip and Neimark-Sacker bifurcations and also exhibits chaotic dynamics. The direction
and stability properties of both bifurcations can be discussed by using the results form [38, 39].
Also, the bifurcation and chaos control analyses have been carried out using the methods described
in [27, 28, 44].

6. Discussion and conclusions

This paper deals with the discrete-time predator-prey model of Holling II-type interaction with a
weak additive Allee effect. In the first step of this study, we derived the discrete-time model from
the corresponding continuous model in [29] by using the method of piecewise constant arguments for
the differential equations [35]. This discrete form of Lotka-Volterra equations is due to May [9]. The
model (2.3) without the Allee effect or predator population has been reduced to a one-dimensional
model similar to the model in [37]. The discrete model (2.3) considered in this present work is a good
representation of population interaction, as it has a non-overlapping generation, i.e., the birth and death
rates occur in certain time intervals. From a biological point of view, the positive equilibrium points
for the continuous-time model described in [29] and the discrete-time model (2.3) in this present study
are the same, as we showed in Lemma 1. For model (2.3), we showed that the density of the prey
population remains unchanged, and that the density of the predator population decreases by increasing
the Allee parameter α; see Tables 1 and 2. The local stability of a coexisting equilibrium (H∗, P∗)
is described via Lemma 3, which ensures the long-time survival of both species with the impact of
α. In the contrasting continuous-time model [29] of (2.3), for a small value the of Allee parameter,
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the model exhibits a periodic solution and becomes locally asymptotically stable via Hopf bifurcation,
when the Allee parameter crosses some critical value. Moreover, this is similar to the Neimark-Sacker
bifurcation for the discrete model (2.3) in this present study.

Next, we derived the conditions for the existence of flip and Neimark-Sacker bifurcations for
model (2.3) around the positive interior equilibrium point by taking the Allee parameter as a bifurcation
parameter. We showed the properties of both bifurcations with the help of the CM theorem and
normal form theory in Theorems 2 and 3. In the simulation part, we verified all the analytical results
numerically. We showed that model (2.3) undergoes flip bifurcation at αh in Case (i) and Neimark-
Sacker bifurcation at αh in Case (ii), for a different set of parameter values. We notice that model (2.3)
has strange dynamics for smaller values of α; see Figures 2(a) and 5(a). The strange behavior of the
model (2.3) for both cases is shown clearly in the one-parameter bifurcation diagrams in Figures 3(a)
and 6(a). We notice that the proposed model reduces complex dynamical behavior, and we say that the
sensitivity of the population dynamics to initial conditions has been reduced in a sense by the Allee
effect. Further, we verified this sensitivity to the initial conditions by plotting the largest Lyapunov
exponents in Figures 3(b) and 6(b). In this study, we successfully implemented state and OGY
feedback and hybrid control methods by constructing the corresponding controlled models (5.1), (5.2)
and (5.3). The lines of stable margins for the controlled models using state feedback control and the
OGY feedback control method have been derived and plotted in Figures 8(a) and 9(a). The choice of
feedback value inside the stability triangle helps to shift the desired chaotic orbit into the area of stable
dynamics, see Figures 8(b),(c) and 9(b),(c). In the case of the hybrid control method, for the control
parameter 0 < ε < 0.773477, the model (5.3) is stable, and the one-parameter bifurcation diagram is
shown in Figure 10. A different possibility for showing the existence of chaos in real populations has
been provided in the theory of chaos control [26]. The need for this control supports the adoption of
the OGY technique for the three fish food chain, i.e., stabilization for the desired periodic orbit. This
control condition goes against empirical attempts for lakes and rivers [23].

This study concludes that increasing the Allee parameter, which leads to converting the strange
attractor into a proper pattern, i.e., period-16, period-8, period-4, period-2, period-13, period-9 and
a closed invariant circle, means that the population oscillates periodically and finally reaches stable
dynamics (long-term coexistence of both species) in the considered model. Also, this periodic window
and chaotic orbits cannot occur in the counter continuous-time model. This stabilization takes place
via both the flip and the Neimark-Sacker bifurcations. In one word, the Allee effect plays a positive
role in stabilizing the proposed model, i.e., keeping the population persistent for a long time. However,
there will be more complexity in predicting the future population size under chaotic dynamics because
a small perturbation in the initial population size can cause massive divergence in population size. For
smaller values of the Allee parameter, the presence of bifurcation and chaos in the proposed model can
cause both species to have a higher risk of extinction due to unpredictability.

However, it is important to study the discrete-time predator-prey model with the Allee effect in both
prey and predator populations. It is interesting to note that one may study the model’s relationship to
other ecological phenomena like prey refuge, cannibalism and fear impact by appropriately adjusting
the strength of the Allee effect simultaneously. Also, considering the other functional responses such
as ratio-dependent, Crowley-Martin and Beddington-DeAngelis functional responses, may lead to
complex models and cause strange behaviors; we will leave this for future research.
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