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a b s t r a c t

In this study, we will present the dynamical analysis for permanent magnet synchronous
motors (PMSM). Our goal is to identify an ellipsoid that contains the state trajectory of
the system in as small a form as possible in the presence of control. First, we designed
the non-fragile sampled-data fuzzy controller (NFSDFC) for the PMSM model. Second,
the Lyapunov-Krasovskii functional (LKF) strategy, novel integral inequality mechanisms,
and certain sufficient conditions are determined, which ensure an ellipsoidal bound of
reachable sets for the closed-loop of a system with input constraints derived in terms
of linear matrix inequalities (LMIs). Meanwhile, under the larger sampling interval, the
corresponding sampled-data controller gains are designed. Finally, numerical examples
are given to validate the derived theoretical results.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Over the past few years, a lot of research activities have been devoted to the study of a variety of electric motors.
ome of these motors are hybrid step motor drives [1], induction motor drive [2], permanent magnet synchronous
otor (PMSM) drive [3,4], voltage and current mode direct current motor drives [5], switched resistance motor drive [6],
ynchronous reluctance motor drive [7], and brushless direct current motor (BLDCM) drive [8]. Among the most studied
otors, there is one called the permanent magnet synchronous motor (PMSM) [9]. Because of their simple form, high
fficiency, high power density, and low production cost, the PMSM is extensively utilized in industrial applications such
s motor drives, various servo systems, and household appliances. Because of its nonlinear mathematical model, this motor
s able to exhibit very rich and complex dynamics, among which is the well-known phenomenon of chaos. Therefore, a
uge amount of research effort has been devoted to the study and control of that phenomenon in the PMSM. In fact,
n [3], a deep investigation of the bifurcation as chaos for a wide range of parameters has been addressed in a PMSM
odel with a smooth air gap. The effect of the smooth and the non-smooth air gap has been investigated on the behavior
f the studied motor in [9]. In that work, the analysis of the stability of the equilibrium point revealed pitchfork and Hopf
ifurcations. More interestingly, numerical simulations highlighted phenomena such as period-doubling bifurcation, cyclic
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fold bifurcation, single-scroll, and double-scroll chaotic attractors. In [10], the authors introduced a fractional model of
the PMSM and followed the bifurcation analysis of that model, which revealed phenomena such as bursting and hidden
oscillations. The dynamics of a simplified model of the PMSM have been addressed in [11]. Furthermore, the authors used
a simple controller to suppress chaos in the model considered. Additionally, they presented a simple way to synchronize
two identical models, and the results have been validated based on an electronic model of the considered motor. Hidden
dynamics and multistability of the PMSM have been addressed in [12]. The findings of the authors have been validated
on the basis of both theoretical and numerical approaches.

Furthermore, analyzing and understanding nonlinear models using present mathematical methods is substantially
ore difficult owing to their variations with regard to nonlinearities. As a result, the Takagi–Sugeno (TS) method is
sed in the literature to illustrate the nonlinearity that can occur with respect to the IF-THEN rules for linear submodels
ased on fuzzy membership-based rules and has been thoroughly investigated by various scientists over the last several
ecades [13–17]. For example, adaptive fractional fuzzy integral sliding mode control for the PMSM model has been
nalyzed in [18]. In [19], we discuss non-fragile distributed filtering for fuzzy T-S systems in sensor networks. Authors
n [20], researched quantized sampled-data control for extended dissipative analysis of the T-S fuzzy system. Recently,
he Lyapunov-Krasovkii functional (LKF) combined with LMI has become a popular approach for stability analysis and
tabilization of the system. Less conservative stability criteria and the controller can be developed by constructing a
uitable LKF with more system information [15–17]. Therefore, designing a suitable controller is crucial because studying
he PMSM model with input disturbances is a very worthwhile subject.

Numerous control methods, including adaptive control, finite-time H∞ control, proportional integral derivative control,
sliding mode control, and others have been utilized to study the stability behavior of the PMSM model in light of
the outstanding results obtained with the T-S fuzzy model. The sampled-data control (SDC), on the other hand, runs
continuously while sampling discrete-time signals at certain instants in time. Therefore, continuous and discrete-time
signals are both used in digital control systems, which are hybrid systems [15–17,21–24]. SDC provides simple and
dependable control in many real-world plants with minor disturbances because it can be easily adjusted to achieve
the desired performance. It is utilized in the robust control of many PMSM systems since it also ensures performance
and stability, even in the face of uncertainty. Therefore appropriate SDC has been very compatible with PMSM. Several
extensive and profitable results have been made about the SDC system [25–29]. On the other hand, a reachable set of
dynamic systems is the set that bounds all system state trajectories in the presence of external disturbances. Reachable
set estimation (RSE) is a significant issue not only in robust control theory but also in practice, where secured operations
are executed through controllers to mitigate insecure regions [30,31]. These characteristics led a few researchers to
recently acknowledge the control problems in RSE. Numerous outstanding theoretical results on RSE [32–34] have been
developed in recent years. To name a few, [32]. suggested a solution to the RSE and aperiodic sampled-data controller
design problems for Markovian jump systems. In [33], the problem of RSE for T-S fuzzy systems against unknown output
delays with application to tracking control of AUVs was presented. RSE and controller design for discrete-time singularly
perturbed systems with time-varying delays were explored by the authors in [35]. It should be noted that the RSE synthesis
and PMSM model-based T-S fuzzy method with non-fragile sampled-data control (NFSDC) have received relatively little
attention up to this point.

Inspired by the above facts, the stabilization PMSM model is examined in this study via NFSDC. The principle
contribution of the study is summarized as follows:

• The proposed PMSM system was established by considering the influence of the T-S fuzzy approach and has been
enforced in approximating the nonlinearities into linear models.

• Furthermore, NFSDC has been introduced in the intended PMSM and can be fully suppressed or driven into a
predictable and adjustable bound.

• Utilizing a novel integral inequality and several new suitable conditions, suitable LKF are built for the stability
analysis of the proposed system model, and an acceptable RSE synthesis technique is derived to take PMSM into
consideration in terms of linear matrix inequalities (LMIs).

• In order to demonstrate the effectiveness and applicability of the given theories, numerical simulations and
comparison results are suggested as a final step.

Notations. The issue formulation and primary outcome notations will now be defined. A n-dimensional real matrix is
represented by Rn×m and a n-dimensional Euclidean space by Rn. The identity matrix with the necessary dimensions
s denoted by I . It indicates that P is a symmetric, semi-positive-definite matrix (respectively, positive definite matrix)
hen it is represented as P ≥ 0 (or P > 0). Use MT and M−1 to represent the transpose and inverse of M , respectively. In
ymmetrical places, the sign ∗ denotes the transposed element. Additionally, Sym{X} is defined as Sym{X} = XT

+ X . The
ymbols diag is used to indicate a block-diagonal matrix. ∥ · ∥ stands for the spectral norm for matrices and the Euclidean
norm for vector space.
2
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2. Presentation of the PMSM

2.1. Model description

The mathematical expression of the PMSM can be provided based on the d-q axis [3] as presented in (1)⎧⎪⎨⎪⎩
did
dt =

(
ud − R1id + ωLqiq

)
/Ld

diq
dt =

(
uq − R1iq − ωLdid + ωψr

)
/Lq

dω
dt =

[
npψr iq + np

(
Ld − Lq

)
idiq − TL − βω

]
/J

(1)

where the motor’s currents and angular frequency are denoted by id, iq, and ω, respectively. The direct and quadrature-axis
stator voltage components are denoted by ud and uq, the polar moment of inertia is denoted by J , and the external torque
is denoted by TL. The viscous damping coefficient is denoted by β , the stator winding resistance is denoted by R1, Ld
and Lq have respectively stated the direct and quadrature-axis stator inductors, ψr the permanent magnet flux and the
umber of pole-pairs. By applying the variable change x = ζxi, and the time change τ = ζ t , here x =

[
id iq ω

]⊤,

i =
[

x1 x2 x3
]⊤, ζ =

⎡⎣ ζd 0 0
0 ζq 0
0 0 ζω

⎤⎦ =

⎡⎣ bk 0 0
0 k 0
0 0 1/τ

⎤⎦ .
With b =

Lq
Ld
, k =

β

npτψr
and ζ =

Lq
R1

we obtain a system of equations in a dimensionless form as:⎧⎪⎨⎪⎩
dx1
dt = −bx1 + x2x3 + v1
dx2
dt = −x2 − x1x3 + γ x3 + v2
dx3
dt = σ (x2 − x3)+ εx1x2 − v3.

(2)

Where γ =
npψ2

r
R1β

, σ =
Lqβ
R1J

, ε =
Lqβ2(Ld−Lq)

LdJnpψ2
r

, v1 =
npψr Lq
βR21

ud, v2 =
npψr Lq
βR21

uq, and v3 =
L2qTL
R21J

. The parameters of the PMSM
studied in this work are given as: np = 1, ψr = 1.8 Nm/A, R1 = 0.9Ω , β = 0.0162N/rad/s, Lq = 11mH , Ld = 15mH ,
J = 4.7 × 10−3Kgm2.

To address the dynamics of this PMSM two assumptions are made: Lq ̸= Ld, and ud = uq = TL = 0.
Then the previous mathematical model Eq. (2) becomes.⎧⎪⎨⎪⎩

dx1
dt = −bx1 + x2x3
dx2
dt = −x2 − x1x3 + γ x3
dx3
dt = σ (x2 − x3)+ εx1x2.

(3)

Using the parameters of the motor, the dimensionless parameters are given as:
b = 0.733, γ = 222.222, σ = 42.127, ε = 0.0505.

2.2. Dissipation property and stability of the model

The dissipation property of the considered PMSM can be evaluated after the estimation of the volume contraction rate
of the considered machine as provided by Eq. (4).

That contraction rate enables us to have an idea of the nature of the behavior generated by the considered machine
model. In that way, three types of behaviors can be identified, among which, the dissipative one with divV < 0, the
conservative one with divV = 0, and the repelled one with divV > 0.

divV =

⎛⎜⎜⎝
∂
∂x1
∂
∂x2
∂
∂x3

⎞⎟⎟⎠ .

⎛⎝ −bx1 + x2x3
−x2 − x1x3 + γ x3
σ (x2 − x3)+ εx1x2

⎞⎠ . (4)

Which gives

divV = −b − 1 − σ . (5)

From Eq. (5), it is obvious that the volume contraction rate of the PMSM depends on the value of some key parameters of
the motor. Therefore, the PMSM model will be dissipative if and only if −b − 1 − σ < 0. Since all the parameters of the
dimensionless model of the PMSM are positive, the volume contraction will be negative. Consequently, the considered
model is dissipative. The Jacobian matrix of the considered model is given as :

JM =

⎡⎣ −b x̄3 x̄2
−x̄3 −1 γ − x̄1

⎤⎦ . (6)

εx̄2 εx̄1 + σ −σ

3
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Fig. 1. Two-parameter diagrams showing the general behavior of the considered PMSM with no smooth air gap. The plane (σ , γ ) for b = 0.733, ϵ =

.0505, the plane (σ , ϵ) for b = 0.733, γ = 300, the plane (σ , b) for γ = 300, ϵ = 0.0505 and the plane (ϵ, b) for γ = 300, σ = 40. These diagrams
re obtained with the initial conditions (0.1744, 0., 0.221).

here (x̄1, x̄2, x̄3) are the equilibrium points of the PMSM the characteristic equation around the trivial equilibrium point
0 (0, 0, 0) is given by :

P (λ) = λ3 + (σ + 1 + b) λ2 + (bσ − γ σ + b + σ) λ

− bγ σ + σb = 0. (7)

rom the last coefficient of the characteristic equation, it is obvious that the considered model of the PMSM is always
nstable around the trivial equilibrium point.

. Global behavior of the PMSM

The fourth-order Runge–Kutta algorithm is employed in this part to construct the nonlinear analysis tools that are used
o describe the overall behavior of the PMSM taken into consideration in this study. The variables and parameters of the
otor are chosen in extended precision mode to ensure the accuracy of our computation. A fixed time step of 5 × 10−3

s employed for each iteration.

.1. Two-dimensional dynamical maps

Using two-parameter Lyapunov diagrams, this section assesses the overall behavior of the PMSM under study. To
enerate the figure, two important dimensionless model parameters were concurrently changed, and the maximal
yapunov exponent was noted after each iteration. These diagrams will be created in our example by modifying four
mportant parameters of the investigated PMSM, namely b, ε, γ , and σ . When varying those parameters in the planes
σ , γ ), (σ , ϵ), (σ , b), and (ϵ, b) Fig. 1 is obtained. These graphs are produced when both parameters are increased.
t is evident from the diagrams in Fig. 2 that, depending on the sign of the highest Lyapunov exponent, the model
4
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Fig. 2. (a) Bifurcation diagram showing the local maxima of the state variable x3max when the control parameter σ is varied. (b) is the graph of the
aximum Lyapunov exponent associated with (a). These diagrams are obtained for b = 0.733, ϵ = 0.0505, and γ = 350.

under investigation is capable of exhibiting several types of dynamical behavior. For instance, Periodic behaviors are
distinguished by λmax = 0 whereas chaotic behaviors are distinguished by λmax > 0. In addition, the absence of the
egative Lyapunov exponent λmax < 0 excludes the possibility of having resting behavior characterized by a stable state.

.2. Coexistence of the bifurcations

The symmetric nature of the model is evident from the mathematical equation of the PMSM provided in Eq. (3).
onsequently, (x1, x2, x3) is also a solution for the identical set of parameters if (−x1,−x2,−x3) is a solution of system
3) for a given set of parameters. The bifurcation diagram of Fig. 2(a) shows how the considered model can move from
eriodic to periodic behavior through a wide range of chaotic behavior. Those transitions observed in the bifurcation
iagram are well supported based on the graph of the maximum Lyapunov exponent in Fig. 2(b). Figs. 3(a) and (b) show
nlargements of the bifurcation diagram of Fig. 2(a) on both sides. From those bifurcation diagrams, two sets of data
re superimposed. Those superimposed data support the hysteretic dynamics of the considered PMSM. The graph of the
yapunov exponent and the bifurcation diagrams in Fig. 4(a) and (b), respectively, have been calculated along the same
ines. The figures in those diagrams have been computed by increasing or decreasing the control parameters. From those
iagrams, the coexistence of periodic behavior and chaotic behavior for a large range of parameters has been observed.
hose hysteretic dynamics are distinguished by the coexistence of several behaviors for the same set of parameters have
een supported further by using the coexisting attractors of Fig. 5(a) and their basin of attraction of Fig. 5(b).

. T-S fuzzy approach

Note that the arrangement alternates sporadically between negative and positive qualities. Despite the fact that
he Lorenz conditions are completely predictable and the arrangement is entirely under the control of the underlying
5
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Fig. 3. Enlargement of the bifurcation diagram of Fig. 2. The red colors are obtained by decreasing the control parameters while the green color is
obtained by increasing the control parameter.

Fig. 4. (a) Bifurcation diagram showing the local maxima of the state variable x3max when the control parameter b is varied. (b) is the graph of the
aximum Lyapunov exponent associated with (a). These diagrams are obtained for σ = 40, ϵ = 0.1, and γ = 300. These diagrams are obtained with

he initial conditions (0.1, 0, 4). The red colors are obtained by decreasing the control parameters while the blue color is obtained by increasing the
ontrol parameter.
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Fig. 5. (a) Phase trajectory showing the coexistence of the chaotic attractors. They are obtained with the parameter of Fig. 2. The attractor in red is
obtained with the initials conditions (0, 0, 4), while the one in green is obtained with the initial conditions (0, 0,−4). (b) represents the cross-section
f the basin of attraction of the coexisting trajectories in the plane (x1(0), x3(0)) for x2(0) = 0.

ircumstances, the chart of x vs t clearly resembles a random vibration. All things considered, the arrangement also
xhibits particular normality in that the timing of the motion’s recurrence and sufficiency is constant. The transformation

ˆ = [îd îq ω̄]
T is now applied to the entire matrix form of the examined model (1) for simulation purposes. The modified

odel is shown as⎧⎪⎨⎪⎩
did
dt = −id + ωiq + u1,

diq
dt = −iq − ωid + cωiq + u2,

dω
dt = a(iq − ω) + bidiq − T1

(8)

with

a =
Lqβθ̃
R1J

, b =
npb̂k̂θ̃2(Ld − Lq)

J
, k̂ =

β

npθ̃ψr
,

b̂ =
Lq
Ld
, θ̃ =

Lq
R1
, u1 =

1

R1k̂
ud, T1 =

θ̃2

J
TL, c = −

ψr

k̂Lq
,

x̂ = [îd, îq ω̂]
T , u2 =

1

R1k̂
uq.

For convenience, we denote id = îd iq = îq ω = ω̄, and x = x̂. The approximate linear subsystems of the studied nonlinear
ystem might be depicted by a T-S fuzzy model defined by the following IF − THEN rules: Plant Rule i : IF z1(t) is Fi1, z2(t)
s Fi2, and ... and zp(t) is Fip, THEN

ẋ(t) = Aix(t) + Biu(t) + Eiw(t). (9)

n this case, the fuzzy sets are Fij(i = 1, 2, . . . , r, j = 1, 2, . . . , p), the premise variables are z1(t), z2(t), . . . , zj(t)(j =

1, 2, . . . , p), and the number of IF-THEN rules is r . The state, control input, and bounded peak disturbance are denoted
by x(t) ∈ Rn, u(t) ∈ Rm, and w(t) ∈ Rl, respectively. Real constant matrices with compatible dimensions are Ai, Bi, and Ei.
Additionally, the disturbance w(t) meets the condition

wT (t)w(t) ≤ ŵ2. (10)

The following is a description of (9) with center-average defuzzier, product inference, and singleton fuzzifier:

ẋ(t) =

4∑
i=1

hi(z(t))
{
Aix(t) + Biu(t) + Eiw(t)

}
. (11)

with

A1 =

⎡⎢⎣ −a 0 a + bW1

0 −
Lq
Ld

W2

⎤⎥⎦ ,

c −W2 −1

7
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A2 =

⎡⎢⎣ −a 0 a − bW1

0 −
Lq
Ld

−W2

c W2 −1

⎤⎥⎦ ,
A3 =

⎡⎢⎣ −a 0 a + bW1

0 −
Lq
Ld

−W2

c W2 −1

⎤⎥⎦ ,
A4 =

⎡⎢⎣ −a 0 a − bW1

0 −
Lq
Ld

W2

c −W2 −1

⎤⎥⎦ ,
Bi = [1 1 0]T , Ei = [0 0 T1]T .

The membership functions are

h1(z(t)) = H11(id(t)).H21(ω(t)),
h2(z(t)) = H12(id(t)).H22(ω(t)),
h3(z(t)) = H11(id(t)).H22(ω(t)),
h4(z(t)) = H12(id(t)).H21(ω(t)).

Here

H11(id(t)) = 0.5
(
1 +

id(t)
W1

)
,H21(ω(t)) = 0.5

(
1 +

ω(t)
W2

)
,

H12(id(t)) = 0.5
(
1 −

id(t)
W1

)
,H22(ω(t)) = 0.5

(
1 −

ω(t)
W2

)
.

enote z(t) = [z1(t) z2(t) · · · zp(t)]T and

hi(z(t)) =
µi(z(t))∑r
i=1 µi(z(t))

, µi(z(t)) =

p∏
j=1

Fij(zj(t)),

where the grade memberships of zj(t) in Fij are represented by Fij(zj(t)). It is clear that for every t , µi(z(t)) ≥ 0. As a result,
t can be proven that for every t > 0,

∑r
i=1 hi(z(t)) = 1 and hi(z(t)) ≥ 0. Additionally, 1 and 12 are selected as the values

f W1 and W2, respectively.

. Sampled-data controller

The measurement x(tk), which is a discrete-time control of x(t) at the sampling instant tk, is presumed to be the only
ne that can be obtained for control purposes. A zero-order holder (ZOH) with a sequence of hold times provides the
ontrol signal.

0 = t0 < t1 < · · · < tk · · · < lim
k→+∞

tk = +∞.

ased on parallel distributed compensation (PDC), we use the fuzzy SDC for (9). Its fuzzy sets match the fuzzy model’s
remise components. The schematic of fuzzy NFSDC is shown in Fig. 6.
Controller Rule j:

F z1(t) is Fj1, z2(t) is Fj2, and ... and zp(t) is Fjp,
HEN

u(t) = (Kj + △Kj(t))x(tk), t ∈ [tk, tk+1) (12)

here Kj ∈ Rm×n(j = 1, 2, . . . , 4) is the gain matrix of the controller, and △Kj(t) is the unknown matrix representing
ain disturbances and satisfies

△Kj(t) = H1jG1j(t)M1j,

where H1j and M1j denote known matrices, and G1j(t) denotes the unknown matrix function and fulfills G⊤

1j(t)G1j(t) ≤ I .
onsequently, fuzzy SDC is defined by

u(t) =

4∑
hj(z(tk))(Kj + △Kj(t))x(tk). (13)
j=1

8
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L
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Fig. 6. Block diagram for fuzzy NFSDC (14).

Given that tk ≤ t < tk+1 and hk = tk+1 − tk, indicate the sampling interval as η(t) = t − tk. It is obvious that
0 ≤ η(t) < hk ≤ h̄, where h̄ > 0 is a given scalar and denotes the maximum upper bound of sampling instant. Additionally,
the derivative of η(t) is piecewise linear and has the value η̇(t) = 1, t ̸= tk. Substituting (13) into (11), the closed-loop
uncertain T-S fuzzy system is obtained as follows

ẋ(t) =

4∑
i=1

4∑
j=1

hi(z(t))hj(z(tk))
[
Aix(t)

+ Bi(Kj + △Kj(t))x(tk) + Eiw(t)
]
. (14)

The following definition and lemmas, which are required in the derivations of our key conclusions, are introduced
before this section is concluded.

Definition 5.1 ([34]). The reachable set of system (14) is shown as follows for ∀t ≥ 0,

Rx = {x(t) | x(t) and w(t) satisfy (14) with (10)}, (15)

and an ellipsoid used to bound the reachable set system (14) and describing ϵ(P) = {x(t) ∈ Rn
| x(t)TPx(t) ≤ 1,P > 0}.

Lemma 5.2 ([34]). Let V (x(t)) be a differentiable Lyapunov function with V (x(0)) = 0 and w(t) satisfying (10). If there exists
a scalar α > 0 such that V̇ (x(t)) + 2αV (t) −

α

ŵ2w
T (t)w(t) ≤ 0, then V (x(t)) ≤ 1.

emma 5.3 ([36]). For every matrix R > 0, any vector ξ , and any continuously differentiable function x : [−τ , 0] → Rn, and
lack matrices M,N, it holds

− τ

∫ t

t−τ
ẋ⊤(s)Rẋ(s)ds

≤ ξ⊤(t)[τ (t)M⊤R̂−1M + hτN⊤R̂−1N]

+ (
hτ
τ

+
τ (t)2

τ 2
)Sym[ν⊤(t − τ (t), t)Γ ⊤

a M

+ ν⊤(t − τ , t − τ (t))Γ ⊤

a N]ξ (t)

−
{hτ
τ
ν⊤(t − τ (t), t)Γ ⊤

a MR̂Γaν(t − τ (t), t)

+
τ (t)2

2 ν⊤(t − τ , t − τ (t))Γ ⊤

a MR̂Γa(t − τ , t − τ (t))
}
.

τ

9
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where

R̂ = diag{R, 3R, . . . , (2S + 1)R},
Γa = col[πs(0), πs(1), . . . , πs(S)],
ξ (t) = col[x(t), x(t − τ (t)), x(t − τ ), ẋ(t − τ (t)), ẋ(t − τ ),

ω1(t − τ (t), t), ω1(t − τ , t − τ (t)), ω2(t − τ (t), t),

ω2(t − τ , t − τ (t))], ω1(a, b) =
1

(b − a)

∫ b

a
x(s)ds,

ω1(a, b) =
1

(b − a)2

∫ b

a

∫ b

u
x(s)dsdu.

Lemma 5.4 ([37]). For any semi-positive definite matrices U =

⎡⎢⎣ U11 U12 U13

U⊤

12 U22 U23

U⊤

13 U⊤

23 U33

⎤⎥⎦ ≥ 0 the subsequent integral inequality

satisfies:

−

∫ t

t−d(t)
ξ̇ T (s)U33ξ̇ (s)ds ≤

∫ t

t−d(t)
[ξ T (t) ξ T (t − d(t)) ξ̇⊤(s)]⎡⎢⎣ U11 U12 U13

U⊤

12 U22 U23

U⊤

13 U⊤

23 0

⎤⎥⎦
⎡⎣ ξ (t)
ξ (t − d(t))
ξ̇ (s)

⎤⎦ ds.

Lemma 5.5. Let J(t) meet the condition that JT (t)J(t) ≤ I , and let Y , ξ , and J(t) be real matrices of the proper dimensions.
Then, for every constant ϵ > 0, the following inequality is true:

YJ(t)ξ + ξ T JT (t)Y T
≤ ϵYY T

+ ϵ−1ξ T ξ .

6. Main results

The RSE and synthesis for the T-S fuzzy system (14) with a non-fragile sampled-data control (NFSDC) design and
bounded peak disturbance fulfilling wT (t)w(t) ≤ ŵ2 will be shown in this part. First off, using the given Kj, the RSE
problem may be resolved in terms of LMIs. We denote matrices for simplicity,

el = [0n×(l−1)n In 0n×(10−1)n]
⊤, l = 1, 2, . . . , 10, h = e−2αh̄

S =

[
S1 S2

∗ S3

]
,𭟋 =

[
ẋ(s)
x(tk)

]
, η(t) = d̄, h̄d = h̄ − d̄.

Theorem 6.1. Given the positive scalar α, h̄,∅i > 0, and gain matrices Kj, such that the considered reachable set of the closed-
loop system (14) is bounded by condition (15), if there exist positive definite matrices P > 0, S1 > 0, S2 > 0, S3 > 0, T > 0,
matrices Y1 and Y2, semi-positive definite matrices U = [Umn]3×3 ≥ 0, matrices Wl(l = 1, 2, 3), such that the following LMIs
hold with η(t) = {0, h̄}:⎡⎢⎢⎢⎣

Ξ̂ij(0)
√

h̄Y⊤

2 ð⊤

1ij ∅ið⊤

2ij

∗ −S1 0 0
∗ ∗ −∅iI 0
∗ ∗ ∗ −∅iI

⎤⎥⎥⎥⎦ < 0, (16)

⎡⎢⎢⎢⎣
Ξ̂ij(h̄)

√

h̄Y⊤

1 ð⊤

1ij ∅ið⊤

2ij

∗ −S1 0 0
∗ ∗ −∅iI 0
∗ ∗ ∗ −∅iI

⎤⎥⎥⎥⎦ < 0, (17)

⎡⎢⎢⎢⎣
−h̄2φ̃ + Ξ̂ij(0)

√

h̄Y⊤

2 ð⊤

1ij ∅ið⊤

2ij

∗ −S1 0 0
∗ ∗ −∅iI 0
∗ ∗ ∗ −∅iI

⎤⎥⎥⎥⎦ < 0, (18)
10
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where

Ξ̂ij(d̄) = Ξ̂01(d̄) + Ξ̂02(d̄),

Ξ̂01(d̄) = χ1 + χ2 + χ3 + χ4 + Ω̄3ij + eT10
−α

ŵ2 e10,

Ξ̂02(d̄) = (
h̄d

h̄
+

d̄2

h̄2
)Sym[Y1X1 + Y2X2]

− (
h̄d

h̄2
X

⊤

1 S1X1 +
d̄
h̄2

[X
⊤

2 S1X2)],

X1 = col[e1 − e2, e1 + 22 − 2e6, e1 − e2 + 6e6 − 12e8],

X2 = col[e2 − e3, e2 + e3 − 2e7, e2 − e3 = 6e7 − 12e9],

φ̃ =
1
h̄2

Sym[Y1X1 + Y2X2], S1 = diag{S1, 3S1, 5S1},

χ1 = Sym{αe1Pe⊤

1 + e1Pe⊤

5 },

χ2 = −h(2(e2 − e4)⊤S2e4 + h̄e⊤

4 S3e4) + h̄𭟋⊤
S𭟋 + Ξ̂02(d̄),

χ3 = e⊤

1 [h̄U11 + 2U13]e1 + 2e⊤

1 [h̄U12 − U13 + U
⊤

13]e3
+ e⊤

3 [h̄U22 − U23 + U
⊤

23]e3,

χ4 = h̄e⊤

5 Te5 + hχ3,

Ω̄3ij = −e⊤

1 W1e5 + 2e⊤

1 W
⊤

1 Aie1 + e⊤

1 W
⊤

1 BiKje4
− 2e⊤

5 W
⊤

2 e5 + e⊤

1 A
⊤

i W2e5 + e⊤

4 K
⊤

j B
⊤

i W2e5
− e⊤

4 W
⊤

3 e5 + e⊤

1 A
⊤

i W3e4 + 2e⊤

4 W
⊤

3 BiKje4
− eT1W1Eie10 + eT5W2Eie10 + eT4W3Eie10,

ð1ij = [H1jW1 0 0 H1jW3 H1jW2 01×5],

ð2ij = [0 0 0 M1jKj 01×6].

Then the reachable set of system (14) are bounded ϵ(P) such that {x(t) ∈ Rn
| ∥x(t)∥ ≤ r̂} with r̂ =

1√
λmin(P)

.

Proof. Take into consideration the LKF for the system (14) shown below:

V (t) =

3∑
l=1

Vl(t), t ∈ [tk, tk+1) (19)

where

V1(t) = x⊤(t)Px(t),

V2(t) = (tk+1 − t)
∫ t

t−h̄
e2α(s−t)𭟋⊤

S𭟋ds,

V3(t) = (tk+1 − t)
∫ t

t−h̄
e2α(s−t)ẋ⊤(s)Tẋ(s)ds, (20)

By combining the system (14) state trajectories with the time derivative of V (t), we obtain

V̇1(t) + 2αV1(t) = 2x⊤(t)Pẋ(t) + 2αx⊤(t)Px(t),

= ξ⊤(t)χ1ξ (t), (21)

V̇2(t) + 2αV2(t) = (tk+1 − t)𭟋⊤
S𭟋 −

∫ t

t−h̄
e−2αh̄𭟋⊤

S𭟋ds

≤ (tk+1 − t)𭟋⊤
S𭟋 − e−2αh̄

{∫ t

t−h̄
ẋ⊤(s)S1ẋ(s)ds

− (t − tk)xT (tk)S3x(tk) − 2(x(t) − x(tk))TS2x(tk)
}
. (22)
11



R. Vadivel, Z.T. Njitacke, L. Shanmugam et al. Communications in Nonlinear Science and Numerical Simulation 125 (2023) 107407
By using the inequality in Lemma 5.3, we have

−

∫ t

t−h̄
ẋ⊤(s)S1ẋ(s)ds ≤ ξ⊤(t)[d̄Y⊤

1 S
−1
1 Y1

+ h̄dY
⊤

2 S
−1
1 Y2 +

( h̄d

h̄
+

d̄2

h̄2

)
Sym[Y1X1 + Y2X2]

− (
h̄d

h̄2
X

⊤

1 S1X1 +
d̄
h̄2

X
⊤

2 S1X2)]ξ⊤(t),

≤ ξ⊤(t)[Ξ11(d̄) +Ξ12(d̄)]ξ (t), (23)

V̇2(t) + 2αV2(t) ≤ e−2αh̄(−(t − tk)xT (tk)S3x(tk)

− 2(x(t) − x(tk))TS2x(tk) − ξ⊤(t)[Ξ11(d̄) +Ξ12(d̄)]ξ (t))

+ (tk+1 − t)𭟋⊤
S𭟋,

≤ ξ⊤(t)χ2ξ (t), (24)

V̇3(t) + 2αV3(t) ≤ (tk+1 − t)ẋ⊤(t)Tẋ(t)

−

∫ t

t−h̄
e2α(s−t)ẋ⊤(s)Tẋ(s)ds,

≤ (tk+1 − t)ẋ⊤(t)Tẋ(t) −

∫ t

t−h̄
e2αh̄ẋ⊤(s)Tẋ(s)ds. (25)

From V̇3(t), the following equations hold

−

∫ t

t−h̄
ẋ⊤(s)Tẋ(s)ds = −

∫ t

t−h̄
ẋ⊤(s)U33ẋ(s)ds

−

∫ t

t−h̄
ẋ⊤(s)[T − U33]ẋ(s)ds. (26)

Applying Lemma 5.4 and the LeibnizNewton formula for the integral term in (26) such as −
∫ t
t−h̄ ẋ

⊤(s)U33
ẋ(s)ds; the following equations hold for any matrix U with appropriate dimensions, respectively. Thus, we obtain the
following.

−

∫ t

t−h̄
ẋ⊤(s)U33ẋ(s)ds ≤

∫ t

t−h̄
I
⊤

11I12I11ds

≤ x⊤(t)[h̄U11 + 2U13]x(t) + 2x⊤(t)[h̄U12 − U23 + U
⊤

13]

× x(t − h̄) + x⊤(t − h̄)[h̄U22 − U23 + U
⊤

23]x(t − h̄),

≤ ξ⊤(t)χ3ξ (t). (27)

where

I
⊤

11 = [xT (t) xT (t − h̄) ẋ⊤(s)]

I12 =

⎡⎢⎣ U11 U12 U13

U⊤

12 U22 U23

U⊤

13 U⊤

23 0

⎤⎥⎦ .
Therefore, we get the following.

V̇3(t) + 2αV3(t) ≤ (tk+1 − t)ẋ⊤(t)Tẋ(t) + ξ⊤(t)χ3ξ (t)

−

∫ t

t−h̄
ẋ⊤(s)[T − U33]ẋ(s)ds,

≤ ξ⊤(t)χ4ξ (t), (28)

For any real matrix Wl(l = 1, 2, 3), we have the following inequalities:

0 = Sym
[
x⊤(t)W1 + ẋ⊤(t)W2 + x⊤(tk)W3

][
−ẋ(t)

+

r∑ r∑
hi(z(t))hj(z(tk))[Aix(t) + BiKjx(tk) + Eiw(t)]

]
,

i=1 j=1

12
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F

C

w

,

ϵ

V
s
a
a
T

T
s
m

=

r∑
i=1

r∑
j=1

hi(z(t))hj(z(tk))Sym
[
x⊤(t)W1 + ẋ⊤(t)W2

+ x⊤(tk)W3

][
−ẋ(t) + Aix(t) + BiKjx(tk) + Eiw(t)

]
,

={Ω̄3ij + Sym{ð⊤

1ijG1jð2ij}}. (29)

rom Lemma 5.5, it can be verified that

sym{ð⊤

1ijG1jð2ij} ≤
1
∅
ð⊤

1ijð1ij + ∅ð⊤

2ijð2ij. (30)

ombining (20)–(30), we get

V̇ (t) + 2αV (t) −
α

w̃2w
T (t)w(t) < ξ⊤(t)[Ξ̂∗ij

+ d̄Y⊤

1 S
−1
1 Y1 + h̄dY

⊤

2 S
−1
1 Y2]ξ (t) < 0. (31)

here, ξ⊤(t) = [x⊤(t), x⊤(t−d̄), x⊤(t−h̄), x⊤(tk), ẋ⊤(t), 1
η(t)

∫ t
t−η(t) x

⊤(s)ds, 1
h̄−η(t)

∫ t−η(t)
t−h̄ x⊤(s)ds, 1

η(t)2
∫ t
t−η(t) ×

∫ t
u x⊤(s)dsdu

1
(h̄−η(t))2

∫ t−η(t)
t−h̄

∫ t−η(t)
u x⊤(s)dsdu, w⊤(t)] and Ξ̂∗ij = Ξ̂01(d̄)+ 1

∅i
ð⊤

1ijð1ij +∅ið⊤

2ijð2ij. where Ξ̂01(d̄) is defined in Theorem 6.1.
Since T − U33 ≥ 0 then the last terms in (26) is less than or equal to 0. Furthermore, using the Schur complement, it is
guaranteed to see Eqs. (16)(18). Thus according to Lemma 5.2, one has V (t) ≤ 1. It is easy to see

x⊤(t)Px(t) = V1(t) ≤ V1(t) + V2(t) + V3(t) = V (t).

Moreover, by using the spectral property for symmetric positive definite matrix P, we get

λmin(P)∥x(t)∥2
≤ V (t). (32)

Therefore, ∥x(t)∥ ≤ r̂ =
1√

λmin(P)
due to (32). This means that the reachable set of the system (14) is bounded by

(P) = {x(t) ∈ Rn
| xT (t)Px(t) ≤ 1} based on Definition 5.1. The proof is completed. □

Remark 6.2. It should be worth mentioning that the design of the LKF V2(t) = (tk+1 − t)
∫ t
t−h̄ e

2α(s−t)𭟋⊤S𭟋ds,
3(t) = (tk+1 − t)

∫ t
t−h̄ e

2α(s−t)ẋ⊤(s)Tẋ(s)ds based on the NFSDC information tk ≤ t < tk+1 and hk = tk+1 − tk, indicate the
ampling interval as η(t) = t − tk. It is obvious that 0 ≤ η(t) < hk ≤ h̄ and utilize these sampling intervals the V2(t)
nd V3(t) is similar to (tk+1 − t)

∫ t
tk
e2α(s−t)𭟋⊤S𭟋ds and (tk+1 − t)

∫ t
tk
e2α(s−t)ẋ⊤(s)Tẋ(s)ds with limt→tk V2(t) = V2(tk) = 0

nd limt→tk V3(t) = V3(tk) = 0 which has been also used to prove the reachable set synthesis of the proposed LKF in
heorem 6.1.

heorem 6.3. Given the positive scalar α, h̄,∅i > 0, kl(l = 1, 2, 3), such that the considered reachable set of the closed-loop
ystem (14) is bounded by condition (15), if there exist positive definite matrices P̃ > 0, S̃1 > 0, S̃2 > 0, S̃3 > 0, T̃ > 0,
atrices Ỹ1, Ỹ2, semipositive definite matrices Ũ = [Ũmn]3×3 ≥ 0, matrices Yj and W, such that the following conditions are

satisfied for any η(t) = {0, h̄}⎡⎢⎢⎢⎣
Ξ̂ij(0)

√

h̄Ỹ⊤

2 ð̃⊤

1ij ∅ið̃⊤

2ij

∗ −S̃1 0 0
∗ ∗ −∅iI 0
∗ ∗ ∗ −∅iI

⎤⎥⎥⎥⎦ < 0, (33)

⎡⎢⎢⎢⎣
Ξ̂ij(h̄)

√

h̄Ỹ⊤

1 ð̃⊤

1ij ∅ið̃⊤

2ij

∗ −S̃1 0 0
∗ ∗ −∅iI 0
∗ ∗ ∗ −∅iI

⎤⎥⎥⎥⎦ < 0, (34)

⎡⎢⎢⎢⎣
−h̄2 ˜̃

φ + Ξ̂ij(0)
√

h̄Ỹ⊤

2 ð̃⊤

1ij ∅ið̃⊤

2ij

∗ −S̃1 0 0
∗ ∗ −∅iI 0
∗ ∗ ∗ −∅iI

⎤⎥⎥⎥⎦ < 0, (35)
13
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7

L
T

where

Ξ̂ij(d̄) = Ξ̂01(d̄) + Ξ̂02(d̄),

Ξ̂01(d̄) = χ̂1 + χ̂2 + χ̂3 + χ̂4 + Ω̂3ij + eT10
−α

ŵ2 Ie10,

Ξ̂02(d̄) = (
h̄d

h̄
+

d̄2

h̄2
)Sym[Ỹ1X1 + Ỹ2X2]

− (
h̄d

h̄2
X

⊤

1 S̃1X1 +
d̄
h̄2

[X
⊤

2 S̃1X2)],

˜̃
φ =

1
h̄2

He[Ỹ1X1 + Ỹ2X2], S̃1 = diag{S̃1, 3S̃1, 5S̃1},

χ̂1 = sym{αe1P̃e⊤

1 + e1P̃e⊤

5 },

χ̂2 = −h(2(e2 − e4)⊤S̃2e4 + h̄e⊤

4 S̃3e4) + h̄𭟋⊤
S̃𭟋 + Ξ̂02(d̄),

χ̂3 = e⊤

1 [h̄Ũ11 + 2Ũ13]e1 + 2e⊤

1 [h̄Ũ12 − Ũ13 + Ũ
⊤

13]e3
+ e⊤

3 [h̄Ũ22 − Ũ23 + Ũ
⊤

23]e3,

χ̂4 = h̄e⊤

5 T̃e5 + χ̂3,

Ω̂3ij = −k1e⊤

1 W̃e5 + 2k1e⊤

1 AiW̃e1 + k1e⊤

1 BiYje4
− 2k2e⊤

5 W̃
⊤e5 + k2e⊤

1 W̃A⊤e5 + k2e⊤

4 B
⊤

i Y
⊤

j e5
− k3e⊤

4 W̃
⊤e5 + k3e⊤

1 A
⊤

i W̃e4 + 2k3e⊤

4 BiYje4
+ eT1k1W̃Eie10 + eT5k2W̃Eie10 + eT4k3W̃Eie10,

ð̃1ij = [k1H1j 0 0 k3H1j k2H1j 01×5],

ð̃2ij = [0 0 0 M1jYj 01×6].

hen the reachable set of system (14) are bounded ϵ(P) such that {x(t) ∈ Rn
| ∥x(t)∥ ≤ r̂} with r̂ =

1√
λmin(P)

. Furthermore,

under these conditions, the NFSDC gains Kj in (12) are achieved by Kj = YjW−1.

Proof. Following the same proof procedure as in Theorem 6.1 and define W1 = k1W,W2 = k2W,W3 = k3W, W̃ =

W−1,Yj = KjW, P̃ = W̃PW̃, S̃1 = W̃S1W̃, S̃2 = W̃S2W̃, S̃3 = W̃S3W̃, Ũ11 = W̃U11W̃, Ũ12 = W̃U12W̃, Ũ13 = W̃U13W̃, Ũ22 =

W̃U22W̃, Ũ23 = W̃U23W̃, T̃ = W̃TW̃, Ỹ1 = W̃Y1W̃, Ỹ2 = W̃Y2W̃. Pre- and post-multiplying (16), (17), and (18) by
diag{W̃, W̃, W̃  

9 times

, I, W̃, I, I}, we get (33), (34), and (35). This completes the proof. □

emark 6.4. It is noteworthy that, in many industrial process, the dynamic behaviors are generally complex and non-
inear, and their real mathematical models are always difficult to obtain. How to design the non-fragile sampled-data
ontrol (NFSDC) for the PMSM model and analysis of the reachable set estimation has become one main focus of research.
ore particularly, some pioneering works have been discussed in sampled-data control for the PMSM model. In [22],
ifurcation analysis and the problem of T-S fuzzy sampled-data stabilization of PMSM have been studied. Reliable fuzzy
∞ control has been designed for the PMSM model against stochastic actuator faults in [4]. Nien-Tan fuzzy method has
een proposed in [25] for wind energy conversion system via SDC. Recently in [27], fuzzy SDC has been studied for PMSM-
ased wind turbine system. The model considered in the present study is more practical than that proposed by [4,22,25,27]
ecause they consider usual sampled-data control has been studied with a fuzzy system based on stability analysis via
MSM model, but in this paper, we consider a new reachable set estimation and bifurcation analysis with the combination
f NFSDC in the considered PMSM model. Due to the many real-life application the combined study of bifurcation analysis
nd reachable set estimation for NFSDC effects on the PMSM model is more important. Inspired by the idea of [36] the
omposite slack variable inequality (CSVI) was applied in this paper, as a result, the CVSI technique has provided a tighter
pper bound analysis for such LKFs, which can improve the stability performance with less conservative results rather
han these of [26,38,39], which has been shown in comparison example section (Table 3) in the revised manuscript.
enceforth, the investigation procedure and framework model proposed in this study merit a lot of regard for filling such
emand all the more successfully.

. Numerical simulation:

In this part of the article, the whole dynamical differential model of PMSM is solved with the assistance of the Matlab
MI control toolbox. Additionally, the viability of the suggested approach and its superiority are validated at this point.
able 1 provides a definition of the numerical values of the system parameters that are utilized for simulations.
14



R. Vadivel, Z.T. Njitacke, L. Shanmugam et al. Communications in Nonlinear Science and Numerical Simulation 125 (2023) 107407

T

P

h
A
N
S
S
S
S
K

S

Table 1
Parameters of the PMSM.
Symbol Value

Ld 15
Lq 11
R1 0.9010
J 4.7 ×10−3

ψr 1.8
β 0.0162
np 1

7.1. Simulation for PMSM model (1)

The obtained necessary conditions from the previous section, which demonstrate the RSE of the closed-loop system
(14) are discussed in this part together with the dynamical behavior of the PMSM model (1) with a non-smooth-air-gap.
The steps are provided in Algorithm1.

The specified scalars are chosen as h̄ = 0.01 and the parameter of α is chosen as α = 0.25. The LMIs (33)–(35) in
heorem 6.3 can be solved using the aforementioned parameters together with w(t) = 0.2+0.01rand, Bi = [1 1 0]T , Ei =

[0 0 T1]T , (i = 1, 2, 3, 4), Hl = diag{0.1, 0.1, 0.1},Ml = diag{0.5, 0.5, 0.5}, W1 = 1, W2 = 12, and the maximum upper
bound of the sampling interval h̄ is obtained as h̄ = 0.01. Additionally, the associated control gain matrices are computed
as

K1 = [−6.4051 − 0.3120 2.2334],
K2 = [−4.4322 2.1133 1.1011],
K3 = [−5.4051 − 1.3120 2.2334],
K4 = [−3.4322 2.1133 1.1011].

To stabilize the closed-loop system (14), the estimated control gains are included in the suggested control input (13), and
the state responses of PMSM with and without NFSDC-based PMSM are depicted in the figures. 7 and 8. From Fig. 7, the
non-linear model (2) revealed the unpredictable behaviors of their states with respect to different operating parameters.
Furthermore, Fig. 8 confirms that when using the NFSDC in (14), the PMSM model is effectively controlled even in the
occurrence of small uncertainties in the controller. The bounding ellipsoid are shown in Fig. 9. Thus the effectiveness of
the proposed method can be verified.

Algorithm 1: Stabilization analysis of the PMSM model (14)
Step 1: Set the PMSM model parameters Ai, Bi, and Ei uncertain parameters H1j,M1j and define the symmetric matrices
˜ > 0, S̃1 > 0, S̃2 > 0, S̃3 > 0, T̃ > 0, Ỹ1 > 0, Ỹ2 > 0, Ũ = [Ũmn]3×3 ≥ 0 with set the upper bound of sampling instants
k ∈ (0, h̄] .
ssure: Verify the feasibility of LMI.
eed: Find the control gain matrices.
tep 2: Use the sampling conditions and novel LKF techniques to construct the LMIs in Theorem 6.3
tep 3: Adjust the value of α and h̄ to calculate whether the solution of LMI exists.
tep 4: Solve: (33)–(35) in Theorem 6.3 and check the feasibility of LMI using MATLAB control toolbox.
tep 5: If the feasible solution exists, stop the calculation and obtain the maximum value of h̄ and the controller gains
j, else go to step 3 and increase or decrease the value of h̄ and α.
tep 6: Stop.

Therefore, based on the described simulation, the uncertainties are also effectively estimated through the proposed
NFSDC. Furthermore, to establish the effectiveness of the designed NFSDC, different sampling interval values, and its
corresponding control gains are tabulated in Table 2.

8. Comparative example (Effectiveness of NFSDC scheme)

The effectiveness and superiority of the intended NFSDC are demonstrated in this paragraph by examining and
resolving Rossler’s system, [38]. Input terms and the dynamics of Rossler’s system are described by⎧⎨⎩

ẋ1(t) = −x2(t) − x3(t),
ẋ2(t) = x1(t) + τ2x2(t) (36)

ẋ3(t) = τ3x1(t) − (τ4 − x1(t)x3(t) + u(t))
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Table 2
Largest sampling interval h̄ and the corresponding control gain matrices.
h̄ Gain matrices

0.01 K1 = [−6.4062 − 0.5120 2.4334]
K2 = [−4.4322 2.1133 1.1011]
K3 = [−5.4062 − 1.5120 1.4334]
K4 = [−2.4322 1.6133 2.1011]

0.05 K1 = [−6.4062 − 0.5120 2.4334]
K2 = [−4.4322 2.1133 1.1011]
K3 = [−5.4062 − 1.5120 1.4334]
K4 = [−2.4322 1.6133 2.1011]

0.12 K1 = [−12.1211 − 1.1247 2.7856]
K2 = [−5.4562 3.8752 − 1.0533]
K3 = [−6.9787 − 4.0731 − 2.9112]
K4 = [−3.1308 5.0909 1.3422]

Fig. 7. State responses of the model (14).

Fig. 8. Control response curve of the model (14).
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Fig. 9. Trajectories of the bounding ellipsoid.

Fig. 10. Response curve of without control input model (36).

where τ2, τ3, and τ4 are constants and x1(t), x2(t) and x3(t) are state variables. Control input is denoted by u(t). The Rossler
system with x1(t) ∈ [τ4 − ν̂, τ4 + ν̂] can be explain by the T-S fuzzy system with

A1 =

[ 0 −1 −1
1 τ2 0
τ3 0 −ν̂

]
, A2 =

[ 0 −1 −1
1 τ2 0
τ3 0 ν̂

]
,

B1 = B2 = [0 0 1]T ,

nd define the membership functions are h1(x1(t)) =
τ4+ν̂−x1(t)

2ν̂ and h2(x1(t)) = 1 − h1(x1(t)). Assuming τ2 = 0.3, τ3 =

.5, τ4 = 5, ν̂ = 10, α = 0.1, utilizing the values of the parameters listed and solving the LMIs in Theorem 6.3 with Ei = 0
ie,) without disturbance and the maximum sampling interval bound can be calculated based on Theorem 6.3, which is
isted in Table 3. As a result, we achieve the maximum sampling interval h̄ = 0.1203. Furthermore, Table 3 indicates that
he comparison results of the conditions were derived with the largest sampling interval as in Theorem 6.3. Furthermore,
he state trajectories of the system (36) with and without control input u(t) are shown in Figs. 10 and 11 under the
roposed controller scheme. The dynamic response of the control input is shown in Fig. 12. Finally, we conclude that
on-linear systems (36) achieve the existence of the reachable set under the NFSDC scheme, and the conditions obtained
ield better results than the existing results.
17
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Table 3
Calculated maximum sampling interval h̄.
Method [38] [26] [39] Theorem 6.3

h̄ 0.0959 0.1147 0.1165 0.1203

Fig. 11. State trajectories of the model (36).

Fig. 12. Control response curve of the system (36).

. Conclusion

In order to analyze the RSE synthesis of the PMSM system, NFSDC was used in this article. By applying the standard
KF, composite slack variable inequality, and other inequality techniques, the RSE of the closed-loop system has been
ttained and is bounded by an ellipsoid as tiny as possible, which has been obtained through LMIs. The NFSDC gains
ere then acquired by solving the LMIs. Furthermore, the suggested strategy reduces the conservatism of the current
esults. We will focus on the real-time RSE problem for PMSM models with unknown parameterizations in future studies,
nd the challenge of RSE under memory event-triggered control will be a challenging and practical topic of discussion to
nvestigate.
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