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Abstract: Fear and prey refuges are two significant topics in the ecological community because they
are closely associated with the connectivity of natural resources. The effect of fear on prey populations
and prey refuges (proportional to both the prey and predator) is investigated in the nonlinear-type
predator-harvested Leslie–Gower model. This type of prey refuge is much more sensible and realistic
than the constant prey refuge model. Because there is less research on the dynamics of this type
of prey refuge, the current study has been considered to strengthen the existing literature. The
number and stability properties of all positive equilibria are examined. Since the calculations for the
determinant and trace of the Jacobian matrix are quite complicated at these equilibria, the stability of
certain positive equilibria is evaluated using a numerical simulation process. Sotomayor’s theorem is
used to derive a precise mathematical confirmation of the appearance of saddle-node bifurcation and
transcritical bifurcation. Furthermore, numerical simulations are provided to visually demonstrate
the dynamics of the system and the stability of the limit cycle is discussed with the help of the first
Lyapunov number. We perform some sensitivity investigations on our model solutions in relation
to three key model parameters: the fear impact, prey refuges, and harvesting. Our findings could
facilitate some biological understanding of the interactions between predators and prey.

Keywords: prey–predator interaction; fear effect; prey refuge; bifurcation analysis

MSC: 37G10; 34D20; 92D25

1. Introduction

Several researchers have explored the dynamical intricacy of interacting prey–predator
models in depth to comprehend the species’ long-term behavior. A wide range of models
have been developed to investigate the dynamic relationship between prey and their
specialist predators. These models rely on the mathematical formulation by Lotka and
Volterra. It should be noted, however, that certain models are classified as Gause-type
models [1–4]. The Leslie–Gower form relies on the premise that a predator’s population
reduction and the per-capita availability of its prey are inversely correlated. As a matter
of fact, Leslie [5] established a predator–prey model in which the carrying capacity of the
predator’s habitat is inversely correlated with the amount of prey. Leslie and Gower [6] and
Pielou [7] have also examined an intriguing approach to predator dynamics. Similar to this,
the researchers investigated the Leslie–Gower model, taking into account the effects of other
ecological aspects, including harvesting, the Allee effect, prey refuges, and cooperative
hunting. The functional response, or the interaction term, is another crucial element of
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population dynamics. Several ecologists and biologists have modified and analyzed various
functional responses in the literature, including the Holling, ratio-dependent, Beddington–
DeAngelis, and Crowley–Martin responses. For instance, the predator–prey model that
states the predator eats its preferred food (prey) in a ratio-dependent manner was taken
into consideration by the authors of [8]. They carefully examined how the Allee factor and
the fear factor affect the size of the prey population. Also, they showed that the model
under consideration experiences a number of bifurcations, which include saddle-node
bifurcation, Hopf bifurcation, and Bogdanov–Takens bifurcation. Local and global stability
analysis for the Leslie–Gower model and its modified model have been carried out by
many researchers [9–11].

Despite the fact that some ecologists and biologists agree that prey–predator inter-
actions are inadequately defined solely by regular predation and that a certain amount
of fear must be assumed, few mathematical models have been constructed to quantify
the possibility that fear factors influence the size of the prey population. This is partly
due to the absence of specific experimental data illustrating how populations of terrestrial
vertebrates can be impacted by fear [12,13]. Zanette et al. [14] just finished manipulating
song sparrows throughout the course of a mating season to see if the assumed predation
risk may impact reproduction despite the lack of direct killing. Fear may also have an
impact on a juvenile prey’s physiological state, which might reduce its odds of surviving to
adulthood. Birds, for instance, have predator defenses that they activate when they hear
a predator, and when they are breeding they will leave their nests as soon as a threat is
detected. Such anti-predator behavior can have long-term detrimental impacts on reproduc-
tion and population growth, even though it may enhance the probability of survival. Recent
mathematical research has investigated the various changes in dynamical behavior that the
fear effect might bring about in prey–predator models [15]. The modified Leslie–Gower
model was employed by the authors in [16] to explore how fear affects the population of
prey. They looked into the existence of different bifurcation behaviors and showed that the
system experiences a series of dynamic behavior switches as the cost of fear rises, which
eventually cause the prey population to go extinct while the predators survive because
alternative prey is abundant. In [17], the authors studied the modified Leslie–Gower model
with the impact of the fear effect and nonlinear harvesting in both prey and predators. Up
until certain thresholds, it is seen that the fear rate stabilizes the system; after that, it causes
prey extinction.

The prey refuge helps to safeguard prey to some extent and improves species coex-
istence by lowering the risk of extinction caused by predation. The refuge lowers prey–
predator interactions and increases prey survival from extinction, according to a wide range
of observational and empirical evidence [18,19]. Prey refuges have also been the subject
of several theoretical investigations into their impacts, and it has generally been shown
that they promote persistence by stabilizing the prey–predator relationship [20]. According
to some empirical research, refuges can save prey from going extinct by stabilizing the
community equilibrium and lowering the predator–prey interactions’ tendency to oscillate.
Most recently, Al-Salti et al. [15] considered and studied the prey–predator model in regards
to a refuge factor with a variable carrying capacity. Further, from the perspective of ful-
filling human requirements, fishing, forestry, and animal management frequently practice
population harvesting and the exploitation of biological resources. There is considerable
interest in using bioeconomic modeling to shed light on the scientific administration of
natural resources like fisheries and forests with regard to protection for the future benefit
of humankind. Hence, we consider prey refuges in the harvested predator–prey model in
this study.

Inspired by the existing literature, this work uses the nonlinear, harvested modified
Leslie-Gower model with Holling type II interaction. Further, the study examines the
results of including a fear of predation and refuge to balance out predation. To the extent
of our knowledge, there is less research concerning the modified Leslie–Gower model with
predator harvesting, a refuge factor proportional to both species, and a fear factor on the
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prey population. The conditions for various local bifurcation occurrences are described.
The suggested model is illustrated by extensive numerical computations in terms of phase
portraits and bifurcation diagrams. In this article, we studied details of methods followed
by [21,22].

In this study, we will address the following three important aims:

i To explore how the prey population fear and prey refuge impact the dynamical
behavior in the proposed system. The prey refuge considered here depends on both
the prey and predator and this paper shows how it impacts long-term survival.

ii To investigate the necessary parametric conditions for the existence of equilibrium
points, local and global stability, and bifurcation around the coexisting equilibrium
point.

iii To determine whether the system solution is close to a coexisting equilibrium point or
exhibits periodic oscillations by examining the initial sizes of predators and prey.

The paper is structured as follows. In Section 2, we give a deep formulation of a
mathematical model to consider in this work. Basic properties such as positive invariance,
boundedness, and persistence are provided in Section 3. The conditions for the existence
and local and global stability of all possible equilibria are given in Section 4. The conditions
for the occurrence of various bifurcation behavior in the proposed model are in Section 5.

2. Mathematical Formulation

First, the Leslie–Gower models are formulated with coupled, nonlinear ordinary
differential equations, which illustrate the interaction between prey and their specialist
predators in the form below:

ẋ = r1x
(

1− x
K1

)
− exy,

ẏ = r2y
(

1− y
bx

)
x(0) ≥ 0, y(0) ≥ 0.

(1)

It is considered that prey grow logistically and have a linear increase in their intake
rate with food density, where a denotes the attack rate. Also, dy

dt = r2y(1− y
bx ) denotes

the growth of the predator population is of the logistic form, but the traditional K2, which
assesses the carrying capacity determined by the available resources in the ecosystem, is
K2 = bx, proportional to the number of prey (b is the ratio of prey to predators). The Lesie–
Gower term in this equation is denoted by y/bx. It assesses the decline in the predator
population brought on by the scarcity (per capita y/x) of the prey. If there is an extreme
shortage, y can search for other species, but this will restrict its growth because its preferred
food (x) is not widely accessible. A positive constant might be added to the denominator to
solve this problem. Then, the model becomes the modified Leslie–Gower model [23]. Some
recent studies on Leslie–Gower models are cited in [16]. In this work, we confine ourselves
to the modified Leslie–Gower model, which is of the form

ẋ = r1x
(

1− x
K1

)
− exy,

ẏ = r2y
(

1− y
n + bx

)
x(0) ≥ 0, y(0) ≥ 0.

(2)

The modified Leslie–Gower model is obtained by adding a positive constant n to the
denominator in the second equation of model (1).
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2.1. Fear Effect on Prey Population

Model (2) with the assumption that the presence of predators causes fear in the prey
population is provided by

ẋ =
r0x

1 + ky
− d0x− r1x2

K1
− exy,

ẏ = r2y
(

1− y
n + bx

)
x(0) ≥ 0, y(0) ≥ 0.

(3)

Here, we multiplied the function f (k, y) = 1
1+ky in the birth rate of the prey population

due to fear induced by predators, where k is the amount of anti-predator defense due to
fear [16,17]. Hence, the function f (k, y) = 1

1+ky meets a biological meaning and needs to
satisfy the following conditions:

f (0, y) = 1, f (k, 0) = 1, lim
k→∞

f (k, y) = 0,

lim
y→∞

f (k, y) = 0, ∂ f (k,y)
∂k < 0,

∂ f (k, y)
∂y

< 0.

The above biological assumptions are given in Appendix A. For other important
results on considering fear levels in prey–predator dynamics, see [24–27].

2.2. Harvesting in Predator Population

In the disciplines of fisheries, forestry, and wildlife management, using biological
resources and harvesting species are common practices. It is important to note that harvest-
ing is continuing for a long time before the extinction of the population. Harvesting can
be implemented in three ways: (a) a constant-yield H(y) = constant, (b) a constant-effort
H(y) = qEy, or (c) a Michaelis–Menten type H(y) = qEy

cE+ly . The modified Leslie–Gower
model with a nonlinear harvesting rate in predators is demonstrated below:

ẋ =
r0x

1 + ky
− d0x− r1x2

K1
− exy,

ẏ = r2y
(

1− y
bx

)
− qEy

cE + ly
x(0) ≥ 0, y(0) ≥ 0.

(4)

A version of the model (4) without the fear effect has been studied in [28]. In constant
effort harvesting, y is finite and fixed or as the y → ∞ if E is finite and fixed. Hence,
the significance of choosing nonlinear harvesting is that the unrealistic features have
been removed such that qEy

cE+ly →
qy
c as E → ∞ and qEy

cE+ly →
qE
l as y → ∞. Nonlinear

harvesting is more realistic from an economic and biological point of view than other types
of harvesting.

2.3. Prey Refuge

Next, taking into account prey refuges proportional to both populations brings our
model system closer to reality since, in certain natural systems, prey refuges may be
impacted by the size of both predators and prey. In light of this, the current work attempts
to examine how refuges and harvesting affect a Holling type II prey–predator model [29].
However, research into the Leslie–Gower model with group defense is infrequent. Sokol
and Howell [30] proposed a modified Leslie–Gower predator–prey system with group
defense. Prey refuges were included in the model investigated in [30], and the spatial
component revealed that species distributions are highly susceptible to group defense
compared to prey refuges [31].
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Model (4) includes a prey refuge that is proportional to both populations, i.e., the
refuge size is µxy from the predator, with µ ∈ [0, 1]. The incorporation of a prey refuge
allows (1− µy)x of the prey to be accessible for the predator to hunt [10]. To guarantee
that the allowable range of the refuge is 0 ≤ (1− µy) ≤ 1 for a realistic biosystem [32], we
only permit those tiny values of µ such that (1− µy) ≥ 0, i.e., y ≤ 1

µ . Next, model (4) is
provided by 

ẋ =
r0x

1 + ky
− d1x− r1

K1
x2 − e(1− µy)xy

1 + m(1− µy)x
,

ẏ = r2y
(

1− y
n + bx(1− µy)

)
− qEy

cE + ly
,

x(0) ≥ 0, y(0) ≥ 0,

(5)

where x and y stand for the prey and generalist predator densities, respectively, at time t;
r0 and d1 are the growth and death rate of the prey population; K1 is the prey’s carrying
capacity; the term y/(1 + mx) is the Holling type II function [2,33,34] where m > 0
represents a reduction in the predation rate at high predator densities due to mutual
interference among the predators while searching for food or m is the product of the
feeding rate and processing time, i.e., processing and searching for food are mutually
exclusive events; and r2 denotes the growth rate of the predator population size. The
biological meaning of all parameters are presented in Table 1.

Table 1. Biological meaning of the parameters.

Parameter Value

r0 Birth rate of prey
b Conversion factor of prey into predator
k The level of fear
n Positive constant (alternative food for predator)
d Natural death rate of predator
q Catchability coefficient
m Half saturation constant
K1 Environmental carrying capacity
E External effort devoted to harvesting
e The effort of capture rate
c Positive constant
r2 Intrinsic growth rate of predator
l Positive constant

By considering a1 = r1
K1

, a2 = r2
b , α = qE

l and β = cE
l , then the model with fewer

parameters takes the following form:
ẋ =

r0x
1 + ky

− d1x− a1x2 − e(1− µy)xy
1 + m(1− µy)x

:= F̂1(x, y),

ẏ = y
(

r2 −
a2y

n + x(1− µy)

)
− αy

β + y
:= F̂2(x, y),

x(0) ≥ 0, y(0) ≥ 0,

(6)

where x(0) = x0 and y(0) = y0 are the initial conditions for model (6). Hereafter, we
consider model (6) for analysis in the below sections.

3. Some Preliminaries

In this section, we provide some preliminaries, such as the existence, positivity, persis-
tence, and boundedness of the solution for model (6). The persistence in a predator–prey
model plays a significant role in mathematical ecology that guarantees the long-term exis-
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tence of all species. Here, we have demonstrated the persistence criterion using the average
Lyapunov function [35].

3.1. Existence and Positive Invariance

Let X̂ = (x, y)t, F = R2 → R2, F̂ = (F̂1, F̂2)
t, and model (6) is given as

dX̂
dt

= F̂(X̂), (7)

where F̂i ∈ C∞(R) and i = 1, 2. Since F̂ is a smooth function of the variables (x, y) in the
positive quadrant Ω = {(x, y); x > 0, y > 0} ⊂ R2

+, where F̂ is Lipschitzian function of
two variables, the local existence and uniqueness of the solution set the hold on the Ω.

3.2. Persistence

Let us consider

P(x, y) = xp1 yp2 , (8)

where p1 and p2 are positive constants. Now, define the function Φ as:

Φ(x, y) =
Ṗ(x, y)
P(x, y)

= γ1
ẋ
x
+ γ2

ẏ
y

= γ1

(
r0

1 + ky
− d1 − a1x− e(1− µy)y

1 + m(1− µy)x

)
+ γ2

(
r2 −

a2y
n + x(1− µy)

− α

β + y

)
.

Now, Φ(0, 0) = γ1r0 − γ1d1 + γ2r2 − γ2
α
β > 0, if γ1r0 + γ2r2 > γ1d1 + γ2

α
β .

Φ(x̄, 0) = γ1(r0 − d1 − a1 x̄) + γ2

(
r2 −

α

β

)
= γ2

(
r2 −

α

β

)
> 0, if r2 >

α

β
.

Hence, the solution of model (6) is permanent if γ1r0 + γ2r2 > γ1d1 + γ2
α
β and r2 > α

β

are satisfied.

3.3. Positivity and Uniform Boundedness

Theorem 1. Every solution of model (6) with initial conditions x(t) > 0 and y(t) > 0 exists in
the interval [0,+∞), for all t ≥ 0.

Proof. The given initial condition for model (6) ensures that a unique solution (x(t), y(t))
exists and is defined on the interval [0, ξ), where 0 < ξ ≤ +∞. This is due to the fact that
the right-hand side of model (6) is continuously differentiable and locally Lipschitz in the
domain R2

+, ensuring the existence and uniqueness of the solution.
From model (6), we have

x(t) = x(0) exp
[∫ t

0

{
r0x

1 + ky
− d1x− a1x2 − e(1− µy)xy

1 + m(1− µy)x

}
dθ

]
> 0,

y(t) = y(0) exp
[∫ t

0

{
y
(

r2 −
a2y

n + x(1− µy)

)
− αy

β + y

}
dθ

]
> 0.

(9)

It can be concluded that model (6) is positively invariant for all t ≥ 0.

Theorem 2. All solutions starting in R2
+ are uniformly bounded.
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Proof. From model (6),

dx
dt

≤ r0x
1 + ky

− d1x− a1x2

≤ r0x− d1x− a1x2

= x(r0 − d1 − a1x),

and it is clear that x(t) ≤ r0−d1
a1

:= M1 as t → ∞, since it is considered that the intrinsic
growth rate of the prey size should be positive, i.e., r0 − d1 > 0.

Then, using the maximum M1 in the second equation of model (6), we have

dy
dt
≤ y

(
r2 −

a2y
n + M1µ1y

− α

β + y

)
,

where µ1 = 1− µy > 0. Then, from the above inequality, we have

y(t) ≤ n + µ1M1 − α

r2a2
:= M2 as t→ ∞,

which ensures the boundedness of the solutions.

4. Equilibria and Their Stability

This section investigates the equilibria points’ existence in the proposed model and
provides a qualitative assessment of their stability. To obtain the equilibria of model (6), we
need to solve the prey and predator nullcline equation, which is

r0

1 + ky
− d1 − a1x− e(1− µy)y

1 + m(1− µy)x
= 0,

r2 −
a2y

n + x(1− µy)
− α

β + y
= 0.

(10)

We can see that model (6) possesses the following equilibria:
1. The trivial equilibrium E0(0, 0) always exists.
2. The predator-free equilibrium Ê(x̂, 0) always exists, where x̂ = r0−d1

a1
, i.e., r0 > d1.

3. The prey-free equilibrium is denoted by Ē(0, ȳ), where ȳ is calculated by solving
the quadratic equation below:

a2ȳ2 + (a2β− r2n)ȳ + αn− r2nβ = 0. (11)

Hence, if r2 > α
β then (11) has at least one positive root. Then, the model possesses a

prey-free equilibrium point.
4. Now, we are interested in the coexistence equilibrium point E∗(x∗, y∗), where x∗ is

calculated from the second equation of (10), which is

x∗ =
A1 + A2y∗ + A3y∗2

A4 + A5y∗ + A6y∗2 , (12)

where A1 = αn − r2βn, A2 = a2β − r2n, A3 = a2, A4 = r2β − α, A5 = r2 − r2βµ + αµ,
A6 = −r2µ, and y∗ is calculated from the following equation:

B1y7 + B2y6 + B3y5 + B4y4 + B5y3 + B6y2 + B7y + B8 = 0, (13)

where

B1 = A2
6eky7µ,

B2 = a1 A2
3kmµ + A6k(2A5e + A3d1m)µ + A2

6e(−k + µ),

B3 = A6(−a1 A3k + A2d1kµm− d1 A3km + A3d1µm + 2A4ekµ + 2A5e(µ− k)− A3µmr0)
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+a1 A3m(2A2kµ + A3(µ− k)) + A5kµ(A3d1m + A5e)− A2
6(d1k + e),

B4 = −a1

(
A3(−2A1kµm + 2A2km + A5k− 2A2µm + A6) + A2k(A6 − A2µm) + A2

3m
)

−A6(2A5(d1k + e) + m(−A1d1kµ + A2d1k− A2d1µ + A3d1 + A2µr0 − A3r0) + 2A4e(k− µ))

+A2 A5d1kµm + A3 A4d1kµm− A3 A5d1km + A2
6(r0 − d1)

+A3 A5d1µm + 2A4 A5ekµ− A2
5ek + A2

5eµ− A3 A5µmr0,

B5 = −a1

(
A2

2m(k− µ)+A2(k(A5 − 2A1µm)+A6)+A3(2m(A1k− A1µ+A2)+A4k+A5)+A1 A6k
)

−A5(m(−A1d1kµ + A2d1k− A2d1µ + A3d1 + A2µr0 − A3r0) + 2A6(d1 − r0) + 2A4e(k− µ))

−A2
5(d1k + e) + A2 A4d1kµm− A3 A4d1km− A1 A6d1km− 2A6 A4d1k + A3 A4d1µm

+A1 A6d1µm− A2 A6d1m + A2
4ekµ− 2A6 A4e− A3 A4µmr0 − A1 A6µmr0 + A2 A6mr0,

B6 = −a1

(
A2(2A1m(k− µ) + A4k + A5) + A1(k(A5 − A1µm) + A6) + A2

2m + A3(2A1m + A4)
)

−2A5 A4(d1k + e) + A1 A4d1kµm− A5m(A1d1(k− µ) + A2(d1 − r0) + A1µr0)

−A2 A4d1km + A2 A4d1µm− A3 A4d1m− A1 A6d1m− A2
5(d1 − r0)− 2A6 A4d1

−A2
4ek + A2

4eµ− A2 A4µmr0 + A3 A4mr0 + A1 A6mr0 + 2A6 A4r0,

B7 = −a1 A1(A1m(k− µ) + A4k + A5)− a1 A2(2A1m + A4)− A2
4(d1k + e)

−A1 A4m(d1(k− µ) + µr0)− A2 A4m(d1 − r0)

−A1 A5m(d1 − r0)− 2A5 A4(d1 − r0),

B8 = −(A1m + A4)(a1 A1 − A4(r0 − d1)).

Here, the coefficients Bi, i = 1, 2, . . . , 8 in equation (13) are influenced by the system
parameters. The analytical expression for equilibria to the aforementioned model is ex-
tremely challenging. By solving numerically, one can derive the coexistence equilibrium E∗.
Then, we have the following lemma on the existence of various equilibria.

Remark 1. For model (6), E0 and Ê always exist. Ē exists if r2 > α
β holds. From Descartes’s rule

of sign changes, it is clear that B1 > 0 and B8 < 0 if a1 A1 > A4(r0 − d1). Then, (13) has at least
one positive root. Furthermore, the number of sign changes in (13) can determine the number of
coexistence equilibria of model (6), and it is also necessary that x∗ > 0. Equation (13) has exactly
one positive root if there is only one sign change occurring in the coefficients Bi. Hereafter, we
consider that if model (6) has two coexistence equilibria they are named E1 and E2. If it has only one
coexistence equilibrium, it is named E1.

Furthermore, the nullcline plot illustrates how the number of equilibria varies by
varying the fear parameter with the other parameters held constant. For the choice of
fixed parameter values k, for instance, Figure 1 illustrates the existence of two, one, and
no interior equilibrium points for model (6). For the choice of fixed parameter values
r0 = 1.01, d = 0.01, a1 = 1, e = 0.85635, µ = 0.015, m = 0.015, r2 = 2.60, a2 = 0.4142,
n = 0.01, α = 1.475193, and β = 0.2 and varying the fear parameter k, model (6) has the
two interior equilibrium points E1 = (0.28693, 0.79719) and E2 = (0.60581, 0.44076) for
k = 0.05, unique equilibrium E1 = (0.37126, 0.52976) for k = 0.4093, and no equilibria for
k = 0.5. Similar changes in the number of equilibria can occur by varying both the prey
refuge µ and harvesting parameter α.
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Figure 1. Nullcline plots: the orange color line depicts the prey nullcline, the pink color depicts the
predator nullcline, and the red points denote the equilibrium points.

4.1. Local Stability

We now examine the local stability properties around the equilibria for model (6). For
any given equilibrium (x, y), the Jacobian matrix is

J =

[
x ∂ f1

∂x + f1 x ∂ f1
∂y

y ∂ f2
∂x y ∂ f2

∂y + f2

]
, (14)

where

f1 =
r0

1 + ky
− d1 − a1x− e(1− µy)y

1 + m(1− µy)x
,

f2 = r2 −
a2y

n + x(1− µy)
− α

β + y
,

∂ f1

∂x
=

emy(1− µy)2

(mx(1− µy) + 1)2 − a1,

∂ f1

∂y
=

2eµy− e
mx(1− µy) + 1

− eµmxy(1− µy)
(mx(1− µy) + 1)2 −

kr0

(ky + 1)2 ,

∂ f2

∂x
=

a2y(1− µy)
(n + x(1− µy))2 ,

∂ f2

∂y
= − a2(n + x)

n + x(1− µy)
+

α

(β + y)2 .

The local stability properties of the equilibria E0, Ê, and Ē are stated in the following
theorem.
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Theorem 3. For model (6),

1. E0 is saddle if r2 < α
β , otherwise it is unstable.

2. Ê is stable if r2 < α
β and r0 − d1 < 2a1, otherwise it is saddle.

3. Ē is

i. stable if r0
1+kȳ < d1 + e(1− µȳ)ȳ and r2 < 2a2 ȳ

n + αβ

(ȳ+β)2 .

ii. saddle if r0
1+kȳ <d1+e(1− µȳ)ȳ and r2>

2a2 ȳ
n + αβ

(ȳ+β)2 (or) r0
1+kȳ >d1+e(1− µȳ)ȳ and

r2<
2a2 ȳ

n + αβ

(ȳ+β)2 .

iii. unstable if r0
1+kȳ > d1 + e(1− µȳ)ȳ and r2 > 2a2 ȳ

n + αβ

(ȳ+β)2 .

Proof. The Jacobian matrices calculated at E0, Ê, and Ē are

JE0 =

(
r0 − d1 0

0 r2 − α
β

)
, JÊ =

(
r0 − d1 − 2a1 −x̂

( e
1+m + kr0

)
0 r2 − α

β

)
,

JĒ =

( r0
1+kȳ − d1 − e(1− µȳ)ȳ 0

ȳ2(1−µȳ)a2
n2 r2 − 2a2 ȳ

n −
αβ

(ȳ+β)2

)
.

The eigenvalues of the JE0 is r0 − d1 and r2 − α
β . The eigenvalue of JÊ is r0 − d1 − 2a1

and r2 − α
β . The eigenvalues of JĒ are r0

1+kȳ − d1 − e(1− µȳ)ȳ and r2 − 2a2 ȳ
n −

αβ

(ȳ+β)2 .

The following theorem provides the conditions for the local asymptotic stability of an
arbitrary interior equilibrium point E∗.

Theorem 4. The coexistence equilibrium E∗ is locally asymptotically stable if and only if Tr(JE∗) < 0
and Det(JE∗) > 0.

Proof. The Jacobian matrix at E∗ is given by

JE∗ =

(
a11 a12
a21 a22

)
, (15)

where

a11 =
emx∗y∗(1− µy∗)2

(mx∗(1− µy∗) + 1)2 − a1x∗,

a12 =
2eµx∗y∗ − ex∗

mx∗(1− µy∗) + 1
− eµmx∗2y∗(1− µy∗)

(mx∗(1− µy∗) + 1)2 −
kr0x∗

(ky∗ + 1)2 ,

a21 =
a2y∗2(1− µy∗)

(n + x∗(1− µy∗))2 ,

a22 = − a2y∗(n + x∗)
n + x∗(1− µy∗)

+
αy∗

(β + y∗)2 .

The characteristic polynomial of JE∗ is given by

λ2 − Tr(JE∗)λ + Det(JE∗) = 0, (16)

where Tr(JE∗) = a11 + a22 and Det(JE∗) = a11a22 − a12a21.

Furthermore, the dynamical behaviors are summarized in Table 2.
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Table 2. Existence and stability conditions of equilibria for model (6).

Equilibrium and Feasibility Stability
Coordinate Condition Status

(i) E0(0, 0) always saddle
(ii) Ê(x̂, 0) always stable

if r2 < α
β and r0 − d1 < 2a1

(iii) Ē(0, ȳ) r2 > α
β stable if

r0
1+kȳ < d1 + e(1− µȳ)ȳ and

r2 <
2a2 ȳ

n +
αβ

(ȳ+β)2

(iv) E∗(x∗, y∗) at least one sign change Tr(JE∗ ) < 0 and
in coefficients Bi in (13) Det(JE∗ ) > 0

and x∗ > 0

Then, we conclude that E0 and Ê always exist, i.e., the birth rate of the prey population
r0 is always greater than d1. Additionally, if Ê exists and is stable it violates the condition
for the existence of Ē. Moreover, the relationship between the effects of other parameters
has been discussed in the numerical simulations section.

4.2. Global Stability

Local stability only guarantees the behavior of the system in the small neighbourhood
of an equilibrium point. It does not provide information about the long-term behavior of
the system or its stability properties over the entire state space. In contrast, global stability
refers to the property of a dynamical system where all trajectories, regardless of their initial
conditions, converge to a stable equilibrium point. In this subsection, we concentrate on the
global coexistence property of the arbitrary coexistence equilibrium point E∗. The global
stability properties of model (6) are attained by considering a suitable Lyapunov function.
The Lyapunov function used in this article has been widely considered in [32,36,37]. From
Remark 1, if model (6) has exactly one coexistence equilibrium point E1(x1, y1) then we
have the following results for the globally asymptotically stable condition for E1(x1, y1).

Theorem 5. If r0 − d1 > 0 and a1D1 > emy1(1− µy1)(1− µy) is satisfied, then the coexistence
equilibrium E1 is globally asymptotically stable.

Proof. Let us take the suitable Lyapunov function V(x, y) : R2
+ → R as follows:

V(x, y) = V1(x) + ΩV2(y), (17)

where V1(x) = x − x1 − x1 ln(x/x1) and V2(y) = y − y1 − y1 ln(y/y1). The positive
constant Ω is defined below. Both functions are well defined and continuous on R2

+.
V(x, y) is positive in R2

+ except at E1(x1, y1) and V(x, y) = 0 at E1(x1, y1). Moreover,
∂V1(x)

∂x > 0 for x > x1, ∂V1(x)
∂x < 0 for x < x1, and ∂V2(y)

∂y > 0 for y > y1, ∂V2(y)
∂y < 0 when

y < y1. The time derivative of V1 and V2 at the solutions of model (6) after using E1 is

dV1

dt
= (x− x1)

ẋ
x

= (x− x1)

(
r0

1 + ky
− d1 − a1x− e(1− µy)y

1 + m(1− µy)x

)
(18)

= (x− x1)

(
r0

1 + ky
− r0

1 + ky1
− a1x + a1x1 −

e(1− µy)y
1 + m(1− µy)x

+
e(1− µy1)y1

1 + m(1− µy1)x1

)
.

dV2

dt
= (y− y1)

ẏ
y

= (y− y1)

(
r2 −

a2y
n + x(1− µy)

− α

β + y

)
(19)

= (y− y1)

(
a2y1

n + x1(1− µy1)
− a2y

n + x(1− µy)
− α

β + y1
+

α

β + y

)
.
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We define D1 = (1 + m(1 − µy)x)(1 + m(1 − µy1)x1) and D2 = (n + x(1 − µy))
(n + x1(1− µy1)). By substituting (18) and (19), we obtain

dV
dt

= (x− x1)

(
r0

1 + ky
− r0

1 + ky1
− a1x + a1x1 −

e(1− µy)y
1 + m(1− µy)x

+
e(1− µy1)y1

1 + m(1− µy1)x1

)
+Ω(y− y1)

(
r2 −

a2y
n + x(1− µy)

− α

β + y

)
= (x− x1)

(
−r0k

(1 + ky)(1 + ky1)
(y− y1)− a1(x− x1) (20)

+
1

D1

(
(−e(1 + mx1) + eµ(1 + m)(y + y1)− emµ2x1y1y)(y− y1)

+(emy1(1− µy1)(1− µy))(x− x1)))

+(y− y1)(−αΩ(y− y1)−
Ω
D2

(a2(n + x1)(y− y1) + a2y1(1− µy)(x− x1))).

Choosing Ω such that

Ω =
D2

a2y1(1− µy1)

(
−r0k

(1 + ky)(1 + ky1)
+

(−e(1 + mx1) + eµ(1 + m)(y + y1)− emµ2x1y1y)
D1

)
, (21)

we obtain

dV
dt

= −
(
−a +

emy1(1− µy1)(1− µy)
D1

)
(x− x1)

2 −
(

αΩ +
a2(n + x1)Ω

D2

)
(y− y1)

2. (22)

We can see that the coefficient of (y− y1)
2 < 0 and it is necessary to have a negative

in the coefficient of (x− x1)
2; for this, we have

−a1 +
emy1(1− µy1)(1− µy)

(1 + m(1− µy)x)(1 + m(1− µy1)x1)
≤ −a1 +

emy1(1− µy1)

(1 + m(1− µy1)x1)
. (23)

Clearly, V is positive definite for (x, y) ∈ R2
+\(x1, y1). Since the quadratic form (23)

in the previous equation is positively defined, every trajectory in the positive quadrant
other than (x1, y1) has dV

dt < 0. As a result, if the condition is met then E1 is globally
asymptotically steady: dV

dt |(x1,y1)
= 0. Then, the Lyapunov function V constructed here

follows the Lyapunov–Lasalle’s invariance principle [38].

5. Bifurcation Analysis

The study of dynamical systems that undergo abrupt qualitative changes in behavior
due to changes in their parameter values is the focus of the mathematical field of bifurcation.
For further information on the foundations of local bifurcation analysis, see [21,22,39]. In
this section, the parametric conditions for the occurrence of various bifurcation behavior
for model (6) is discussed here, which is saddle-node, transcritical, and Hopf bifurcation
near E∗ by varying the fear, refuge, and harvesting parameter.

5.1. Hopf Bifurcation

In this subsection, we provide the condition for the existence of Hopf bifurcation
around the arbitrary interior equilibrium E∗, and the stability of the Hopf bifurcation is
discussed with the help of the value of the first Lyapunov coefficient.

Theorem 6. The interior equilibrium E∗ undergoes Hopf bifurcation if Tr(JE∗) = 0 and Det(JE∗) > 0.

Theorem 7. Assume that the system has an interior equilibrium E∗ and satisfies Theorem 6; then, E∗

changes its stability via Hopf bifurcation at some threshold k = kHB and satisfies d
dk Tr[E∗]|k=kHB 6= 0.
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Proof. We must confirm the Hopf bifurcation’s transversality condition in order to guaran-
tee the stability changes induced by nondegenerate Hopf bifurcation. Clearly,

d
dk

Tr[E∗]|k=kHB = (− r0y∗

(ky∗ + 1)2 ) 6= 0. (24)

When the parametric limitation Tr[E∗] = 0 and the aforementioned transversality
requirement are both met then E∗ loses stability via Hopf bifurcation.

5.2. Stability of Limit Cycle

To analyze the stability direction of the limit cycle, we proceed to compute the first
Lyapunov number l1 at the equilibrium point E∗ of model (6).

To begin with, we shift the equilibrium E of model (6) to (0, 0) by applying x = x̂− x∗

and y = ŷ− y∗. This yields model (6) in a neighborhood of the origin as{ ˙̂x = â10 x̂ + â01ŷ + â20 x̂2 + â11 x̂ŷ + â02ŷ2 + â30 x̂3 + â21 x̂2ŷ + â12 x̂ŷ2 + â03ŷ3,
˙̂y = b̂10 x̂ + b̂01ŷ + b̂20 x̂2 + b̂11 x̂ŷ + b̂02ŷ2 + b̂30 x̂3 + b̂21 x̂2ŷ + b̂12 x̂ŷ2 + b̂03ŷ3,

(25)

Since model (6) exhibits the Hopf bifurcation, we have (â10 + b̂01 = 0) and ∆ =
â10b̂01 − â01b̂10 > 0. The coefficients âij and b̂ji are determinant by

â10 =
emx∗y∗(1− µy∗)2

(mx∗(1− µy∗) + 1)2 − a1x∗,

â01 = − kHBr0x∗

(1 + kHBy∗)2 −
emx∗2y∗µ(1− µy∗)
(1 + mx∗(1− µy∗))2 +

2ex∗y∗µ− ex∗

1 + mx∗(1− µy∗)

â20 = −a1 −
emy∗(µy∗ − 1)2

(mx∗(µy∗ − 1)− 1)3 ,

â11 =
e(−µy∗(mx∗ + 2) + mx∗ + 1)

(mx∗(µy∗ − 1)− 1)3 − kHBr0

(kHBy∗ + 1)2 ,

â02 =
k2

HBr0x∗

(kHBy∗ + 1)3 −
eµx∗(mx∗ + 1)

(mx∗(µy∗ − 1)− 1)3 ,

â30 =
em2y∗(µy∗ − 1)3

(m(x∗ − µx∗y∗) + 1)4 ,

â21 =
em(µy∗ − 1)(mx∗(µy∗ − 1) + 3µy∗ − 1)

(m(x∗ − µx∗y∗) + 1)4 ,

â12 =
eµ(mx∗(mx∗(µy∗ − 1) + 2µy∗) + 1)

(m(x∗ − µx∗y∗) + 1)4 +
k2

HBr0

(kHBy∗ + 1)3 ,

â03 = x∗
(

eµ2mx∗(mx∗ + 1)
(m(x∗ − µx∗y∗) + 1)4 −

k3
HBr0

(kHBy∗ + 1)4

)
,

b̂10 =
a2y∗2(1− µy∗)

(n + x∗(1− µy∗))2 ,

b̂01 = − a2y∗(n + x∗)
(n + x∗(1− µy∗))2 +

αy∗

(β + y∗)2 ,

b̂20 = − a2y∗2(1− µy∗)2

(n + x∗(1− µy∗))3 ,

b̂11 =
a2y∗

(
−3µy∗(n + x∗) + 2(n + x∗) + µ2x∗y∗2

)
(n− µx∗y∗ + x∗)3 ,

b̂02 =
αβ

(β + y∗)3 −
a2(n + x∗)2

(n− µx∗y∗ + x∗)3 ,
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b̂30 =
a2y∗2(1− µy∗)3

(n + x∗(1− µy∗))4 ,

b̂21 =
a2y∗(µy∗ − 1)(n(2− 4µy∗) + µx∗y∗(µy∗ − 3) + 2x∗)

(n− µx∗y∗ + x∗)4 ,

b̂12 = − a2(n + x∗)(µy∗(3n + x∗)− n− x∗)
(n− µx∗y∗ + x∗)4 ,

b̂03 = − a2µx∗(n + x∗)2

(n− µx∗y∗ + x∗)4 −
αβ

(β + y∗)4 .

Then, the quantity l1 says the stability of the limit cycle for model (6) is given by

l1 =
−3π

2â01∆3/2

{[
â10b̂10(â2

11 + â11b̂02 + â02b̂11) + â10 â01(b̂2
11 + â20b̂11 + â11b̂02)

+b̂2
10(â11 â02 + 2â02b̂02)− 2â10b̂10(b̂2

02 − â20 â02)− 2â10 â01(â2
20 − â20 â02)

−â2
01(2â20b̂20 + b̂11b̂20) + (â01b̂10 − 2b̂2

10)(b̂11b̂02 − b̂11 â20) ]

−(â2
10 + â01b̂10)

[
3(b̂10b̂03 − â01 â30) + 2â10(â21 + b̂12) + (b̂10 â12 − â01b̂21)

]}
.

A supercritical Hopf bifurcation destabilizes the equilibrium E∗ when l1 < 0, whereas
a subcritical Hopf bifurcation occurs when l1 > 0. Since the above expression for the
first Lyapunov number l1 is complex, we cannot determine the sign of l1 from the above
expression analytically. As a result, we have found it in the numerical part at the Hopf
bifurcation point.

5.3. Nonexistence of Periodic Solution

Now, we will express model (6) as dx̂
dt = F̂(X̂), where X̂ = (x, y) and F̂ = (F̂1, F̂2). Here,

F̂1, F̂2 ∈ C∞(R), where F̂1 = r0x
1+ky − d1x− a1x2 − e(1−µy)xy

1+m(1−µy)x and F̂2 = r2y− a2y2

n+x(1−µy) −
αy

β+y . Let Ĥ(x, y) = 1
xy be a continuously differentiable function for (x, y) ∈ Φ.

5 · (HF̂) =
∂

∂x

(
r0

y(1 + ky)
− d1

y
− a1x

y
− e(1− µy)

1 + m(1− µy)x

)
+

∂

∂y

(
r2

x
− a2y

x(n + x(1− µy))
− α

x(β + y)

)
(26)

= − a
y
+

em(1− µy)2

(1 + m(1− µy)x)2 −
a2(n + x)

x(n + x(1− µy))2 +
α

x(y + β)2 < 0.

According to Bedixson–Dulac’s criterion for the nonexistence of periodic orbits [40], if
5 · (HF̂) < 0 then the present system does not exhibit any periodic orbits.

5.4. Transcritical Bifurcation

Next, we discuss the possibility of the existence of transcritical bifurcation in this
subsection. We know model (6) has the boundary equilibrium Ē(x̂, 0). Also, when α =
αTC = r2β, Ê coincides with arbitrary E∗. By taking α as the bifurcation parameter, we
use Sotomayor’s Theorem [39] to check model (6) undergoes a transcritical bifurcation.
According to [39], Det(JÊ) = λ1λ2 = 0. Let F̂ = (F̂1, F̂2)

T ; the Jacobian JÊ at Ê is given by

JÊ = Dg(Ē) =
(

r0 − d1 − 2a1 −x̂
(
kr0 +

e
1+m

)
0 0

)
.
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Clearly, Det(JÊ) = 0 at α = αTC = r2β, which has a simple zero eigenvalue. Also, let
the matrices JÊ and JÊ

T have the eigenvectors Θ = (θ1, θ2)
T and Φ = (φ1, φ2)

T for the zero
eigenvalue, which yields

Θ =

(
x̂
(

kr0 +
e

1 + m

)
, r0 − d1 − 2a1

)T
, Φ = (0, 1)T .

Furthermore, we can obtain F̂µ(Ê; αTC) =

(
0
− y

y+β

)∣∣∣∣
(x̂,0)

.

Now,

Ω1 =ΦT F̂α(Ê; αTC) = 0, (27)

and also

DF̂α(Ê; αTC)Θ =

 0 0

0
− β

(y+β)2

(y+mt)3

( 0
1

)∣∣∣∣
(x̂,0)

=

(
0
− 1

β

)
. (28)

Therefore,

Ω2 =ΦT DF̂(Ê; αTC)Θ = − 1
β
6= 0, (29)

Similarly,

D2 F̂(Ê; αTC)(Θ, Θ) =

 ∂2 f1
∂x2 θ2

1 + 2 ∂2 f1
∂x∂y θ1θ2 +

∂2 f1
∂y2 θ2

2
∂2 f2
∂x2 θ2

1 + 2 ∂2θ2
∂x∂y θ1θ2 +

∂2 f2
∂y2 θ2

2


=

(
η1θ2

1 + 2η2θ1θ2 + η3θ2
2

η4θ2
1 + 2η5θ1θ2 + η6θ2

2

)
,

where

η1 = −2a1, η2 = − e
mx̂ + 1

+
emx̂

(mx̂ + 1)2 − kr0,

η3 = x̂
(

2eµ

mx̂ + 1
− 2eµmx̂

(mx̂ + 1)2 + 2k2r0

)
,

η4 = 0, η5 = 0, η6 =
2αTc

β2 −
2a2

n + x̂
,

and also

Ω3 = ΦT D2 F̂(Ê; αTC)(Θ, Θ)

=
(

φ1 φ2
)( η1θ2

1 + η2θ1θ2 + η3θ2
2

η4θ2
1 + η5θ1θ2 + η6θ2

2

)
(30)

=

(
2αTc

β2 −
2a2

n + x̂

)
(r0 − d1 − 2a1)

2.

Hence, Ω3 6= 0 if both αTc 6= a2β2

n+x̄ and r0 6= d1 + 2a1 are satisfied. Thus, from
Sotomayor’s Theorem model (6) admits a transcritical bifurcation near Ê at αTC, if Ω1 = 0
and Ω2,3 6= 0.
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5.5. Saddle-Node Bifurcation

Next, we provide the parametric condition for the occurrence of saddle-node bifurca-
tion in the following.

Theorem 8. If Det(JE∗) = 0 at a critical threshold µ = µSN , then model (6) admits saddle-node
bifurcation at E∗.

Proof. Let us take a bifurcation parameter µ and apply Sotomayor’s Theorem [39] to show
model (6) admits a saddle-node bifurcation at the arbitrary equilibrium point E∗. According
to [39], since Det(JE∗) = λ1λ2 = 0, then either λ1 or λ2 must be zero and the other less than
zero. Also, Tr(JE∗) < 0. Let F̂ = (F̂1, F̂2)

T ; then, matrix JE∗ is written as

JE∗ =

(
â11 â12
â21 â22

)
.

where

â11 =
emx∗y∗(1− µSDy∗)2

(mx∗(1− µSDy∗) + 1)2 − a1x∗,

â12 =
2eµSDx∗y∗ − ex∗

mx∗(1− µSDy∗) + 1
− eµSDmx∗2y∗(1− µSDy∗)

(mx∗(1− µSDy∗) + 1)2 −
kr0x∗

(ky∗ + 1)2 ,

â21 =
a2y∗2(1− µSDy∗)

(n + x∗(1− µSDy∗))2 ,

â22 = − a2y∗(n + x∗)
n + x∗(1− µSDy∗)

+
αy∗

(β + y∗)2 .

Let µSD be the critical value, such that JE∗ has the eigenvalue zero, such that
Det(JE∗) = 0 at µSD. Also, let the matrices JE∗ and JE∗

T have the eigenvectors
Θ = (θ1, θ2)

T and Φ = (φ1, φ2)
T for the zero eigenvalue, which gives Θ = (−â22, â21)

T and
Φ = (â22,−â12)

T . Furthermore, we obtain get

F̂m(E∗; µSD) =

(
b̂11
b̂12

)
,

where

b̂11 =
ex∗y∗2

(1 + mx∗(1− µSDy∗))2 ,

b̂12 =
a2x∗y∗3

(n + x∗(1− µy∗))2 .

Now,

Ω1 =ΦT F̂µ(E∗; µSD) = â22b̂11 − â12b̂12. (31)

Therefore, Ω1 6= 0 at µ = µSD, and also

D2 F̂(E∗; µSD)(Θ, Θ) =

 ∂2 f1
∂x2 θ2

1 + 2 ∂2 f1
∂x∂y θ1θ2 +

∂2 f1
∂y2 θ2

2
∂2 f2
∂x2 θ2

1 + 2 ∂2 f2
∂x∂y θ1θ2 +

∂2 f2
∂y2 θ2

2


=

(
ε1θ2

1 + 2ε2θ1θ2 + ε3θ2
2

ε4θ2
1 + 2ε5θ1θ2 + ε6θ2

2

)
,
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where

ε1 = −2a1 −
2emy∗(µSDy∗ − 1)2

(mx∗(µSDy∗ − 1)− 1)3 ,

ε2 =
e(−µSDy∗(mx∗ + 2) + mx∗ + 1)

(mx∗(µSDy∗ − 1)− 1)3 − kr0

(ky∗ + 1)2 ,

ε3 =
2k2r0x∗

(ky∗ + 1)3 −
2eµSDx∗(mx∗ + 1)

(mx∗(µSDy∗ − 1)− 1)3 ,

ε4 = − 2a2y∗2(1− µSDy∗)2

(n + x∗(1− µSDy∗))3 ,

ε5 =
a2y∗

(
−3µSDy∗(n + x∗) + 2(n + x∗) + µ2

SDx∗y∗2
)

(n− µSDx∗y∗ + x∗)3 ,

ε6 =
2αβ

(β + y∗)3 −
2a2(n + x∗)2

(n− µSDx∗y∗ + x∗)3 ,

and also

Ω2 = ΦT D2 F̂(E∗; µSD)(Θ, Θ) =
(

φ1 φ2
)( ε1θ2

1 + ε2θ1θ2 + ε3θ2
2

ε4θ2
1 + ε5θ1θ2 + ε6θ2

2

)
6= 0. (32)

According to Sotomayor’s Theorem, the system exhibits a saddle-node bifurcation
around E∗(x∗, y∗) at µ = µSD if Ω1 6= 0 and Ω2 6= 0. To confirm Ω1, Ω2 6= 0, we calculated
it numerically. Thus, it can be inferred that the variation of the parameter µ across the
critical threshold µ = µSD results in a change in the number of interior equilibria of
model (6) from zero to one to two.

6. Numerical Simulations

The dynamic nature of the proposed model that corresponds to changes in the fear,
prey refuge, and harvesting parameters cannot be expressed explicitly or analyzed analyti-
cally. Therefore, numerical simulations are required to comprehend the model’s dynamics,
which were carried out with the help of XPPAUT [41] and PPLANE [42] software. Let us
consider the model parameters as follows:

In order to check the effect of fear, the prey refuge, and harvesting in the considered
model (6), we consider the fixed parameter values in Table 3 and vary the k, µ, and α. The
dynamics of the model are analyzed using phase portraits and one- or two-parameter
bifurcation diagrams, as discussed below.

Table 3. Fixed parameter values.

Parameter Value Parameter Value

r0 1.01 m 0.015
k 0.1 r2 2.60
d 0.01 a2 0.4142
a1 1 n 0.01
e 0.85635 α 1.475193
µ 0.01 β 0.2

6.1. Effect of Fear in Prey Population

For model (6) with the fixed parameters in Table 3, varying the fear parameter k
exhibits complex behavior. For instance, the numbers for the existence of interior equilib-
ria are shown using nullcline analysis (see Figure 1). To verify whether the species can
coexist for a long period of time, it is crucial to examine the local stability of the equilib-



Mathematics 2023, 11, 3118 18 of 25

ria. If k = 0.1, the system has four equilibrium points: E0(0, 0) is unstable, Ê = (1, 0) is
unstable, E1(0.2884, 0.75692) is a spiral sink that satisfies Theorem 4 and whose eigenval-
ues are λ1,2 = −0.066223± 0.81822i, and E2(0.58067, 0.44519) is a saddle point, which
is shown in Figure 2a. If k = 0.15, the equilibrium point E1(0.29127, 0.72082) is a spi-
ral sink surrounded by an unstable limit cycle, as shown in Figure 2b. On further in-
creasing kHB = 0.1719, the equilibrium E1(0.293, 0.70599) is a center, which is shown in
Figure 2c. Then, the eigenvalues are λ1,2 = ±0.75151, which satisfies Theorem 6, and
d
dk Tr[E1]|k=kHB = (− r0y1

(kHBy1+1)2 ) = −0.567061 6= 0. Also, the unstable periodic solution col-
lides with the saddle point. The local amplification near the interior equilibrium point E1
of Figure 2c is shown in Figure 2d. It is clear there exists a Hopf bifurcation on varying f . It
is clear that the eigenvalues of the Jacobian matrix at E1(0.293, 0.70599) are λ1,2 = ±0.70599
and it also satisfies the transversality condition of Theorem 7. Further, we found the first
Lyapunov coefficient is l1 = 75.1529π > 0, and it is clear that the existing limit cycle is
unstable.
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(a) k = 0.1
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(b) k = 0.1719
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(c) k = 0.15
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y

(d) k = 0.1719
Figure 2. (a) represents E1 is a stable spiral and E2 is a saddle point. (b) represents the stable E1 is a
stable spiral surrounded by unstable periodic solutions. (c) represents the E1 is a center. (d) represents
the local amplification of figure (c) near E1.

6.2. Effect of Harvesting

Further, it is necessary to verify the effect of harvesting the predator population in
the system dynamics. We fix all other parameters as in Table 3 and vary the harvesting
parameter α. For the smaller value of α = 0.1, the system has the following equilibrium
points: E0(0, 0), Ê(1, 0), E1(0.14202, 0.91344), and E2(1.1536,−0.16237) (see Figure 3a). In
E2, the predator population size is negative and it is biologically meaningless. And on
increasing αTC = 0.52, the equilibrium E2 and Ê collide with each other and exchange their
stability properties, which ensure the existence of transcritical bifurcation (see Figure 3b).
We have exactly one coexistence equilibrium point E1(0.16494, 0.88891), which satisfies
Theorem 5. Then, E1 is globally asymptotically stable and also clearly shown in Figure 3b.
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If α = 1.475, E1(0.28834, 0.75698) is a spiral sink and its eigenvalues are λ1,2 = −0.066458±
0.81845i (see Figure 3c), and for α = 1.527 the equilibrium point E1 becomes the center
and its eigenvlues are λ1,2 = ±0.74182i (see Figure 3d). This existence of transcritical
bifurcation is verified from the quantities Ω1 = 0, Ω2 = −5 6= 0, and Ω3 = −25.1798 6= 0
by the Sotomayor theorem.
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(a) α = 0.1
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x

(b) α = 0.52
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y

(d) α = 1.527
Figure 3. (a) represents E1 is stable, E2 is unstable, and Ê is a saddle point. (b) represents E1 is
stable, and when Ê collides with E2 it becomes a saddle point. (c) represents an unstable E1, and
when an unstable limit cycle collides with E2 it becomes a saddle point and Ê becomes a stable node.
(d) represents E1 is the center.

6.3. Effect of Prey Refuge

The phenomena of the existence of one, two, and no equilibria can also occur for the
refuge parameter by fixing the parameters in Table 3 and varying the refuge parameter. If
µ = 0.2, model (6) has four equilibria, E(0, 0), Ê(1, 0), E1(0.34004, 0.81828), and is a spiral
sink, whose eigenvalues are λ1,2 = −0.27115± 0.772464, and E2(1, 0) is a saddle point (see
Figure 4a). If µSN = 0.9374, the number of interior equilibria is reduced to one and it is a
saddle point E1(0.71968, 0.56214) whose eigenvalues are λ1 = −0.69553 and λ2 = 0.021212
(see Figure 4b), which ensures the occurrence of saddle bifurcation for the parameter µ.
And the quantities Ω1 = 0.196311 6= 0 and Ω2 = −1.51299 6= 0 ensure the existence of
saddle-node bifurcation for model (6) by using the Sotomayor theorem.

For a clear view of such a critical transaction, the one-parameter bifurcation by varying
k ∈ (0, 0.5), α ∈ (0, 1), and µ ∈ (0, 2) is shown in Figure 5a–c, and all other parameters are
fixed as in Table 3. One of the prominent phenomena of the ecological system is extinction
criteria and it also necessary to show the dynamics of model (6) with the combination of
this parameter. We plotted the two-parameter bifurcation diagrams in Figure 6a–c. The
extinction region, the stable and unstable region of the interior equilibria with the particular
choice of parameter values, is clearly shown. Further, it is necessary to show how the model
studied in this article differs from other earlier works. We compared some works from the
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existing literature in Table 4. The extinction of the population for the particular choice of k,
µ, α, and other values is fixed as in Table 3 and is shown in Figure 7a–c.
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Figure 4. (a) Locally asymptotically stable E1 and saddle point E2. (b) E1 and E2 collide and become
an unstable node.
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Figure 5. The one-parameter bifurcation diagram, where the red branch represents the stable equilib-
rium and the black branch represents the unstable equilibrium of model (6) with Table 3. The HB, TB,
and SN represent the occurrence of Hopf bifurcation, transcritical bifurcation, and saddle-node bifur-
cation points. The blue circle represents the unstable periodic solution and the black dot represents
the collusion of the unstable limit cycle around E1 with the saddle point E2. (a) For k in the range
(0, 0.5), the Hopf bifurcation occurs at kHB = 0.1719. (b) For α in the range (0, 2), Ê and E2 exchange
their stability property at αTC = 0.25. (c) For µ in the range (0, 1), the saddle-node bifurcation occurs
at µSN = 0.9374.
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Figure 6. The two-parameter bifurcation diagram, where the blue line (HB curve) represents the
separation of stable and unstable regions of model (6) with Table 3. The red line represents the
separation of extinction and the coexistence of the population. (a) For µ ∈ (0, 1) vs. α ∈ (1.5, 1.7).
(b) For k ∈ (0, 0.5) vs. µ ∈ (0, 1). (c) For k ∈ (0, 0.5) vs. α ∈ (0, 2).

Table 4. Earlier works on Leslie–Gower model.

Reference Prey Refuge Fear Effect Harvesting Functional Response

[16] × X × Holling IV
[17] Constant X X Holling II
[43] × X × Holling IV

This paper Both prey and predator X X Holling II

The dynamics of model (2), the model with fear, in which the predator consumes the
prey in the form of a Holling type II interaction, were examined by the authors in [16].
Transcritical bifurcation, Hopf bifurcation, and Bogdanov–Takens bifurcation are all present
in the under-considered model. The authors of [17] looked at nonlinear harvesting in
both species, prey refuges, and fear in the prey population. They demonstrated how the
model experiences transcritical and saddle-node bifurcations. Mukherjee [43] investigated
that the modified Leslie–Gower model with Holling type IV interaction, used to study
the fear impact on a predator–prey system, experiences similar sorts of bifurcations. In
this study, we examined the modified Leslie–Gower model with nonlinear harvesting in
the predator population, fear in the prey population, and a prey refuge proportional to
both species. We showed that model (6) exhibits saddle-node bifurcation, transcritical
bifurcation, Hopf bifurcation, the extinction of species, and cusp-type dynamics. Since the
computation approach offers fascinating details about how ecological systems function,
there are significant drawbacks because (a) nonlinearity in the system frequently results
in highly sensible solutions to variations in system parameters and (b) we frequently
lack knowledge of true parameter values. This suggests that the specific decisions we
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produced regarding the values of the parameters and the precise structure of functional
relationships may have significantly influenced the results. Analytical methods are precise
and broad but only work with very basic models. But even the simplest model’s formal
analysis can serve as an initial guide for particular ideas that are easily evaluated through
numerical simulations.
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Figure 7. Phase portraits of model (6) with particular values of k, µ, and α with other fixed parameter
values in Table 3 show that the trajectories move towards Ê, i.e., the predator population become
extinct.

7. Conclusions

In this study, we studied the influence of fear in the prey population, the refuge
effect proportional to both prey and predators, and nonlinear harvesting in the preda-
tor population. We have assumed that prey ensures the admissible range of a refuge
0 ≤ (1− µy) ≤ 1 in our considered model. We also took into account a consideration of
nonlinear harvesting in the predator population. To analyze the effect of this biological
situation, we considered the modified Leslie–Gower model, where the prey consumes its
favorite food in the form of a Holling type II interaction term. It is important in ecology
that the predator can switch over to other food in the abundance of its favorite prey. The
existence of all biologically feasible equilibria has been investigated in order to analyze
the local dynamics of the considered model. The local stability analysis was carried out
in order to show the long-term coexistence of populations, which was analyzed with the
help of eigenvalues of the corresponding Jacobian matrices of the equilibria. Further, we
took the conventional Lyapunov function to derive the analytical condition for the global
stability of the coexisting equilibrium point. The complex dynamical behavior of the model
was discussed in terms of bifurcation analysis and extinction of populations, since both
play a crucial role in conserving the populations in the ecological system. We showed the
occurrence of saddle bifurcation, transcritical bifurcation, and Hopf bifurcation by varying
the fear parameter k, refuge parameter µ, and harvesting parameter α. The occurrence of
transcritical and saddle-node bifurcation was verified with the help of normal form the-
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ory [39] and we also showed that the existence of subcritical Hopf bifurcation is confirmed
with the help of calculating the first Lyapunov number, i.e., the unstable limit cycle. We
also showed that the population becomes extinct by increasing this parameter at a certain
critical threshold.

When studying interactions between prey and predators or other ecological systems,
achieving sustainability is of utmost importance. This is often accomplished by establishing
a stable limit cycle, which helps to maintain the system’s long-term stability. But in our
proposed model we found the coexisting equilibrium surrounded by an unstable limit
cycle. So it is necessary to allow small fluctuations in the populations inside the limit
cycle, otherwise it leads to the extinction of species. Enhancing the biological realism of
the studied model is one of the challenges for future research. Biological systems are more
complex and it is difficult to study their underlying mechanisms. It is necessary to study
our model by considering various functional responses and possibly extend it to the food
chain model.
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Appendix A. The Biological Assumptions of the Fear Factor

1. f (0, y) = 1: if there are no anti-predator behaviors, then the birth rate of the prey
remains unchanged.

2. f (k, 0) = 1: there is no reduction in the prey population in the absence of anti-predator
behaviors.

3. limk→∞ f (k, y) = 0: if anti-predator behaviors are very large, the prey reproduction
declines and becomes zero.

4. limy→∞ f (k, y) = 0: if k > 0 and the predator population is high, then the prey
reproduction declines and becomes zero.

5. ∂ f (k,y)
∂k < 0: the reproduction of prey decreases with increases in anti-predator behav-

iors
6. ∂ f (k,y)

∂y < 0: the reproduction of prey decreases with increases in predator populations.
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