
Alexandria Engineering Journal 79 (2023) 427–437

Contents lists available at ScienceDirect

Alexandria Engineering Journal

journal homepage: www.elsevier.com/locate/aej

ORIGINAL ARTICLE

Exploring the finite-time dissipativity of Markovian jump delayed neural 

networks

V.E. Sathishkumar a, R. Vadivel b, Jaehyuk Cho a,∗, Nallappan Gunasekaran c

a Department of Software Engineering, Jeonbuk National University, Jeonju, Republic of Korea
b Department of Mathematics, Faculty of Science and Technology, Phuket Rajabhat University, Phuket- 83000, Thailand
c Eastern Michigan Joint College of Engineering, Beibu Gulf University, Qinzhou 535011, China

A R T I C L E I N F O A B S T R A C T

Keywords:

Linear matrix inequality

Lyapunov method

Finite-time dissipativity

Markovian jump neural networks

Time-varying delays

In this paper, we study the finite-time dissipativity analysis of Markovian jump-delayed neural networks 
(MJDNNs). The goal is to establish less conservative results for extended dissipativity conditions for delayed 
MJDNNs. To achieve this, an appropriate Lyapunov-Krasovskii functional (LKF) with novel inequality like 
composite slack-matrix-based integral inequality (CSMBII). Next, the CSMBII and other sufficient conditions 
are employed to estimate the derivative of the constructed LKF. Using these techniques, a delay-dependent 
finite-time dissipativity condition is derived in terms of linear matrix inequalities (LMIs). These LMIs are used to 
formulate the finite dissipativity condition for the delayed MJNNs. The utility of the suggested approach is then 
confirmed by a number of interesting numerical examples, one of which has been confirmed by a real-world 
application of the benchmark problem that is associated with the designed MJDNNs. The illustrative simulation 
results conclusively demonstrate the superior performance and success of the developed CSMBII technique in 
this proposal, surpassing the limitations of existing techniques.
1. Introduction

Neural networks (NNs) are complicated network structures made up 
of a huge number of small processing units that are linked together. Be-

cause of their high application potential, neural networks (NNs) have 
received a lot of attention in recent years. It is critical to ensure that 
the NN model is globally asymptotically stable [1–4], while construct-

ing NNs to handle problems such as linear programming and pattern 
recognition. However, information capture is common in NNS, imply-

ing that NNS may be limited to shifting from one mode to another at 
different times. As a result, in this case, the NNS can be thought of as 
a Markovian jump NNS [5–7]. Because information processing is re-

stricted in speed, the existence of temporal delays in NNS frequently 
causes oscillations, divergence, or instability. In recent years, the sta-

bility problem of delayed NNS has received a great deal of theoretical 
and practical attention. This issue is gaining popularity in areas such as 
signal and image processing, artificial intelligence, and so forth. Delay-

dependent stability analysis of delayed NNs is a significant challenge 
in dynamical systems since time delays occur in the actual world and 
might affect the stability of the system [8–15]. The point of this study 

* Corresponding author.

E-mail addresses: srisathishkumarve@gmail.com (V.E. Sathishkumar), vadivelsr@yahoo.com (R. Vadivel), chojh@jbnu.ac.kr (J. Cho), gunasmaths@gmail.com

was to make the stability criteria more conservative. Whereas the in-

dex, which shows how conservative the stability criteria are, is known 
to be the maximum bound of the delay, there has been a great deal of 
interest in creating and constructing an effective Lyapunov–Krasovskii 
function (LKF) to get a relatively high upper bound on the delay time 
so that the suggested system is nearly constant.

Dissipative theory for dynamical systems was first established in 
[16], and it has subsequently been broadened and intensively investi-

gated for nonlinear systems in [17–19]. The idea of dissipativity gives a 
foundation for the analysis and design of process control that use input–

output descriptions based on system energy concerns. Dissipativity the-

ory is a fundamental concept that has been applied to a wide range 
of scientific and technical fields. This ties physics, system theory, and 
control theory together in a powerful way. Robotics, active vibration 
damping, mechanical systems, internal combustion, and circuit theory 
have all proven to be important control tools. Many important physical 
systems exhibit input parameters related to energy conservation, dissi-

pation, and transport. As a result, both conceptually and empirically, 
dissipativity analysis in complex system dynamics has emerged as an 
important topic of research. In recent years, several solid studies on the 
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dissipativity of delayed and stochastic NNs have been suggested (see 
[20,21]) and references therein.

Markovian jump neural networks (MJNNs) are a type of neural net-

work that incorporates Markov chain models to represent systems with 
variable dynamics. This approach is useful in modeling complex systems 
with varying behaviors, such as those that experience faults, failures, or 
environmental disturbances. The use of linear matrix inequalities (LMIs) 
in analyzing the dynamic behaviors of MJNNs has been an area of inter-

est for researchers over the past 15 years. LMIs are a set of mathematical 
constraints that can be used to determine the stability and robustness of 
a system, and they have proven to be useful in analyzing the behavior 
of MJNNs [22–24]. Moreover, systems with Markovian jump parame-

ters have Markov chain-governed transitions between models and take 
values from a finite set, acting as stochastic hybrid systems with two 
phases in the state. The first is a system of differential equations that 
represents the mode, while the second is a continuous-time finite-state 
Markovian process that represents the state. Several studies on Marko-

vian jump systems (MJSs) have recently been published as a result of 
the extensive usage of such models in industrial systems, power sys-

tems, communication systems, and network-based control systems (see 
references [25–29]). Finite-settling-time behavior of systems with con-

tinuous dynamics, on the other hand, is examined in [30–35]. However, 
such systems have not been adequately investigated. The authors in 
[31] recently explored the subject of dissipative stabilization analysis 
of time-delayed NNs. In [38], developed some enhanced stability cri-

teria for neural network stability analysis using convex inequality. The 
subject of asymptotic dissipativity stability analysis for static NNs with 
time-varying delays was explored in [39]. This is our primary incentive 
to conduct more study and apply it to a real-life electrical circuit model.

Motivated by the above discussion, finite-time dissipativity is a con-

cept used in the analysis of systems that describes the ability of a system 
to dissipate energy over a finite period of time. In the context of Marko-

vian jump-delayed neural networks, finite-time dissipativity is used as 
a criterion for analyzing the stability and execution of the system. A 
Markovian jump-delayed neural network is a type of neural network 
that incorporates the effects of random jumps in the system dynamics, 
as well as a time delay in the feedback loop. The use of finite-time dis-

sipativity as a criterion for analysis allows for a more comprehensive 
understanding of the system’s behavior, including its ability to handle 
disturbances and its overall robustness. In order to explore the finite-

time dissipativity of Markovian jump-delayed NNs, researchers typically 
use a combination of mathematical analysis and simulation techniques. 
One key component of this analysis is the use of Lyapunov-Krasovskii 
functionals, which are mathematical constructs that can be used to de-

scribe the energy dissipation of a system over time. These functionals 
are used to derive conditions for the finite-time dissipativity of the sys-

tem, which can then be used to analyze the stability and performance of 
the network. The subject of finite-time dissipativity (FTD) analysis and 
scheme for stochastic Markovian jump neural networks (MJNNs) with 
time-varying delay is studied in this research. This paper’s main contri-

butions are:

(1) This study examines finite-time dissipative stochastic MJNNs with 
time-varying delays.

(2) Lyapunov-Krasovskii functional and free-connection weighting ma-

trices provide sufficient FTD requirements for stochastic MJNNs with 
time-varying delay.

(3) The dissipativity criteria, which depend on the upper bounds of 
the time-varying delay and its derivative, are linear matrix inequalities 
(LMI) that can be easily calculated using conventional numerical tech-

niques.

(4) LMIs are arranged in a way that takes into consideration the con-

nections between terms, and novel bound approaches are employed for 
integral terms.

(5) Finally, numerical examples are presented to illustrate the utility 
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and reduced conservatism of the stability criteria are also established.
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Notations: The notations throughout this paper are standard, which 
can be referred to [31]. Besides denote {𝜚𝑡, 𝑡 ≥ 0} be a right-continuous 
Markov chain on a probability space (Z , F , P) taking values in a finite 
state space N = {1, 2, ..., 𝑚} with generator Π = {𝜋𝑝𝑞} given by,

𝑃 {𝜚𝑡+Δ = 𝑞|𝜚𝑡 = 𝑝} =
{

𝜋𝑝𝑞Δ+ 𝑜(Δ), 𝑝 ≠ 𝑞

1 + 𝜋𝑝𝑞Δ+ 𝑜(Δ), 𝑝 = 𝑞.

Here Δ > 0, lim𝑡→+∞
𝑜(Δ)
Δ = 0, 𝜋𝑝𝑞 ≥ 0 is the transition rate from p to q if 

𝑞 ≠ 𝑝 while 𝜋𝑝𝑝 = − ∑𝑚

𝑞=1,𝑞≠𝑝 𝜋𝑝𝑞 for each mode p. Note that if 𝜋𝑝𝑝 = 0
for some 𝑝 ∈ N , then the 𝑝th mode is called “terminal mode” [22]. 
Furthermore, the transition probabilities matrix Π is denoted as follows:

Π=

⎡⎢⎢⎢⎢⎣
𝜋11 𝜋12 … 𝜋1𝑚
𝜋21 𝜋22 … 𝜋2𝑚
⋮ ⋮ ⋱ ⋮
𝜋𝑚1 𝜋𝑚2 … 𝜋𝑚𝑚

⎤⎥⎥⎥⎥⎦
.

2. Problem statement

Consider the following Markovian jump-delayed neural networks:

⎧⎪⎪⎨⎪⎪⎩

�̇�(𝑡) = −𝐸𝜚𝑡
𝑥(𝑡) +𝐴𝜚𝑡

𝑓 (𝑥(𝑡)) +𝐵𝜚𝑡
𝑓 (𝑥(𝑡− 𝜏(𝑡)))

+𝐺𝜚𝑡
𝑣(𝑡),

𝑧(𝑡) = 𝐶𝜚𝑡
𝑥(𝑡) +𝐻𝜚𝑡

𝑣(𝑡),

𝑥(𝑡) = 𝜙(𝑡), 𝑡 ∈ [−𝜏,0]

(1)

where 𝑥(𝑡) ∈ ℝ𝑛 indicates the state vector. The neuron activation func-

tion is given by the non-linear function 𝑓 (𝑥(𝑡)) ∈ ℝ𝑛, and 𝜏(𝑡) means 
the time-varying delays. 𝜙(𝑡) ∈ ℝ𝑛 is a vector-valued initial condition 
function; 𝑣(𝑡) ∈ ℝ𝑛 signifies the input of the disturbance that belongs 
to 𝐿2[0, ∞); and 𝑧(𝑡) ∈ ℝ𝑛 is recognized as the control output. In-

terconnection weight matrices with the appropriate dimensions for a 
modified mode 𝜚𝑡 are denoted by the notation 𝐸𝜚𝑡 = 𝑑𝑖𝑎𝑔{𝑒1, ⋯ , 𝑒𝑛} >
0, 𝐴𝜚𝑡, 𝐵𝜚𝑡, 𝐺𝜚𝑡, 𝐶𝜚𝑡, 𝐻𝜚𝑡. Here 0 ≤ 𝜏(𝑡) ≤ 𝜏, �̇� ≤ 𝜇, where 𝜏 and 𝜇 are 
positive constants. For ease of presentation, we designate the Marko-

vian chain {𝜚𝑡, 𝑡 ≥ 0} by 𝑖 records, and the Markovian jump delayed 
network system (1) may be expressed as

�̇�(𝑡) = −𝐸𝑖𝑥(𝑡) +𝐴𝑖𝑓 (𝑥(𝑡)) +𝐵𝑖𝑓 (𝑥(𝑡− 𝜏(𝑡))) +𝐺𝑖𝑣(𝑡),

𝑧(𝑡) =𝐶𝑖𝑥(𝑡) +𝐻𝑖𝑣(𝑡). (2)

Throughout the study, some assumptions, definitions, and lemmas are 
used.

Assumption (H). [1] The activation functions 𝑓𝑖(⋅) in (1) are continu-

ous and fulfill

𝐹−
𝑖
≤ 𝑓𝑖(𝛼1) − 𝑓𝑖(𝛼2)

𝛼1 − 𝛼2
≤ 𝐹+

𝑖
, 𝑖 = 1,2,⋯ , 𝑛

where 𝑓𝑖(0) = 0, 𝛼1, 𝛼2 ∈ℝ, 𝛼1 ≠ 𝛼2 and 𝐹−
𝑖

and 𝐹+
𝑖

denoted as scalars.

Assumption 𝑨. [26] The 𝑣(𝑡) ∈ℝ fulfills

𝑇

∫
0

𝑣𝑇 (𝑡)𝑣(𝑡)𝑑𝑡 < 𝑑, 𝑑 ≥ 0. (3)

Remark 2.1. Let 𝑐1, 𝑐2, 𝑇 , 𝑑 be given positive constants, matrix R𝑖 > 0. 
The 𝑣(𝑡) is always energy-bounded in practice, indicating that (A) is 
valid. Moreover, (𝑐1, 𝑐2, R𝑖, 𝑇 ) =Δ and (𝑐1, 𝑐2, R𝑖, 𝑇 , 𝑑) =Δ1.

Definition 2.2. [26] For some given constants 𝑐2 > 𝑐1 ≥ 0, and symmet-

ric matrix R𝑖 > 0, such that the system (2) with 𝑣(𝑡) = 0 for a given time 

constant 𝑇 and is finite-time stable (FTS) with regard to Δ, then
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𝔼{ sup
−𝜏≤𝑡≤0

[𝑥𝑇 (𝑡)R𝑖𝑥(𝑡)]} ≤ 𝑐1

⟹ 𝔼{𝑥𝑇 (𝑡)R𝑖𝑥(𝑡)} < 𝑐2, ∀𝑡 ∈ [0, 𝑇 ].

Definition 2.3. [17] For given time constant 𝑇 and real function 
𝜂(⋅), 𝜂(0) = 0, (2) is denoted as finite-time ( ̄̂Z , S̄ , Ḡ )-dissipative (FTD) 
with regard to (𝑐1, 𝑐2, R𝑖, 𝑇 , 𝑑), then the following conditions are satis-

fied

(i). The (2) is finite-time bounded (FTB) in terms of Δ1.

(ii). Under zero initial conditions 𝜓(𝜃) = 0, ∀ 𝜃 ∈ [−𝜏, 0], system (2)

satisfies

𝔼
{ 𝑇

∫
0

[
𝑧(𝑡)

𝑣(𝑡)

]𝑇 ⎡⎢⎢⎣
̄̂Z S̄

∗ Ḡ

⎤⎥⎥⎦
[
𝑧(𝑡))

𝑣(𝑡)

]
𝑑𝑡

}
≥ −𝜂(𝑥0),

when 𝑣(𝑡) satisfies (3).

Lemma 2.4. [36] For every constant matrix N > 0 and scalars 𝛽 > 𝛼 > 0
with well-defined integration’s,

− (𝛼 − 𝛽)

𝛼

∫
𝛽

𝑒𝑇 (𝑠)N𝑒(𝑠)𝑑𝑠 ≤ −

𝛼

∫
𝛽

𝑒𝑇 (𝑠)𝑑𝑠 N

𝛼

∫
𝛽

𝑒(𝑠)𝑑𝑠.

Lemma 2.5. [40] For every matrix 𝑅 > 0, any vector 𝜉, and any continu-

ously differentiable function 𝑥 ∶ [−𝜏, 0] → ℝ𝑛, and slack matrices 𝑀, 𝑁 , it 
holds

− 𝜏

𝑡

∫
𝑡−𝜏

�̇�𝑇 (𝑠)𝑅�̇�(𝑠)𝑑𝑠

≤ 𝜉𝑇 (𝑡)[𝜏(𝑡)𝑀𝑇 �̂�−1𝑀 + ℎ𝜏𝑁
𝑇 �̂�−1𝑁]

+ (
ℎ𝜏

𝜏
+ 𝜏(𝑡)2

𝜏2
)𝑆𝑦𝑚[𝜈𝑇 (𝑡− 𝜏(𝑡), 𝑡)Γ𝑇

𝑎
𝑀

+ 𝜈𝑇 (𝑡− 𝜏, 𝑡− 𝜏(𝑡))Γ𝑇
𝑎
𝑁]𝜉

−
{ℎ𝜏
𝜏
𝜈𝑇 (𝑡− 𝜏(𝑡), 𝑡)Γ𝑇

𝑎
𝑀�̂�Γ𝑎𝜈(𝑡− 𝜏(𝑡), 𝑡)

+ 𝜏(𝑡)2

𝜏2
𝜈𝑇 (𝑡− 𝜏, 𝑡− 𝜏(𝑡))Γ𝑇

𝑎
𝑀�̂�Γ𝑎(𝑡− 𝜏, 𝑡− 𝜏(𝑡))

}
.

Lemma 2.6. [37] If X33 > 0, any matrices X11, X12, X13, X22 and X23
such that [X𝑖𝑗 ]3×3 ≥ 0, then

−

𝑡

∫
𝑡−𝜏

�̇�𝑇 (𝑠)X33�̇�(𝑠)𝑑𝑠 ≤
𝑡

∫
𝑡−𝜏

𝜛𝑇 (𝑡)

⎡⎢⎢⎢⎢⎣
X11 X12 X13

∗ X22 X23

∗ ∗ 0

⎤⎥⎥⎥⎥⎦
𝜛(𝑡)𝑑𝑠,

where 𝜛(𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − 𝜏) �̇�𝑇 (𝑠)]𝑇 .

3. Main results

In this part, we use the LMI technique to develop our primary results. 
The following definitions are provided for the convenience of notation:

𝐹1 = 𝑑𝑖𝑎𝑔{𝐹−
1 𝐹

+
1 , 𝐹

−
2 𝐹

+
2 , ..., 𝐹

−
𝑛
𝐹+
𝑛
},℘ = 𝜏(𝑡)

𝐹2 = 𝑑𝑖𝑎𝑔

{
𝐹−
1 + 𝐹+

1
2

,
𝐹−
2 + 𝐹+

2
2

, ...,
𝐹−
𝑛
+ 𝐹+

𝑛

2

}
,

Δ𝑖 = 𝑐1[𝜆𝑚𝑎𝑥(𝑃𝑖) + 𝜆𝑚𝑎𝑥(𝐹2 − 𝐹1) + 𝜆𝑚𝑎𝑥�̄�

+ 𝜆𝑚𝑎𝑥�̄�+ 𝜏𝜆𝑚𝑎𝑥�̄�+ 𝜏2

2
𝜆𝑚𝑎𝑥�̄� + 𝜏2

2
𝜆𝑚𝑎𝑥𝑌 ],

J𝑙 = [0𝑛×(𝑙−1)𝑛 𝐼𝑛 0𝑛×(12−1)𝑛 0𝑛×𝑚]𝑇 , 𝑙 = 1,2, ...,12.

Theorem 3.1. Under Assumption (H), for given scalars 𝜏, 𝛼, 𝛽, 𝑑 and 
429

𝜇, the system (2) is FTB in terms of Δ1, if there exist matrices 𝑃𝑖 >
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0, 𝐷1 > 0, 𝐷2 > 0, Q =

[
𝑄1 𝑄2

∗ 𝑄3

]
> 0, 𝑅 > 0, 𝑋 > 0, 𝑌 > 0, matri-

ces [𝑅𝑖𝑗 ]3×3 ≥ 0, the diagonal matrices Σ𝑖 > 0, 𝑖 = 1, 2, 3, and any matrices 
𝑈1, 𝑈2, Y1, Y2, 𝑀 with sufficient dimensions, such that the following LMIs 
hold with 𝜏(𝑡) = {0, 𝜏}:[
Ξ̄(0, ℘̇)

√
𝜏Y𝑇2

∗ −[𝑋 −𝑅33]

]
< 0, (4)

[
Ξ̄(𝜏, ℘̇)

√
𝜏Y𝑇1

∗ −[𝑋 −𝑅33]

]
< 0, (5)

where

Ξ(℘, ℘̇) = Ξ̄11(℘, ℘̇) + Ξ02(℘),

Ξ̄11(℘, ℘̇) = J 𝑇
1 [𝜏2𝑌 +

𝑁∑
𝑗=1

𝜋𝑖𝑗𝑃𝑗 +𝑄1 +𝑅

−𝑋 +𝑅33 − 𝐹1Σ1 − 𝐹1Σ3 + 𝜏2𝑅11 + 𝜏𝑅𝑇
13

+ 𝜏𝑅13 − 2𝑈1𝐸𝑖]J1 +J 𝑇
1 [2𝑃𝑖 − 𝐹2𝐷1

+ 𝐹1𝐷2 −𝑈1 −𝐸𝑇
𝑖
𝑈𝑇
2 ]J2 +J 𝑇

1 [𝑋 −𝑅33

+ 𝜏2𝑅12 − 𝜏𝑅23 + 𝜏𝑅𝑇
23]J4

+J 𝑇
1 [𝑈1𝐴𝑖 +𝑄2 + 𝐹2Σ1 + 𝐹2Σ3]J5

+J 𝑇
1 [𝑈1𝐵𝑖 − 𝐹2Σ3]J6 +J 𝑇

1 [𝑈1𝐺𝑖]J12

+J 𝑇
2 [𝑈2𝐺𝑖]J12 +J 𝑇

2 [−2𝑈2 + 𝜏2𝑋J2

+J 𝑇
2 [𝐷𝑇

1 −𝐷𝑇
2 +𝑈2𝐴𝑖]J5 +J 𝑇

4 [−𝑅−𝑋

+𝑅33 + 𝜏2𝑅22 − 𝜏𝑅23 + 𝜏𝑅𝑇
23J4

+J 𝑇
3 [−(1 − 𝜇)𝑄1 − 𝐹1Σ2 − 𝐹1Σ3]J3

+J 𝑇
4 [−(1 − 𝜇)𝑄2 + 𝐹2Σ2 + 𝐹2Σ3]J6

+J5[𝑄3 − Σ1 − Σ3]J5

+J 𝑇
6 [−(1 − 𝜇)𝑄3 − Σ2 − Σ3]J6

−J 𝑇
7 𝑌J7 −J 𝑇

12𝛽𝑀J12,

Ξ02(℘) = ( 𝜏 − 𝜏(𝑡)
𝜏

+ 𝜏(𝑡)2

𝜏2
)𝑠𝑦𝑚[Y1𝜒1 + Y2𝜒2]

− ( 𝜏 − 𝜏(𝑡)
𝜏2

𝜒𝑇
1 [𝑋 −𝑅33]𝜒1

+ 𝜏(𝑡)
𝜏2

𝜒𝑇
2 [𝑋 −𝑅33]𝜒2),

𝜒1 =𝑐𝑜𝑙[J1 −J3,J1 +J3 − 2J8,

J1 −J3 + 6J8 − 12J9],

𝜒2 = 𝑐𝑜𝑙[J3 −J4,J3 +J4 − 2J10,

J3 −J4 + 6J10 − 12J11],

and

𝑒𝛽𝑇
[
Δ𝑖 + 𝛽𝑑𝜆𝑚𝑎𝑥(𝑀) 1−𝑒

−𝛽𝑇

𝛽

]
𝜆𝑚𝑖𝑛(𝑃𝑖)

< 𝑐2. (6)

Proof. Consider the LKF candidate as follows

𝑉 (𝑡) =
4∑
𝑖=1

𝑉𝑖(𝑡), (7)
where
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𝑉1(𝑡) = 𝑥𝑇 (𝑡)𝑃𝑖𝑥(𝑡),

𝑉2(𝑡) = 2
𝑛∑
𝑖=1

𝑑1𝑖

𝑥𝑖(𝑡)

∫
0

(𝑓𝑖(𝑠) − 𝐹−
𝑖
𝑠)𝑑𝑠

+ 2
𝑛∑
𝑖=1

𝑑2𝑖

𝑥𝑖(𝑡)

∫
0

(𝐹+
𝑖
𝑠− 𝑓𝑖(𝑠))𝑑𝑠,

𝑉3(𝑡) =

𝑡

∫
𝑡−𝜏(𝑡)

[
𝑥(𝑠)

𝑓 (𝑥(𝑠))

]𝑇
Q

[
𝑥(𝑠))
𝑓 (𝑥(𝑠))

]
𝑑𝑠

+

𝑡

∫
𝑡−𝜏

𝑥𝑇 (𝑠)𝑅𝑥(𝑠)𝑑𝑠,

𝑉4(𝑡) = 𝜏

0

∫
𝜏

𝑡

∫
𝑡+𝜃

�̇�𝑇 (𝑠)𝑋�̇�(𝑠)𝑑𝑠𝑑𝜃

+ 𝜏

0

∫
𝜏

𝑡

∫
𝑡+𝜃

𝑥𝑇 (𝑠)𝑌 𝑥(𝑠)𝑑𝑠𝑑𝜃.

For each mode 𝑖, it can be observed that

L𝑉1(𝑥(𝑡), 𝑡, 𝑖) = 2J 𝑇
1 (𝑡)𝑃𝑖J2 +

𝑁∑
𝑗=1

𝜋𝑖𝑗J
𝑇
1 𝑃𝑗J1, (8)

L𝑉2(𝑥(𝑡), 𝑡, 𝑖) = 2(J5 − 𝐹2J1)𝑇 𝐷1J2

+ 2(𝐹1J1 −J5)𝑇 𝐷2J2, (9)

L𝑉3(𝑥(𝑡), 𝑡, 𝑖) ≤
[

J1
J5

]𝑇
Q

[
J1
J5

]

− (1 − 𝜇)

[
J3

J6

]𝑇

Q

[
J3

J6

]
, (10)

L𝑉4(𝑥(𝑡), 𝑡, 𝑖) = 𝜏2J 𝑇
1 𝑌J1 + 𝜏2J 𝑇

2 𝑋J2

− 𝜏

𝑡

∫
𝑡−𝜏

�̇�𝑇 (𝑠)[𝑋 −𝑅33]�̇�(𝑠)𝑑𝑠

− 𝜏

𝑡

∫
𝑡−𝜏

�̇�𝑇 (𝑠)𝑅33�̇�(𝑠)𝑑𝑠

− 𝜏

𝑡

∫
𝑡−𝜏

𝑥𝑇 (𝑠)𝑌 𝑥(𝑠)𝑑𝑠. (11)

Using Lemma 2.4 in (11), we have

− 𝜏

𝑡

∫
𝑡−𝜏

𝑥𝑇 (𝑠) 𝑌 𝑥(𝑠)𝑑𝑠 ≤ −J 𝑇
7 𝑌J7𝑑𝑠. (12)

Applying Lemma 2.6 and −𝜏 ∫ 𝑡

𝑡−𝜏 �̇�
𝑇 (𝑠)𝑅33�̇�(𝑠)𝑑𝑠 the following equation 

holds:

− 𝜏

𝑡

∫
𝑡−𝜏

�̇�𝑇 (𝑠)𝑅33�̇�(𝑠)𝑑𝑠

≤
𝑡

∫
𝑡−𝜏

𝜛𝑇 (𝑡)
⎡⎢⎢⎣
𝜏𝑅11 𝜏𝑅12 𝜏𝑅13
∗ 𝜏𝑅22 𝜏𝑅23
∗ ∗ 0

⎤⎥⎥⎦𝜛(𝑡)𝑑𝑠,

≤J 𝑇
1 𝜏2𝑅11J1 + 2J 𝑇

1 𝜏2𝑅12J4 +J 𝑇
4 𝜏𝑅22J4

+ 2J 𝑇
1 𝑅𝑇

13J7 + 2J 𝑇
4 𝑅𝑇

23J7,

=J 𝑇
1
[
𝜏2𝑅11 + 𝜏𝑅𝑇

13 + 𝜏𝑅13
]
J1[ ]
430

+ 2J 𝑇
1 𝜏2𝑅12 − 𝜏𝑅13 + 𝜏𝑅𝑇

23 J4
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+J 𝑇
4
[
𝜏2𝑅22 − 𝜏𝑅23 − 𝜏𝑅𝑇

23
]
J4, (13)

where 𝜛(𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − 𝜏) �̇�𝑇 (𝑠)]𝑇 . The integral term in (11) can 
be rearranged according to Lemma 2.5

−

𝑡

∫
𝑡−𝜏

�̇�𝑇 (𝑠)[𝑋 −𝑅33]�̇�(𝑠)𝑑𝑠

≤ 𝜂𝑇 (𝑡)[𝜏(𝑡)Y𝑇1 [𝑋 −𝑅33]−1Y1]

+ (𝜏 − 𝜏(𝑡))Y𝑇2 [𝑋 −𝑅33]−1Y2

+ ( 𝜏 − 𝜏(𝑡)
𝜏

+ 𝜏(𝑡)2

𝜏2
)𝑠𝑦𝑚[Y1𝜒1 + Y1𝜒2]

− ( 𝜏 − 𝜏(𝑡)
𝜏2

𝜒𝑇
1 [𝑋 −𝑅33]𝜒1 +

𝜏(𝑡)
𝜏2

𝜒𝑇
2 [𝑋 −𝑅33]𝜒2),

= 𝜂𝑇 (𝑡)[Ξ01(℘) + Ξ02(℘)]𝜂(𝑡), (14)

where, Ξ01(℘) = 𝜏(𝑡)Y𝑇1 [𝑋 −𝑅33]−1Y1 + (𝜏 − 𝜏(𝑡))Y𝑇2 [𝑋 −𝑅33]−1Y2.

0 ≤
[

J1

J5

]𝑇

Ψ1

[
J1

J5

]
, 0 ≤

[
J3

J6

]𝑇

Ψ2

[
J3

J6

]
,

0 ≤

⎡⎢⎢⎢⎢⎢⎢⎣

J1

J5

J3

J6

⎤⎥⎥⎥⎥⎥⎥⎦

𝑇

Ψ3

⎡⎢⎢⎢⎢⎢⎢⎣

J1

J5

J3

J6

⎤⎥⎥⎥⎥⎥⎥⎦
, (15)

where

Ψ1 =

[
−𝐹1Σ1 𝐹2Σ1

∗ −Σ1

]
, Ψ2 =

[
−𝐹1Σ2 𝐹2Σ2

∗ −Σ2

]
,

Ψ3 =

⎡⎢⎢⎢⎢⎢⎢⎣

−𝐹1Σ3 𝐹2Σ3 𝐹1Σ3 −𝐹2Σ3

∗ −Σ3 −𝐹2Σ3 Σ3

∗ ∗ −𝐹1Σ3 𝐹2Σ3

∗ ∗ ∗ −Σ3

⎤⎥⎥⎥⎥⎥⎥⎦
.

For any matrices 𝑈1, 𝑈2 with appropriate dimensions, we can get

0 =2[J 𝑇
1 𝑈1 +J 𝑇

2 𝑈2][−�̇�(𝑡) −𝐸𝑖J1 +𝐴𝑖J5

+𝐵𝑖J6 +𝐺𝑖J12]

= − 2J 𝑇
1 𝑈1J2 − 2J 𝑇

1 𝑈1𝐸𝑖J1 + 2J 𝑇
1 𝑈1𝐴𝑖J5

+ 2J 𝑇
1 𝑈1𝐴𝑖𝐵𝑖J6 + 2J 𝑇

1 𝑈1𝐺𝑖J12

− 2J 𝑇
2 𝑈2J2 − 2J 𝑇

2 𝑈2𝐸𝑖J2

+ 2J 𝑇
2 𝑈2𝐴𝑖J5 + 2J 𝑇

1 𝑈2𝐴𝑖𝐵𝑖J6 + 2J 𝑇
2 𝑈2𝐺𝑖J12. (16)

By combining (8)–(16) it can be got that

𝔼
{
L𝑉 (𝑥(𝑡), 𝑡, 𝑖)

}
≤ 𝔼

{
𝜂𝑇 (𝑡){Ξ(℘, ℘̇)

+ Ξ01(℘) + Ξ02(℘)}𝜂(𝑡)
}

< 0, (17)

where

𝜂𝑇 (𝑡) =
[
𝑥𝑇 (𝑡) �̇�𝑇 (𝑡) 𝑥𝑇 (𝑡− 𝜏(𝑡)) 𝑥𝑇 (𝑡− 𝜏)

𝑓𝑇 (𝑥(𝑡)) 𝑓𝑇 (𝑡− 𝜏(𝑡))

𝑡

∫
𝑡−𝜏

𝑥𝑇 (𝑠)𝑑𝑠

1
𝑡

𝑥𝑇 (𝑠)𝑑𝑠 1
𝑡 𝑡

𝑥𝑇 (𝑠)𝑑𝑠𝑑𝑢

𝜏(𝑡) ∫

𝑡−𝑑
𝜏(𝑡)2 ∫

𝑡−𝜏(𝑡)
∫
𝑢
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1
𝜏 − 𝜏(𝑡)

𝑡−𝜏(𝑡)

∫
𝑡−𝜏

𝑥𝑇 (𝑠)𝑑𝑠

1
(𝜏 − 𝜏(𝑡))2

𝑡−𝜏(𝑡)

∫
𝑡−𝜏

𝑡−𝜏(𝑡)

∫
𝑢

𝑥𝑇 (𝑠)𝑑𝑠𝑑𝑢 𝑣𝑇 (𝑡)
]
.

Using the Schur complement, we get the LMIs (4) and (5). Note that 
𝜋𝑝𝑞 < 0 holds for all 𝑞 = 𝑝 and 𝜋𝑝𝑞 ≥ 0 holds for all 𝑞 ≠ 𝑝. If 𝑖 ∈ N , the 
inequalities from (4)-(5) imply that

L𝑉 (𝑥(𝑡), 𝑖) < 𝛽𝑥𝑇 (𝑡)𝑃𝑖𝑥(𝑡) + 𝛽𝑣𝑇 (𝑡)𝑀𝑣(𝑡)

< 𝛽𝑉 (𝑥(𝑡), 𝑖) + 𝛽𝑣𝑇 (𝑡)𝑀𝑣(𝑡). (18)

On the other hand, if 𝑖 ∈ N , inequalities (4)-(5) imply that (18)

holds. Multiplying (18) by 𝑒−𝛽𝑡, we get

L(𝑒−𝛽𝑡𝑉 (𝑥(𝑡), 𝑖)) < 𝛽𝑒−𝛽𝑡𝑣𝑇 (𝑠)𝑀𝑣(𝑠). (19)

Applying the Dynkins rule to (19), we get

𝔼{𝑒−𝛽𝑡𝑉 (𝑥(𝑡), 𝑖)} − 𝑉 (𝑥0, 𝑡0)

< 𝛽

𝑡

∫
0

𝑒−𝛽𝑠𝑣𝑇 (𝑠)𝑀𝑣(𝑠). (20)

Also,

𝐸{𝑉 (𝑥(𝑡), 𝑖)} < 𝑒𝛽𝑡𝑉 (𝑥0, 𝑡0)

+ 𝛽𝑒𝛽𝑡

𝑡

∫
0

𝑒−𝛽𝑠𝑣𝑇 (𝑠)𝑀𝑣(𝑠)𝑑𝑠

< 𝑒−𝛽𝑡
[
𝑉 (𝑥0, 𝑡0)

+ 𝛽𝑑𝜆𝑚𝑎𝑥(𝑀) 1 − 𝑒−𝛽𝑡

𝛽

]
, (21)

and

𝑉 (𝑥0, 𝑡0) =𝑥𝑇 (0)𝑃𝑖𝑥(0)

+ 2
𝑛∑
𝑖=1

𝑑1𝑖

𝑥𝑖(0)

∫
0

(𝑓𝑖(𝑠) − 𝐹−
𝑖
𝑠)𝑑𝑠

+ 2
𝑛∑
𝑖=1

𝑑2𝑖

𝑥𝑖(0)

∫
0

(𝐹+
𝑖
𝑠− 𝑓𝑖(𝑠))𝑑𝑠

+

𝑡

∫
𝑡−𝜏(𝑡)

[
𝑥(𝑠)

𝑓 (𝑥(𝑠))𝑑𝑠

]𝑇

Q

[
𝑥(𝑠))

𝑓 (𝑥(𝑠))𝑑𝑠

]

+

0

∫
−𝜏

𝑥𝑇 (𝑠)𝑅𝑥(𝑠)𝑑𝑠

+ 𝜏

0

∫
𝜏

0

∫
𝜃

�̇�𝑇 (𝑠)𝑋�̇�(𝑠)𝑑𝑠

+ 𝜏

0

∫
𝜏

0

∫
𝜃

𝑥𝑇 (𝑠)𝑌 𝑥(𝑠)𝑑𝑠

< 𝑒𝛽𝑡
[
Δ𝑖 + 𝛽𝑑𝜆𝑚𝑎𝑥(𝑀) 1 − 𝑒−𝛽𝑡

𝛽

]
,

where

𝑃𝑖 = R− 1
2 𝑃𝑖R

− 1
2 , �̄� = R− 1

2 (𝐷1 + 𝐷2)R
− 1

2 , �̄� = R− 1
2 ⊗ Q ⊗ R− 1

2 , �̄� =
R− 1

2 𝑋R− 1
2 , 𝑌 = R− 1

2 𝑌R− 1
2 and Δ𝑖 = 𝑐1[𝜆𝑚𝑎𝑥(𝑃𝑖) + 𝜆𝑚𝑎𝑥(𝐹2 − 𝐹1) +
2 2
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𝜆𝑚𝑎𝑥�̄� + 𝜆𝑚𝑎𝑥�̄�+ 𝜏𝜆𝑚𝑎𝑥�̄�+ 𝜏

2 𝜆𝑚𝑎𝑥�̄� + 𝜏

2 𝜆𝑚𝑎𝑥𝑌 ].
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Taking into account

𝔼{𝑉 (𝑥(𝑡), 𝑖)} ≥ 𝑥𝑇 (𝑡)𝑃𝑖𝑥(𝑡) ≥ 𝜆𝑚𝑖𝑛𝑃𝑖(𝑥𝑇 (𝑡)R𝑖𝑥(𝑡)), (22)

gives rise to

𝔼{𝑥𝑇 (𝑡)R𝑖𝑥(𝑡)} ≤
𝑒𝛽𝑡

[
Δ𝑖 + 𝛽𝑑𝜆𝑚𝑎𝑥(𝑀) 1−𝑒

−𝛽𝑡

𝛽

]
𝜆𝑚𝑖𝑛(𝑃𝑖)

< 𝑐2. (23)

As a result, given the requirements of Theorem 3.1, for any 𝑡 ∈
[0, 𝑇 ], we get 𝔼{J 𝑇

1 R𝑖J1} < 𝑐2. Then, the system (2) is FTB with 
(𝑐1, 𝑐2, R𝑖, 𝑇 , 𝑑). The proof is completed. □

Remark 3.2. Consider 𝑀 = Ḡ−𝛼𝐼
𝛽

in Theorem 3.1 LMIs, then the condi-

tions are FTB and satisfied with (𝑐1, 𝑐2, R𝑖, 𝑇 , 𝑑).

4. Finite-time dissipativity analysis

This section will offer an essential requirement to ensure that (2) is 
FTD.

Theorem 4.1. Under Assumption (H), for given scalars 𝜏, 𝛼, 𝛽, 𝑑 and 
𝜇, the system (2) is FTB in terms of Δ1, if there exist matrices 𝑃𝑖 >

0, 𝐷1 > 0, 𝐷2 > 0, Q =

[
𝑄1 𝑄2

∗ 𝑄3

]
> 0, 𝑅 > 0, 𝑋 > 0, 𝑌 > 0, matri-

ces [𝑅𝑖𝑗 ]3×3 ≥ 0, the diagonal matrices Σ𝑖 > 0, 𝑖 = 1, 2, 3, and any matrices 
𝑈1, 𝑈2 Y1, Y2, 𝑀 with sufficient dimensions, such that the following LMIs 
hold with 𝜏(𝑡) = {0, 𝜏}:[
Ψ̄(0, ℘̇)

√
𝜏Y𝑇2

∗ −[𝑋 −𝑅33]

]
< 0, (24)

[
Ψ̄(𝜏, ℘̇)

√
𝜏Y𝑇1

∗ −[𝑋 −𝑅33]

]
< 0, (25)

where

Ψ(℘, ℘̇) = Ψ̄11(℘, ℘̇) + Ψ02(℘),

Ψ̄11(℘, ℘̇) =J 𝑇
1 [𝜏2𝑌 +

𝑁∑
𝑗=1

𝜋𝑖𝑗𝑃𝑗 +𝑄1 +𝑅+ 𝛽𝑃𝑖

−𝑋 +𝑅33 − 𝐹1Σ1 − 𝐹1Σ3 + 𝜏2𝑅11 + 𝜏𝑅𝑇
13

+ 𝜏𝑅13 − 2𝑈1𝐸𝑖]J1 +J 𝑇
1 [2𝑃𝑖 − 𝐹2𝐷1

+ 𝐹1𝐷2 −𝑈1 −𝐸𝑇
𝑖
𝑈𝑇
2 ]J2 +J 𝑇

1 [𝑋 −𝑅33

+ 𝜏2𝑅12 − 𝜏𝑅23 + 𝜏𝑅𝑇
23]J4

+J 𝑇
1 [𝑈1𝐴𝑖 +𝑄2 + 𝐹2Σ1 + 𝐹2Σ3]J5

+J 𝑇
1 [𝑈1𝐵𝑖 − 𝐹2Σ3]J6 +J 𝑇

1 [𝑈1𝐺𝑖]J12

+J 𝑇
2 [𝑈2𝐺𝑖]J12 +J 𝑇

2 [−2𝑈2 + 𝜏2𝑋J2

+J 𝑇
2 [𝐷𝑇

1 −𝐷𝑇
2 +𝑈2𝐴𝑖]J5 +J 𝑇

4 [−𝑅−𝑋

+𝑅33 + 𝜏2𝑅22 − 𝜏𝑅23 + 𝜏𝑅𝑇
23J4

+J 𝑇
3 [−(1 − 𝜇)𝑄1 − 𝐹1Σ2 − 𝐹1Σ3]J3

+J 𝑇
4 [−(1 − 𝜇)𝑄2 + 𝐹2Σ2 + 𝐹2Σ3]J6

+J5[𝑄3 − Σ1 − Σ3]J5

+J 𝑇
6 [−(1 − 𝜇)𝑄3 − Σ2 − Σ3]J6 −J 𝑇

7 𝑌J7+

[J 𝑇
1 𝐶𝑇

𝑖
+J 𝑇

12𝐻
𝑇
𝑖
] ̄̂Z [𝐶𝑖J1 +𝐻𝑖J12]

+ 2J 𝑇
12S̄ [𝐶𝑖J1 +𝐻𝑖J12] +J 𝑇

12(Ḡ − 𝛼𝐼)J12,

𝜏 − 𝜏(𝑡) 𝜏(𝑡)2
Ψ02(℘) = (
𝜏

+
𝜏2

)𝑠𝑦𝑚[Y1𝜒1 + Y2𝜒2]
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− ( 𝜏 − 𝜏(𝑡)
𝜏2

𝜒𝑇
1 [𝑋 −𝑅33]𝜒1

+ 𝜏(𝑡)
𝜏2

𝜒𝑇
2 [𝑋 −𝑅33]𝜒2),

𝜒1 =𝑐𝑜𝑙[J1 −J3,J1 +J3 − 2J8,

J1 −J3 + 6J8 − 12J9],

𝜒2 = 𝑐𝑜𝑙[J3 −J4,J3 +J4 − 2J10,

J3 −J4 + 6J10 − 12J11].

Proof. Define the Lyapunov-Krasovskii functional candidate as follows:

𝑉 (𝑡) =
4∑
𝑖=1

𝑉𝑖(𝑡), (26)

where

𝑉1(𝑡) = 𝑥𝑇 (𝑡)𝑃𝑖𝑥(𝑡),

𝑉2(𝑡) = 2
𝑛∑
𝑖=1

𝑑1𝑖

𝑥𝑖(𝑡)

∫
0

(𝑓𝑖(𝑠) − 𝐹−
𝑖
𝑠)𝑑𝑠

+ 2
𝑛∑
𝑖=1

𝑑2𝑖

𝑥𝑖(𝑡)

∫
0

(𝐹+
𝑖
𝑠− 𝑓𝑖(𝑠))𝑑𝑠,

𝑉3(𝑡) =

𝑡

∫
𝑡−𝜏(𝑡)

[
𝑥(𝑠)

𝑓 (𝑥(𝑠))

]𝑇
Q

[
𝑥(𝑠))
𝑓 (𝑥(𝑠))

]
𝑑𝑠

+

𝑡

∫
𝑡−𝜏

𝑥𝑇 (𝑠)𝑅𝑥(𝑠)𝑑𝑠,

𝑉4(𝑡) = 𝜏

0

∫
𝜏

𝑡

∫
𝑡+𝜃

�̇�𝑇 (𝑠)𝑋�̇�(𝑠)𝑑𝑠𝑑𝜃

+ 𝜏

0

∫
𝜏

𝑡

∫
𝑡+𝜃

𝑥𝑇 (𝑠)𝑌 𝑥(𝑠)𝑑𝑠𝑑𝜃.

The derivation is the same as that of Theorem 3.1. Therefore, it is not 
displayed here.

For each mode 𝑖, it can be defined that

𝔼
{
L𝑉 (𝑥(𝑡), 𝑖) − 𝛽J 𝑇

1 𝑃𝑖J1

− 𝑧𝑇 (𝑡) ̄̂Z 𝑧(𝑡) − 2J 𝑇
12S̄ 𝑧(𝑡) −J 𝑇

12(Ḡ − 𝛼 𝐼)J12

}
≤ 𝔼

{
𝜂𝑇 (𝑡)Ψ(℘, ℘̇)𝜂(𝑡)

}
. (27)

According to the inequalities (4), (5), (6), (24), and (25), we have

L𝑉 (𝑥(𝑡) , 𝑖) ≤𝛽J 𝑇
1 𝑃𝑖J1 + 𝑧𝑇 (𝑡) ̄̂Z 𝑧(𝑡)

+ 2J 𝑇
12S̄ 𝑧(𝑡) +J 𝑇

12(Ḡ − 𝛼𝐼)J12

≤𝛽𝑉 (𝑥(𝑡), 𝑖) + 𝑧𝑇 (𝑡) ̄̂Z 𝑧(𝑡)

+ 2J 𝑇
12S̄ 𝑧(𝑡) +J 𝑇

12(Ḡ − 𝛼𝐼)J12,

=𝛽𝑉 (𝑥(𝑡), 𝑖) + [J 𝑇
1 𝐶𝑇

𝑖
+J 𝑇

12𝐻
𝑇
𝑖
]

× ̄̂Z [𝐶𝑖J1 +𝐻𝑖J12]

+ 2J 𝑇
12S̄ [𝐶𝑖J1 +𝐻𝑖J12]

+J 𝑇
12(Ḡ − 𝛼𝐼)J12, (28)
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L[𝑒−𝑎𝑡𝑉 (𝑥(𝑡), 𝑖)] ≤𝑒−𝑎𝑡[𝑧𝑇 (𝑡) ̄̂Z 𝑧(𝑡) + 2J 𝑇
12S̄ 𝑧(𝑡)

+J 𝑇
12(Ḡ − 𝛼𝐼)J12]. (29)

Using Dynkin’s formula under zero initial conditions, we get

𝑒−𝑎𝑡𝑉 (𝑥(𝑡), 𝑖) ≤
𝑇

∫
0

𝑒−𝑎𝑡[𝑧𝑇 (𝑡) ̄̂Z 𝑧(𝑡) + 2J 𝑇
12S̄ 𝑧(𝑡)

+J 𝑇
12(Ḡ − 𝛼𝐼)J12]𝑑𝑡. (30)

Moreover,

𝔼
{ 𝑇

∫
0

[
𝑧(𝑡)

J12

]𝑇 ⎡⎢⎢⎣
̄̂Z S̄

∗ (Ḡ − 𝛼𝐼)

⎤⎥⎥⎦
[
𝑧(𝑡))

J12

]
𝑑𝑡

}
≥ −𝜂(𝑥0). (31)

According to Definition 2.3, the system (1) is FTD in terms of Δ1. The 
proof is completed. □

Remark 4.2. It should be noted that the FTD with respect to Δ1 in (31)

represents a performance criterion of (1). To demonstrate this, consider 
the following significant cases.

(i). Setting ̄̂Z = −𝐼, S̄ = 0, (Ḡ − 𝛼𝐼) = 𝛾2𝐼 in the system (1) yields 
FTB with disturbance attention 𝛾 .

(ii). Setting ̄̂Z = 0, S̄ = 𝐼, (Ḡ −𝛼𝐼) = 0 in system (1) yields FTB with 
strictly positive real theorem;

(iii). Setting ̄̂Z = 0, S̄ = 𝐼, (Ḡ − 𝛼𝐼) = 𝛽𝐼 in system (1) yields FTP.

Remark 4.3. When 𝐺𝜚𝑡
= 𝐶𝜚𝑡

=𝐷 = 0, and 𝜚𝑡 = 1, the system described 
by (1) reduces to delayed neural networks

�̇�(𝑡) = −𝐸𝜚𝑡
𝑥(𝑡) +𝐴𝜚𝑡

𝑓 (𝑥(𝑡)) +𝐵𝜚𝑡
𝑓 (𝑥(𝑡− 𝜏(𝑡)))

𝑥(𝑡) = 𝜙(𝑡), 𝑡 ∈ [−𝜏,0]. (32)

Similarly, we may derive the following asymptotic stability requirement 
for delayed neural networks (32) from Theorem 3.1.

Remark 4.4. Our method for tackling the problem at hand is rooted in 
the utilization of the LKF method, in conjunction with the incorporation 
of slack variables and an optimized computation process. By comparing 
the number of variables required in Theorem 3.1 with the results found 
in previous research, we can see that our solution is less restrictive. 
Tables 1–3 are presented to provide a clear comparison of the results, 
and it can be inferred from these that our approach is less conservative.

Remark 4.5. It is noteworthy that in many industrial processes, the dy-

namical behaviors are generally complex and non-linear and their gen-

uine mathematical models are always difficult to obtain. How to model 
the finite-time dissipativity of Markovian jump-delayed neural networks 
(MJDNNs) has become one of the main themes in our research work. 
More particularly, some pioneering works have been done in the finite 
time dissipativity of MJDNNs. In [30] and [31], the problem of Marko-

vian jumping NNs has been studied, addressing finite-time stability and 
dissipative performance. Further results on dissipativity and stability 
analysis of Markov jump generalized neural networks with time-varying 
interval delays have been studied in [22]. Recently, finite-time stabiliza-

tion was proposed in [32] positive Markovian jumping neural networks. 
The model considered in the present study is more practical than that 
proposed by [22,30–32], because they consider finite-time performance 
has been studied with SNNs based on stabilization conditions, but in this 
paper, we consider a new MJDNNs with the combination dissipative ap-

proach in the finite time interval with the practical application. Due to 
the many real-life application the combined study of finite time dissi-

pativity effects on the system model is more important. In addition, the 
proposed dissipative analysis is the relation of applied energy to the sys-

tem with energy started in the system, which is why we analyze Circuit 

realization of delayed neural networks with two neurons in this issue 
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in our paper which may have many applications background, which 
is another advantage of our paper. Furthermore, it is mentioned that 
we utilize composite slack-matrix-based integral inequality techniques 
to estimate the derivative of a Lyapunov functional, such as defined in 
L𝑉4(𝑥(𝑡), 𝑡, 𝑖), which can induce tighter information on the delay of the 
considered system, which has been demonstrated in the numerical ex-

ample section. Henceforth the investigation procedure and framework 
model proposed in this paper merit a lot of regard for fill such a demand 
all the more successfully.

5. Numerical example

To show how useful delayed neural networks can be, we will talk 
about a number of situations in which this method has been used and 
the improvements that have been seen as a result. These examples will 
range from easy to hard and show how useful this method can be in 
many different situations. The goal is to make it clear and easy to un-

derstand how this approach can be used and what can be gained from 
it.

Example 5.1. Take into account the subsequent delayed neural net-

works with (𝑖 = 1, 2):

�̇�(𝑡) = −𝐸𝑖𝑥(𝑡) +𝐴𝑖𝑓 (𝑥(𝑡)) +𝐵𝑖𝑓 (𝑥(𝑡− 𝜏(𝑡)))

+𝐺𝑖𝑣(𝑡),

𝑧(𝑡) = 𝐶𝑖𝑥(𝑡) +𝐷𝑖𝑣(𝑡), (33)

Mode 1: 𝜋11 = −0.8, 𝜋12 = 0.8,

𝐸1 =
[
5 0
0 5

]
, 𝐴1 =

[
−0.5 −1.3
0.42 0.35

]
, 𝐵1 =

[
0.3 0.2
1.1 1.2

]
,

𝐺1 =
[
1.5 0
0 2

]
, 𝐶1 =

[
0.1 0
0 0.1

]
, 𝐻1 =

[
0.5 0
0 0.5

]
.

Mode 2: 𝜋21 = 0.4, 𝜋22 = −0.4,

𝐸2 =
[
4 0
0 5

]
, 𝐴2 =

[
−0.1 0.3
−0.22 0.25

]
, 𝐵2 =

[
1.3 1.2
1.1 1.2

]
,

𝐺2 =
[
0.5 0
0 1

]
, 𝐶2 =

[
0.2 0
0 0.2

]
, 𝐻2 =

[
0.5 0
0 0.4

]
,

𝐹−
1 = 𝐹−

2 = −0.1, 𝐹+
1 = 𝐹+

2 = 0.9.

In this example, we choose 𝜏 = 0.9

̄̂Z =
[
−0.9 0
0 −0.9

]
, S̄ =

[
0.5 0
0.3 1

]
, Ḡ =

[
1 0
0 1

]
.

Let us consider R = 2𝐼, 𝑐1 = 𝑇 = 1, 𝛼 = 𝛽 = 0.1, 𝑑 = 0.5, and 𝜇 = 0.9, we 
find the feasible solutions as follows by solving the LMIs in Theorem 4.1

using the Matlab LMI toolbox:

𝑃1 =
[

0.7551 −0.0444
−0.0444 0.5690

]
, 𝑃2 =

[
1.2930 −0.2823
−0.2823 0.9281

]
,

𝐷1 =
[

0.9845 −0.0932
−0.0932 0.7130

]
,

𝐷2 =
[

0.9021 −0.1305
−0.1305 0.6981

]
, 𝑋 =

[
0.1513 −0.0336
−0.0336 0.1086

]
,

𝑌 =
[
7.4349 0.0020
0.0020 7.4337

]
𝑅 =

[
7.4312 −0.0000
−0.0000 7.4312

]
,

Σ1 =
[
7.4312 0

0 7.4312

]
, Σ2 =

[
3.1234 0

0 3.1234

]
,

Σ3 =
[
2.2821 0

0 2.2821

]
, 𝑈1 =

[
2.5128 −0.3178
−0.3178 1.8038

]
,[

0.2292 −0.0354
]
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𝑈2 = −0.0354 0.1678 , 𝑐2 = 16.0036,
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Fig. 1. Behavior of the state responses in Example 5.1.

Fig. 2. Evolution of the modes in Example 5.1.

�̄� =

⎡⎢⎢⎢⎢⎣
28.0767 −0.1228 4.1575 0.2788
−0.1228 27.4979 0.2788 3.4528
4.1575 0.2788 6.4965 0.1395
0.2788 3.4528 0.1395 6.7023

⎤⎥⎥⎥⎥⎦
.

Furthermore, Fig. 1 depicts the state trajectories and Fig. 2 shows the 
mode evolution in Example 5.1. Fig. 3 also depicts the finite-time curve 
for the linked states. Using Theorem 4.1 and optimizing over value 𝑐2, 
it is determined that delayed Markovian jumping neural networks (39) 
have FTB with regard to Δ1 with minimal 𝑐2 = 16.0036. This means that 
all the requirements of Theorem 4.1 are meet. Closed-loop stochastic 
MJNNs with time-varying delays are clearly finite-time dissipative.

6. Application of delayed neural networks

Example 6.1. This circuit is designed to perform a specific function by 
utilizing various electrical components. The activation function circuit 
is used to activate or deactivate certain elements in the circuit based 
on input signals. The time delay unit is responsible for introducing 
a delay in the circuit’s response to input signals. The related unit is 
used to connect and integrate other components of the circuit, such as 
resistors, capacitors, inductance, operational amplifiers, and other com-
monly used electrical components. These components work together to 
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Fig. 3. Curves of 𝑥𝑇 (𝑡)R𝑥(𝑡) in Example 5.1.

Fig. 4. Realization of the circuit of the hyperbolic tangent.

achieve the desired function of the circuit. Based on how complicated 
the models are, neural network models are turned into circuits.

To make it easier to understand how these circuits work, simple dia-

grams are used to show the different parts and how they are connected. 
As seen in Figs. 4 and 5, the suggested units can be used to construct a 
Hopfield-type neural network, and the system can be described as fol-

lows after analyzing the circuit node: The Hopfield-type neural network 
is a recurrent neural network with a unique design that can be used to 
do things like recognize patterns and find the best solution. The circuit 
has an activation function circuit, a time delay unit, and other parts 
such as resistors, capacitors, and inductances that work together. The 
activation function circuit is used to process the signals coming in and 
figure out what state the circuit is in when it is turned on. The time 
delay unit is used to slow down the circuit’s response to input signals, 
which is needed for the network to be able to recognize and store pat-

terns. The circuit node is evaluated to find out how well the system 
works, including how well it can recognize patterns and how quickly it 
can find the best solution. In general, using circuits to implement neural 
network models is a powerful method that makes it possible to process 
large amounts of data quickly and accurately.

The hyperbolic tangent (tanh) function is a common activation func-

tion used in neural networks. It can be realized in a circuit using a 
combination of operational amplifiers, resistors, and capacitors (see 
Fig. 4). Using a voltage-to-current converter and a differential amplifier 
is one way to put the tanh function into a circuit. The voltage-to-current 
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converter converts the input voltage to a current, and the differential 
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Fig. 5. Circuit realization of delayed neural networks with two neurons.

amplifier compares the current to a reference current and produces an 
output voltage. The voltage from the output then goes through a tanh 
function generator, which is usually made up of operational amplifiers 
and resistors. A precision rectifier circuit followed by a log-domain cir-

cuit is another way to use the tanh function in a circuit. The input 
voltage is turned into a current by the precision rectifier circuit. The cur-

rent is then sent through a log-domain circuit, which turns the current 
into an output voltage. The voltage from this output is then sent to a 
tanh function generator, which can be made with operational amplifiers 
and resistors. In both cases, the implementation of the tanh function in 
a circuit requires precise design and the proper selection of the compo-

nents to achieve the desired performance. The specific implementation 
depends on the requirements of the overall circuit and system.

In Fig. 5, a simple implementation of a delayed neural network with 
two neurons can be achieved by using two operational amplifiers, each 
representing a neuron. The first operational amplifier receives the input 
signal and produces an output signal. Before going to the second oper-

ational amplifier, this signal goes through a delay line, which causes 
a delay in the signal. The second operational amplifier receives the 
delayed signal and produces a final output signal. For the activation 
function to work, the output signal can be sent through a precision rec-

tifier circuit before it goes to the second operational amplifier. This 
straightens out the signal and lets it go through the tanh function gen-

erator circuit, which is usually made up of operational amplifiers and 
resistors. For the second neuron to affect the first neuron, the circuit also 
needs a feedback loop. This can be done by connecting the output of the 
second operational amplifier to the input of the first operational ampli-

fier with a gain. Stability analysis helps identify potential problems such 
as oscillations, diverging behavior, or other undesirable behaviors that 
may occur in the circuit. In particular, it’s important to analyze the sta-

bility of the feedback loop in the circuit, as this is where the second 
neuron influences the first one. If the feedback loop is not set up cor-

rectly or the gain isn’t set right, the circuit could become unstable and 
give results that are hard to predict. Stability analysis is also impor-

tant for figuring out how stable the circuit’s response is to signals from 
outside. The circuit should be able to respond to the input signals in a 
stable and predictable way. During the stability analysis, any problems 
with how the circuit responds should be found and fixed.

Stability analysis is important for the circuit realization of delayed 
neural networks with two neurons. This helps make sure that the cir-

cuit works as expected and does not become unstable over time. It also 
helps find problems, like oscillations or behavior that goes in different 
directions, and makes sure that the circuit’s response to signals from 
outside is stable and predictable. Fig. 5 demonstrates how the proposed 

units, such as resistors, capacitors, operational amplifiers, and delay 



V.E. Sathishkumar, R. Vadivel, J. Cho et al.

lines, can be assembled to create a neural network with two neurons. 
This network can be used for a variety of tasks, such as pattern recogni-

tion and optimization. By evaluating the circuit nodes, the system can 
be described mathematically as shown in equation (34). For our conve-

nience to find stability analysis, we consider delayed neural networks 
with two neurons:

𝑑𝑥𝑝(𝑡)
𝑑𝑡

=− 𝑎𝑝𝑥𝑝(𝑡) +
𝑛∑

𝑞=1
𝑏𝑝𝑞𝑓 (𝑥𝑞(𝑡))

+
𝑛∑

𝑞=1
𝑐𝑝𝑞𝑓 (𝑥𝑞(𝑡− 𝜏)), 𝑝 = 1,2,⋯ , 𝑛, (34)

where 𝑎𝑝 =
1

𝐶𝑝𝑅𝑝
, 𝑏𝑝𝑞 =

1
𝐶𝑝𝑅𝑏𝑝𝑞

and 𝑐𝑝𝑞 =
1

𝐶𝑝𝑅𝑐𝑝𝑞
. As illustrated in Figs. 4

and 5, the proposed units can be used to construct a neural network 
with two neurons. By analyzing the circuit nodes, the system can be 
described as follows.

𝑑𝑥1(𝑡)
𝑑𝑡

= − 1
𝐶1𝑅1

𝑥1(𝑡) +
1

𝐶1𝑅𝑏11
𝑓 (𝑥1(𝑡))

+ 1
𝐶1𝑅𝑏12

𝑓 (𝑥2(𝑡)) +
1

𝐶1𝑅𝑐11
𝑓 (𝑥1(𝑡− 𝜏))

+ 1
𝐶1𝑅𝑐12

𝑓 (𝑥2(𝑡− 𝜏))

𝑑𝑥2(𝑡)
𝑑𝑡

= − 1
𝐶2𝑅2

𝑥1(𝑡) +
1

𝐶2𝑅𝑏21
𝑓 (𝑥1(𝑡))

+ 1
𝐶2𝑅𝑏22

𝑓 (𝑥2(𝑡)) +
1

𝐶2𝑅𝑐21
𝑓 (𝑥1(𝑡− 𝜏))

+ 1
𝐶2𝑅𝑐22

𝑓 (𝑥2(𝑡− 𝜏))

As demonstrated in Figs. 4 and 5, neural networks with two neurons can 
be constructed using the proposed units. By analyzing the circuit nodes, 
it can be seen that the system can be described mathematically as shown 
in equation (34). Furthermore, this same approach can be extended to 
systems with more neurons by simply increasing the number of neurons 
in the circuit, the system with 𝑛 neurons can be represented by the same 
equation (34). This demonstrates the scalability of this circuit-based 
approach to neural networks.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑥1(𝑡)
𝑑𝑡

= −𝑎1𝑥1(𝑡) +
𝑛∑

𝑝=1
𝑏1𝑞𝑓 (𝑥𝑞(𝑡))

+
𝑛∑

𝑞=1
𝑐1𝑞𝑓 (𝑥𝑞(𝑡− 𝜏))

𝑑𝑥2(𝑡)
𝑑𝑡

= −𝑎2𝑥2(𝑡) +
𝑛∑

𝑝=1
𝑏2𝑞𝑓 (𝑥𝑞(𝑡))

+
𝑛∑

𝑞=1
𝑐2𝑞𝑓 (𝑥𝑞(𝑡− 𝜏))

⋮ = ⋮ ⋮ ⋮

𝑑𝑥𝑛(𝑡)
𝑑𝑡

= −𝑎𝑛𝑥𝑛(𝑡) +
𝑛∑

𝑝=1
𝑏𝑛𝑞𝑓 (𝑥𝑞(𝑡))

+
𝑛∑

𝑞=1
𝑐𝑛𝑞𝑓 (𝑥𝑞(𝑡− 𝜏))

(35)

In this electronic circuit, some parameters are set to a fixed value. 
Specifically, 𝑏22 and 𝑐22 vary while maintaining 𝑏22 = 𝑐22 = 0.5. This 
study focuses on neural networks represented by Equation (35) with 
two neurons. The system can be simplified by considering the fixed val-

ues of 𝑏22 and 𝑐22 and expressing it as a function of these parameters.

�̇�(𝑡) = −A𝑥(𝑡) + B𝑓 (𝑥(𝑡)) + C𝑓 (𝑥(𝑡− 𝜏)), (36)

where

A =
[
1 0

]
, B =

[
2 −0.1

]
, C =

[
−1.5 −0.1

]
,
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Fig. 6. Behavior of the state responses in Example 6.1.

Table 1

The maximum allowable delay bounds (MADBs) of 𝜏
for various 𝜇 in Example 7.1.

Methods 𝜇 = 0.8 𝜇 = 0.9

[8] 2.9105 2.1854

[9] 4.8167 3.4245

Theorem 3.1 4.9196 3.8262

𝑏22, 𝑐22 are allowed to be changeable values, the activation function is 
𝑓 (𝑥(𝑡)) = tanh(𝑥(𝑡)), and by using the Matlab LMI toolbox and solving 
the LMIs in (36), a group of feasible solutions can be acquired. Along 
these lines, we conclude that Remark 4.3 infers that the system (36)

is finite-time stable. The state response of system (36) is shown in the 
Fig. 6 with the initial condition 𝑥(𝑡) = [−3, 2]𝑇 .

7. Comparison examples

In this study, we consider the delayed neural networks represented 
by Equation (32), which includes specific parameters that are used in 
circuit design. These parameters are likely to affect the behavior and 
performance of the network and therefore need to be carefully chosen 
and optimized to achieve the desired results.

Example 7.1. Consider the delayed neural networks (32) with the fol-

lowing parameters:

𝐸1 =
[
2 0
0 2

]
, 𝐴1 =

[
1 1
−1 −1

]
, 𝐵1 =

[
0.88 1
1 1

]
,

𝐹−
1 = 𝐹−

2 = 0, 𝐹+
1 = 0.4, 𝐹+

2 = 0.8.

It is possible to demonstrate that the LMIs (4)-(5) is practical. Table 1

shows the acceptable upper boundaries of 𝜏 for various values of 𝜇. 
It is evident that the delay-dependent stability solution given in Theo-

rem 3.1 yields less conservative findings than [8,9].

Example 7.2. Consider the delayed neural networks (32) with the fol-

lowing parameters:

𝐸1 =
[
1.5 0
0 0.7

]
, 𝐴1 =

[
0.0503 0.0454
0.0987 0.2075

]
,

𝐵1 =
[
0.2381 0.9320
0.0388 0.5062

]
, 𝐹−

1 = 𝐹−
2 = 0,

+ +
𝐹1 = 0.3, 𝐹2 = 0.8.
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Table 2

MADBs of 𝜏 for various 𝜇 in Example 7.2.

Methods 𝜇 = 0.4 𝜇 = 0.45 𝜇 = 0.5 𝜇 = 0.55

[6] 5.4036 4.6017 4.3121 4.1582

[10](Corollary. 1) 5.6504 4.7596 4.4276 4.2450

[10](Corollary. 2) 7.5919 6.6339 6.2829 6.0999

[10](Corollary. 3) 7.4203 6.6190 6.3428 6.2095

[10](Corollary. 4) 7.5049 6.6401 6.3715 6.0237

[10](Corollary. 5) 5.4065 4.6401 4.3715 4.2224

[10](Theorem. 1) 7.6697 6.7287 6.4126 6.2569

Theorem 3.1 7.9999 7.0012 6.8695 6.6666

Table 3

MADBs of 𝜏 for various 𝜇 in Example 7.3.

Methods 𝜇 = 0.1 𝜇 = 0.5 𝜇 = 0.9

[7] 3.4984 2.7243 2.2029

[10](Corollary. 1) 3.9055 3.0997 2.6944

[10](Corollary. 2) 4.2729 3.0666 2.7687

[10](Corollary. 3) 4.1838 3.1510 2.8347

[10](Corollary. 4) 4.2732 3.0666 2.7648

[10](Corollary. 5) 3.8554 3.0278 2.6526

[10](Theorem. 1) 4.2993 3.1577 2.8371

Theorem 3.1 4.8051 3.6270 3.0006

We compared our results with the current results in [6,10], and we 
gave various values of 𝜇. Table 2 shows the comparing findings. Ac-

cording to Table 2, the results in this study are less conservative than 
those in [6,10].

Example 7.3. Consider the delayed neural networks (32) with the fol-

lowing parameters:

𝐸1 =

⎡⎢⎢⎢⎢⎣
1.2769 0 0 0

0 0.6231 0 0
0 0 0.9230 0
0 0 0 0.4480

⎤⎥⎥⎥⎥⎦
,

𝐴1 =

⎡⎢⎢⎢⎢⎣
0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394 −0.0860 −0.3824 −0.578
−0.1311 0.3253 −0.9534 −0.501

⎤⎥⎥⎥⎥⎦
,

𝐵1 =

⎡⎢⎢⎢⎢⎣
0.8674 −1.2405 −0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428
−2.0413 0.5179 1.1734 −0.2775

⎤⎥⎥⎥⎥⎦
,

𝐹−
1 = 𝐹−

2 = 𝐹−
3 = 𝐹−

4 = 0, 𝐹+
1 = 0.1137,

𝐹+
2 = 0.1279, 𝐹+

3 = 0.7994, 𝐹+
4 = 0.2368.

The findings in [7,10] are provided. Table 3 shows the comparing 
findings. According to Table 3, the results in this study are less conser-

vative than those in [7,10].

8. Conclusion

In this study, we present a unique method for analyzing the finite-

time dissipativity of stochastic Markovian jump-delayed neural net-

works. LMIs are developed by constructing an appropriate LKF and 
using Newton-Leibniz methods to enumerate delay-dependent dissipa-

tivity requirements. This new strategy yields dissipativity criteria that 
are less conservative. The simulation results back up the theoretical 
reasons made for the suggested theorems. Numerical results are pro-

vided to demonstrate the utility of the suggested technique. Outlining 
illustrations have been used to compare the benefits of the suggested 
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methodology to existing works in the literature. This paper focuses 
Alexandria Engineering Journal 79 (2023) 427–437

on finite-time dissipativity analysis for Markovian jump-delayed neu-

ral networks and the analytical method developed may be extended to 
additional control issues such as sampled-data control [15] and event-

triggered control [21], also focus on the retarded time delay system 
[41,42] to reduce the conservatism issue, all of which will be investi-

gated in future research.

CRediT authorship contribution statement

All authors contributed equally and significantly to the writing of 
this article and typed, read, and approved the final manuscript.

Declaration of competing interest

I confirm that neither I with which I am associated have any per-

sonal interest in or potential for personal gain from any of the organi-

zations.

Availability of data and materials

Data sharing is not applicable to this article as data sets were not 
generated or analyzed during the current study.

Acknowledgement

This work was supported by the Institute of Information and Com-

munications Technology Planning and Evaluation funded by the Korea 
Government, Ministry of Science and ICT (Building a Digital Open Lab 
as open innovation platform) under Grant 2021-0-00546.

References

[1] Y. Liu, Z. Wang, X. Liu, Global exponential stability of generalized recurrent neural 
networks with discrete and distributed delays, Neural Netw. 19 (2006) 667–675.

[2] J. Sun, G.P. Liu, J. Chen, D. Rees, Improved stability criteria for neural networks 
with time-varying delay, Phys. Lett. A 373 (2009) 342–348.

[3] Y. Zhou, Z. Zeng, Event-triggered finite-time stabilization of fuzzy neural networks 
with infinite time delays and discontinuous activations, IEEE Trans. Fuzzy Syst. 
(2023), https://doi .org /10 .1109 /TFUZZ .2023 .3287202.

[4] Y. Tong, Z. Ren, D. Tong, Z. Fan, X. Feng, Combined finite-time state feedback design 
for discrete-time neural networks with time-varying delays and disturbances, Neural 
Process. Lett. (2023), https://doi .org /10 .1007 /s11063 -023 -11289 -y.

[5] L. Yu, D. Zhang, Exponential state estimation for Markovian jumping neural net-

works with time-varying discrete and distributed delays, Neural Netw. 35 (2012) 
103–111.

[6] W. Chen, Q. Ma, G. Miao, Y. Zhang, Stability analysis of stochastic neural networks 
with Markovian jump parameters using delay-partitioning approach, Neurocomput-

ing 103 (2013) 22–28.

[7] H. Zhang, F. Yang, X. Liu, Q. Zhang, Stability analysis for neural networks with time-

varying delay based on quadratic convex combination, IEEE Trans. Neural Netw. 
Learn. Syst. 24 (2013) 513–521.

[8] X.B. Zhou, J.K. Tian, H.J. Ma, S.M. Zhong, Improved delay-dependent stability cri-

teria for recurrent neural networks with time-varying delays, Neurocomputing 129 
(2014) 401–408.

[9] H-B. Zeng, Y. He, M. Wu, S-P. Xiao, Stability analysis of generalized neural networks 
with time-varying delays via a new integral inequality, Neurocomputing 161 (2015) 
148–154.

[10] C-K. Zhang, Y. He, L. Jiang, M. Wu, Stability analysis for delayed neural networks 
considering both conservativeness and complexity, IEEE Trans. Neural Netw. Learn. 
Syst. 27 (2016) 1486–1501.

[11] H.B. Zeng, J.H. Park, C.-F. Zhang, W. Wang, Stability and dissipativity analysis of 
static neural networks with interval time-varying delay, J. Franklin Inst. 352 (2015) 
1284–1295.

[12] T. Radhika, G. Nagamani, Q. Zhu, S. Ramasamy, R. Saravanakumar, Further results 
on dissipativity analysis for Markovian jump neural networks with randomly occur-

ring uncertainties and leakage delays, Neural Comput. Appl. 30 (2018) 3565–3579.

[13] C.K. Ahn, P. Shi, R.K. Agarwal, J. Xu, 𝐿∞ performance of single and interconnected 
neural networks with time-varying delay, Inf. Sci. 346 (2016) 412–423.

[14] C-D. Zheng, Y. Gu, W. Liang, Z. Wang, Novel delay-dependent stability criteria for 
switched Hopfield neural networks of neutral type, Neurocomputing 158 (2015) 
117–126.

[15] M. Syed Ali, N. Gunasekaran, Q. Zhu, State estimation of T-S fuzzy delayed neural 
networks with Markovian jumping parameters using sampled-data control, Fuzzy 

Sets Syst. 306 (2017) 87–104.

http://refhub.elsevier.com/S1110-0168(23)00663-4/bib7D91BF6130CDB5DC98198083E04FF1ECs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib7D91BF6130CDB5DC98198083E04FF1ECs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib9C15B2A29FF0A5AE1CB77CBF75C8F88As1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib9C15B2A29FF0A5AE1CB77CBF75C8F88As1
https://doi.org/10.1109/TFUZZ.2023.3287202
https://doi.org/10.1007/s11063-023-11289-y
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibB2E68EC1FA49DA52CA5B0F436E032DD6s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibB2E68EC1FA49DA52CA5B0F436E032DD6s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibB2E68EC1FA49DA52CA5B0F436E032DD6s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibA3DEB6E481689F1D3303CAECB8A6C401s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibA3DEB6E481689F1D3303CAECB8A6C401s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibA3DEB6E481689F1D3303CAECB8A6C401s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib997719CF457B0B80F1467D9D9D3376FAs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib997719CF457B0B80F1467D9D9D3376FAs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib997719CF457B0B80F1467D9D9D3376FAs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib7E8B9F5CAB4A8FE24FAD9FE4B7452702s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib7E8B9F5CAB4A8FE24FAD9FE4B7452702s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib7E8B9F5CAB4A8FE24FAD9FE4B7452702s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibBEC20CEE5D032151C66D7303207F2F00s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibBEC20CEE5D032151C66D7303207F2F00s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibBEC20CEE5D032151C66D7303207F2F00s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibF7DDF69DF53A1ED75A633118B6EAB1E9s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibF7DDF69DF53A1ED75A633118B6EAB1E9s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibF7DDF69DF53A1ED75A633118B6EAB1E9s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib5651D908D5B3AB8D4A8FE8089B4E7D83s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib5651D908D5B3AB8D4A8FE8089B4E7D83s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib5651D908D5B3AB8D4A8FE8089B4E7D83s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib9D8322530B67E2366E5B1BA67081DED9s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib9D8322530B67E2366E5B1BA67081DED9s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib9D8322530B67E2366E5B1BA67081DED9s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib534AC75C2E8AC3E3FE7BC32BB8C6E34As1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib534AC75C2E8AC3E3FE7BC32BB8C6E34As1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib106530DC42BAA21C67F8A3AF4D7FD9E1s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib106530DC42BAA21C67F8A3AF4D7FD9E1s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib106530DC42BAA21C67F8A3AF4D7FD9E1s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibE1DFFC8709F31A4987C8A88334107E89s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibE1DFFC8709F31A4987C8A88334107E89s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibE1DFFC8709F31A4987C8A88334107E89s1


Alexandria Engineering Journal 79 (2023) 427–437V.E. Sathishkumar, R. Vadivel, J. Cho et al.

[16] G. Nagamani, Y.H. Joo, T. Radhika, Delay-dependent dissipativity criteria for 
Markovian jump neural networks with random delays and incomplete transition 
probabilities, Nonlinear Dyn. 348 (2018) 2503–2522.

[17] X. Gao, L. Lian, W. Qi, Finite-time dissipativity analysis and design for stochastic 
Markovian jump systems with generally uncertain transition rates and time-varying 
delay, Trans. Inst. Meas. Control 39 (2017) 807–819.

[18] L. Wu, W.X. Zheng, H. Gao, Dissipativity-based sliding mode control of switched 
stochastic systems, IEEE Trans. Autom. Control 58 (2013) 785–793.

[19] H.B. Zeng, J.H. Park, J.W. Xia, Further results on dissipativity analysis of neural 
networks with time-varying delay and randomly occurring uncertainties, Nonlinear 
Dyn. 79 (2015) 83–91.

[20] G. Nagamani, T. Radhika, P. Gopalakrishnan, Dissipativity and passivity analysis of 
Markovian jump impulsive neural networks with time delays, Int. J. Comput. Math. 
194 (2017) 1479–1500.

[21] R. Vadivel, P. Hammachukiattikul, N. Gunasekaran, R. Saravanakumar, H. Dutta, 
Strict dissipativity synchronization for delayed static neural networks: an event-

triggered scheme, Chaos Solitons Fractals 150 (2021) 111212.

[22] J. Shiyu, H. Shen, Y. Wei, X. Huang, Z. Wang, Further results on dissipativity and 
stability analysis of Markov jump generalized neural networks with time-varying 
interval delays, Appl. Math. Comput. 336 (2018) 338–350.

[23] Y. Kao, L. Shi, J. Xie, H.R. Karimi, Global exponential stability of delayed Markovian 
jump fuzzy cellular neural networks with generally incomplete transition probabil-

ity, Neural Netw. 63 (2015) 18–30.

[24] H.R. Karimi, Passivity-based output feedback control of Markovian jump systems 
with discrete and distributed time-varying delays, Int. J. Syst. Sci. 44 (2013) 
1290–1300.

[25] Y.G. Kao, C.H. Wang, J. Xie, H.R. Karimi, W. Li, 𝐻∞ sliding mode control for uncer-

tain neutral-type stochastic systems with Markovian jumping parameters, Inf. Sci. 
314 (2015) 200–211.

[26] W.H. Qi, X.W. Gao, Finite-time 𝐻∞ control for stochastic time-delayed Markovian 
switching systems with partly known transition rates and nonlinearity, Int. J. Syst. 
Sci. 14 (2016) 637–646.

[27] Y. Kao, C. Wang, J. Xie, H.R. Karimi, New delay-dependent stability of Markovian 
jump neutral stochastic systems with general unknown transition rates, Int. J. Syst. 
Sci. 47 (2016) 2499–2509.

[28] H. Wang, Y. Ni, J. Wang, J. Tian, C. Ge, Sampled-data control for synchronization of 
Markovian jumping neural networks with packet dropout, Appl. Intell. (2015) 1–12, 
https://doi .org /10 .1007 /s10489 -022 -03379 -6.

[29] P. Balasubramaniam, G. Nagamani, Passivity analysis of neural networks with 
Markovian jumping parameters and interval time-varying delays, Nonlinear Anal. 
Hybrid Syst. 4 (2010) 853–864.

[30] S. Li, Y. Ma, Finite-time dissipative control for singular Markovian jump systems via 
quantizing approach, Nonlinear Anal. Hybrid Syst. 27 (2018) 323–340.

[31] S. Saravanan, M. Syed Ali, R. Saravanakumar, Finite-time non-fragile dissipative 
stabilization of delayed neural networks, Neural Process. Lett. 49 (2019) 573–591.

[32] C. Ren, S. He, Finite-time stabilization for positive Markovian jumping neural net-

works, Appl. Math. Comput. 365 (2020) 124631.

[33] Y. Zhang, P. Shi, S.K. Nguang, J. Zhang, H.R. Karimi, Finite-time boundedness for 
uncertain discrete neural networks with time-delays and Markovian jumps, Neuro-

computing 140 (2014) 1–7.

[34] C. Zheng, J. Cao, M. Hu, X. Fan, Finite-time stabilization for discrete-time T-S fuzzy 
model system with channel fading and two types of parametric uncertainty, Int. J. 
Syst. Sci. 48 (2017) 34–42.

[35] Y. Wu, J. Cao, A. Alofi, A. AL-Mazrooei, A. Elaiw, Finite-time boundedness and 
stabilization of uncertain switched neural networks with time-varying delay, Neural 
Netw. 69 (2015) 135–143.

[36] K. Gu, An integral inequality in the stability problem of time-delay systems, in: Proc. 
39th IEEE Conf. Decision and Control, Sydney, Australia, 2000, pp. 2805–2810.

[37] P. Liu, Robust exponential stability for uncertain time-varying delay systems with 
delay dependence, J. Franklin Inst. 346 (2009) 958–968.

[38] H.C. Lin, H.B. Zeng, X.M. Zhang, W. Wang, Stability analysis for delayed neural 
networks via a generalized reciprocally convex inequality, IEEE Trans. Neural Netw. 
Learn. Syst. (2022), https://doi .org /10 .1109 /TNNLS .2022 .3144032.

[39] D.T. Hong, N.H. Sau, M.V. Thuan, New criteria for dissipativity analysis of 
fractional-order static neural networks, Circuits Syst. Signal Process. 41 (4) (2022) 
2221–2243.

[40] Y. Tian, Z. Wang, Composite slack-matrix-based integral inequality and its applica-

tion to stability analysis of time-delay systems, Appl. Math. Lett. 120 (2021) 107252.

[41] G. Zhuang, S.-F. Su, J. Xia, W. Sun, HMM-based asynchronous 𝐻∞ filtering for 
fuzzy singular Markovian switching systems with retarded time-varying delays, IEEE 
Trans. Cybern. 120 (2021) 1189–1203.

[42] G. Zhuang, J. Xia, J.-e. Feng, W. Sun, B. Zhang, Admissibilization for implicit jump 
systems with mixed retarded delays based on reciprocally convex integral inequality 
and Barbalat’s lemma, IEEE Trans. Syst. Man Cybern. Syst. 51 (2021) 6808–6818.
437

http://refhub.elsevier.com/S1110-0168(23)00663-4/bib74B8D5453B654B3A79E7B8985A2FC71Cs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib74B8D5453B654B3A79E7B8985A2FC71Cs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib74B8D5453B654B3A79E7B8985A2FC71Cs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibBD376F179D4CD50B48435BD9CE820932s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibBD376F179D4CD50B48435BD9CE820932s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibBD376F179D4CD50B48435BD9CE820932s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib4C91FA5CBD63C2BEBDBB5C7D67BCBE9Fs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib4C91FA5CBD63C2BEBDBB5C7D67BCBE9Fs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibCA7F117A12B9BD45FC276459864E2AA8s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibCA7F117A12B9BD45FC276459864E2AA8s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibCA7F117A12B9BD45FC276459864E2AA8s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibC8171A1FDA4B02A65A789A3A8CD24BD6s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibC8171A1FDA4B02A65A789A3A8CD24BD6s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibC8171A1FDA4B02A65A789A3A8CD24BD6s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib80E389F3B90940A147E1F1920F13CF0Bs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib80E389F3B90940A147E1F1920F13CF0Bs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib80E389F3B90940A147E1F1920F13CF0Bs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibF31E1EEF20F64733A18C538073E78396s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibF31E1EEF20F64733A18C538073E78396s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibF31E1EEF20F64733A18C538073E78396s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib77450568DF0F693CAD58913858BEDA3Fs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib77450568DF0F693CAD58913858BEDA3Fs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib77450568DF0F693CAD58913858BEDA3Fs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibECEBD75FC367B9AA41BE06278689DC63s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibECEBD75FC367B9AA41BE06278689DC63s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibECEBD75FC367B9AA41BE06278689DC63s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib23FF49ED815108D610C1A75D592488DDs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib23FF49ED815108D610C1A75D592488DDs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib23FF49ED815108D610C1A75D592488DDs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibDCE0EB67E20BADA2F2A2AC1084C34D7Ds1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibDCE0EB67E20BADA2F2A2AC1084C34D7Ds1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibDCE0EB67E20BADA2F2A2AC1084C34D7Ds1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibBE2268C01180C5580C4BE9A0C38C3686s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibBE2268C01180C5580C4BE9A0C38C3686s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibBE2268C01180C5580C4BE9A0C38C3686s1
https://doi.org/10.1007/s10489-022-03379-6
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibFC1DF6307A9C4971569997963DCC8B08s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibFC1DF6307A9C4971569997963DCC8B08s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibFC1DF6307A9C4971569997963DCC8B08s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib73211E845D1310D6FE8819B2FDF2806Es1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib73211E845D1310D6FE8819B2FDF2806Es1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibE3FB7125A158D79592015C46F01F3081s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibE3FB7125A158D79592015C46F01F3081s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibBB4F36552E39C5B0DC8C5FFB0DD6ABB7s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibBB4F36552E39C5B0DC8C5FFB0DD6ABB7s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibA61F641ABE73CA2C4E6793F3AED129ABs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibA61F641ABE73CA2C4E6793F3AED129ABs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibA61F641ABE73CA2C4E6793F3AED129ABs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib3F309120B3D65DCE7A85083E56E7E542s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib3F309120B3D65DCE7A85083E56E7E542s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib3F309120B3D65DCE7A85083E56E7E542s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib1C06FEED8CCC0660DD076EDF772A65EAs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib1C06FEED8CCC0660DD076EDF772A65EAs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib1C06FEED8CCC0660DD076EDF772A65EAs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib9EC4C0AFD450CEAC7ADB81C3BCFC9732s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib9EC4C0AFD450CEAC7ADB81C3BCFC9732s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib2ACFFB70649C35DD80D70A129BB4827Cs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib2ACFFB70649C35DD80D70A129BB4827Cs1
https://doi.org/10.1109/TNNLS.2022.3144032
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibF64F08F433409A1ED848538F6B5202C0s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibF64F08F433409A1ED848538F6B5202C0s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibF64F08F433409A1ED848538F6B5202C0s1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibF958DE3FB264729D30611B60DBB2FE5Bs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bibF958DE3FB264729D30611B60DBB2FE5Bs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib9A2C8BC6D0B8295972F662AA27405F3Bs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib9A2C8BC6D0B8295972F662AA27405F3Bs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib9A2C8BC6D0B8295972F662AA27405F3Bs1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib04F0216148186F1AD3437F718474955Ds1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib04F0216148186F1AD3437F718474955Ds1
http://refhub.elsevier.com/S1110-0168(23)00663-4/bib04F0216148186F1AD3437F718474955Ds1

	Exploring the finite-time dissipativity of Markovian jump delayed neural networks
	1 Introduction
	2 Problem statement
	3 Main results
	4 Finite-time dissipativity analysis
	5 Numerical example
	6 Application of delayed neural networks
	7 Comparison examples
	8 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Availability of data and materials
	Acknowledgement
	References


