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A B S T R A C T

Finite-time stability analysis is a powerful tool for understanding the long-term behavior of epidemiological
models and has been widely used to study the spread of infectious diseases such as COVID-19. In this
paper, we present a finite-time stability analysis of a stochastic susceptible–infected–recovered (SIR) epidemic
compartmental model with switching signals. The model includes a linear parameter variation (LPV) and
switching system that represents the impact of external factors, such as changes in public health policies or
seasonal variations, on the transmission rate of the disease. We use the Lyapunov stability theory to examine
the long-term behavior of the model and determine conditions under which the disease is likely to die out
or persist in the population. By taking advantage of the average dwell time method and Lyapunov functional
(LF) method, and using novel inequality techniques the finite-time stability (FTS) criterion in linear matrix
inequalities (LMIs) is developed. The finite-time stability of the resultant closed-loop system, with interval and
linear parameter variation (LPV), is then guaranteed by state feedback controllers. By analyzing the modified
SIR model with these interventions, we are able to examine the efficiency of different control measures and
determine the most appropriate response to the COVID-19 pandemic and demonstrate the efficacy of the
suggested strategy through simulation results.
1. Introduction

The COVID-19 pandemic has had a significant impact on the well-
being of individuals and economies globally. In order to control the
spread of the virus, it is crucial to comprehend the transmission mech-
anisms and develop effective strategies to prevent further spread. This
includes measures such as personal protective equipment, social dis-
tancing, and vaccination efforts [1,2]. Additionally, tracking the spread
of the virus and collecting data on the outbreak is crucial in un-
derstanding the evolution of the pandemic and guiding public health
interventions. Models to analyze the spread of diseases, such as the
susceptible–infected–recovered (SIR) epidemic compartmental model,
are commonly used to understand infectious diseases and inform public
health decisions. The emergence of a new coronavirus, known as SARS-
CoV-2, was identified in China in late 2019 and is the cause of the
COVID-19 pandemic [1,3,4]. However, much remains unknown about
the virus, including the incubation period for the COVID-19 symptoms.
To fully understand the impact of SARS-CoV-2 and make informed
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decisions, it is crucial to gather more information about its epidemio-
logical features, such as transmission dynamics, incubation period, and
mortality rate. Further studies are needed to gain a more complete
understanding of this novel virus. This has important implications
for surveillance and control activities [2,5]. Despite some countries
succeeding in controlling the virus’s spread, others have seen uncontrol-
lable outbreaks. To address the situation, a closed-loop control system,
which adjusts the input based on the monitored output, may be a viable
solution. The pandemic has brought unprecedented challenges, but
solutions such as closed-loop control systems offer hope for effectively
managing the spread of COVID-19 [6]. This system can help authorities
monitor the situation and make necessary adjustments in real-time to
achieve the desired outcome. Implementing such a system can help
mitigate the impact of the pandemic and bring the situation under
control, leading to faster recovery for communities and the global
economy. In the context of controlling the spread of COVID-19, a
closed-loop control system (see Figs. 1–2) could involve continuously
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Fig. 1. The structure of COVID-19 virus.
Fig. 2. Closed-loop of COVID-19.
monitoring the number of cases, deaths, and other relevant metrics,
and using this information to adjust public health interventions such
as mask mandates, social distancing measures, and vaccination efforts.

For example, if the number of cases is increasing rapidly, the control
system could implement stricter mask mandates or social distancing
measures in an effort to slow the spread of the disease. On the other
hand, if the number of cases is decreasing, the control system could
relax these measures to allow for a gradual return to normalcy [7,8].
By continuously monitoring the output and adjusting the input accord-
ingly, the closed-loop control system can help to maintain the spread
of the disease at a manageable level.

In recent decades, epidemiology has been defined as the study of
disease spread with the goal of tracking the variables that are essential
for its development. Mathematical models are widely utilized in the
investigation of epidemiological issues. Most of the models for infec-
tious disease transmission descended from the conventional SIR model,
which was proposed in 1927 (see [9]). Recently, research on various
versions of the mathematical model of the expansion of infectious dis-
eases, known as SIR epidemic models, has a long history, and all these
approaches are still very current and widely known in research (see, for
example, [10–13]). Epidemic models are influenced by environmental
noise, which is an important factor in reality and may result in a more
realistic outcome than deterministic models. Recent advancements in
stochastic differential equations allow the inclusion of stochastic ele-
ments into models of biological events, whether it is random noise in
the differential equation system or variations in environmental param-
eters. The study of population dynamics in random settings examines
population size variations influenced by stochastic external factors.
Research has been done on stochastic biological systems, as seen in [14,
15]. The proposed approach, which incorporates real-time data into
outbreak disease progression simulations and constant updates, can
provide a more accurate short-term forecast compared to the traditional
mean field-theoretic SIR model. This is because the limited knowledge
2

of the incubation time and virus exposure has less impact on forecasting
the progression of the pandemic infection.

Research supports the use of pulsed interventions, particularly in
seasonal infectious diseases such as influenza and childhood diseases
(measles, chickenpox, and mumps), where seasonal changes initiate
periodic epidemics, often with an annual pattern. The switching theory
has been shown to be suitable as a model of seasonal forcing in
epidemiology, as shown in various articles (see, for example, [16–19]).
However, a significant distinction between these and our study is that
we suggest and conceptually justify switching to considerably minimum
time periods. Recently, a publication [20] in response to the COVID-19
pandemic proposed irregular, non-periodic quarantine measures with
extended lockdown duration’s. To analyze the impact of this approach,
we develop a finite-time dynamics model that takes into account the
parameters of the proposed system. Using this model, we estimate the
number of infections, deaths, and recoveries over a specified number
of future days. This model can provide valuable information on the
efficacy of proposed quarantine measures and inform decision-making
about the pandemic response.

Finite-time (FT) stability analysis, introduced by Dorato in 1961
[21], is a useful method for analyzing a system’s transient response.
A system is considered FT stable if its state stays within a specified
threshold within a set time frame, given an initial condition constraint.
Lyapunov theory and linear matrix inequalities (LMIs) have made sig-
nificant advances in the stability analysis of various systems, including
linear continuous systems (see, e.g., [22–25]), and discrete systems
(see, e.g., [26,27]). Stability is one of the most important things to
study in dynamic systems. Most research on stability focuses on asymp-
totic or exponential stability, which is stability over an infinite amount
of time [28–30]. However, in several potential implementations, the
key issue is the FT stability of a system, which helps to maintain the
system behavior/state within the required boundaries in a specified FT
interval (see [31–33]). Furthermore, FT approach and the model of
switched systems have currently received more interest, as switched
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systems may be utilized to represent a variety of important plants with
switching [28–30]. In [34], the authors exploited nonlinear impulsive
switching systems to implement finite-time 𝐻∞ dynamic output feed-
back control. Authors in [35], proposed finite-time stability of switched
positive linear systems. The authors established the asymptotic behav-
ior of a regime-switching SIR epidemic model with degenerate diffusion
in [36].

The development of efficient methods for FT stability analysis,
based on Lyapunov theory and LMIs, has increased the practicality of
this approach. These advancements have allowed for the analysis of
a wider range of systems and have provided useful insights into the
transient behavior of these systems. Recently, the authors described
the stochastic switching SIRS epidemic model with nonlinear incidence
and vaccination: Stationary distribution and extinction in [37]. Despite
the fact that an analytical model for compartmental issues allows for
the use of known finite-time stability analysis, and switched systems,
there are no predictable prerequisites for establishing stability in the
Lyapunov sense in biological systems.

Recently, an autonomous LPV (Linear Parameter Varying) system
is a type of dynamic system that can be modeled and analyzed using
linear mathematical models. The standard continuous-time space–state
formulation of an LPV system is a mathematical representation of the
system’s behavior in terms of its states and inputs, and how these
evolve over time (see [38–41]). It is well known that the aggressive
control measures and policies (such as border screening, mask wearing,
quarantine, isolation, etc.), play an important role in administering
efficient interventions which control disease spread and hopefully elim-
inate epidemic diseases. The LPV framework can also be used to
model and control systems with uncertainty varying over time, such
as unmodeled dynamics, disturbances, and parameter variations. In
addition to its modeling capabilities, the LPV framework also provides
a flexible and powerful framework for control design and analysis. For
example, LPV systems can be used to design controllers that are robust
to uncertainty and variations in the system parameters (see [42–44]).
This can be achieved using robust control techniques, such as linear
matrix inequalities (LMIs) and semidefinite programming (SDP). The
COVID-19 LPV model in [6] was proposed by using basis functions and
showed to be useful for stability assessment and controller design. Up
to now, SIR epidemic model has been studied with various types of
stability analysis, but the FT stability analysis for the Stochastic SIR
model has not been well studied, which motivates the present work.

Motivated by the above works, a stochastic SIR epidemic model is
a variant of the SIR model that incorporates stochastic elements, such
as random fluctuations in the transmission rate of the disease. These
fluctuations can be represented by a noise term added to the transition
rates in the proposed model. The main novelties of our paper are as
below.

• The suggested SIR model is quite extensive, and the switched
stochastic differential equations drive its dynamics. And most
other of the existing works [11,12,36,45,46] can be respected
as a special case of this suggested model since we consider
many factors such as finite-time stability, LPV analysis, stochastic
disturbance, control effect, and unknown parameters.

• Different from exponential/asymptotic stability analysis on
infinite-time interval and design in [12,36,37]. In our paper,
the FT stability criterion of switched stochastic SIR model is
obtained, which is more realistic and theoretical. The way the
system behaves over a short period of time is particularly crucial
in some epidemic models.

• Good control system should ensure higher performance in ad-
dition to stability. However, the suggested model makes use of
state-feedback control. To the best of the author’s knowledge, this
note is the first time to examine finite-time stability analysis for
3

the stochastic SIR epidemic model.
Table 1
Notations and specifications.
Notations Specification

R𝑛 Euclidean space of 𝑛 dimensions
R𝑚×𝑛 The real 𝑚 × 𝑛 matrices
𝑃 > 0 𝑃 is symmetric and positive-definite
𝑃 ≥ 0 𝑃 is symmetric and positive semi-definite
𝑃 𝑇 𝑃 represents the transpose of the matrix

Table 2
State variables and their meanings.
State variables Meaning

𝑆(𝑡) The susceptible individuals at 𝑡
𝐼(𝑡) The infected individuals at 𝑡
𝑅(𝑡) The recovered individuals at 𝑡

• For the FT stability analysis of the proposed system model with
switching approaches, acceptable LF are developed using integral
inequality techniques and several new suitable criteria, which
may be expressed in terms of linear matrix inequalities (LMIs).

• Numerical simulations are provided as a last step to show the
efficacy and application of the ideas presented. Some standard
notations and their specifications are given in Table 1.

2. Mathematical modeling of SIR

The proposed control method is rooted in the nonlinear dynamics
of SIR models, a widely studied compartmental approach in epidemic
modeling. The SIR model is a simple compartmental model that divides
the population into groups with similar characteristics, making it easier
to model infectious diseases. This specific strategy focuses on the
deterministic version of the SIR model, which serves as a building block
for more complex models.

The diagram in Fig. 3 depicts the flow of people between different
categories during an outbreak, as outlined by the SIR model. According
to the model, individuals can contract the disease and a subset of
them may gain immunity, transitioning into the 𝑅 compartment which
represents those with immunity. Before delving into the details of the
transition parameters, it is important to establish a clear understanding
of the dynamics of the SIR model. This can be done by using a
differential equation, which provides a mathematical description of the
relationships between the variables involved in the model. Let us define
the time(𝑡)-dependent variables in Table 2:

Thus, the SIR model is of the form
𝑑𝑆(𝑡)
𝑑𝑡

= 𝐴 −
𝛽𝑆(𝑡)𝐼(𝑡)
1 + 𝑘𝐼(𝑡)

− 𝛿𝑆(𝑡),

𝑑𝐼(𝑡)
𝑑𝑡

=
𝛽𝑆(𝑡)𝐼(𝑡)
1 + 𝑘𝐼(𝑡)

− (𝛿 + 𝛾 + 𝜖)𝐼(𝑡),

𝑑𝑅(𝑡)
𝑑𝑡

= 𝛾𝐼(𝑡) − 𝛿𝑅(𝑡),

𝑆(0) ≥ 0, 𝐼(0) ≥ 0, 𝑅(0) ≥ 0.

(1)

ere 𝑆(0), 𝐼(0), and 𝑅(0) are the initial population size of the suscep-
ible, infected, and recovered individuals. It is assumed that the total
opulation, denoted by 𝑁 , is constant and equal to the sum of these
hree categories: 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑁 . The parameters in the model
1) are summarized in Table 3:

• The parameter 𝛽 represents the contact rate, which is calculated
as the average number of contacts per person per time multiplied
by the probability of disease transmission in contact between a
susceptible and an infected individual.

• The incidence rate, represented by 𝛽𝑆𝐼∕(1 + 𝑘𝐼), is considered
saturated in nature, which means that it has a ‘psychological’ or
inhibitory effect on the transmission of the disease [47]. The value
of this effect is measured by the parameter 𝑘.
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Fig. 3. Schematic diagram of SIR.
Table 3
Explanation of the parameters.
Parameter Meaning

𝐴 The influx of individuals into 𝑆

𝛽 The transmission coefficient between
compartments 𝑆 and 𝐼

𝑘 The value of inhibitory effect

𝛿 The natural death rate of 𝑆, 𝐼 and 𝑅
compartments

𝛾 The rate of recovery from infection
𝜖 The disease-induced mortality rate

• The parameter 𝛾 plays a crucial role in the SIR model as it
represents the transition rate from the infected class to the recov-
ered or immune class. It is calculated by dividing the number of
individuals who recover or die within a day by the total number
of infected individuals at that time. This rate is expressed as
𝛾 = 1∕𝐷, where 𝐷 is the length of time that an individual is
infected. Understanding the value of 𝛾 is important, as it pro-
vides information on the rate at which the infected population
is decreasing and the rate at which the recovered population is
increasing.

In [48], the authors studied the model (1) with limited medical
resources. Since we have explained the basic reproduction ratio before
for the SIR model, using the next generation method in [49], 𝑅0 is given
by

𝑅0 =
𝛽𝐴

𝛿(𝛿 + 𝛾 + 𝜖)
.

The value of 𝑅0 determines the possible spread of the disease within
a population. If 𝑅0 ≤ 1, it means that on average, an infected individual
will infect fewer than one other person, and the disease will eventually
die out. However, if 𝑅0 > 1, it means that an infected individual
will infect more than one other person, and the disease will become
endemic. To understand the dynamics of the disease spread, it is enough
to focus on the first two equations of (1), as they do not depend on
the number of recovered individuals. We can gain insight into the
interactions between susceptible and infected populations by analyzing
the subsystem which is
𝑑𝑆
𝑑𝑡

= 𝐴 −
𝛽𝑆𝐼
1 + 𝑘𝐼

− 𝛿𝑆,

𝑑𝐼
𝑑𝑡

=
𝛽𝑆𝐼
1 + 𝑘𝐼

− (𝛿 + 𝛾 + 𝜖)𝐼,

𝑆(0) ≥ 0, 𝐼(0) ≥ 0.

(2)

Further, the effective reproductive number, 𝑅𝑒, is a measure of the
average number of secondary cases generated by one infectious case
during an epidemic. To calculate this number, the basic reproductive
ratio is multiplied by the number of susceptible individuals at time 𝑡,
represented as 𝑅𝑒 = 𝑅0 ∗ (𝑆(0)∕𝑁). When the value of 𝑅0 ∗ (𝑆(0)∕𝑁) <
1, it indicates that an infected individual is spreading the disease to
fewer than one person on average, leading to a long-term decrease
in the number of infectious individuals, referred to as a disease-free
equilibrium. Model (2) always has a unique disease-free equilibrium at
𝐸0 = (𝐴∕𝛿, 0). The situation changes when 𝑅0 ∗ (𝑆(0)∕𝑁) > 1. This
means that on average an infected person will spread the disease to
more than one person, who will then infect more individuals, etc. This
results in an outbreak. For example, in the case of COVID-19, we know
that it is possible for the virus to be transmitted from person to person.
4

3. Existence and stability of equilibria

3.1. Existence

From a biological point of view, it is interesting to determine
the disease-free equilibrium and the co-existence/endemic equilibrium
such that a population is a positive number. The disease-free equilib-
rium 𝐸0 = (𝐴𝛿 , 0) is always exists. When 𝑅0 > 1, the model (2) has a
unique endemic equilibrium 𝐸∗ = (𝑆∗, 𝐼∗). It is achieved by solving the
following equations.

𝐴 −
𝛽𝑆∗𝐼∗

1 + 𝑘𝐼∗
− 𝛿𝑆∗ = 0,

𝛽𝑆∗

1 + 𝑘𝐼∗
− (𝛿 + 𝛾 + 𝜖) = 0, (3)

which yields

𝐸∗ = (𝑆∗, 𝐼∗)

=
(

𝐴𝑘 + 𝛿 + 𝛾 + 𝜖
𝛽 + 𝛿𝑘

,
𝛽𝐴 − 𝛿(𝛿 + 𝛾 + 𝜖)
(𝛿 + 𝛾 + 𝜖)(𝛽 + 𝑘𝛿)

)

=
(

𝐴𝑘 + 𝛿 + 𝛾 + 𝜖
𝛽 + 𝛿𝑘

,
(𝑅0 − 1)𝛽𝐴

𝑅0(𝛿 + 𝛾 + 𝜖)(𝛽 + 𝑘𝛿)

)

.

Theorem 3.1.

• If 𝑅0 ≤ 1, then (2) has no endemic equilibria.
• If 𝑅0 > 1, then (2) has a unique endemic equilibrium 𝐸∗(𝑆∗, 𝐼∗).

3.2. Local stability

Theorem 3.2. For (2), we have

• The disease-free equilibrium 𝐸0 is locally asymptotically stable if 𝑅0 <
1 and unstable if 𝑅0 > 1.

• If 𝑅0 > 1, then the endemic equilibrium 𝐸∗ is locally asymptotically
stable.

Proof. The Jacobian matrix at 𝐸0 is given by

𝐽𝐸0
=

(

−𝛿 − 𝛽𝐴
𝛿

0 𝛽𝐴
𝛿 − (𝛿 + 𝛾 + 𝜖)

)

.

𝐸0 is locally asymptotically stable if and only if all eigenvalues of 𝐽𝐸0
have a negative real part. The eigenvalues can be determined by solving
the following.

det

(

−𝛿 − 𝜆 − 𝛽𝐴
𝛿

0 𝛽𝐴
𝛿 − (𝛿 + 𝛾 + 𝜖) − 𝜆

)

= 0.

It is clear that the eigenvalues are: 𝜆1 = −𝛿, 𝜆2 =
𝛽𝐴
𝛿 − (𝛿 + 𝛾 + 𝜖). Since

𝜆1 and 𝜆2 are negative, it is required that
𝛽𝐴
𝛿

< (𝛿 + 𝛾 + 𝜖),

which is

𝑅0 < 1.

The Jacobian matrix at 𝐸∗ is given by

𝐽𝐸∗ =
⎛

⎜

⎜

⎝

−𝛿 − 𝛽𝐼∗

1+𝑘𝐼∗
−𝛽𝑆∗

(1+𝑘𝐼∗)2

𝛽𝐼∗

1+𝑘𝐼∗ − 𝛽𝑘𝑆∗𝐼∗

(1+𝑘𝐼∗)2

⎞

⎟

⎟

⎠

.

The eigenvalues can be determined by solving the following.

det
⎛

⎜

⎜

−𝛿 − 𝛽𝐼∗

1+𝑘𝐼∗ − 𝜆 −𝛽𝑆∗

(1+𝑘𝐼∗)2

𝛽𝐼∗ − 𝛽𝑘𝑆∗𝐼∗ − 𝜆

⎞

⎟

⎟

= 0.

⎝ 1+𝑘𝐼∗ (1+𝑘𝐼∗)2 ⎠
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Fig. 4. The phase portrait of the model (2) with parameter values given in (4).
𝐸0 = (160, 0) is a saddle point and 𝐸∗(43.16, 27.81) is globally asymptotically stable.

he characteristic polynomial is given by:
2 − trace(𝐽𝐸∗ )𝜆 + det(𝐽𝐸∗ ) = 0.

hen 𝑅0 > 1, it is clear that

trace(𝐽𝐸∗ ) = −𝛿 −
𝛽𝐼∗

1 + 𝑘𝐼∗
−

𝛽𝑘𝑆∗𝐼∗

(1 + 𝑘𝐼∗)2
< 0.

and

det(𝐽𝐸∗ ) =
(

𝛿 +
𝛽𝐼∗

1 + 𝑘𝐼∗

)(

𝛽𝑘𝑆∗𝐼∗

(1 + 𝑘𝐼∗)2

)

+
(

𝛽𝑆∗

(1 + 𝑘𝐼∗)2

)(

𝛽𝐼∗

1 + 𝑘𝐼∗

)

> 0,

by the Routh–Hurwitz criterion, the real parts of eigenvalues are neg-
ative, then 𝐸∗ is locally asymptotically stable. □

Next, let us take the default values of the parameters from [48] as

𝐴 = 16, 𝛽 = 0.01, 𝑘 = 0.001,

𝛿 = 0.1, 𝛾 = 0.12, 𝜖 = 0.2. (4)

To start, we need to determine a valid range of parameters for the
model (2). One way to do this is to choose specific values for the
parameters in (4) such that the resulting equilibrium point has positive
values. This indicates that the system remains biologically meaningful.
Furthermore, the phase portrait is depicted for the deterministic model
(2) with the values in (4) has the reproduction rate 𝑅0 = 3.80952 > 1 for
𝛽 = 0.01 and there exists an endemic equilibrium 𝐸∗, which states that
the diseased population will persist is shown in Fig. 4. The equilibrium
𝐸∗ is globally asymptotically stable, which implies that the disease
will eventually spread. Also, for the value 𝛽 = 0.0025 the disease will
die out such that 𝑅0 = 0.952381 < 1 and the endemic equilibrium
disappears, only the disease-free equilibrium exists as shown in Fig. 5.
Stable dynamics in the time series plot for susceptible, infected, and
recovered populations are depicted in Figs. 6, 7, and 8.

In the next section, we will examine the stochastic deterministic SIR
model.

4. Stochastic epidemic models

The environment can sometimes change randomly and subject pop-
ulation systems to disturbances. This means that due to environmental
uncertainty, the parameters used in epidemic models may not be def-
inite and may fluctuate around certain values. Because of this, there
is growing interest in stochastic epidemic models that incorporate
randomness and stochastic. Stochastic epidemic models can provide a
more realistic perspective compared to their deterministic counterparts
5

Fig. 5. The phase portrait of model (2) with parameter values given in (4) with
𝛽 = 0.0025. 𝐸0 = (160, 0) is globally asymptotically stable.

Fig. 6. The time series for the susceptible individuals of the model (1).

Fig. 7. The time series for the infected individuals of the model (1).

(see [11,50,51]). Stochastic models aim to address the uncertainties
in epidemic models by considering randomness and fluctuations. In
populations susceptible to environmental changes, the parameters used
in epidemic models are not constant and may fluctuate around typical
values. This results in a more realistic depiction of the spread of disease,
compared to deterministic models [52]. As a result, an increasing
number of people are turning to stochastic epidemic models to more
accurately reflect the spread of disease in the face of environmental
uncertainty [45,53]. Studies have shown that these models can provide
a deeper level of understanding of the dynamics of disease spread, and
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Fig. 8. The time series for the recovered individuals of the model (1).

are crucial in the development of effective disease control strategies
(see [46,54]).

In this study, the approach taken is similar to that of a previous
study by [11], where the authors assumed that the external noise was
proportional to the variables. We also assume that the stochastic per-
turbations in our model are of the white noise type, meaning that they
are directly proportional to the susceptible and infected populations
and affect the rate of change of these populations. To account for the
impact of a changing environment, we include stochastic perturbation
terms in the equations for the growth of the susceptible and infected
populations. This leads to the following stochastic SIR model that
reflects the model (2) with added environmental noise:

𝑑𝑆 =
(

𝐴 −
𝛽𝑆𝐼
1 + 𝑘𝐼

− 𝛿𝑆
)

𝑑𝑡 + 𝜎1𝑆𝑑𝐵1(𝑡),

𝑑𝐼 =
(

𝛽𝑆𝐼
1 + 𝑘𝐼

− (𝛿 + 𝛾 + 𝜖)𝐼
)

𝑑𝑡 + 𝜎2𝐼𝑑𝐵2(𝑡).
(5)

The presence of environmental uncertainty is incorporated into the
model (2) by adding stochastic perturbation terms. These terms are
proportional to susceptible and infected individuals and influence their
growth rates. To represent this influence, a stochastic differential equa-
tion is created. The equation includes terms for the intensity of envi-
ronmental oscillations, represented by 𝜎1 and 𝜎2, which are constant
and known. Additionally, the equation includes independent standard
Brownian motions, denoted by 𝐵1(𝑡) and 𝐵2(𝑡). The stochastic model
does not have a positive equilibrium. Therefore, it is not possible to
demonstrate the persistence of the model by demonstrating the stability
of a positive equilibrium, as is done in the deterministic model. The
stationary distribution, which occurs as the solution fluctuates in the
vicinity of the equilibrium point of the related deterministic model, can
be viewed as a form of stability in a weak sense.

We conducted repeated simulations for the scenario in which the
population in the model (2) coexist. We kept all parameters constant as
in Fig. 4 during these simulations and generated numerical results. The
solution of the stochastic model (5) with very small white 𝜎1,2 = 0.01
shows very small fluctuations in the trajectories given in Fig. 9, which
is close to the trajectories of the deterministic model (2) as in Figs. 6
and 7. As the intensity of the noises gradually increases, we find that
the population is persistent. The three solution paths of the stochastic
model (5) with white noise 𝜎1,2 = 0.01 and its trajectories are given in
Fig. 10. For the larger white noise 𝜎1,2 = 0.05, the model (5) trajectories
have higher fluctuations in the trajectories plotted in Fig. 11. And the
corresponding density function for 𝜎1,2 = 0.1 shows that most of the
infected population is concentrated near 25, the disease will persist in
the population as shown in Fig. 12. Similarly, for 𝜎1,2 = 0.5, there are
very high fluctuations in the trajectories even the infected population
size reaches near 200, eventually, most of the infected population stays
near zero as given in Fig. 13 and its corresponding density function is
6

o

Fig. 9. Solution curves of the model (5) with 𝜎1,2 = 0.05, initial values 𝑆(0) = 20, 𝐼(0) =
2, and all other values are given in (4).

Fig. 10. Three solution curves of the model (5) with 𝜎1,2 = 0.05, initial values
(0) = 20, 𝐼(0) = 2, and all other values are given in (4).

iven in Fig. 14. However, we can see that both populations will survive
nd persist in the presence of suitable environmental white noise.

When the strength of white noise is increased, the diseased popu-
ation dies away (see Fig. 13). The mean of the individuals at 𝜎1,2 =
0.5 and its corresponding density function are plotted in Figs. 15 and
16. The standard deviation of the individuals at 𝜎1,2 = 0.5 and its
orresponding density function are plotted in Figs. 17 and 18. Both
he mean and standard deviation of the individuals show that the
isease will persist in the population. Figs. 10 and 11 show that
mall white noise can make the model permanent. In summary, the
ddition of environmental noise to population models can provide a
ore realistic representation of the dynamics of real-world populations.
he results of our study suggest that the intensity of environmental
oise can greatly impact the behavior of populations, with lower levels
f noise potentially promoting outbreaks and higher levels of noise
uppressing outbreaks. Our findings highlight the significant role of
oise in determining the survival and extinction of populations and
emonstrate the complex nature of populations in the real world.

We can rephrase the statement as follows: The dynamic behavior
f the susceptible and infected populations can be described by a state
ector 𝑥(𝑡) = [𝑆∗(𝑡)′, 𝐼∗(𝑡)′]′, and the linear parameter-varying (LPV)
ystem is represented by the Jacobian matrix near the equilibrium
oint. The stability of the equilibrium point of the LPV system is deter-
ined by the eigenvalues of the Jacobian matrix, which are functions

f the system parameters. If all eigenvalues of the Jacobian matrix have
egative real parts, the equilibrium point is considered stable, and the
opulation will remain in the neighborhood of the equilibrium point

ver time. On the contrary, if any eigenvalue has a positive real part,
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Fig. 11. Solution curves for the model (5) with high noise 𝜎1,2 = 0.1, initial values
𝑆(0) = 20, 𝐼(0) = 2 and all other values are given in (4).

Fig. 12. The histogram of the stochastic model (5) with 𝜎1,2 = 0.1.

Fig. 13. Solution curves for the model (5) with high noise 𝜎1,2 = 0.5, initial values
𝑆(0) = 20, 𝐼(0) = 2, and all other values are given in (4).

Fig. 14. The histogram of the stochastic model (5) with 𝜎1,2 = 0.5.
7

Fig. 15. The evolution in time of the mean of the individuals over 1000 trajectories
with 𝜎1,2 = 0.5.

Fig. 16. The histogram of the stochastic model (5) for the mean of individuals over
1000 trajectories with 𝜎1,2 = 0.5.

Fig. 17. The evolution in time of the standard deviation for the individuals over 1000
trajectories with 𝜎1,2 = 0.5.

Fig. 18. The histogram of the standard deviation for the individuals over 1000
trajectories with 𝜎1,2 = 0.5.
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the equilibrium point is unstable, and the population will diverge from
the equilibrium over time. The stability of the equilibrium point is
important in determining the persistence or extinction of populations.

𝐽𝐸∗ =
⎛

⎜

⎜

⎝

−𝛿 − 𝛽𝐼∗

1+𝑘𝐼∗
−𝛽𝑆∗

(1+𝑘𝐼∗)2

𝛽𝐼∗

1+𝑘𝐼∗ − 𝛽𝑘𝑆∗𝐼∗

(1+𝑘𝐼∗)2

⎞

⎟

⎟

⎠

,

⎡

⎢

⎢

⎣

𝑑𝑆∗(𝑡)
𝑑𝑡

𝑑𝐼∗(𝑡)
𝑑𝑡

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

−𝛿 − 𝛽𝐼∗

1+𝑘𝐼∗
−𝛽𝑆∗

(1+𝑘𝐼∗)2

𝛽𝐼∗

1+𝑘𝐼∗ − 𝛽𝑘𝑆∗𝐼∗

(1+𝑘𝐼∗)2

⎤

⎥

⎥

⎦

[

𝑆∗(𝑡)
𝐼∗(𝑡)

]

. (6)

The system’s state space representation takes into account the state
ector 𝑥(𝑡), which consists of the susceptible and infected populations,
nd the Jacobian matrix 𝐸2 that governs the dynamics of the states
n the vicinity of the equilibrium point. This Jacobian matrix is time-
arying, as it depends on the time-varying parameters 𝜃(𝑡) and 𝐼∗(𝑡),
nd can be represented in polytopic or affine form.

̇ (𝑡) = A(𝜃(𝑡))𝑥(𝑡), (7)

The matrix A(𝜃(𝑡)) can be described in two ways, as mentioned in the
iterature, either by means of an affine configuration or a polytopic one.
he polytopic description is created by combining m known vertices

nto a single convex formation.

(𝜃(𝑡)) =
𝑁
∑

𝑗=1
𝜃𝑗 (𝑡)A𝑗 , 𝜃(𝑡) ∈ 𝛺, (8)

here A𝑗 , 𝑗 = 1, 2,… , 𝑁 is the polytope vertices and 𝜃(𝑡) = (𝜃1(𝑡), 𝜃2(𝑡),
, 𝜃𝑁 (𝑡)) denotes a vector of time-varying parameters belonging to a

ompact set known as unit simplex, which is given by

=
{

𝜃
|

|

|

|

𝑁
∑

𝑗=1
𝜃𝑗 = 1, 𝜃𝑗 ≥ 0, 𝑗 = 1, 2,… , 𝑁

}

. (9)

The dynamic matrix A(𝜃(𝑡)) can be represented using an affine form
ith 𝑁 interval time-varying parameters as follows:

(𝜃(𝑡)) = A0 +
𝑁
∑

𝑗=1
𝜃𝑗 (𝑡)A𝑗 , 𝜃𝑗 (𝑡) ∈ [𝜃𝐿𝑗 , 𝜃

𝑈
𝑗 ], (10)

where A𝑗 , 𝑗 = 1, 2,… , 𝑁 are the known matrices and 𝜃𝑗 (𝑡) are time-
varying parameters with given lower and upper bounds provided by 𝜃𝐿𝑗
and 𝜃𝑈𝑗 , respectively. The polytopic form of the dynamic matrix A(𝜃(𝑡))
f the LPV system (6) is given by (7).

(𝜃(𝑡)) = 𝜃1(𝑡)
[

−𝛽(𝐼𝐿 + 𝜌) −(𝛾𝐿 + 𝜌)
𝛽𝐼𝐿 0

]

+ 𝜃2(𝑡)
[

−𝛽(𝐼𝑈 + 𝜌) −(𝛾𝐿 + 𝜌)
𝛽𝐼𝑈 0

]

+ 𝜃3(𝑡)
[

−𝛽(𝐼𝐿 + 𝜌) −(𝛾𝑈 + 𝜌)
𝛽𝐼𝐿 0

]

+ 𝜃4(𝑡)
[

−𝛽(𝐼𝑈 + 𝜌) −(𝛾𝑈 + 𝜌)
𝛽𝐼𝑈 0

]

,

where 𝜃(𝑡) = (𝜃1(𝑡), 𝜃2(𝑡),… , 𝜃4(𝑡)) ∈ 𝛺. Moreover, using (6) with (10),
we get

A(𝜃(𝑡)) =
[

−𝛽𝜌 −𝜌
0 0

]

+ 𝜃1(𝑡)
[

0 −1
0 0

]

+ 𝜃2(𝑡)
[

−𝛽 0
𝛽 0

]

,

where 𝜃1(𝑡) ∈ [0.25, 0.4] and 𝜃2(𝑡) ∈ [−0.22, 0.9091].
Now, we consider the state-space description of the stochastic LPV

system to be expressed as follows:

𝑑𝑥(𝑡) = (A(𝜃(𝑡))𝑥(𝑡))𝑑𝑡 + C𝑥(𝑡)𝑑𝑤(𝑡). (11)

The LPV system (11) has parameter matrices A𝑖(𝜃(𝑡)) and C . The
initial state is represented by 𝑥0. The noise process in the system is
modeled as a Wiener process or Brownian motion, denoted as 𝑤(⋅).
This process is characterized by a stationary independent differential
8

increment with zero means and is represented by 𝑑𝑤(𝑡) = 𝜉(𝑡)𝑑𝑡, where
E[𝑑𝑤(𝑡)] = 0. The state space representation of a stochastic switched
linear parameter-varying (SSLPV) system is given by a set of linear
dynamic equations with time-dependent parameters that influence the
state of the system. These parameters enter the equation of state as
exogenous inputs. The SSLPV system’s state space can be described by
a set of matrices, including the parameter matrices A𝑖(𝜃(𝑡)) and C , and
the initial state 𝑥0. The system also includes a stochastic process 𝑤(⋅),
represented by 𝑑𝑤(𝑡) = 𝜉(𝑡)𝑑𝑡, which is characterized by a stationary
independent differential increment with zero means and is typically
modeled as a Wiener process or Brownian motion.

𝑑𝑥(𝑡) =
[

A𝜎(𝑡)(𝜃(𝑡))𝑥(𝑡) + B𝜎(𝑡)𝑢(𝑡)
]

𝑑𝑡 + C𝑥(𝑡)𝑑𝑤(𝑡), 𝑡 ∈ [𝑡0, 𝑇 ],

𝑥(𝑡0) =𝑥0 ∈ R𝑛, (12)

where 𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡),… , 𝑥𝑛(𝑡)]𝑇 ∈ R𝑛 represents the state vector.
The control input vector is 𝑢(𝑡) ∈ R𝑚. A𝜎(𝑡)(𝜃(𝑡)) ∈ R𝑛×𝑛, B𝜎(𝑡) ∈ R𝑛×𝑚

and C ∈ R𝑛×𝑛 are the real constant matrices, respectively; 𝜎(𝑡) ∶→
𝑆 = {1, 2,… , 𝑁} denotes the switching signal which is deterministic,
piecewise constant, and right continuous. When 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), subsystem
𝜎𝑘 is activated. For the sake of clarity, we refer to the switching signal
as 𝜎(𝑡) = 𝑖 throughout this study.

The matrices of the state space system A𝑖(𝜃) are subject to uncertain-
ties in the real parameter 𝜃𝑗 and obey the real convex polytopic model,
that is,

A𝑖(𝜃) ∶=
𝑁
∑

𝑗=1
𝜃𝑗A𝑗

𝑖 , 𝜃𝑗 ≥ 0,
𝑁
∑

𝑗=1
𝜃𝑗 = 1. (13)

The use of switched-signal finite-time control in the SIR stochastic
model represents a significant advance in the field of epidemic control.
By addressing the challenges posed by uncertainty and randomness in
the spread of diseases, this control strategy provides a powerful tool
to effectively control outbreaks and protect public health. The ability
to handle multiple control inputs and switch among them in real time,
guarantee finite-time convergence, reduce control effort, and provide
probabilistic predictions and decisions makes this approach a promising
solution for epidemic control in a stochastic environment. The goal of
this study is to develop finite-time stability constraints for the system
(12) and then construct a state feedback controller based on those
conditions.

𝑢(𝑡) = 𝐾𝑖𝑥(𝑡) (14)

for the system (12), where 𝐾𝑖 denotes the gain matrices to be designed.
First, we define finite-time stochastic stability and stabilization for
unforced stochastic systems using the following definition.

Definition 4.1 ([55]). Stochastic switched system

𝑑𝑥(𝑡) =A𝑗
𝑖 𝑥(𝑡)𝑑𝑡 + C𝑥(𝑡)𝑑𝑤(𝑡), 𝑡 ∈ [𝑡0, 𝑇 ],

𝑥(𝑡0) =𝑥0 ∈ R𝑛, (15)

is said to be finite-time stochastically stable (FTSS) in relation to
(𝑐1, 𝑐2, 𝑇 ,R), if

𝑥𝑇 (0)R𝑥(0) < 𝑐1 ⇒ E[𝑥𝑇 (𝑡)R𝑥(𝑡)] < 𝑐2,

where 𝑐1 > 0, 𝑐2 > 𝑐1.

Definition 4.2 ([55]). Stochastic switched control system

𝑑𝑥(𝑡) =[A𝑗
𝑖 𝑥(𝑡) + B𝑖𝑢(𝑡)]𝑑𝑡 + C𝑥(𝑡)𝑑𝑤(𝑡), 𝑡 ∈ [𝑡0, 𝑇 ],

𝑥(𝑡0) =𝑥0 ∈ R𝑛, (16)

is said to be FTSS, if there exists a control 𝑢(𝑡) = 𝐾𝑖𝑥(𝑡), such that

𝑑𝑥(𝑡) = [A𝑗
𝑖 + B𝑖𝐾𝑖]𝑥(𝑡)𝑑𝑡 + C𝑥(𝑡)𝑑𝑤(𝑡), (17)

is finite-time stochastically stable with respect to (𝑐1, 𝑐2, 𝑇 ,R), if

𝑥𝑇 (0)R𝑥(0) < 𝑐1 ⇒ E[𝑥𝑇 (𝑡)R𝑥(𝑡)] < 𝑐2,
where 𝑐1 > 0, 𝑐2 > 𝑐1.
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Definition 4.3. Consider the switching signal 𝜎 and scalar 𝑡 ∈ [𝑡0, 𝑇 ],
let 𝑁𝜎 (𝑡, 𝑇 ) represent the number of discontinuities of 𝜎 over [𝑡, 𝑇 ]. If

𝜎 (𝑡, 𝑇 ) ≤ 𝑁0 +
𝑇 − 𝑡
𝜏𝑎

,

hen the constant 𝜏𝑎 is called the average dwell time (ADT) and 𝑁0 the
chatter bound.

Lemma 4.4 ([55]). For the stochastic system (15), suppose that there exist
a 𝒞 2 function 𝑉 (𝑥), two class 𝒦∞ functions 𝛼1 and 𝛼2, and a class 𝒦
function 𝛼3, satisfying

𝛼1(|𝑥|) ≤ 𝑉 (𝑥) ≤ 𝛼2(|𝑥|), (18)

L𝑉 (𝑥) = 𝜕𝑉
𝜕𝑥

ℎ(𝑥) + 1
2
Tr{𝑔𝑇 (𝑥) 𝜕

2𝑉
𝜕𝑥2

𝑔(𝑥)} ≤ −𝛼3(|𝑥|) , (19)

then the equilibrium 𝑥 = 0 of (15) is globally quadratically stable.

Remark 4.5. Let 𝑥(⋅) is an Ito process fulfilling (15), and 𝑔(⋅, ⋅) a twice
continuously differentiable function on 𝛺 ∈ R𝑛. Then the procedure
𝑦(𝑡) ∶= 𝑔(𝑡, 𝑥(𝑡)) is carried an Ito procedure once more, and

𝑑𝑦 =
{

𝜕𝑔(𝑡, 𝑥)
𝜕𝑡

+ (𝛥𝑥𝑔(𝑡, 𝑥))𝑇 A𝑗
𝑖 𝑥(𝑡)

+ 1
2

Tr{(C𝑥(𝑡))𝑇 (C𝑥𝑔(𝑡, 𝑥))C𝑥(𝑡)}
}

𝑑𝑡

+ (𝛥𝑥𝑔(𝑡, 𝑥))𝑇 C𝑥(𝑡)𝑑𝑤(𝑡) ,

where 𝛥𝑥 and C𝑥 represent the gradient and the Hessian matrix in
relation to 𝑥.

Lemma 4.6 (Gronwall Inequality). Let 𝜗(𝑡) be a nonnegative function such
that

𝜗(𝑡) ≤ 𝐶 + 𝐴∫

𝑡

0
𝜗(𝑠)𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇 ,

where 𝐶, 𝐴 ≥ 0. Then, we have

𝜗(𝑡) ≤ 𝐶𝑒𝐴𝑡, 0 ≤ 𝑡 ≤ 𝑇 .

. Finite-time stability

In this part, we will focus on the mean square finite-time stable
MSFTS) of the SSLPV system (15).

heorem 5.1. Given scalars (𝑐1, 𝑐2, 𝑇 ), 𝑐1 < 𝑐2, and matrix R, if there
exist scalars 𝛼 > 0, �̄�𝑖 ≥ 1, and positive definite symmetric matrix 𝑃𝑖 ∈
R𝑛×𝑛, 𝑖 ∈ 𝑆, such that the following LMIs hold:
[

𝑃𝑖A
𝑗
𝑖 + (𝑃𝑖A

𝑗
𝑖 )

𝑇 − 𝛼𝑃𝑖 C𝑇 𝑃𝑖
∗ −𝑃𝑖

]

< 0, (20)

𝑃𝑖 ≤ �̄�𝑖𝑃𝑗 , (21)

among them 𝑃𝑖 = R
1
2 𝑃𝑖R

1
2 . Then, if the subsystems meet the following

conditions for switching signals, the SSLPV system (15) is finite-time stable
with respect to (𝑐1, 𝑐2, 𝑇 ,R),

𝜏𝑠𝑏𝑖 ≥ 𝜏∗𝑏𝑖 =
𝑇 𝑠log�̄�𝑖

log[ 𝑐2𝛼𝑃𝑖𝑐1 �̄�𝑃𝑖
] − 𝛼𝑖𝑇 𝑠

(𝑖 ∈ 𝑆𝑠), (22)

𝜏𝑠𝑏𝑖 ≤ 𝜏∗𝑏𝑖 = −
log�̄�𝑖
𝛼𝑖

, (𝑖 ∈ 𝑆𝑢), (23)

where 𝑇 𝑠 =
∑

𝑖∈𝑆𝑠
𝑇 𝑠
𝑖 (0, 𝑇 ) and 𝑇 𝑢 =

∑

𝑖∈𝑆𝑢
𝑇 𝑢
𝑖 (0, 𝑇 ).

Proof. Consider the following Lyapunov function:

𝑉𝑖(𝑥(𝑡)) = 𝑥𝑇 (𝑡)𝑃𝑖𝑥(𝑡). (24)

Using Lemma 4.4, along the trajectory of the system (15), we have
the following.

𝑑𝑉 (𝑥(𝑡)) = L𝑉 (𝑥(𝑡))𝑑𝑡 + 2𝑥𝑇 (𝑡)𝑃 C𝑥(𝑡)𝑑𝑤(𝑡), (25)
9

𝑖 𝑖 𝑖
where

L𝑉𝑖(𝑥(𝑡)) = 2𝑥𝑇 (𝑡)𝑃𝑖A
𝑗
𝑖 𝑥(𝑡) − 𝛼𝑥𝑇 (𝑡)𝑃𝑖𝑥(𝑡) + 𝑥𝑇 (𝑡)C𝑇 𝑃𝑖C𝑥(𝑡) + 𝛼𝑉𝑖(𝑥(𝑡))

= 𝑥𝑇 (𝑡)
(

𝑃𝑖A
𝑗
𝑖 + (𝑃𝑖A

𝑗
𝑖 )

𝑇 − 𝛼𝑃𝑖 + C𝑇 𝑃𝑖C
)

𝑥(𝑡) + 𝛼𝑉𝑖(𝑥(𝑡)).

When the following conditions are met, it is clear that

𝑖A
𝑗
𝑖 + (𝑃𝑖A

𝑗
𝑖 )

𝑇 − 𝛼𝑃𝑖 + C𝑇 𝑃𝑖C < 0. (26)

By using Schur complement lemma, then (26) is equivalent to (20)
nd guarantee with 𝛼 > 0

𝑉𝑖(𝑥(𝑡)) − 𝛼𝑉𝑖(𝑥(𝑡)) < 0 (or) (27)

𝑉𝑖(𝑥(𝑡)) < 𝛼𝑉𝑖(𝑥(𝑡)). (28)

Moreover, integrating both sides of (27) over the interval [𝑡𝑘, 𝑡] and
aking the mathematical expectation, we have the following.

[𝑉𝑖(𝑥(𝑡))] < E[𝑉𝑖(𝑥(𝑡𝑘))] + 𝛼𝑖 ∫

𝑡

𝑡𝑘
E[𝑉𝑖(𝑥(𝑠))]𝑑𝑠. (29)

With Lemma 4.6, we get

[𝑉𝑖(𝑥(𝑡))] < E[𝑉𝑖(𝑥(𝑡𝑘))]𝑒𝛼𝑖(𝑡−𝑡𝑘). (30)

Noticing that

(𝑡𝑘) = 𝑥(𝑡−𝑘 ),

nd we get

𝑖(𝑥(𝑡𝑘)) ≤ �̄�𝑖𝑉𝑗 (𝑥(𝑡−𝑘 )). (31)

Combining (30) and (31), we have the following.

{𝑉𝑖(𝑥)} < �̄�𝑖𝑒
𝛼𝑖(𝑡−𝑡𝑘)E{𝑉𝑗 (𝑥(𝑡−𝑘 ))}. (32)

By using Definition 4.3, the connection of (32), it is not difficult to
heck within 𝑡 ∈ [0, 𝑇 ],
{𝑉𝑖(𝑥)} ≤ �̄�𝑖𝑒

𝛼𝑖(𝑡−𝑡𝑘)E{𝑉𝑗 (𝑥(𝑡−𝑘−1))}

≤
∏

𝑖∈𝑆𝑠

�̄�𝑁𝑠
𝑖 (0,𝑇 )

𝑖

∏

𝑖∈𝑆𝑢

�̄�𝑁𝑢
𝑖 (0,𝑇 )

𝑖 𝑒
∑

𝑖∈𝑆𝑠
𝛼𝑖𝑇 𝑠

𝑖 (0,𝑇 )+
∑

𝑖∈𝑆𝑢
𝛼𝑖𝑇 𝑢

𝑖 (0,𝑇 )E{𝑉𝜎(0)(𝑥(𝑡0))}. (33)

Accordingly, to the derivation, the following two inequalities hold:

E{𝑉𝑖(𝑥)} = E{𝑥𝑇 (𝑡)𝑃𝑖𝑥(𝑡)} = E{𝑥𝑇 (𝑡)R
1
2 𝑃𝑖R

1
2 𝑥(𝑡)}

≥ 𝛼𝑃𝑖E{𝑥
𝑇 (𝑡)R𝑥(𝑡)}, (34)

and

𝑉𝜎(0)(𝑥(0))𝑒𝛼𝑖𝑡 ={𝑥𝑇 (0)R
1
2 𝑃𝜎(0)R

1
2 𝑥(0)} ≤ {�̄�𝑃𝑖𝑥

𝑇 (0)R𝑥(0)}𝑒𝛼𝑖𝑡

≤ {�̄�𝑃𝑖 𝑐1}𝑒
𝛼𝑖𝑇 . (35)

Then, combined with (33)–(35), one has

E{𝑥𝑇 (𝑡)R𝑥(𝑡)} ≤
[�̄�𝑃𝑖

𝑐1]
∏

𝑖∈𝑆𝑠
�̄�𝑁𝑠

𝑖 (0,𝑇 )
𝑖

∏

𝑖∈𝑆𝑢
�̄�𝑁𝑢

𝑖 (0,𝑇 )
𝑖

1

× 𝑒
∑

𝑖∈𝑆𝑠
𝛼𝑖𝑇 𝑠

𝑖 (0,𝑇 )+
∑

𝑖∈𝑆𝑢
𝛼𝑖𝑇 𝑢

𝑖 (0,𝑇 )

𝛼𝑃𝑖

,

=
[�̄�𝑃𝑖

𝑐1]𝑒
∑

𝑖∈𝑆𝑠

𝑇 𝑠𝑖 (0,𝑇 )

𝜏𝑠𝑏𝑖
𝑙𝑜𝑔�̄�𝑖+

∑

𝑖∈𝑆𝑢

𝑇 𝑢𝑖 (0,𝑇 )

𝜏𝑢𝑏𝑖
𝑙𝑜𝑔�̄�𝑖

1

× 𝑒
∑

𝑖∈𝑆𝑠
𝛼𝑖𝑇 𝑠

𝑖 (0,𝑇 )+
∑

𝑖∈𝑆𝑢
𝛼𝑖𝑇 𝑢

𝑖 (0,𝑇 )

𝛼𝑃𝑖

,

=
[�̄�𝑃𝑖

𝑐1]𝑒
∑

𝑖∈𝑆𝑠

𝑇 𝑠𝑖 (0,𝑇 )

𝜏𝑠𝑏𝑖
𝑙𝑜𝑔�̄�𝑖+

∑

𝑖∈𝑆𝑢

𝑇 𝑢𝑖 (0,𝑇 )

𝜏𝑢𝑏𝑖
𝑙𝑜𝑔�̄�𝑖

1

× 𝑒−𝛼𝑠𝑇 𝑠+𝛼𝑢𝑇 𝑢

𝛼𝑃𝑖

. (36)

Rewrite (43) and (43) as follows.

[�̄�𝑃𝑖 𝑐1]�̄�
𝑇 𝑠
𝜏𝑠𝑏𝑖
𝑖 𝑒−𝛼𝑠𝑇 𝑠

< 𝑐2, (37)

𝛼𝑃𝑖
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and
log�̄�𝑖
𝜏𝑢𝑏𝑖

+ 𝛼𝑢 < 0, 𝑇 𝑢 ≥ 0. (38)

Then, substituting (37) and (38) in (36), we get

{𝑥𝑇 (𝑡)R𝑥(𝑡)} ≤ 𝑐2𝑒

[ log�̄�𝑖
𝜏𝑢𝑏𝑖

+𝛼𝑢
]

𝑇 𝑢

, (39)

In other words,

{𝑥𝑇 (𝑡)R𝑥(𝑡)} ≤ 𝑐2. (40)

ith respect to Definition 4.1, this implies the finite-time stability of
ystem (15). The proof is complete. □

. Controller design

In this part, we will concentrate on the FTSS of the SSLPV system
17).

heorem 6.1. Given scalars (𝑐1, 𝑐2, 𝑇 ), 𝑐1 < 𝑐2, and matrix R, if there
exist scalars 𝛼 > 0, �̄�𝑖 ≥ 1, and positive definite symmetric matrix 𝑋𝑖 ∈
R𝑛×𝑛, 𝑖 ∈ 𝑆 and nonsingular matrices 𝐺𝑖 such that the following LMIs hold:
[

𝛥 𝑋𝑇
𝑖 C𝑇

∗ −𝑋𝑖

]

< 0, (41)

�̃�𝑖 ≤ �̄�𝑖�̃�𝑗 . (42)

Then, if the subsystems meet the following conditions for switching signals,
the SSLPV system (17) will be finite-time stable with respect to (𝑐1, 𝑐2, 𝑇 ,R),

𝜏𝑠𝑏𝑖 ≥ 𝜏∗𝑏𝑖 =
𝑇 𝑠log�̄�𝑖

log[ 𝑐2𝛼𝑋
−1
𝑖

𝑐1 �̄�𝑋−1
𝑖
] − 𝛼𝑖𝑇 𝑠

, (𝑖 ∈ 𝑆𝑠), (43)

𝜏𝑠𝑏𝑖 ≤ 𝜏∗𝑏𝑖 = −
log�̄�𝑖
𝛼𝑖

, (𝑖 ∈ 𝑆𝑢), (44)

where 𝑇 𝑠 =
∑

𝑖∈𝑆𝑠
𝑇 𝑠
𝑖 (0, 𝑇 ) and 𝑇 𝑢 =

∑

𝑖∈𝑆𝑢
𝑇 𝑢
𝑖 (0, 𝑇 ).

Proof. Using Theorem 5.1, we can prove that the closed-loop system
(17) is FTSS with respect to (𝑐1, 𝑐2, 𝑇 ,R) for any switching signal:
[

(1, 1) C𝑇 𝑃𝑖
∗ −𝑃𝑖

]

< 0, (45)

where (1, 1) = 𝑃𝑖(A
𝑗
𝑖 + B𝑖𝐾𝑖) + (A𝑗

𝑖 + B𝑖𝐾𝑖)𝑇 𝑃𝑖 − 𝛼𝑃𝑖. Pre- and post-

ultiplying (27) by
[

𝑃−1
𝑖 0
∗ 𝑃−1

𝑖

]

,

[

𝑃−1
𝑖 0
∗ 𝑃−1

𝑖

]𝑇 [

(1, 1) C𝑇 𝑃𝑖
∗ −𝑃𝑖

] [

𝑃−1
𝑖 0
∗ 𝑃−1

𝑖

]

< 0 . (46)

Then it can be derived that
[

𝛥 𝑃−1
𝑖 C𝑇

∗ −𝑃−1
𝑖

]

< 0 , (47)

here 𝛥 = (A𝑗
𝑖 + B𝑖𝐾𝑖)𝑃−1

𝑖 + 𝑃−1
𝑖 (A𝑗

𝑖 + B𝑖𝐾𝑖)𝑇 − 𝑃−1
𝑖 𝛼. Setting 𝑋𝑖 =

−1
𝑖 , 𝐾𝑖𝑋𝑖 = 𝐺𝑖, (41) can be obtained, and the gains of the controller
14) are given by 𝐾𝑖 = 𝐺𝑖𝑋−1

𝑖 . □

. Related works

Some early literature on FTS can be found in [23,26–28,31]. The
inite-time 𝐻∞ control of nonlinear impulsive switching models. They
sed various Lyapunov function techniques and the mode-dependent
verage dwell time approach for establishing various parametric con-
itions, demonstrating that the model is finite-time bounded and finite-
ime 𝐻∞ control was addressed by the authors in [34]. The FTS analysis
as carried out by using the state transition matrix and copositive
yapunov function for the positive linear systems. Further, sufficient
10

onditions for a class of switching signals with average dwell time are
Table 4
Default values of the parameters of model (5) with Covid data.
Parameter Symbol Value Source

Recruitment rate 𝐴 5 [56]
Contact rate 𝛽 0.2 [57]
Inhibitory effect k 0.2 Assumed
Natural death rate 𝛿 0.0111 [58]
Rate of recovery 𝛾 0.1 [57]
Disease-related mortality 𝜖 0.001 Assumed

designed to attain FTS for the switched positive linear systems done
in [35]. Further, the study on the stochastic SIR model was reported by
various research works [45,51–53]. The authors of [36] used Markov
semigroup theory to show that the stochastic SIR epidemic model with
regime switching has a single stable stationary distribution. This means
that, over time, the model will converge to a steady state in which the
number of susceptible individuals, infected individuals, and recovered
individuals remains constant.

Remark 7.1. Linear Matrix Inequalities (LMIs) can be used in the
context of a stochastic SIR epidemic model to provide stability and
robustness guarantees for the control and management of infectious
diseases, such as COVID-19. For example, LMIs can be used to formulate
and solve optimization problems that aim to minimize the spread of the
disease, subject to constraints on control efforts, resource allocation,
and other parameters. LMIs can also be used to analyze the robustness
of control strategies to uncertainties in the model parameters, such as
the rate of transmission, the efficacy of control measures, and the num-
ber of susceptible individuals. Furthermore, LMIs can be used to design
controllers that can respond to changes in the spread of the disease,
such as the introduction of new strains or mutations, by switching be-
tween different control strategies. These applications demonstrate the
versatility and usefulness of LMIs in addressing complex and uncertain
systems and their importance in controlling the spread of infectious
diseases.

8. Numerical simulation of the model

In this section, we check the accuracy and usefulness of the offered
methods for the stabilization problem of bio-mathematical switching
systems with finite-time constraints.

8.1. Case study for COVID-19 model in Japan

In this subsection, we use data from newly positive individuals
in Tokyo. Japan has implemented several measures to control the
spread of COVID-19, including widespread testing, contact tracing,
and quarantine measures. The study used a compartmental model,
which divides the population into different compartments based on
their disease status (susceptible, exposed, infected, recovered, etc.). The
model was calibrated using data on the number of reported cases and
deaths in Japan and was used to simulate the spread of the disease
under different scenarios. The results of the study showed that Japan’s
measures were effective in controlling the spread of the disease, but
that the country was still at risk of a resurgence of cases if the mea-
sures were relaxed too quickly. The study also found that testing and
quarantine measures were more effective than contact tracing alone in
controlling the spread of the disease. It also highlighted the importance
of continuing to implement measures such as testing, contact tracing,
and quarantine even after the number of cases decreases. Table 4 shows
the numerical values of parameters used in the simulation.

The 𝑆(0) is the initial value of 𝑆 when 𝑅 = 0, and its corresponding
time is the start of the infection, 𝑡 = 0. Then, 𝑆(0) has the form 𝑆(0) =

− 𝐼(0). Suppose the initial infected population 𝐼(0) is the number
f positive cases on December 20, 2022, which is 15,883 [59] and
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Fig. 19. The solution of the stochastic model (5) with initial values 𝑆(0) = 8, 320, 716, 𝐼(0) = 15,883. The parameter values are taken as in Table 4 and 𝜎1,2 = 0.1.
Fig. 20. The evolution in time of the mean of the individuals over 1000 trajectories. The parameter values are taken as in Table 4 and 𝜎1,2 = 0.1.
1
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𝑁 = 8336599 [60]. This study would involve the use of state feedback
control theory to model the spread of COVID-19 and implement control
strategies in a finite time. The following steps could be taken (see
Figs. 19–21):

• Modeling: Develop a mathematical model of the spread of COVID-
19 in a specific region or population, taking into account relevant
factors such as the number of susceptible individuals, the number
of infected individuals, and the number of recovered individuals.

• Analysis: Analyze the stability of the model and determine the
equilibrium points.

• Control design: Based on the analysis, design a state feedback con-
trol law that will drive the system towards the desired equilibrium
in finite time. This could involve implementing measures such as
reducing contact rates between individuals, increasing testing and
contact tracing, or implementing vaccine distribution strategies.

• Simulation: Simulate the controlled system and compare the re-
sults with the uncontrolled system.

• Implementation: Implement the control strategies in the real
world, monitor the spread of the disease, and adjust the control
strategies as necessary based on the results.

The following study could provide valuable insights into the spread
of COVID-19 and inform the development of effective control strategies
11

to mitigate its impact.
8.2. Control of epidemic models

The simulation findings are based on the parameter values as in(4).
In Figs. 4–7, the effect of the stochastic system without a controller is
depicted graphically. Moreover, in the simulation reason, the specific
parameters of the biological model are as appeared in (4). The block
diagram of the proposed model is shown in Fig. 22.

Choose the values 𝛼1 = 1.05, 𝛼2 = −0.88, 𝑐1 = 1, 𝑐2 = 7, �̄�1 = 0.5, �̄�2 =
.5, 𝑇 = 15, R = 𝑑𝑖𝑎𝑔{1, 1}, C = 𝑑𝑖𝑎𝑔{1, 1}, and the system matrices
re get from Eq. (10). With these input values, we can obtain �̄�𝑃1 =
.7365, 𝛼𝑃2 = 0.0347 and the mode-dependent ADT can be calculated as
𝜏∗𝑏1 = 1.9307, 𝜏∗𝑏2 = 0.7631. Regarding Theorem 6.1, we know that for the
nalysis 𝜏𝑢𝑏1 = 0.5 < 𝜏∗𝑏2 and 𝜏𝑠𝑏2 = 1.3 > 𝜏∗𝑏1, the system is FTS. Moreover,
he designed controller is built so that the investigated stochastic
odel (16) is finite-time stable. Solving the linear matrix inequality

LMI)-based conditions specified in Theorem 6.1 with conventional LMI
oolbox software yields a viable solution that is guaranteed by a set of
atrices, some of which are presented below.

1 =
[

−4.0136 2.4093
3.5288 −3.4489

]

,

2 =
[

−4.1326 2.9775
3.8028 −4.1608

]

,

3 =
[

−4.2330 2.3720
]

,

3.4431 −3.7176
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Fig. 21. The evolution in time of the standard deviation of the individuals over 1000 trajectories. The parameter values are taken as in Table 4 and 𝜎1,2 = 0.1.
Fig. 22. Schematic diagram of the proposed finite time stability analysis of SIR model.
Fig. 23. The wiener process (1000 realizations).

𝐾4 =
[

−2.1799 1.6732
1.4616 −3.0741

]

.

For the sake of simulation, we assume the initial state 𝑥(0) =
[−1.5, 2]𝑇 . The state responses and associated control trajectories of
the stochastic switching model studied are shown in Figs. 24–25,
respectively, based on these conditions. As shown in Fig. 26, the state
12
Fig. 24. State trajectories with multiple initial conditions of the system (16).

trajectories of the closed-loop system adequately converge to zero
even though in the appearance of switching rules under the suggested
control method. Furthermore, the response of the wiener process (1000
realizations) is shown in Fig. 23. This shows the significance of the
proposed finite-time control strategy. On the other hand, the average
dwell time of the switching signal is calculated as 𝜏 = 1.2210.
𝑎
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Fig. 25. State responses in two phase mode.

Fig. 26. State trajectories of the system (16).

9. Conclusions

In this paper, a finite-time control technique has been presented
for stochastic switched linear parameter-varying (SSLPV) systems, with
a focus on epidemic models such as the SIR model. The article also
proposed a method to control the spread of COVID-19 using this tech-
nique. The method involved simplify the epidemic nonlinear systems
through finite-time stabilization analysis and determining the effec-
tive gain parameters using linear matrix inequalities (LMIs). Through
simulations, the researchers demonstrated that the proposed control
method was effective in balancing the epidemiological system, and thus
in controlling the spread of COVID-19. The conclusion of this research
showed that the proposed control technique can be used to effectively
control the spread of COVID-19 and other epidemic diseases and that it
has the potential to be applied in real-world situations. In the future, it
will also highlight the limitations and importance of research and the
need for more work in this area.
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