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Abstract
In this article, generalized synchronization between different dimensional chaotic systems 
has been discussed. Some basic preliminaries and definitions related to generalized syn-
chronization have also been explored. Since during synchronization presence of uncertain-
ties produced huge irregularity so authors studied generalized synchronization between 
fractional-order chaotic systems with uncertainties. Further, generalized anti-synchroniza-
tion between fractional-order chaotic systems with uncertainties also investigated. In order 
to show the effect of uncertainty and fractional-order on generalized synchronization; inte-
ger-order generalized synchronization between neural networks (Hopfield and cellular neu-
ral networks) without uncertainties also explained. Finally, numerical results agreed with 
theoretical results.

Keywords  Fractional-order chaotic system · Generalized synchronization · Anti-
synchronization · Uncertainties · Hopfield neural network · Cellular neural network

Introduction

Synchronization between chaotic systems has a broad spectrum in the branch of sci-
ence, engineering and secure communication. It is more applicable due to comprising 
dynamic variables as well as static variables. Pecora and Carroll [1] first time analyzed the 
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synchronization between chaotic systems. In the recent decades several types of synchro-
nizations such as generalized synchronization [2], hybrid phase synchronization [3], multi-
switching compound synchronization [4], difference synchronization [5] etc. have been 
examined. The concept of generalized synchronization has been explained via continuous 
differentiable function by Hunt et al. [6]. In 2007, Zhang et al. [7] discussed generalized 
synchronization between different dimensional chaotic systems. Abarbanel and Rulkov [8] 
also suggested a method to examine the generalized synchronization in chaotic systems 
experimentally. Further, Kocarev and Parlitz [2] established the connection between gen-
eralized synchronization and derived some conditions for coupled dynamical system. Hunt 
and Ott [6] also examined smooth function for the state of master and slave system. In 
addition, Yang and Duan [9] proposed a general method to apply generalized synchroniza-
tion on chaotic system. Yang et al. [10] also presented a model to exemplify the switching 
schemes of chaotic system using generalized synchronization. Yang and Chua [11] stud-
ied a linear manifold scheme for generalized synchronization and achieved some neces-
sary and sufficient condition for linear generalized synchronization. The relation between 
phase and generalized synchronization was investigated by Zheng and Hu [12] with asser-
tion that generalized synchronization is stronger than phase synchronization. Further sev-
eral researchers [13–19] studied generalized synchronization to explain communication 
strategy.

The application of fractional calculus has recently drawn the attention of several 
researchers in several fields. The various fractional-order differential systems including the 
Rossler system, the modified Duffing system and Chen system exhibit chaotic behaviour. 
Deng [20] discussed several procedure to obtain generalized synchronization between frac-
tional-order systems and derived necessary conditions. Wu and Lu [21] applied Laplace 
theory-based technique to investigate generalized projective synchronization between 
fractional-order Chen systems. Wang et  al. [22] studied the fractional-order hybrid syn-
chronization and obtain a proper controller based on stability theorem. Wu et al. [23] also 
explored generalized synchronization for weighted fractional-order complex chaotic sys-
tems. Megherbi et al. [24] analyzed the impulsive synchronization and derived the suffi-
cient conditions for fractional-order discrete chaotic system. Sayed and Radwan [25] also 
showed some generalization schemes for fractional-order chaotic systems based on secure 
communication of images.

In present time, neural network attracted the attention of several researchers. He et al. 
[26] constructed a new chaotic neural network with associative memory function and 
discussed pinning control method for the chaotic neural network. Further, they con-
cluded that control strength of network is smaller at higher pinned density. He et al. [27] 
also discussed chaotic neural network with chaotic neurons and obtained the range of 
the threshold for control the neurons. Moreover. Wang and Li [28] investigated chaotic 
color image encryption algorithm for the Arnold mapping through a function transfor-
mation. Further, they generated the self-diffusion chaotic matrix for Hopfield chaotic 
neural network. Srivastava et al. [29] presented a novel algorithm to enhance the secu-
rity of a hybrid model Hopfield neural network and shown that the security of transmit-
ted data is better than traditional algorithms. Liu and Xiu [30] discussed model of single 
neuron with chaotic and hysteretic characteristics in viewpoint of optimization. Ichinose 
[31] developed a model of quasi-periodic chaotic neural networks and concluded that 
the chaotic domain can be identified by folding structure with invariant closed curve 
with restoration of images. Soleymanpour et  al. [32] designed cellular manufacturing 
systems to minimize intercellular movements while maximizing utilization of machines. 
Zhou and Chen [33] also investigated a simple model of neuron from the viewpoint of 
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optimization with property of temporal retrieval of stored patterns and developed cha-
otic annealing technique to search for the global minima. Zhao et al. [34] used Gauss 
wavelet to characterize local features for the chaotic neural network and explained the 
exponentially decaying dilation parameter enable the neural network to generate com-
plex dynamics behavior.

The aforementioned conversations served as inspiration to authors for this research. 
To the best of the authors’ knowledge this work has not been done before. The rest of 
the article is arranged as follows. The “Preliminaries and Basic Concepts”, deals with the 
preliminaries, some definitions of fractional calculus and generalized synchronization. In 
“Study of Generalized Synchronization”, generalized synchronization and generalized anti-
synchronization have analyzed between different dimensional fractional-order chaotic sys-
tems and integer-order neural networks. “Numerical Results and Discussion” concerned 
the numerical results and discussion. A brief conclusion has incorporated in “Conclusion”.

Preliminaries and Basic Concepts

Definition  [35] The Caputo’s fractional derivative is expressed as

where 0 < 𝛼 ∈ R ,m ∈ N ,Γ(⋅) represents the Gamma function.

Some important properties and assumptions of fractional-order calculus in term of 
Caputo derivative are expressed as follow.

Property  [36] Consider a fractional-order system as

where � ∈ Rn and h(�) is continuous function and satisfies

where ‖ . ‖ is a sup-norm and K is a positive constant.

Assumption  Suppose the function g(�) is bounded then there exist a constant 𝜁 > 0 satisfy 
following condition

Here, the uncertain chaotic system is consider as master system which is expressed as

c
g
D𝛼

t
𝜂(t) =

d𝛼𝜂(t)

dt𝛼
=

⎧
⎪⎨⎪⎩

1

Γ(m−𝛼)

t

∫
g

𝜂(m)(𝜏)d𝜏

(t−𝜏)𝛼+1−m
, m − 1 < 𝛼 < m

dm𝜂(t)

dtm
, 𝛼 = m

(1)D�
t
� = h(�),

‖h(𝜂) − h(𝜉)‖ < K ‖𝜂 − 𝜉‖,

0 ≤
g(�) − g(�)

� − �
≤ � , ∀�, � ∈ R

(2)
d��(t)

dt�
= (� + Δ�)�(t) + F(�(t)),
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and uncertain chaotic system is given as

where �(t) = (�1(t), �2(t), ..., �n(t))
T ∈ Rn and �(t) = (�1(t), �2(t), ..., �m(t))

T ∈ Rm are the 
state vectors. The � and m are constant matrices of suitable order Δ� and Δm are uncertain-
ties and satisfies |Δ�| ≤ �1 , |Δm| ≤ �2 and 𝜀1, 𝜀2 > 0 . Further, F and G are nonlinear func-
tion and U(t) represents control function.

The chaotic system (3) can be written as

where C is a constant matrix and G (�) is the nonlinear term.

Definition 1  The generalized synchronization between systems given by (2) and (3) is 
achieved if e(t) = lim

t→∞
‖�(t) − �(�(t))‖ = 0.

Theorem 1  The generalized synchronization between system (2) and (3) will achieved if for 
� ∶ Rn

→ Rm these exist U(�, �) ∈ Rm such that

where � ∈ Rm×m is an unknown matrix to be determined and (C − �)T + (C − �) is negative 
definite matrix.

Proof:  In generalized anti-synchronization error is expressed as

where D�(�) is known as Jacobian matrix.

Putting the value of U(�, �) from Eq. (5) in (6), we get

The Lyapunov function V  is defined as

If (C − �)T + (C − �) is negative definite matrix then the systems will generalize 
synchronized.

(3)
d��(t)

dt�
= (m + Δm)�(t) + G(�(t)) + U(t),

(4)
d��(t)

dt�
= C�(t) + G(�),

(5)U(�, �) = �(�(�) − �) − C�(�) − G(�) + D��(�)((� + Δ�)�(t) + F(�(t)))

(6)
d�e(t)

dt�
=

d��(t)

dt�
−

d��(�)

dt�

= C�(t) + G(�) + U(�, �) − D�(�)((� + Δ�)�(t) + F(�(t)))

d�e(t)

dt�
= (C − �)e

V = eTe

d𝛼V

dt𝛼
=

d𝛼eT

dt𝛼
e + eT

d𝛼e

dt𝛼
,

= eT
[
(C − 𝜌) + (C − 𝜌)T

]
e < 0
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Definition 2  The generalized anti-synchronization between systems (2) and (3) will obtain 
if lim

t→∞
‖�(t) + �(�(t))‖ = 0.

Theorem 2  If for � ∶ Rn
→ Rm, these exist U(�, �) ∈ Rm such that

then the generalized anti-synchronization has achieved. Where � ∈ Rm×m is an unknown 
matrix to be determined and (C + �)T + (C + �) is negative definite matrix.

Proof  In generalized anti-synchronization error is expressed as

Putting the value of U(�, �) from Eq. (7) in (8), we get

Further, we construct Lyapunov function V  which is defined as

The derivative of V  is expressed as

If (C + �)T + (C + �) is negative definite matrix then the system is generalize 
anti-synchronized.

Study of Generalized Synchronization

Generalized Synchronization Between Fractional‑Order Uncertain Chaotic Systems

The fractional-order system [37] with uncertainties is expressed as

where a , b, c and k are constant parameters. The system (7) shows chaotic behavior for the 
value of parameters a = 10 , b = 100, c = 11.2, k = −0.2.

The hyper-chaotic system [38] with uncertainties is given as

(7)U(�, �) = �(� + �(�)) + C�(�) − G(�) − D�(�)[(� + Δ�)� + F(�)]

(8)
d�e(t)

dt�
=

d��(t)

dt�
+

d��(�)

dt�

= C�(t) + G(�) + U(�, �) + D�(�)[(� + Δ�)�(t) + F(�(t))]

d�e(t)

dt�
= (C + �)e

V = eTe

d𝛼V

dt𝛼
=

d𝛼eT

dt𝛼
e + eT

d𝛼e

dt𝛼
,

= eT
[
(C + 𝜌) + (C + 𝜌)T

]
e < 0

(9)

d��1(t)

dt�
= a (�2 − �1) + 0.05 �1 + k�1�3,

d��2(t)

dt�
= −�1�3 − c�2 + 0.01 �2,

d��3(t)

dt�
= �1�2 − 0.03 �3 − b



	 Differential Equations and Dynamical Systems

1 3

where �1, �1, �1 and �1 are parameters. The system (8) shows chaotic behavior for the value 
�1 = 10 , �1 = 28 , �1 = 8∕3, �1 = 0.01.

Here, system (8) is considered as slave system and written as

where (U1(t), U2(t), U3(t),U4(t))
T is the controller. From above equation we obtain

Define differentiable map � such that �(�1 , �2 , �3) = (�1 , �2 , �3 , �1 + �2 )
T . The Jaco-

bian matrix of � is given as

Now choose a matrix � such type that (C − �)T + (C − �) is negative definite matrix

In this manner, we obtain

(10)

d��1(t)

dt�
= �4 + �1 (�2 − �1) + 0.02�1,

d��2(t)

dt�
= �1�1 + �2 − �1�3 − 0.01�2,

d��3(t)

dt�
= e�1�2 − �1�3 + 0.01�3,

d��4(t)

dt�
= �1�2�3 − 0.03�4

(11)

d��1(t)

dt�
= �4 + �1 (�2 − �1) + 0.02�1 + U1(t),

d��2(t)

dt�
= �1�1 + �2 − �1�3 − 0.01�2 + U2(t),

d��3(t)

dt�
= e�1�2 − �1�3 + 0.01�3 + U3(t),

d��4(t)

dt�
= �1�2�3 − 0.03�4 + U4(t)

(12)C =

⎡
⎢⎢⎢⎣

−�1 + 0.02 �1 0 1

�1 1 − 0.01 0 0

0 0 −�1 + 0.01 0

0 0 0 −0.03

⎤
⎥⎥⎥⎦
, G(�) =

⎡
⎢⎢⎢⎣

0

−�1�3
e�1�2

�1�2�3

⎤⎥⎥⎥⎦

D� =

⎛
⎜⎜⎜⎜⎝

1

0

0

1

0

1

0

1

0

0

1

0

⎞⎟⎟⎟⎟⎠

� =

⎛
⎜⎜⎜⎝

−9 10 0 1

28 2 0 0

0 0 −5∕3 0

0 0 0 1

⎞
⎟⎟⎟⎠
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After putting the value of different parameters in (5), we get controller as

The graphical presentation of the generalized synchronization for chaotic systems with 
uncertainties is depicted through Fig. 4. The error dynamics ei(t) for master and slave system 
shows that the error becomes zero for all states.

Generalized Anti‑synchronization Between Fractional‑Order Uncertain Chaotic 
Systems

Here, we consider system (10) as master system and (9) as slave system. The system (9) with 
control function is written as

Here (U1(t), U2(t), U3(t))
T is the controller. From Eq. (14) we obtain C and g(�) as

Define another map � such that � (�1 , �2 , �3 , �4) = (�1 , �2 , �3 + �4)
T and Jacobian 

matrix D� is written as

We choose a new matrix � which satisfies (C + �) + (C + �)T and should be negative defi-
nite. Now, � is calculated as

C − � =

⎛
⎜⎜⎜⎝

−0.98 0 0 0

0 −1.01 0 0

0 0 −0.99 0

0 0 0 −1.03

⎞
⎟⎟⎟⎠

(13)

U1 = a (�2 − �1) + 0.96�1 + 9�1 − 10�2 − �4 + k�1�3 ,

U2 = −(c − 0.01)�1 + 2�2 − 28.99�1 − 2�2 − �1�3 + �2�3,

U3 = 4.34�3 + �1�2 − 0.03�3 − e�1�2 − (5∕3)�3,

U4 = −(a − 1.08)�1 − (c − 1.04)�2 + (k − 1)�1�3 + a�1 − �1�2�3 − �4

(14)

d��1(t)

dt�
= a (�2 − �1) + 0.05 �1 + k�1�3 + U1(t),

d��2(t)

dt�
= −�1�3 − c�2 + 0.01 �2 + U2(t),

d��3(t)

dt�
= �1�2 − 0.03 �3 − b + U3(t)

C =

⎡
⎢⎢⎣

−a + 0.05 a 0

0 −c + 0.01 0

0 0 −0.03

⎤
⎥⎥⎦
, G(�) =

⎡
⎢⎢⎣

k�1�3
−�1�3
�1�2

⎤⎥⎥⎦

D� =

⎡
⎢⎢⎢⎣

1

0

0

0

1

0

0

0

1

0

0

1

⎤⎥⎥⎥⎦

� =

⎡
⎢⎢⎣

9 −10 0

0 10 0

0 0 −1

⎤⎥⎥⎦



	 Differential Equations and Dynamical Systems

1 3

In this manner, we obtain (C + �) as

Finally, the controllers are obtained as

The graphical presentation of generalized anti-synchronization is shown in Fig.  5. 
Finally, the error dynamics ei(t) for master and slave system shows that the error becomes 
zero.

Generalized Synchronization Between Integer‑Order Neural Networks

In this subsection, we discuss generalized synchronization between integer-order neural 
networks without uncertainties. Here, we take Hopfield neural network [39] as master sys-
tem which is expressed as

This system represents chaotic behavior at I.C. (0.1, 0.1, 0.1, 0.1).
Further, cellular neural network [40] is supposed as slave system and expressed below

This system also represents chaotic behavior at I.C. (0.1, 0.01, 0.015, 0.001, 0.02, 0.2).
Equation (17) can be expressed in form of 𝜉̇ = C𝜉 + g(𝜉) , where

C + � =

⎡
⎢⎢⎣

−0.95 0 0

0 −1.19 0

0 0 −1.03

⎤
⎥⎥⎦

(15)

U1 = 9.03�1 − 10�2 − �4 + 9�1 − 10�2 − k�2�3,

U2 = −�1�1 − 2.17�2 + �1�3 + 10�2 + �1�3,

U3 = −e�1�2 + 1.65�3 − �4 − �1�2�3 − �3 − �1�2 + b

(16)

𝜂̇1(t) = −𝜂1 + tanh
(
𝜂1
)
− 3 tanh

(
𝜂3
)
+ 0.5 tanh

(
𝜂2
)
− tanh

(
𝜂4
)
,

𝜂̇2(t) = −𝜂2 + 0.25 tanh
(
𝜂1
)
+ 2 tanh

(
𝜂2
)
+ 3 tanh

(
𝜂3
)
,

𝜂̇3(t) = −𝜂3 − 3 tanh
(
𝜂2
)
+ 3 tanh

(
𝜂1
)
+ tanh

(
𝜂3
)
,

𝜂̇4(t) = −100𝜂4 + 170 tanh
(
𝜂4
)
+ 100 tanh

(
𝜂1
)
.

(17)

𝜉̇1(t) = −𝜉4 − 𝜉3 + u1(t),

𝜉̇2(t) = 𝜉3 + 2𝜉2 + u2(t),

𝜉̇3(t) = −14𝜉2 + 14𝜉1 + u3(t).

𝜉̇4(t) = −100𝜉4 + 100𝜉1 + 100(|𝜉4 + 1| − |𝜉4 − 1|) + u4(t),

𝜉̇5(t) = 18𝜉2 − 𝜉5 + 𝜉1 + u5(t),

𝜉̇6(t) = −4𝜉6 + 4𝜉5 + 100𝜉2 + u6(t).

(18)C =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 −1 −1 0 0

0 2 1 0 0 0

14 −14 0 0 0 0

100 0 0 −100 0 0

1 18 0 0 −1 0

0 100 0 0 4 −4

⎤
⎥⎥⎥⎥⎥⎥⎦

, g(�) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0

100(��4 + 1� − ��4 − 1�)
0

0

⎤⎥⎥⎥⎥⎥⎥⎦
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Now define a map � which is continuously differentiable and expressed as

The Jacobian matrix of above map is obtained as

�(�1 , �2 , �3, �4 ) = [�1 , �2 , �3 , �4 , �2 + �1, �4 + �3]
T .
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Fig. 1   Phase portraits of Lyapunov exponents of system (9)
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Fig. 2   Phase portraits of Lyapunov exponents of system (10)
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Now we assumed a new matrix � depending on (17) and expressed as

(19)D� =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

1 1 0 0 0 0

0 0 1 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

Fig. 3   Phase portraits of system (9) and (10) for � = 0.99 in a �1 − �2 − �3 space, b �1 − �2 − �3 space 
respectively
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Fig. 4   The time evolution of state of errors for generalized synchronization
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In this manner, we obtain

Further, we get the control function as

(20)� =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 −1 −1 0 0

0 12 1 0 0 0

14 −14 6 0 0 0

100 0 0 −96 0 0

1 18 0 0 3 0

0 100 0 0 4 9

⎤⎥⎥⎥⎥⎥⎥⎦

(21)C − � =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0

0 −10 0 0 0 0

0 0 −6 0 0 0

0 0 0 −4 0 0

0 0 0 0 −2 0

0 0 0 0 0 −5

⎤⎥⎥⎥⎥⎥⎥⎦

(22)

U1 = −�1 + �3 + �4 − 3 tanh
(
�3
)
+ 0.5 tanh

(
�2
)
− tanh

(
�4
)
+ tanh

(
�1
)
,

U2 = 9�2 − 12�2 − �3 + 0.25 tanh
(
�1
)
+ 2 tanh

(
�3
)
+ 3 tanh

(
�3
)
,

U3 = 5�3 − 14�1 + 14�2 − 6�3 − 3 tanh
(
�2
)
+ 3 tanh

(
�1
)
+ tanh

(
�3
)
,

U4 = −96�4 − 100�1 + 96�4 − 100 (|�4 + 1| − |�4 − 1|) + 100 tanh
(
�1
)
+ 170 tanh

(
�4
)
,

U5 = 3�1 + 3�2 − �1 − 18�2 tanh
(
�1
)
− 3 tanh

(
�3
)
+ 0.5 tanh

(
�2
)
− tanh

(
�4
)
+

0.25 tanh
(
�1
)
+ 2 tanh

(
�3
)
+ 3 tanh

(
�3
)
,

U6 = 12�3 − 87�4 − 100�2 − 4�5 − 9�6 + 3 tanh
(
�1
)
+ tanh

(
�3
)
− 3 tanh

(
�2
)
+

100 tanh
(
�1
)
+ 170 tanh

(
�4
)
,

0 1 2 3 4 5 6 7 8 9 10
t
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Fig. 5   The time evolution of error system for generalized anti-synchronization
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Numerical Results and Discussion

In this section, the parametric values of system (9) and (10) are taken as 
a = 10 , b = 100, c = 11.2, k = −0.2 and �1 = 10 , �1 = 28 , �1 = 8∕3, �1 = 0.01 along 
with the initial conditions (10, 22, 30) and (0.1, 0.1, 0.1, 0.1) respectively. The phase 
portrait of Lyapunov exponents and systems for (9) and (10) have been revealed through 
Figs.  1, 2 and 3 respectively. The Figs.  4 and 5 reflects the error dynamics for gen-
eralized synchronization and anti-synchronization between different dimensional cha-
otic systems with uncertain terms respectively. The four dimensional Hopfield neural 
network and six dimensional cellular network have considered to explain the general-
ized synchronization. The initial conditions for Hopfield and cellular networks are 
(0.1, 0.1, 0.1, 0.1) and (0.1, 0.01, 0.015, 0.001, 0.02, 0.2) respectively. The phase por-
traits of uncontrolled Hopfield and cellular neural networks are shown in Figs. 6 and 7. 
Finally, the error also converges to zero (see Fig. 8) in case of neural networks which 
implies that systems (16) and (17) achieve synchronization.
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Fig. 6   Phase portraits of Hopfield neural network in a �1 − �2 plane, b �1 − �3 plane, c �2 − �3 plane, d 
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Conclusion

In the present study, the authors have successfully demonstrated the generalized syn-
chronization and anti-synchronization between different dimensional fractional-order 
chaotic systems with uncertainties. The graphical presentation of the numerical out-
comes verifies the authenticity of the proposed scheme. Further, the generalized syn-
chronization between the integer-order Hopfield and cellular networks has also been 
analyzed. It is noteworthy that this scientific contribution will be more significant in the 
area of chaotic dynamical systems.
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