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A B S T R A C T

In genetic regulatory networks (GRNs), the control strategies of messenger RNA (mRNA) and protein play a
key role in regulatory mechanisms of gene expression, especially in translation and transcription. However, the
influence of impulsive control strategies on oscillatory gene expression is not well understood. In this article, by
considering the impulsive control strategies of mRNA and protein, a novel fractional-order genetic regulatory
networks with actuator saturation is proposed. By applying polytopic representation technique, the actuator
saturation term is first considered into the design of impulsive controller, and less conservative linear matrix
inequalities (LMIs) criteria that guarantee finite-time Mittag-Leffler stabilization problem for fractional-order
genetic regulatory networks are given. The derived sufficient conditions can easily be verified by designing
impulsive control gains and solving simple LMIs. Finally, to investigate the effectiveness and applicability of
the control strategies, an interesting simulation example as a synthetic oscillatory network of transcriptional
regulators in Escherichia coli is illustrated.
1. Introduction

Genetic regulatory networks (GRNs) are biochemical networks that
regulate gene expression and perform complex biological functions (via
direct or indirect interactions between deoxyribonucleic acid (DNA),
ribonucleic acid (RNA), proteins, and small molecules) as shown in
Fig. 1. GRNs are a significant topic in bioscience and biomedical
engineering, as they can help many biologists, engineers, and scien-
tists understand a variety of complex challenges in living cells [1–3].
Because many traits and diseases are linked to dysfunctional transcrip-
tional regulators or mutations in regulatory sequences, understanding
gene expression regulation has an immediate impact on biology and
medicine. Acquiring precise information about the states of GRNs is
particularly useful in biological and biomedical sciences for applica-
tions such as gene identification and medical diagnosis/treatment [4,5].
One of the key challenges in this area is to (i) understand the cells
behavior and control their operations; and (ii) discover how cellular
systems fail in disease. Mathematical modeling and simulation tools aid

∗ Corresponding author.
E-mail addresses: narayanang@citchennai.net (G. Narayanan), syedgru@gmail.com (M. Syed Ali), rkarthiekeyan@gmail.com (R. Karthikeyan),

kreangkri@mju.ac.th (G. Rajchakit), anuwat.j@pkru.ac.th (A. Jirawattanapanit).

in understanding how complex GRNs, which are made up of numerous
genes and their tangled interactions, control the functioning of living
systems. Understanding the dynamics and predicting the behavior of
GRNs is critical in cell and molecular biology, namely different GRNs
models have been developed. Hence, the research on GRNs includes the
following aspects: gene circuit control design [6], modeling [7], and
stability analysis [8]. Stability analysis is one of the most noticeable
aspects of many dynamic systems, including GRNs. Various researchers
have dedicated their efforts to the stability mechanism and biological
rhythms, and both theoretical analysis and biotic experiments have
contributed a huge quantity of beneficial research results. In [9],
a simple gene circuit consisting of the regulator and transcriptional
repressor modules in Escherichia coli was built, and the stability gain
produced by negative feedback was demonstrated. It has been widely
researched that time delay is an unavoidable factor in modeling, design-
ing, and controlling GRNs because they naturally occur as a result of
vailable online 17 January 2023
746-8094/© 2023 Elsevier Ltd. All rights reserved.
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Fig. 1. Gene regulatory network mechanism.
transcription, transcript splicing, processing, and protein synthesis [10–
16]. Therefore, the biological scopes of GRNs, it is of great significance
to study the dynamic behavior of messenger RNA (mRNA) and protein
in regulatory mechanisms with time-varying delays.

The involvement of memory and hereditary properties in deal-
ing with fractional-order derivatives provides a more realistic way
to biological models [17]. Because of the memory effect, non-integer
models incorporate all previous information from the past, allowing
them to more accurately predict and translate molecular models [18].
Fractional-order genetic regulatory networks (FGRNs) have two advan-
tages over integer-order GRNs: more degrees of freedom and infinite
memory [19–21]. Furthermore, experiments on yeast cell cycle gene
expression data show that the proposed mathematical model is better
suited to modeling genetic regulatory mechanisms. Although fractional-
order differential equations have been used to GRNs model due to their
lower data fitting error on test data than integer-order models, few
articles have been published on FGRNs. Therefore, FGRNs have formu-
lated numerous molecular models of fractional derivative to study the
transmission dynamics during the past few years [22,23]. All the results
above have shown that FGRNs are of great importance in enlightening
the mechanism of multistability and biological rhythms.

In recent decades, the impulsive control approach has been in-
tensively researched and applied to the analysis of nonlinear system
dynamics [24–26]. In some practical applications, impulsive control
is really valuable, such as biological models [27], multi-agent sys-
tems [28], neural networks [29], and so on. Because it has some
excellent characteristics, impulsive control has recently received a lot
of attention [30]. It is reasonable and powerful to introduce the ideas
and methods from system and control theory to underly the compli-
cated biological functions of living organisms in their entirety [31–34].
Environmental cues, differentiation cues, and disease all cause regu-
latory circuits controlling gene expression to constantly rewire [35].
GRN states are frequently impulsively changed in response to tran-
sient environmental stimuli. Indeed, the gene regulatory mechanism
is always exposed to intrinsic noise caused by the random births and
deaths of individual molecules, as well as extrinsic noise caused by
environmental variations. Because environmental noises can affect the
stability of equilibrium states, it is critical to investigate impulsive gen-
eralizations of the GRNs in which the states of the models are abruptly
changed [36]. Few authors have developed impulsive control strategies
to investigate the stability issue of GRNs models to date [37,38].
Although more and more experts recognize the significance of actuator
saturation, the findings of saturated impulsive control are extremely
rare. This is because it is very challenging to deal with saturation
nonlinearity and the estimate of domain of attraction. The authors [39]
2

investigated the impact of saturation on network performance. Actuator
saturation can degrade dynamic performance and even destabilize the
system under study. An impulse saturation can have a significant
impact on system dynamics [40–42]. However, despite its practical sig-
nificance, the finite-time Mittag-Leffler stabilization (FTMLS) problem
for FGRNs via impulsive control with actuator saturation has not been
investigated yet.

Inspired by above, this article addresses the finite-time Mittag-
Leffler stabilization problem of fractional-order genetic regulatory net-
works via impulsive control with actuator saturation. The main contri-
butions are:

(1) A novel the controller that involves saturated impulsive control
has been designed to achieve FTMLS problem of FGRNs for the
first time in this article.

(2) The sufficient criteria that ensure the FTMLS of the proposed
FGRNs are determined using the novel Lyapunov functional, and
the proposed conditions are represented in terms of solvable
LMIs.

(3) Furthermore, we take advantage of how polytopic representation
approaches handle saturation nonlinearity.

(4) Finally, to illustrate and demonstrate the efficiency of our ob-
tained results, we present some new simulation results that
reveal the time responses of the state variables with and without
the inclusion of impulsive actuator saturation into the repressi-
lator model.

To better illustrate the biological scopes of GRNs and major contri-
butions of theoretical as well as practical significance of this article,
we provide Table 1 for comparison with other research works on
GRNs, where fractional-order, impulsive control, impulsive actuator
saturation, linear matrix inequalities (LMIs), finite-time Mittag-Leffler
stabilization (FTMLS), and repressilator model. Moreover,

√

means this
item is included in that paper, × means it is not.

Notation: The notes of the symbols appearing in the article is
as follows:  the complex numbers;  the real numbers; + the
real numbers; + the positive integers. 𝑞 and 𝑞 denotes the set
of all 𝑞-dimensional complex-valued vectors and real-valued vectors,
respectively. 𝑚×𝑚 denotes the set of all 𝑚 × 𝑚 real matrices. diag{⋅ ⋅
⋅} is a block diagonal matrix. 𝑛 stands for the n × n identity ma-
trix. C

𝑡0
𝐷𝛾
𝑡 a denotes the Caputo fractional derivative with order 𝛾.

𝐄𝛾 (⋅) denotes the Mittag-Leffler function of (⋅). For a real matrix
𝛺, 𝛺𝑇 stands for its transpose, and 𝜆max(𝛺). 𝜆min(𝛺) are maximum
and minimum eigenvalues of 𝛺 respectively. The saturation func-
tion 𝐬𝐚𝐭(ℏ(𝑡)) = (𝐬𝐚𝐭(ℏ1(𝑡)), 𝐬𝐚𝐭(ℏ2(𝑡)),… , 𝐬𝐚𝐭(ℏ𝑞(𝑡)))𝑇 with 𝐬𝐚𝐭(ℏ1(𝑡)) =
𝑠𝑖𝑔𝑛(ℎ (𝑡)) min{ℏ , |ℏ (𝑡)|} (𝜏 ∈ ), where ℏ ∈  is the 𝜏 th element
1 0𝜏 𝜏 0𝜏 +
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Table 1
Comparison with existing works.

GRNs [8–15] [3,7] [11,14] [18–21] [22] [23,36] [37,38] This article

Fractional-order ×
√

×
√ √ √

×
√

Impulsive control × × × × ×
√ √ √

Impulsive actuator saturation × × × × × × ×
√

LMIs
√ √ √

× × ×
√ √

FTMLS × × × × × × ×
√

Repressilator model × ×
√ √

× × ×
√
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⎨
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of the vector ℏ0 ∈ 𝑞
+ and is the know saturation level. 𝐜𝐨{𝜈} represents

he convex hull defined by the vertices 𝜈. Let ℜ = {ℜ𝚥 ∶ 𝚥 ∈ 𝛬} be the
set of 𝚥× 𝚥 diagonal matrices whose diagonal element take value 1 or 0.

he notation ∗ is used to denote the symmetric term in a matrix

. Problem description and preliminaries

In this section, some basic definitions of fractional calculus, as-
umptions, and lemmas are given, and the finite-time Mittag-Leffler
tabilization problem description of fractional-order genetic regulatory
etworks with the time-varying delays model is presented.

efinition 2.1 ([18]). For any 𝑡 ≥ 𝑡0, the fractional integral for a
unction ℑ(𝑡) is given by

0
𝐷−𝛾
𝑡 ℑ(𝑡) = 1

𝛤 (𝛾) ∫

𝑡

𝑡0
(𝑡 − 𝜉)𝛾−1ℑ(𝜉)𝑑𝜉, 𝑡 ≥ 𝑡0. (1)

The Caputo derivative for a function ℑ(𝑡) ∈ 𝑞([𝑡0, 𝑡],𝑞) is defined by

C
𝑡0
𝐷𝛾
𝑡ℑ(𝑡) =

⎧

⎪

⎨

⎪

⎩

1
𝛤 (𝑞−𝛾) ∫

𝑡
𝑡0

ℑ(𝑞)(𝜉)
(𝑡−𝜉)𝛾+1−𝑞 𝑑𝜉, 𝑞 − 1 < 𝛾 < 𝑞,

𝑑𝑞

𝑑𝑡𝑞 ℑ(𝑡), 𝛾 = 𝑞.
(2)

n particular, for 𝛾 ∈ (0, 1) then C
𝑡0
𝐷𝛾
𝑡ℑ(𝑡) = (1∕𝛤 (1−𝛾)) ∫ 𝑡𝑡0 (ℑ

′(𝜉)∕(𝑡−𝜉)𝛾 ).

efinition 2.2 ([29]). The Mittag-Leffler function (two parameter
type) can be expressed as

𝐄𝛾,𝜏 (𝑧) =
∞
∑

𝑘=0

𝑧𝑘

𝛤 (𝑘𝛾 + 𝜏)
,

where 𝑧 ∈ , 𝛾 > 0 and 𝜏 > 0. If 𝜏=1, the Mittag-Leffler function (one
parameter type) can be expressed as

𝐄𝛾 (𝑧) =
∞
∑

𝑘=0

𝑧𝑘

𝛤 (𝑘𝛾 + 1)
= 𝐸𝛾,1(𝑧).

We consider a class of fractional-order genetic regulatory networks
with time-varying delays as follows [22,23]:
{ C𝐷𝛾

𝑡 𝜙𝑠(𝑡) = −𝑝𝑠𝜙𝑠(𝑡) +
∑𝑛
𝑟=1 𝜈𝑠𝑟𝑔𝑟(𝜓𝑟(𝑡 − 𝜚1(𝑡))) + 𝜑𝑠,

C
0𝐷

𝛾
𝑡 𝜓𝑠(𝑡) = −𝑞𝑠𝜓𝑠(𝑡) +𝑤𝑠𝜙𝑠(𝑡 − 𝜚2(𝑡)), 𝑠 = 1, 2,… , 𝑛,

(3)

as shown in Fig. 2, where 0 < 𝛾 < 1; 𝜙𝑠(𝑡) and 𝜓𝑠(𝑡) are the of
mRNA and protein concentrations of the 𝑠th node, respectively; 𝑝𝑠 and
𝑞𝑠 are positive scalars, which represents the rates of degradation rates
of mRNA and protein, respectively;  = [𝜈𝑠𝑟] ∈ 𝑞×𝑞 represents the
coupling matrix (see [23]); 𝑔𝑟 is the form 𝑔𝑟(𝜉) =

𝜉𝐻

1+𝜉𝐻 , where 𝐻 is the
ill coefficient; 𝜑𝑠 =

∑

𝑟∈𝐼𝑠 𝜁𝑠𝑟, 𝐼𝑠 is the repressors of gene 𝑠; 𝑤𝑠 is a
onstant; 𝜚1(𝑡) and 𝜚2(𝑡) are time-varying delays.

The authors [22] investigated the existence problem of nonnegative
quilibrium of FGRNs system (3). We assume that in this section that
GRNs system (3) have at least one nonnegative equilibrium with
enoted by (𝜙∗, 𝜓∗) as follows:

0 = −𝑝𝑠𝜙∗
𝑠 (𝜛) +

∑𝑛
𝑟=1 𝜈𝑠𝑟𝑔𝑟(𝜓

∗
𝑟 (𝜛)) + 𝜑𝑠,

0 = −𝑞𝑠𝜓∗
𝑠 (𝜛) +𝑤𝑠𝜙∗

𝑠 (𝜛),
(4)

here 𝜙∗(𝜛) = col(𝜙∗
1(𝜛), 𝜙∗

2(𝜛),… , 𝜙∗
𝑛(𝜛)) and 𝜓∗(𝜛) = col(𝜓∗

1 (𝜛),
∗(𝜛),… , 𝜓∗(𝜛)).
3

2 𝑛 a
Obviously, we define 𝛼𝑠(𝑡) = 𝜙𝑠(𝑡)−𝜙∗
𝑠 and 𝛽𝑠(𝑡) = 𝜓𝑠(𝑡)−𝜓∗

𝑠 , FGRNs
ystem (3) can be expressed as

C
0𝐷

𝛾
𝑡 𝛼(𝑡) = −𝛼(𝑡) + ℘(𝛽(𝑡 − 𝜚1(𝑡))),

C
0𝐷

𝛾
𝑡 𝛽(𝑡) = −𝛽(𝑡) +𝛼(𝑡 − 𝜚2(𝑡)),

(5)

here  = diag(𝑝1, 𝑝2,… , 𝑝𝑚),  = diag(𝑞1, 𝑞2,… , 𝑞𝑚),  = diag(𝑤1, 𝑤2,
, 𝑤𝑚), 𝛼(𝑡) = col(𝛼1(𝑡), 𝛼2(𝑡), ..., 𝛼𝑚(𝑡)), 𝛽(𝑡) = col(𝛽1(𝑡), 𝛽2(𝑡),… , 𝛽𝑚(𝑡)),
(𝛽(𝑡)) = col(℘1(𝛽1(𝑡)),… ,℘𝑚(𝛽𝑚(𝑡))), ℘𝑖(𝛽𝑖(𝑡)) = 𝑔𝑖(𝛽𝑖(𝑡) + 𝛽∗) − 𝑔𝑖(𝛽∗𝑖 ).

Then control system (5) can be represented as
C
0𝐷

𝛾
𝑡 𝛼(𝑡) = −𝛼(𝑡) + ℘(𝛽(𝑡 − 𝜚1(𝑡))) + 𝑢𝚤(𝑡),

C
0𝐷

𝛾
𝑡 𝛽(𝑡) = −𝛽(𝑡) +𝛼(𝑡 − 𝜚2(𝑡)) + 𝑢𝚥(𝑡),

(6)

where 𝑢𝚤(𝑡) and 𝑢𝚥(𝑡) are control inputs.
The initial value of system (6) is given as follows

{

𝛼(𝑡) = 𝜃(𝑡), 𝑡 ∈ [−𝜚, 0],
𝛽(𝑡) = 𝜃̂(𝑡), 𝑡 ∈ [−𝜚, 0],

(7)

where 𝜚 = max{𝜚1, 𝜚2}. 𝜃(𝑡) and 𝜃̂(𝑡) is bounded and continuous function
on [−𝜚, 0].

An impulsive controller is designed as
{

𝑢𝚤(𝑡) = 𝛩1𝛼(𝑡)𝛿(𝑡 − 𝑡𝜎+1), 𝑡 ∈ [𝑡𝜎 , 𝑡𝜎+1), 𝜎 ∈ +,
𝑢𝚥(𝑡) = 𝛩2𝛽(𝑡)𝛿(𝑡 − 𝑡𝜎+1), 𝑡 ∈ [𝑡𝜎 , 𝑡𝜎+1), 𝜎 ∈ +,

(8)

where 𝛿(⋅) is the Dirac delta function; 𝛩1, 𝛩2 ∈ 𝑚×𝑚 are the gain
atrices.

By using impulsive controller (8), the system (6) can be expressed
s

C
0𝐷

𝛾
𝑡 𝛼(𝑡) = −𝛼(𝑡) + ℘(𝛽(𝑡 − 𝜚1(𝑡))), 𝑡 ∈ [𝑡𝜎 , 𝑡𝜎+1),

C
0𝐷

𝛾
𝑡 𝛽(𝑡) = −𝛽(𝑡) +𝛼(𝑡 − 𝜚2(𝑡)), 𝑡 ∈ [𝑡𝜎 , 𝑡𝜎+1),

𝛥𝛼(𝑡) = 𝛩1𝛼(𝑡−𝜎 ), 𝜎 ∈ +,
𝛥𝛽(𝑡) = 𝛩2𝛽(𝑡−𝜎 ), 𝜎 ∈ +,

(9)

here 𝛥𝛼(𝑡) = 𝛼(𝑡𝜎 ) − 𝛼(𝑡−𝜎 ), 𝛼(𝑡𝜎 ) = 𝛼(𝑡+𝜎 ) and 𝛼(𝑡−𝜎 ) = lim𝑡→𝑡𝜎− 𝛼(𝑡);
𝛽 = 𝛽(𝑡𝜎 ) − 𝛽(𝑡−𝜎 ), 𝛽(𝑡𝜎 ) = 𝛽(𝑡+𝜎 ) and 𝛽(𝑡−𝜎 ) = lim𝑡→𝑡𝜎− 𝛽(𝑡).

ssumption 1. There exist constants 𝜉+𝑖 and 𝜉−𝑖 such that the regulatory
unction ℏ𝑖(⋅) satisfies

−
𝑖 ≤

ℏ𝑖(𝑎) − ℏ𝑖(𝑎̂)
𝑎 − 𝑎̂

≤ 𝜉+𝑖 ,

for all 𝑎̂, 𝑎 ∈  with 𝑎 ≠ 𝑎̂.

Definition 2.3 ([36]). The FTMLS with initial conditions is the trivial
solution of system (9), if there exist positive constants {𝛿, 𝜖, 𝛾, 𝜚, 𝑇 } with
‖𝜃(𝑡)‖+‖𝜃̂(𝑡)‖ ≤ 𝛿 such that ‖𝛼(𝑡)‖+‖𝛽(𝑡)‖ ≤ (‖𝜃(𝑡)‖+‖𝜃̂(𝑡)‖){𝐄𝛾 (−𝜂𝑡𝛾 )}𝜚
𝜖, ∀𝑡 ∈ [0, 𝑇 ].

emma 2.4 ([23]). Let 𝛼(𝑡) be a vector function that is continuously
ifferentiable on 𝑡, then

0
𝐷𝛾
𝑡 𝛼

𝑇 (𝑡)𝛼(𝑡) ≤ 2𝛼𝑇 (𝑡)C𝑡0𝐷
𝛾
𝑡 𝛼(𝑡),

here 0 < 𝛾 ≤ 1 and 𝑡 > 𝑡0. We denote C
0𝐷

𝛾
𝑡 𝛼(𝑡) Caputo fractional derivative

s 𝐷𝛾 .

emma 2.5 ([39]). Let 𝛾̂ = (𝛾̂1, 𝛾̂2,… , 𝛾̂𝑞)𝑇 ∈ 𝑞 and 𝛿 = (𝛿1, 𝛿2,… , 𝛿𝑞)𝑇
𝑞 . If ‖𝛿‖ ≤ 1, then 𝐬𝐚𝐭(𝛿) ∈ 𝐜𝐨{℧𝑠𝛿+℧−

𝑠 𝛿, 𝑠 ∈ ℵ}, where ℧ = {℧𝑠 ∈ ℵ}
enotes the set of 𝑠 × 𝑠 diagonal matrices with diagonal elements of 0 or 1

−
nd ℧𝑠 = 𝐼 − ℧𝑠.
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Fig. 2. Flow chart for the GRNs model (3).
3. Main results

In this section, we derive a sufficient condition for the finite-
time Mittag-Leffler stabilization problem of fractional-order genetic
regulatory networks system (6) via impulsive control with actuator
saturation.

We denote that for convenience

𝛶1 = diag
(

𝜉−1 𝜉
+
1 , 𝜉

−
2 𝜉

+
2 ,… , 𝜉−𝑞 𝜉

+
𝑞

)

and

𝛶2 = diag
( 𝜉−1 + 𝜉+1

2
,
𝜉−2 + 𝜉+2

2
,… ,

𝜉−𝑞 + 𝜉+𝑞
2

)

.

3.1. Stabilization control mechanism for fractional-order genetic regulatory
networks via an impulsive control

The finite-time Mittag-Leffler stabilization criteria for fractional-
order genetic regulatory networks system (9) with impulsive control
are derived based on Lyapunov functional and linear matrix inequalities
approach in the following sub-sections.

Theorem 3.1. For given scalars 𝜂1, 𝜂2, 𝜇1, 𝜇2, 𝜀, 𝛿, two matrices 𝛺1 > 0,
𝛺2 > 0, diagonal matrices 𝛶1 > 0, 𝛶2 > 0, symmetric matrices 𝛬1, 𝛬2, and
arbitrary matrices 𝛥1, 𝛥2 with 𝛩1 = 𝛺−1

1 𝛥1 − 𝐼 and 𝛩2 = 𝛺−1
2 𝛥2 − 𝐼 , the

system (9) is FTMLS if the following inequalities

(𝑖)
(

−𝜇1𝛺1 𝛥𝑇1
∗ −𝛺1

)

≤ 0 and
(

−𝜇2𝛺2 𝛥𝑇2
∗ −𝛺2

)

≤ 0, (10)

(𝑖𝑖)
[

−(𝛺1 + 𝑇𝛺1 − 𝛬1) 0
∗ −(𝛺2 +𝑇𝛺2 − 𝛬2)

]

< 0, (11)

(𝑖𝑖𝑖)

⎡

⎢

⎢

⎢

⎢

⎣

ϝ − 𝛬1 + 𝜂1𝛺1 0 0 𝛺1
∗ −𝛶1ϝ − 𝛬2 𝛺2 + 𝜂2𝛺2 𝛶2ϝ
∗ ∗ ϝ 0
∗ ∗ ∗ −ϝ

⎤

⎥

⎥

⎥

⎥

⎦

< 0, (12)

(𝑖𝑣)
(

℘̂𝐄𝛾 (−𝜂𝑡𝛾 )
)
1
2 < 𝜖

𝛿
, (13)

where

℘̂ =
𝜇𝜆max(𝛺)
𝜆min(𝛺)

, 𝜆min(𝛺) = min{𝜆min(𝛺1), 𝜆min(𝛺2)}, and

𝜆max(𝛺) = max{𝜆max(𝛺1), 𝜆max(𝛺2)}.

Proof. Take the Lyapunov function as

𝐕(𝑡) = 𝛼𝑇 (𝑡)𝛺 𝛼(𝑡) + 𝛽𝑇 (𝑡)𝛺 𝛽(𝑡). (14)
4

1 2
It follow from the Eq. (10), it can see that
(

−𝜇1𝛺1 𝛥𝑇1
∗ −𝛺1

)

≤ 0

⇔

(

𝐼 (𝐼 + 𝛩1)𝑇

0 𝐼

)(

−𝜇1𝛺1 𝛥𝑇1
∗ −𝛺1

)(

𝐼 0
𝐼 + 𝛩1 𝐼

)

≤ 0

⇔

(

−𝜇1𝛺1 + (𝐼 + 𝛩1)𝑇𝛺1(𝐼 + 𝛩1) 0
∗ −𝛺1

)

≤ 0

⇔ −𝜇1𝛺1 + (𝐼 + 𝛩1)𝑇𝛺1(𝐼 + 𝛩1) ≤ 0,

and
(

−𝜇2𝛺2 𝛥𝑇2
∗ −𝛺2

)

≤ 0

⇔

(

𝐼 (𝐼 + 𝛩2)𝑇

0 𝐼

)(

−𝜇2𝛺2 𝛥𝑇2
∗ −𝛺2

)(

𝐼 0
𝐼 + 𝛩2 𝐼

)

≤ 0

⇔

(

−𝜇2𝛺2 + (𝐼 + 𝛩2)𝑇𝛺2(𝐼 + 𝛩2) 0
∗ −𝛺2

)

≤ 0

⇔ −𝜇2𝛺2 + (𝐼 + 𝛩2)𝑇𝛺2(𝐼 + 𝛩2) ≤ 0,

when 𝑡 = 𝑡𝜎 , we obtain that

𝐕(𝑡𝜎 ) =𝛼𝑇 (𝑡𝜎 )𝛺1𝛼(𝑡𝜎) + 𝛽𝑇 (𝑡𝜎)𝛺2𝛽(𝑡𝜎 )

≤𝛼𝑇 (𝑡−𝜎 )(𝐼 + 𝛩1)𝑇𝛺1(𝐼 + 𝛩1)𝛼(𝑡−𝜎 )

+ 𝛽𝑇 (𝑡−𝜎 )(𝐼 + 𝛩2)𝑇𝛺2(𝐼 + 𝛩2)𝛽(𝑡−𝜎 )

≤𝜇1𝛼𝑇 (𝑡−𝜎 )𝛺1𝛼(𝑡−𝜎 ) + 𝜇2𝛽
𝑇 (𝑡−𝜎 )𝛺2𝛽(𝑡−𝜎 )

≤𝜇𝐕(𝑡−𝜎 ), (15)

where 𝜇 = max{𝜇1, 𝜇2}.
For 𝑡 ∈ [𝑡𝜎 , 𝑡𝜎+1), by using Lemma 2.4 and computing the derivatives

of 𝑉 (𝑡), obtain that

𝐷𝛾𝐕(𝑡) ≤2𝛼𝑇 (𝑡)𝛺1𝐷
𝛾𝛼(𝑡) + 2𝛽𝑇 (𝑡)𝛺2𝐷

𝛾𝛽(𝑡)

≤2𝛼𝑇 (𝑡)𝛺1
(

−𝛼(𝑡) + ℏ(𝛽(𝑡 − 𝜚1(𝑡)))
)

+ 2𝛽𝑇 (𝑡)𝛺2

(

−𝛽(𝑡) +𝛼(𝑡 − 𝜚2(𝑡))
)

≤𝛼𝑇 (𝑡)
(

−(𝛺1 + 𝑇𝛺1)
)

𝛼(𝑡) + 2𝛼𝑇 (𝑡)𝛺1ℏ(𝛽(𝑡 − 𝜚1(𝑡)))

+ 𝛽𝑇 (𝑡)
(

−(𝛺2 +𝑇𝛺2)
)

𝛽(𝑡) + 2𝛽𝑇 (𝑡)𝛺2𝛼(𝑡 − 𝜚2(𝑡))

≤ − 𝛼𝑇 (𝑡)(𝛺1 + 𝑇𝛺1)𝛼(𝑡) + 2𝛼𝑇 (𝑡)𝛺1ℏ(𝛽(𝑡 − 𝜚1(𝑡)))

− 𝛽𝑇 (𝑡)(𝛺2 +𝑇𝛺2)𝛽(𝑡) + 2𝛽𝑇 (𝑡)𝛺2𝛼(𝑡 − 𝜚2(𝑡))

≤
[

𝛼(𝑡) 𝛽(𝑡)
]

[

−(𝛺1 + 𝑇𝛺1) 0
∗ −(𝛺2 +𝑇𝛺2)

] [

𝛼(𝑡)
𝛽(𝑡)

]

+ 2𝛼𝑇 (𝑡)𝛺 ℏ(𝛽(𝑡 − 𝜚 (𝑡))) + 2𝛽𝑇 (𝑡)𝛺 𝛼(𝑡 − 𝜚 (𝑡)). (16)
1 1 2 2
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Its observe that

(ℏ𝑖(𝛽𝑖(𝑡 − 𝜚1(𝑡))) − 𝜉−𝑖 𝛽𝑖(𝑡))(ℏ𝑖(𝛽𝑖(𝑡 − 𝜚1(𝑡))) − 𝜉
+
𝑖 𝛽𝑖(𝑡)) ≤ 0,

−
(

𝛼𝑇 (𝑡)𝛼(𝑡) + 𝛼𝑇 (𝑡 − 𝜚2(𝑡))𝛼(𝑡 − 𝜚2(𝑡))
)

≤ 0,

for every 𝑖 ∈ ∧, and is equivalent to
[

𝛼(𝑡) 𝛽(𝑡) 𝛼(𝑡 − 𝜚2(𝑡)) ℏ(𝛽(𝑡 − 𝜚1(𝑡)))
]

×

⎡

⎢

⎢

⎢

⎢

⎣

−𝑒𝑖𝑒𝑇𝑖 0 0 0

∗ 𝜉−𝑖 𝜉
+
𝑖 𝑒𝑖𝑒

𝑇
𝑖 0 −

𝜉−𝑖 +𝜉
+
𝑖

2 𝑒𝑖𝑒+𝑖
∗ ∗ −𝑒𝑖𝑒𝑇𝑖 0
∗ ∗ ∗ 𝑒𝑖𝑒𝑇𝑖

⎤

⎥

⎥

⎥

⎥

⎦

×

⎡

⎢

⎢

⎢

⎢

⎣

𝛼(𝑡)
𝛽(𝑡)

𝛼(𝑡 − 𝜚2(𝑡))
ℏ(𝛽(𝑡 − 𝜚1(𝑡)))

⎤

⎥

⎥

⎥

⎥

⎦

≤ 0,

for each 𝑖 ∈ ∧, where 𝜀̂𝑖 represents the unit column vector, which one
element on its 𝑖th row and zeros elsewhere.

Then
𝑚
∑

𝑖=1
𝑓𝑖

[

𝛼(𝑡) 𝛽(𝑡) 𝛼(𝑡 − 𝜚2(𝑡)) ℏ(𝛽(𝑡 − 𝜚1(𝑡)))
]

×

⎡

⎢

⎢

⎢

⎢

⎣

−𝜀̂𝑖𝜀̂𝑇𝑖 0 0 0

∗ 𝜉−𝑖 𝜉
+
𝑖 𝜀̂𝑖𝜀̂

𝑇
𝑖 0 −

𝛼−𝑖 +𝜉
+
𝑖

2 𝜀̂𝑖𝜀̂+𝑖
∗ ∗ −𝜀̂𝑖𝜀̂𝑇𝑖 0
∗ ∗ ∗ 𝜀̂𝑖𝜀̂𝑇𝑖

⎤

⎥

⎥

⎥

⎥

⎦

×

⎡

⎢

⎢

⎢

⎢

⎣

𝛼(𝑡)
𝛽(𝑡)

𝛼(𝑡 − 𝜚2(𝑡))
ℏ(𝛽(𝑡 − 𝜚1(𝑡)))

⎤

⎥

⎥

⎥

⎥

⎦

≤ 0,

which is equivalent to

[

𝛼(𝑡) 𝛽(𝑡) 𝛼(𝑡 − 𝜚2(𝑡)) ℏ(𝛽(𝑡 − 𝜚1(𝑡)))
]

⎡

⎢

⎢

⎢

⎢

⎣

ϝ 0 0 0
∗ −𝛶1ϝ 0 𝛶2ϝ
∗ ∗ ϝ 0
∗ ∗ ∗ −ϝ

⎤

⎥

⎥

⎥

⎥

⎦

×

⎡

⎢

⎢

⎢

⎢

⎣

𝛼(𝑡)
𝛽(𝑡)

𝛼(𝑡 − 𝜚2(𝑡))
ℏ(𝛽(𝑡 − 𝜚1(𝑡)))

⎤

⎥

⎥

⎥

⎥

⎦

≥ 0, (17)

where ϝ = diag(𝑓1, 𝑓2,… , 𝑓𝑚) > 0. From Eqs. (16) and (17), we obtain
that

𝐷𝛾𝐕(𝑡)
≤2𝛼𝑇 (𝑡)𝛺1ℏ(𝛽(𝑡 − 𝜚1(𝑡))) + 2𝛽𝑇 (𝑡)𝛺2𝛼(𝑡 − 𝜚2(𝑡)) +

[

𝛼(𝑡) 𝛽(𝑡)
]

×
[

−(𝛺1 + 𝑇𝛺1) 0
∗ −(𝛺2 +𝑇𝛺2)

] [

𝛼(𝑡)
𝛽(𝑡)

]

+
[

𝛼(𝑡) 𝛽(𝑡) 𝛼(𝑡 − 𝜚2(𝑡)) ℏ(𝛽(𝑡 − 𝜚1(𝑡)))
]

×

⎡

⎢

⎢

⎢

⎢

⎣

ϝ 0 0 0
∗ −𝛶1ϝ 0 𝛶2ϝ
∗ ∗ ϝ 0
∗ ∗ ∗ −ϝ

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝛼(𝑡)
𝛽(𝑡)

𝛼(𝑡 − 𝜚2(𝑡))
ℏ(𝛽(𝑡 − 𝜚1(𝑡)))

⎤

⎥

⎥

⎥

⎥

⎦

≤
[

𝛼(𝑡) 𝛽(𝑡)
]

[

−(𝛺1 + 𝑇𝛺1 − 𝛬1) 0
∗ −(𝛺2 +𝑇𝛺2 − 𝛬2)

]

×
[

𝛼(𝑡)
𝛽(𝑡)

]

+
[

𝛼(𝑡) 𝛽(𝑡)
]

×
[

𝜂1𝛺1 0
∗ 𝜂2𝛺1

] [

𝛼(𝑡)
𝛽(𝑡)

]

+
[

𝛼(𝑡) 𝛽(𝑡) 𝛼(𝑡 − 𝜚2(𝑡)) ℏ(𝛽(𝑡 − 𝜚1(𝑡)))
]

×

⎡

⎢

⎢

⎢

⎢

ϝ − 𝛬1 + 𝜂1𝛺1 0 0 𝛺1
∗ −𝛶1ϝ − 𝛬2 + 𝜂2𝛺2 𝛺2 𝛶2ϝ
∗ ∗ ϝ 0

⎤

⎥

⎥

⎥

⎥

⎡

⎢

⎢

⎢

⎢

𝛼(𝑡)
𝛽(𝑡)

𝛼(𝑡 − 𝜚2(𝑡))

⎤

⎥

⎥

⎥

⎥

5

⎣

∗ ∗ ∗ −ϝ
⎦ ⎣

ℏ(𝛽(𝑡 − 𝜚1(𝑡))) ⎦
It follow form the Eqs. (11) and (12), one has

𝐷𝛾𝐕(𝑡) ≤
[

𝛼(𝑡) 𝛽(𝑡)
]

[

−𝜂1𝛺1 0
∗ −𝜂2𝛺2

] [

𝛼(𝑡)
𝛽(𝑡)

]

≤ − 𝜂𝐕(𝑡), (18)

where 𝜂 = min{𝜂1, 𝜂2}.
According to Lemma 2 in [23] and Eq. (18), we get

𝜆min(𝛺)
(

‖𝛼(𝑡)‖2 + ‖𝛽(𝑡)‖2
)

≤ 𝐕(𝑡) ≤ 𝜇E𝛾 (−𝜂𝑡𝛾 )𝑉 (0),

which implies that

𝜆min(𝛺)
(

‖𝛼(𝑡)‖2 + ‖𝛽(𝑡)‖2
)

≤ 𝜇𝜆max(𝛺)E𝛾 (−𝜂𝑡𝛾 )
(

‖𝜃(0)‖2 + ‖𝜃̂(0)‖2
)

.

Then

‖𝛼(𝑡)‖2 + ‖𝛽(𝑡)‖2 ≤ ℘̂E𝛾 (−𝜂𝑡𝛾 )
(

‖𝜃(0)‖2 + ‖𝜃̂(0)‖2
)

.

It follow form the Eq. (13) and Definition 2.3, we obtain that ‖𝛼(𝑡)‖ +
‖𝛽(𝑡)‖ < 𝜖. Therefore, the system (9) can be achieved the FTMLS under
impulsive control.

Remark 3.2. When the system (9) is simplified to integer-order GRNs
with impulsive control as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛼̇(𝑡) = −𝛼(𝑡) + ℘(𝛽(𝑡 − 𝜚1(𝑡))), 𝑡 ∈ [𝑡𝜎 , 𝑡𝜎+1),
𝛽̇(𝑡) = −𝛽(𝑡) +𝛼(𝑡 − 𝜚2(𝑡)), 𝑡 ∈ [𝑡𝜎 , 𝑡𝜎+1),
𝛥𝛼(𝑡) = 𝛩1𝛼(𝑡−𝜎 ), 𝜎 ∈ +,
𝛥𝛽(𝑡) = 𝛩2𝛽(𝑡−𝜎 ), 𝜎 ∈ +,

(19)

where 𝛼̇(𝑡) = 𝑑𝛼
𝑑𝑡 and 𝛽̇(𝑡) = 𝑑𝛽

𝑑𝑡 . It follows from Lemma 2 in [23], that the
system (9) is Mittag-Leffler stabilization. Therefore, the Mittag-Leffler
stabilization criterion of system (9) is expressed into an exponential
stabilization of system (19).

Remark 3.3. The stability analysis of FGRNs has been examined
previously using the algebraic criteria and the Lyapunov approach [19–
23]. In Theorem 3.1, sufficient conditions for FGRNs are given by
constructing Lyapunov functions and using the LMI conditions to guar-
antee FTMLS criteria. We can see from the proof that these stability
conditions are formulated algebraic criteria, which may result in less
conservative results. The obtained LMI stability criteria have a sim-
pler form than the algebraic stability criteria proposed in (see [19–
23]), which reduces computational complexity. Thus, our results have
replenished some former works, which implies that our results are new.

Remark 3.4. In the existing works, some results an impulsive con-
trol based on the molecular models of neural networks, complex-
valued neural networks via actuator saturation [39,40]. Some few
authors [41,42], an actuator saturation is a common phenomenon in
biological models are studied. Therefore, inspired by [39–42] to study,
an impulsive control based on FTMLS problem of FGRNs via actuator
saturation.

3.2. Stabilization control mechanism for fractional-order genetic regulatory
networks via an impulsive control with actuator saturation

In this sub-section, by applying the polytopic approach and a novel
Lyapunov functional, some linear matrix inequalities based sufficient
conditions are derived to ensure the finite-time Mittag-Leffler stabiliza-
tion for the fractional-order genetic regulatory networks with impulsive
control and actuator saturation.

We designed the impulsive control with actuator saturation scheme
as follows:
{

𝑢𝚤(𝑡) = 𝛯1sat(ℏ1(𝑡))𝛿(𝑡 − 𝑡𝜎), 𝜎 ∈ Z+, (20)

𝑢𝚥(𝑡) = 𝛯2sat(ℏ2(𝑡))𝛿(𝑡 − 𝑡𝜎), 𝜎 ∈ Z+,
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where 𝛯1 and 𝛯2 are constant matrices; ℏ1(𝑡) = 𝛹1𝛼(𝑡) and ℏ2(𝑡) = 𝛹2𝛽(𝑡)
ith 𝛹1 ∈ 𝑞×𝑞 , 𝛹2 ∈ 𝑞×𝑞 is the control gain matrices.

Considering controllers (20), the dynamical system (6) is rewritten
s

𝐷𝛾𝛼(𝑡) = −𝛼(𝑡) + ℘(𝛽(𝑡 − 𝜚1(𝑡))), 𝑡 ∈ [𝑡𝜎 , 𝑡𝜎+1),
𝐷𝛾𝛽(𝑡) = −𝛽(𝑡) +𝛼(𝑡 − 𝜚2(𝑡)), 𝑡 ∈ [𝑡𝜎 , 𝑡𝜎+1),
𝛥𝛼(𝑡𝜎 ) = 𝛯1sat(𝛹1𝛼(𝑡−𝜎 )), 𝜎 ∈ +,
𝛥𝛽(𝑡𝜎 ) = 𝛯2sat(𝛹2𝛽(𝑡−𝜎 )), 𝜎 ∈ +,

(21)

Furthermore, based on Lemma 2.5 in system (21), for two matrices
𝛹1 ∈ 𝑞×𝑞 and  ∈ 𝑞×𝑞 . If ‖𝛼(𝑡)‖∞ ≤ 1, then

sat(𝛹1𝛼(𝑡)) ∈ co{℧𝓁𝛹1𝛼(𝑡) + ℧−1
𝓁 𝛼(𝑡), 𝓁 ∈ ℵ}.

For 𝛹2 ∈ 𝑞×𝑞 and  ∈ 𝑞×𝑞 . If ‖𝛽(𝑡)‖∞ ≤ 1, then

sat(𝛹2𝛽(𝑡)) ∈ co{℧𝓁𝛹2𝛽(𝑡) + ℧−1
𝓁 𝛽(𝑡), 𝓁 ∈ ℵ}.

Furthermore
{

∀ 𝛼(𝑡) ∈ 
(

||, 1
)

= {𝛼(𝑡) ∈ 𝑞 ; ‖𝛼(𝑡)‖∞ ≤ 1},
∀ 𝛽(𝑡) ∈ 

(

||, 1
)

= {𝛽(𝑡) ∈ 𝑞 ; ‖𝛽(𝑡)‖∞ ≤ 1}.

It can see that
{

sat(𝛹1𝛼(𝑡)) ∈ co{℧𝓁𝛹1𝛼(𝑡) + ℧−1
𝓁 𝛼(𝑡), 𝓁 ∈ ℵ},

sat(𝛹2𝛽(𝑡)) ∈ co{℧𝓁𝛹2𝛽(𝑡) + ℧−1
𝓁 𝛽(𝑡), 𝓁 ∈ ℵ},

that is

sat(𝛹1𝛼(𝑡)) =
2𝑞
∑

𝓁=1
𝜆𝓁(𝛼(𝑡))

(

℧𝓁𝛹1 + ℧−1
𝓁 

)

𝛼(𝑡), (22)

with ∑2𝑞
𝓁=1 𝜆𝓁(𝛼(𝑡)) = 1, 0 ≤ 𝜆𝓁(𝛼(𝑡)) ≤ 1.

Similarly

sat(𝛹2𝛽(𝑡)) =
2𝑞
∑

𝓁=1
𝜆𝓁(𝛽(𝑡))

(

℧𝓁𝛹2 + ℧−1
𝓁 

)

𝛽(𝑡) (23)

with ∑2𝑞
𝓁=1 𝜆𝓁(𝛽(𝑡)) = 1, 0 ≤ 𝜆𝓁(𝛽(𝑡)) ≤ 1.

Based on Eq. (22) and Eq. (23), the result of Eq. (21) is

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐷𝛾𝛼(𝑡) = −𝛼(𝑡) + ℘(𝛽(𝑡 − 𝜚1(𝑡))) 𝑡 ∈ [𝑡𝜎 , 𝑡𝜎+1),
𝐷𝛾𝛽(𝑡) = −𝛽(𝑡) +𝛼(𝑡 − 𝜚2(𝑡)), 𝑡 ∈ [𝑡𝜎 , 𝑡𝜎+1),
𝛥𝛼(𝑡𝜎 ) =

[

𝐼𝑞 + 𝛯1
∑2𝑞

𝓁=1 𝜆𝓁(𝛼(𝑡𝜎))
(

℧𝓁𝛹1 + ℧−
𝓁

)]

𝛼(𝑡−𝜎 ), 𝜎 ∈ +,
𝛥𝛽(𝑡𝜎 ) =

[

𝐼𝑞 + 𝛯2
∑2𝑞

𝓁=1 𝜆𝓁(𝛽(𝑡𝜎 ))
(

℧𝓁𝛹2 + ℧−
𝓁

)]

𝛽(𝑡−𝜎 ), 𝜎 ∈ +.

(24)

Remark 3.5. The actuator saturation term in the nonlinear dynamical
FGRNs system (24) by applying the polytopic approach of Lemma 2.5 in
this article. In future study, we will be able to discuss the stabilization
problem of the proposed model using the sector nonlinearity model
technique to deal with the actuator saturation term given in [41,42].

Theorem 3.6. For given scalars 𝜂1, 𝜂2, 𝜇̂1, 𝜇̂2, 𝜀, 𝛿, two matrices 𝛺1 > 0,
𝛺2 > 0, diagonal matrices 𝛶1 > 0, 𝛶2 > 0, symmetric matrices 𝛬1, 𝛬2
and arbitrary matrices 𝛥1, 𝛥2, the system (24) is FTMLS if the following
inequalities

(𝑖)

[

−𝜇̂1𝛺1
(

𝐼𝑞 + 𝛯1
(

℧𝓁𝛹1 + ℧−1
𝓁 

))𝑇

∗ −𝛺1

]

≤ 0, (25)

(𝑖𝑖)

[

−𝜇̂2𝛺2
(

𝐼𝑞 + 𝛯2
(

℧𝓁𝛹2 + ℧−1
𝓁 

))𝑇

∗ −𝛺2

]

≤ 0, (26)

(𝑖𝑖𝑖)
[

−(𝛺1 + 𝑇𝛺1 − 𝛬1) 0
∗ −(𝛺2 +𝑇𝛺2 − 𝛬2)

]

< 0, (27)

(𝑖𝑣)

⎡

⎢

⎢

⎢

⎢

ϝ − 𝛬1 + 𝜂1𝛺1 0 0 𝛺1
∗ −𝛶1ϝ − 𝛬2 𝛺2 + 𝜂2𝛺2 𝛶2ϝ
∗ ∗ ϝ 0

⎤

⎥

⎥

⎥

⎥

< 0, (28)
6

⎣

∗ ∗ ∗ −ϝ
⎦

(𝑣)
(

℘̌𝜅𝐄𝛾 (−𝜂𝑡𝛾 )
)
1
2 < 𝜖

𝛿
, (29)

where ℘̌𝜅 = 𝜇̌𝜆max(𝛺)
𝜆min(𝛺) .

Proof. Choose Lyapunov function

𝐕(𝑡) = 𝛼𝑇 (𝑡)𝛺1𝛼(𝑡) + 𝛽𝑇 (𝑡)𝛺2𝛽(𝑡). (30)

y computing the derivative of the Lyapunov function 𝐕(𝑡) along the
olution of the system (24), then by applying Lemma 2.4 one has
𝛾𝐕(𝑡) ≤ 2𝛼𝑇 (𝑡)𝛺1𝐷

𝛾𝛼(𝑡) + 2𝛽𝑇 (𝑡)𝛺2𝐷
𝛾𝛽(𝑡)

he remaining proof is the same as Eqs. (16)–(18) in Theorem 3.1, for
∈ [𝑡𝜎 , 𝑡𝜎+1)

𝛾𝐕(𝑡) ≤ −𝜂𝐕(𝑡), (31)

here 𝜂 = min{𝜂1, 𝜂2}.
It follow from the Eqs. (25) and (26), it can see that

[

−𝜇̂1𝛺1
(

𝐼𝑞 + 𝛯1
(

℧𝓁𝛹1 + ℧−1
𝓁 

))𝑇

∗ −𝛺1

]

≤ 0

⇔
(

𝐼𝑞 + 𝛯1(℧𝓁𝛹1 + ℧−
𝓁)

)𝑇𝛺1
(

𝐼𝑞 + 𝛯1(℧𝓁𝛹2 + ℧−
𝓁)

)

− 𝜇̂1𝛺1 ≤ 0,

nd
[

−𝜇̂2𝛺2
(

𝐼𝑞 + 𝛯2
(

℧𝓁𝛹2 + ℧−1
𝓁 

))𝑇

∗ −𝛺2

]

≤ 0

⇔
(

𝐼𝑞 + 𝛯2(℧𝓁𝛹2 + ℧−
𝓁)

)𝑇𝛺2
(

𝐼𝑞 + 𝛯2(℧𝓁𝛹2 + ℧−
𝓁)

)

− 𝜇̂2𝛺2 ≤ 0.

hen 𝑡 = 𝑡𝜎 in Eq. (30), it can see that

(𝛼(𝑡𝜎 ), 𝛽(𝑡𝜎 )) =𝛼𝑇 (𝑡−𝜎 )
(

𝐼𝑞 + 𝛯1(℧𝓁𝛹1 + ℧−
𝓁)

)𝑇𝛺1

×
(

𝐼𝑞 + 𝛯1(℧𝓁𝛹1 + ℧−
𝓁)

)

𝛼(𝑡−𝜎 )

+ 𝛽𝑇 (𝑡−𝜎 )
(

𝐼𝑞 + 𝛯2(℧𝓁𝛹2 + ℧−
𝓁)

)𝑇𝛺2

×
(

𝐼𝑞 + 𝛯2(℧𝓁𝛹2 + ℧−
𝓁)

)

𝛽(𝑡−𝜎 )

≤𝜇̂1𝛼𝑇 (𝑡−𝜎 )𝛺1𝛼(𝑡−𝜎 ) + 𝜇̂2𝛽
𝑇 (𝑡−𝜎 )𝛺2𝛽(𝑡−𝜎 )

≤𝜇̌𝑉 (𝛼(𝑡), 𝛽(𝑡)), (32)

here 𝜇̌ = min{𝜇̂1, 𝜇̂2}. From Eqs. (31) and (32) with by using Lemma
in [23], we get

min(𝛺)
(

‖𝛼(𝑡)‖2 + ‖𝛽(𝑡)‖2
)

≤ 𝜇̌𝜆max(𝛺)E𝛾 (−𝜂𝑡𝛾 )
(

‖𝜃(0)‖2 + ‖𝜃̂(0)‖2
)

.

hen

𝛼(𝑡)‖2 + ‖𝛽(𝑡)‖2 ≤ ℘̌E𝛾 (−𝜂𝑡𝛾 )
(

‖𝜃(0)‖2 + ‖𝜃̂(0)‖2
)

.

t follow form the Eq. (29) and Definition 2.3, we obtain that ‖𝛼(𝑡)‖ +
𝛽(𝑡)‖ < 𝜖. Therefore, the system (24) can be achieved the FTMLS via
mpulsive actuator saturation.

emark 3.7. When the system (24) is simplified to integer-order GRNs
ia impulsive control with actuator saturation as follows:

𝛼̇(𝑡) = −𝛼(𝑡) + ℘(𝛽(𝑡 − 𝜚1(𝑡))), 𝑡 ∈ [𝑡𝜎 , 𝑡𝜎+1),
𝛽̇(𝑡) = −𝛽(𝑡) +𝛼(𝑡 − 𝜚2(𝑡)), 𝑡 ∈ [𝑡𝜎 , 𝑡𝜎+1),
𝛥𝛼(𝑡𝜎 ) =

[

𝐼𝑞 + 𝛯1
∑2𝑞

𝓁=1 𝜆𝓁(𝛼(𝑡𝜎 ))
(

℧𝓁𝛹1 + ℧−
𝓁

)]

𝛼(𝑡−𝜎 ), 𝜎 ∈ +,

𝛥𝛽(𝑡𝜎 ) =
[

𝐼𝑞 + 𝛯2
∑2𝑞

𝓁=1 𝜆𝓁(𝛽(𝑡𝜎 ))
(

℧𝓁𝛹2 + ℧−
𝓁

)]

𝛽(𝑡−𝜎 ), 𝜎 ∈ +,

(33)

here 𝛼̇(𝑡) = 𝑑𝛼
𝑑𝑡 , and 𝛽̇(𝑡) = 𝑑𝛽

𝑑𝑡 . It follows from Lemma 2 in [23], that
the system (24) is Mittag-Leffler stabilization. Therefore, the Mittag-
Leffler stabilization criterion of system (24) is expressed into an expo-
nential stabilization of system (33).

Remark 3.8. Compared with the previous studies (see [19–23]), the

following are the key aspects and benefits of this article: (i) More
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Fig. 3. The repressilator model in [12].
information about FGRNs is used in the LMIs approaches used in this
article. (ii) Some effective control gain matrices are designed. (iii)
The saturation nonlinearity are handled by polytopic representation
approaches. This results in less conservative FTMLS criteria.

Remark 3.9. The authors [23] studied an impulsive control strategy
as well as Mittag-Leffler stability for FGRNs utilizing the fractional
Lyapunov technique. Unlike existing works [23], we consider actuator
saturation in the design of the impulsive controller. Based on the estab-
lished LMIs, we provide the relatively least conservative conditions to
ensure the FTMLS of nonlinear dynamic FGRNs.

Remark 3.10. Using impulsive fractional differential inequality and
Lyapunov functions, the author [23] investigated the Mittag-Leffler
stability of FGRNs under impulsive control. These classic approaches
cannot be directly used to examine FTMLS of FGRNs with impul-
sive control and actuator saturation. In this article, we investigate
the FTMLS of the considered model by combining the advantages of
polytopic representation approaches.

4. Numerical examples

In this section, two examples are discussed to illustrate the main
theoretical results proposed in this article. The Example 4.1 is con-
cerned with a synthetic oscillatory network of transcriptional regulators
with three repressor-protein concentrations and their corresponding
mRNA concentrations. Example 4.2 considers a class of fractional-order
genetic regulatory networks system (6) under impulsive control with
actuator saturation.

Example 4.1. We consider a repressilator model [11,22] to verify that
the derived LMI conditions can be used to design the controller for
FGRNs. The repressilator is a cyclic negative-feedback loop consisting
of three repressor genes (𝑙𝑎𝑐𝑙, 𝑡𝑒𝑡𝑅 and 𝑐𝑙) and their promoters. Fig. 3
shows the repressilator, which is divided into three genes. Consider the
following six connected fractional-order differential models of kinetics
systems:

⎧

⎪

⎨

⎪

⎩

C
0𝐷

𝛾
𝑡 𝛼𝑠(𝑡) = 𝜁𝑠𝛼𝑠(𝑡) +

𝜒𝑠
1+𝛽𝐻𝑟 (𝑡−𝜚1(𝑡))

+ 𝜒0,
C
0𝐷

𝛾
𝑡 𝛽𝑠(𝑡) = −𝜙𝑠𝛽𝑠(𝑡) − 𝜔̂𝑠𝛼𝑠(𝑡 − 𝜚2(𝑡)),

𝑠 = 𝑙𝑎𝑐𝑙, 𝑡𝑒𝑡 𝑅, 𝑐𝑙; 𝑟 = 𝑐𝑙, 𝑙𝑎𝑐𝑙, 𝑡𝑒𝑡 𝑅,
(34)

where are the 𝛼𝑠 and 𝛽𝑠 concentrations of the three mRNA and
repressor-protein; 𝜁 > 0 and 𝜙 > 0 represents the mRNA and protein
7

𝑠 𝑠
degradation rates, respectively; 𝜔̂𝑠 represents the 𝑠th translation rate
from mRNA to protein.

The SUM logic proposed in [11], one has

𝜒𝑠
1 + 𝛽𝐻𝑟 (𝑡 − 𝜚1(𝑡))

= −𝜒𝑠
(

1 −
𝛽𝐻𝑟 (𝑡 − 𝜚1(𝑡))

1 + 𝛽𝐻𝑟 (𝑡 − 𝜚1(𝑡))

)

.

It is clear from the FGRNs model (34) that
{

C
0𝐷

𝛾
𝑡 𝛼𝑠(𝑡) = 𝜁𝑠𝛼𝑠(𝑡) +

𝜒𝑠𝛽𝐻𝑟 (𝑡−𝜚1(𝑡))
1+𝛽𝐻𝑟 (𝑡−𝜚1(𝑡))

− 𝜒𝑠 + 𝜒0,
C
0𝐷

𝛾
𝑡 𝛽𝑠(𝑡) = −𝜙𝑠𝛽𝑠(𝑡) − 𝜔̂𝑠𝛼𝑠(𝑡 − 𝜚2(𝑡)).

(35)

The parameters are select as follows 𝛾 = 0.97, 𝜁𝑠 = 2, 𝜒𝑠 = 2.5, 𝜙𝑠 = 1,
𝜔̂𝑠 = 0.9, 𝜒0 = 0, (𝑠 = 1, 2, 3), 𝜚1(𝑡) = 2.3|cos(t)|, 𝜚2(𝑡) = 1.5|sin(t)|, 𝐺1 = 0,
𝐺2 = 0, 𝐺3 = diag(1, 1, 1) and the system matrices can be obtained as
 = diag(0.4780, 0.4780, 0.4780),  = diag(0.4780, 0.4780, 0.4780),  =

diag(0.6432, 0.4046, 0.6432) and  =
⎡

⎢

⎢

⎣

0 0 −0.2375
−0.2375 0 0

0 −0.2375 0

⎤

⎥

⎥

⎦

.

The initial values of concentrations of the mRNAs and proteins of
system (35) are set as 𝜙(0) = [3, 1, 3]𝑇 and 𝜓(0) = [2, 5, 1]𝑇 , respectively.
Fig. 4 give the phase graph for unstable positions of systems (35). Fig. 5
shows the trajectories of the mRNA and protein concentration states
𝛼𝑠(𝑡) and 𝛽𝑠(𝑡) (𝑠 = 1, 2, 3), revealing that the system (35) without control
input is unstable.

Therefore, the controlled system can be obtained as follows:
{

C
0𝐷

𝛾
𝑡 𝛼𝑠(𝑡) = 𝜁𝑠𝛼𝑠(𝑡) +

𝜒𝑠𝛽𝐻𝑟 (𝑡−𝜚1(𝑡))
1+𝛽𝐻𝑟 (𝑡−𝜚1(𝑡))

− 𝜒𝑠 + 𝜒0 + 𝑢𝚤(𝑡),
C
0𝐷

𝛾
𝑡 𝛽𝑠(𝑡) = −𝜙𝑠𝛽𝑠(𝑡) − 𝜔̂𝑠𝛼𝑠(𝑡 − 𝜚2(𝑡)) + 𝑢𝚥(𝑡),

(36)

where the parameters are the same system (35).
We will consider the following two cases:
Case 1. In Theorem 3.1 we choosing parameters 𝜂1 = 2.3, 𝜂2 = 2.1,

𝜂3 = 2.1, 𝜇1 = 3.09, 𝜇2 = 2.89 and 𝜇3 = 2.97 then, by solving the LMIs
Eq. (10)–(13), it is can easy to see that

𝛺1 =
⎡

⎢

⎢

⎣

0.6442 0.0024 −0.0042
0.0024 0.6438 −0.0030
0.0042 −0.0030 0.6439

⎤

⎥

⎥

⎦

,

𝛺2 =
⎡

⎢

⎢

⎣

0.7864 0.003 −0.0005
0.0003 0.7835 −0.0008
−0.0005 −0.0008 0.7839𝑆

⎤

⎥

⎥

⎦

,

and the controller gain matrices are

𝛩1 =
⎡

⎢

⎢

0.7723 2.0506 −2.4760
−2.9134 2.0158 3.0323

⎤

⎥

⎥

,

⎣ 3.3020 −3.5077 0.6362 ⎦
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𝛩

a
𝛿
d
o
r

Fig. 4. Phase portrait of mRNA and protein levels of the FGRNs of repressilator model (35).
Fig. 5. Transient response of the mRNA and protein concentrations of system (36) without controller.
Fig. 6. Transient response of the mRNA and protein concentrations of system (36) with impulsive controller.
Fig. 7. Transient response of the mRNA and protein concentrations of system (36) with impulsive controller (time-varying delay-free case).
s
i

3
L

𝛺

2 =
⎡

⎢

⎢

⎣

3.3492 2.5563 3.9683
0.7406 −0.8804 0.8814
0.2550 −0.0909 −1.0056

⎤

⎥

⎥

⎦

nd the finite-time is about 𝑡 = 3.4 according to the Eq. (13) at 𝜖 = 7.9,
= 3.1. Therefore, the system (36) can achieve FTMLS under the

esigned controller (8). Under impulsive controller (8), the trajectories
f the mRNA and protein concentration states 𝛼𝑠(𝑡), and 𝛽𝑠(𝑡) (𝑠 = 1, 2, 3)
8

espectively are shown in Fig. 6. The time-varying delay-free case, the
ystem (36) under impulsive control cannot be stable, which is shown
n Fig. 7.
Case 2. From Theorem 3.6 we choosing parameters 𝜇̂1 = 3.7, 𝜇̂2 =

.9, 𝜇̂3 = 2.7, 𝜂1 = 4.03, 𝜂2 = 3.35 and 𝜂3 = 3.76 then, by solving the
MIs Eq. (25)–(28), it is can easy to see that

1 =
⎡

⎢

⎢

0.0731 0.3070 −0.1300
0.5238 0.7235 −0.0200

⎤

⎥

⎥

,

⎣ −0.1300 −0.0200 −0.8235 ⎦
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Fig. 8. Transient response of the mRNA and protein concentrations of system (36) with impulsive actuator saturation.
Fig. 9. Transient response of the mRNA and protein concentrations of system (36) with impulsive actuator saturation (time-varying delay-free case).
Fig. 10. Control signals of 𝑢𝚤(𝑡) and 𝑢𝚥 in Eq. (8).
Fig. 11. Control signals of 𝑢𝚤(𝑡) and 𝑢𝚥 in Eq. (20).
𝛺2 =
⎡

⎢

⎢

⎣

0.3576 0.2000 −0.4000
0.2000 0.4276 −0.7000
−0.4000 −0.7000 0.8276

⎤

⎥

⎥

⎦

.

and gain matrices

𝛹1 =
[

−0.9976 2.7709
−0.8379 −0.8043

]

, 𝛹2 =
[

−0.2387 −0.3150
−2.6684 −2.0783

]

,

𝛯1 =
[

−0.1053 0.0705
−0.0046 −0.0007

]

, 𝛯2 =
[

−0.0015 0.1080
−0.0164 −0.0332

]

,

and the finite-time is about 𝑡 = 1.2 according to the Eq. (29) at
𝜖 = 5.9, 𝛿 = 2.5. Therefore, the system (36) can achieve FTMLS
under the designed controller (20). Fig. 8 depicts the impulsive actuator
9

saturation controlled trajectories of 𝛼𝑠(𝑡), 𝛽𝑠(𝑡) (𝑠 = 1, 2, 3), which con-
firmed the feasibility and validity of the established theoretical results.
Figs. 9 and 10 demonstrate the control signals for mRNA and protein
concentrations, respectively. In addition, the time-varying delay-free
case, the system (36) under impulsive control with actuator saturation
cannot be stable, which is shown in Fig. 11. The Matlab simulation
results for this example are shown in Figs. 4–11, and it can be observed
that the proposed impulsive control and actuator saturation perform
very well, confirming that the control system described in this study is
effective for FTMLS of FGRNs. Furthermore, the time-varying delay is
the main source of poor performance, oscillation and unstable of the
system behaviors. For example, when the delay-free case, the system
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Fig. 12. Transient response of the mRNA and protein concentrations of system (6) without controller.
Fig. 13. Transient response of the mRNA and protein concentration of system (6) with impulsive controller (8).
Fig. 14. Transient response of the mRNA and protein concentration of system (6) with impulsive control with actuator saturation (20).
𝐺
a
w
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𝛯
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36) cannot be stable, which is shown in Figs. 6 and 10. The stabilizing
mpact of the time-varying delay in the system (36) is systematically
onsidered.

emark 4.1. It is mentioned that Example 4.1 includes FTMLS per-
ormance of system (36), which means that, the simulation study and
btained FTMLS criterion are more general than others on this subject
see [19–23]). More particularly, the existing works on this issue only
ocused on Mittag-Leffler stability (see [22]) and impulsive control
see [23]) performance, but the FTMLS criterion has been developed
n this article unifies impulsive control and actuator saturation per-
ormances in a single work together with the improved techniques
emma 2.5. Thus, the proposed technique and designed impulsive con-
rol and actuator saturation in this article generalize the other studies
ore effectively, which clearly shows the merits and novel contribution

f this studies. In addition, the corresponding criteria of FTMLS are
erified for the repressilator model by three repressor genes (𝑙𝑎𝑐𝑙,
𝑒𝑡𝑅 and 𝑐𝑙) whose data can be relatively changed as the parameters
ary properly as [11]. Under the different parameters and control gain
atrices, the obtained criteria in this article are really more diversity,
igher flexibility, lower conservatism, and smaller computation than
he ones in [11].

xample 4.2. Consider a class of fractional-order genetic regulatory

etworks system (6) with 𝑠 = 1, 2; 𝑟 = 1, 2; 𝛾 = 0.93,  =
[

3.1 0
]

,

10

0 2.9
 =
[

2.4 0
0 3.5

]

,  =
[

1.7 0
0 2.8

]

,  =
[

0 0
−3.7 0

]

, 𝜚1(𝑡) = 3.13,

𝜚2(𝑡) = 2.05 and ℏ(𝛽) = 𝛽2

1+𝛽2 . From the Assumption (1) with 𝐺1 = 0 and
2 = diag(0.5, 0.5). Now, we controller parameters values selected are
s follows 𝜇̂1 = 0.9, 𝜇̂2 = 1.3, 𝜂1 = 0.9 and 𝜂2 = 0.7. From Theorem 3.6,
e solve Eq. (25)–(28) and the feasible solutions are given by 𝜇̂1 = 3.7,

𝜇̂2 = 3.9, 𝜇̂3 = 2.7, 𝜂1 = 4.03, 𝜂2 = 3.35 and 𝜂3 = 3.76, it is can easy to
ee that

1 =
[

0.0731 0.3070
0.5238 0.7235

]

, 𝛺2 =
[

0.3576 0.2000
0.2000 0.4276

]

nd gain matrices

𝛹1 =
⎡

⎢

⎢

⎣

0.9413 −0.0235 0.0250
−0.0235 0.9613 −0.0386
0.0250 −0.0397 0.8090

⎤

⎥

⎥

⎦

,

𝛹2 =
⎡

⎢

⎢

⎣

−0.1707 0.0002 −0.0066
−0.0003 −0.0080 0.1602
0.1007 −0.0003 −0.2023

⎤

⎥

⎥

⎦

,

1 =
⎡

⎢

⎢

⎣

0.2608 0.0008 −0.2574
−0.0006 −0.2575 0.0004
−0.1606 −0.0880 −0.0040

⎤

⎥

⎥

⎦

,

2 =
⎡

⎢

⎢

⎣

−0.0896 −0.0004 −0.0003
−0.0002 0.0880 0.2603
−0.0375 −0.0397 0.0374

⎤

⎥

⎥

⎦

.
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Thus, the conditions in Theorem 3.6 are satisfied. So, the FGRNs system
(6) are achieve the FTMLS via controller (20). Fig. 12 depicts the
state trajectories of the mRNA and protein concentrations without the
controller. Fig. 13 shows the simulation results for mRNA and protein
concentrations of system (6) with impulsive control. The simulation
results for mRNA and protein concentrations of system (6) with im-
pulsive control and actuator saturation as shown in Fig. 14. The above
simulation results have verified that the designed controller is effective
for FTMLS of FGRNs under impulsive control and actuator saturation.

5. Conclusion

This article has investigated the saturated impulsive control scheme
for the FTMLS problem of FGRNs. This article introduces a new estab-
lished controller which involves saturated impulsive controller scheme
is presented. Based on the fractional Lyapunov direct method, polytopic
representation approach and a novel impulsive differential function in-
equality, LMI criteria are presented to ensure FTMLS of the considered
model via impulsive control with actuator saturation. The concen-
trations of mRNAs and proteins were estimated using an impulsive
control based on available network outputs, ensuring that the error
system was finite-time stable. In order to display the effectiveness of
the theoretical study, a mathematical model of the repressilator was
exploited as a synthetic oscillatory network of transcriptional regulators
in Escherichia coli [11] and their simulation diagrams live up to show
our expectations and validity of the designed state estimator. In the
near future, hybrid impulsive controller as well as other research topics
such as Event-triggered control [34] and sampled-data control [13]
of FGRNs under different communication protocols will be further
investigated based on the methods proposed in this article.
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