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Abstract: A boron-nitrogen (BN)-doped graphene (G) was assessed in this work for approaching the 

drug delivery of hydroxyurea (HU) anticancer. Density functional theory (DFT) calculations were 

performed to optimize the structures and evaluate their related features. The results showed a possibility 

of the formation of four HUG bimolecule models during the optimization calculations. Further analyses 

of the modes indicated the existence of physical interactions between HU and G substances with 

meaningful levels of strength. Additionally, the models were analyzed regarding their molecular orbitals 

features, and the results indicated a possibility of conducting a measurement process to recognize the 

formation of the bimolecule model and its type of relaxation. Based on such obtained molecular orbitals 

features, a protective role of the G surface for the adsorbed HU was observed for preventing it not to 

participate in other interactions/reactions for approaching a targeted drug delivery process. The HUG 

models were observed with the major localization of molecular orbitals at the surface of the G structure. 

Indeed, all four obtained bimolecule models were suitable for forming HUG models by adsorbing the 

HU substance at the G surface with a deterministic role of the BN-doped region for managing the 

involved interactions. As a final remark, the results showed a possibility of employing the G surface for 

approaching the drug delivery platform of HU anticancer. 
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1. Introduction 

Graphene has been found as a wonderful model of nanostructures after the pioneering 

innovation of carbon nanotubes [1-4]. The graphene's honey-comb layer-like architecture made 

it a very suitable surface for adsorbing other substances in atomic and molecular forms [5-8]. 

In this regard, several attempts have been dedicated to learning the details of such interacting 

systems to develop new functions of nanostructures for approaching drug delivery purposes [9-

12]. It is known that the features of nanostructures made them distinguished materials for 

working with high efficiency on small scales [13-16]. Accordingly, several attempts have been 
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made to enhance the nanostructures for specific purposes, especially in biologically related 

systems [17-20]. Compositions of materials and nanostructures are important for showing 

characteristic structural and electronic features [21-24]. In this regard, modifying 

nanostructures could make them more specific for working in the desired functions. They have 

been seen as useful in adsorbents or sensor and biosensor devices [25-28]. A nanostructure 

could be modified by adding some atoms or functional molecular groups [29-32]. In terms of 

atomic modifications, some atoms of the original nanostructure could be replaced by other 

atoms to yield doped atomic models [33-36]. 

In most cases, the new doped nanostructure region could work as an active site of 

interactions to participate directly in interactions or induce neighborhood atoms' tendency to 

participate in interactions [37-40]. Consequently, the atomic doped nanostructure could 

manage the interactions, especially for the modified homoatomic carbon nanostructures, in 

which the atomic dopants create a partial heteroatomic region for the [41-44]. In the current 

research work, two carbon atoms of a model of graphene were doped by one boron and one 

nitrogen atom to bring BN-doped graphene (G of Figure 1). It should be mentioned that the 

BN-doped region's existence could increase the graphene surface's ionic state for better 

participation in interactions [45-48]. Accordingly, the surface was provided for adsorbing the 

hydroxyurea (HU) anticancer for approaching the initial steps of drug delivery platforms by 

introducing a representative adsorbent for the carrier role by forming HUG complexes.  

The field of developing anticancer agents is very important because of cancer's serious 

negative impacts on patients' health quality [49-52]. Besides the existence of varieties of 

anticancer agents, low efficiencies and high adverse effects are the main restricting factors for 

approaching a successful medication [53-56]. Accordingly, several efforts have been made to 

enhance the efficiency of anticancer up to now [57-60]. However, further investigations are 

still required on the topics of anticancer developments and dealing with cancer-related issues 

[61-64]. Indeed, due to the appearance of new diseases or the resistance to conventional 

treatments, exploring new medical treatment protocols is essential for caring for the human 

health system [65-68]. For many years, hydroxyurea (HU) has been used to treat chronic 

myelogenous leukemia and head and neck cancers [69-72]. HU is an antimetabolite with the 

major role of inhibiting cancer cell growth in the body [73-76]. Besides the benefits of 

medications by HU, rising adverse effects for the patinas limit the applicability of this 

anticancer for the regular treatment of cancer [77-80]. Therefore, an enhancement of HU is 

needed to approach a better level of medication for cancer patinas. To this aim, representative 

BN-doped graphene (G) was assessed in this work for the drug delivery of HU through 

formations of HUG complexes (Figure 1). Quantum chemical calculations were performed to 

obtain the optimized structures and their features regarding the benefits of employing 

computational tools for exploring complicated systems [81-84]. All obtained results were 

summarized in Tables 1 and 2 and Figures 1-3 to discuss this work's goal.  

2. Materials and Methods 

The models of this work were single molecules of HU and G and their HUG complexes 

in four relaxation configurations; HUG1, HUG2, HUG3, and HUG4 (Figure 1). The single 

models, including HU and G, were optimized first, and their combinations were re-optimized 

next to obtain interacting bimolecular of HUG complexes. For obtaining the biomolecules, all 

possible configurations of HU towards the G surface were examined, in which four HUG 

structures were finally converged by optimization calculations. The B3LYP-D3/6-31G* level 

https://doi.org/10.33263/BRIAC135.485
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC135.485  

 https://biointerfaceresearch.com/ 3 of 12 

 

of density functional theory (DFT) was employed to perform calculations using the Gaussian 

program [85]. The models were stabilized, and their features, including relaxed geometries, 

interactions, and descriptors, were evaluated in terms of visual and numeric descriptions. The 

relaxed geometries and involving interactions are exhibited in Figure 1. Distribution patterns 

of the highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) 

were exhibited in Figure 2. Diagrams of the density of states (DOS) are illustrated in Figure 3. 

Additionally, the obtained results of the quantum theory of atoms in molecules (QTAIM) and 

interactions details were summarized in Table 1, and other molecular orbital-based energy 

descriptors were summarized in Table 2. As a consequence, the required results of this work 

were prepared to assess the benefits of employing BN-doped graphene (G) for the drug delivery 

of hydroxyurea (HU) anticancer by formations of biomolecules of HUG complexes.  
 

   

 

 

  

 
 

Figure 1. Optimized structures of single and bimolecule models. 

 
Table 1. QTAIM and interactions features of HUG models.* 

HUG Model Interaction Distance Å ρ au ∇2ρ au H au ADS kcal/mol 

HUG1 

 

O1…N 

H2…C 

3.084 

2.489 

0.0969 

0.0103 

0.0305 

0.0369 

-0.0569 

-0.0153 

-34.316 

 

HUG2 

 

O1…N 

H3…C 

3.191 

2.435 

0.0874 

0.0113 

0.0267 

0.0416 

-0.0501 

-0.0174 

-30.534 

 

HUG3 

 
 

 

O1…C 

N1…C 
N2…B 

H4…C 

3.294 

3.247 
2.917 

2.383 

0.0533 

0.0803 
0.0129 

0.0127 

0.0203 

0.0233 
0.0324 

0.0414 

-0.0852 

-0.0629 
-0.0489 

-0.0124 

-56.066 

 
 

 

HUG4 

 

 

N1…N 

N2…C 

H4…C 

3.157 

3.281 

2.289 

0.0881 

0.0739 

0.0154 

0.0293 

0.0215 

0.0465 

-0.0811 

-0.0629 

-0.0957 

-52.919 

 

 
*The models are shown in Figure 1. The features of ρ, ∇2ρ, H, and ADS are bonding total electron density, bonding  

Laplacian of electron density, bonding energy density, and molecular adsorption energy. 
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3. Results and Discussion 

The major goal of this work was to assess representative BN-doped graphene (G) for 

the drug delivery of hydroxyurea (HU) anticancer. To this aim, DET calculations were 

performed to optimize the geometries of the single HU and G models for preparing them to 

participate in HUG bimolecule complex formations. The optimization calculations yielded the 

minimaxed energy structures in both single and bimolecule states, as shown in Figure 1. Four 

models of complexes, including HUG1, HUG2, HUG3, and HUG4 were obtained by 

examining the possibilities of interactions between HU and G. Accordingly, the details of their 

interactions were analyzed using the QTAIM features [86]. As described in Table 1 for the 

exhibited interactions of Figure 1, the bonds of models were analyzed to show their features. 

Two interactions were involved in the formation of each of HUG1 and HUG2, four were 

involved in the formation of HUG3, and three were involved in the formation of HUG4. By 

examining the obtained results, HUG3 was placed at the highest level of interaction strengths 

among the four bimolecule models. Details of QTAIM features indicated what happened inside 

the molecular systems by showing the features of each bonding between the atoms of two 

molecules. Examining other results indicated the next levels of strengths for HUG3 > HUG1 > 

HUG2. The obtained values of molecular adsorption energy (ADS) indicated the orders of 

strengths of adsorptions or interactions between two molecules of HU and G. It could be 

mentioned here that formations of HUG bimolecule models were achievable, and details of 

interactions indicated the existence of physical adsorption for the models. Referring to the 

major goal of this work, HUG complexes could be obtained through the formation of physically 

interacting systems, and their stabilities were strong enough to propose the employed G 

structure as a possible carrier of HU. The BN-doped region's role was indeed in managing the 

occurrence of interactions, in which the HU substance was relaxed around the BN-doped region 

of the G surface. All four HUG bimolecular models were attached to each other with non-

covalent physical interactions with reasonable strengths of interactions to yield strong, complex 

formations. Such physically interacting complexes are useful for conducting reversible 

adsorptions, in which the adsorbed substance could be able to be released by supplying the 

required energy of breaking involved interactions. Comparing the current results with other 

parallel works [87, 88] could show the benefits of employing HUG models for the drug delivery 

purposes of HU anticancer in a reversible but strong mode of interactions. 
 

Table 2. Molecular orbitals energy features for single and bimolecule models.* 

Model EH EL EG CH CP EI 
HU -6.964 0.962 7.925 3.963 -3.001 1.136 

G -4.853 -2.139 2.714 1.357 -3.496 4.503 

HUG1 -4.763 -2.011 2.752 1.376 -3.387 4.168 

HUG2 -4.761 -2.006 2.755 1.378 -3.384 4.155 

HUG3 -4.804 -2.156 2.647 1.324 -3.481 4.574 

HUG4 -4.974 -2.295 2.679 1.339 -3.635 4.931 
*The models are shown in Figure 1. EH, EL, EG, CH, CP, and EI are all in eV as energy of HOMO, enery of 

LUMO, energy gap, chemical hardness, chemica potential, and electrophilicity index.  

 

For determining the electronic features of investigated models, molecular orbitals 

energy features were evaluated for single and bimolecule states of the models (Table 2). 

HOMO implies the highest occupied molecular orbital, and LUMO implies the lowest 

unoccupied molecular orbital, in which their energies dominate, defining several other 

electronic features as could be seen by the obtained results, the values of EH and EL, implying 
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that the energy levels of HOMO and LUMO, were changed from the single to bimolecule 

states.  

 

ENERGY 

GAP 

(eV) 

→ 
7.925 

 

 

 
 

 

 
 

→ 
2.714 

 

 

 

 

 
 

→ 
2.752 

 

 

 

 

→ 
2.755 

 

 

 

 

→ 
2.647 

 

 

 

 

→ 
2.679 

 

 

 
Figure 2. Distribution patterns of HOMO-LUMO for the optimized structures of single and bimolecule 

models. The energy gap means the energy difference between HOMO and LUMO levels. 

 

Additionally, those features of biomolecules were also seen to be different among the 

four models of HUG1, HUG2, HUG3, and HUG4. These achievements are very important 

regarding the role of such energy differences in managing a diagnosis system, as could be seen 

by the values of EG as the energy gap between HOMO and LUMO levels, the models 

detectable upon measuring such EG features. The single HU and the single G were in different 

HOMO, LUMO, and EG levels, compared with the bimolecule state models. As a consequence, 

formations of HUG complexes could be detectable in accordance with such molecular orbitals 
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energy features. Additionally, different levels of HOMO and LUMO for the models of a single 

state could make it possible to occur an interaction between them. Next, the models were found 

with significant changes in such states. 

The obtained values of EG were 7.925 eV and 2.714 eV for the single HU and G 

models, in which they were changed into 2.752 eV, 2.755 eV, 2.647 eV, and 2.679 eV, in each 

of HUG1, HUG2, HUG3, and HUG4 bimolecule models. Interestingly, an order of HUG3 < 

HUG4 < HUG1 < HUG2 was found for the EG values of biomolecules in a reversed direction 

of the obtained values of ADS. In this regard, a model with a higher level of adsorption strength 

could show a closer distance between HOMO and LUMO levels. Further analyses of the related 

features to the energy of the molecular orbitals were based on chemical hardness (CH), 

chemical potential (CP), and electrophilicity index (EI), in which they all showed variations of 

electronic features for the investigated bimolecules. Indeed, these electronic-based features are 

very important for specifying a function to the models for working in the desired route. For 

visualizing localizations of HOMO and LUMO levels, distribution patterns for the optimized 

single and bimolecule were exhibited in Figure 2.  

  

  

  
Figure 3. DOS diagrams for the optimized structures of single and bimolecule models. Green, red, and blue 

colors show occupied orbitals, unoccupied orbitals, and DOS diagrams. 
 

For showing variations of molecular orbitals before and after each of the HOMO and 

LUMO levels, the illustrated diagrams of DOS (Figure 3) could help to see such variations 

among the models. Indeed, the diagrams could show the route of measurement of electronic 

molecular orbitals variations for approaching a diagnosis level of employing the G surfaces 
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towards the HU substance. From single state to bimolecule state, distribution of both HOMO 

and LUMO levels were concentrated on the G substance of HUG bimolecule models making 

the adsorbed HU substance free of any molecular orbitals localizations. This achievement could 

refer to a dominant role of the G surface for the successful adsorption of HU substance to create 

HUG bimolecules. Next, the G adsorbent could protect the adsorbed HU not to participate in 

further reactions or interactions unless the equivalent desorption energy is provided. This is 

important for conducting a targeted drug delivery platform for carrying the drug to the specific 

target. In this regard, the results indicated that the adsorption process of HU substance at the G 

surface could be achievable with the possibility of measuring variations of molecular orbitals 

features to approach a diagnosis point. As a consequence, the obtained results almost affirmed 

the initial hypothesis of this work for assessing the G surface for the drug delivery of HU 

anticancer. 

4. Conclusions 

This work could be summarized in accordance with its major goal to assess a BN-doped 

graphene (G) model for the drug delivery of hydroxyurea (HU) anticancer. The results 

indicated a meaningful formation of HUG biomolecules through the occurred interactions of 

HU and G substances. The BN-doped region of the surface helped to manage the interaction 

processes. Details of interactions showed a reasonable physical strength of HUG formation for 

keeping the HU substance at the G surface. Additionally, details of QTAIM analyses indicated 

the existence of physical interactions for forming HUG complexes. Four bimolecule models, 

including HUG1, HUG2, HUG3, and HUG4, were found based on the relaxation of HU 

towards the G surface, in which their strength and electronic features were different. Moreover, 

the results of molecular orbitals energy indicated the possibility of approaching a diagnosis 

system for affirming the adsorption of HU at the G surface besides detecting the relaxed 

configuration. A protective role of G for preventing the adsorbed HU substance not to 

interact/reacting with other substances was also observed regarding the importance of 

conducting targeted drug delivery processes. Consequently, this work's results showed the 

possibility of employing the investigated G model for conducting the drug delivery platform 

of HU anticancer. 
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