

Article



# A Sustainable Production Scheduling with Backorders under Different Forms of Rework Process and Green Investment

R. Udayakumar <sup>1</sup>, S. Priyan <sup>2</sup>, Mandeep Mittal <sup>3</sup>, Anuwat Jirawattanapanit <sup>4</sup>, Grienggrai Rajchakit <sup>5</sup> and Pramet Kaewmesri <sup>6,\*</sup>

- <sup>1</sup> Department of Mathematics, Dr. N.G.P Institute of Technology, Coimbatore 641048, Tamil Nadu, India
- <sup>2</sup> Department of IT & Engineering, Faculty of Mathematics, Amity University Tashkent, Tashkent 100028, Uzbekistan
- <sup>3</sup> Department of Mathematics, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201313, Uttar Pradesh, India
- <sup>4</sup> Department of Mathematics, Faculty of Science, Phuket Rajabhat University (PKRU), Phuket 83000, Thailand
- <sup>5</sup> Department of Mathematics, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand
- <sup>6</sup> Geo-Informatics and Space Technology Development Agency (GISTDA), Bangkok 10210, Thailand
- \* Correspondence: pramet.kae@gistda.or.th

Abstract: Rework is currently a necessity for businesses and commercial organizations across the world. It is only beneficial in tackling climate change if the process emits less greenhouse gases than would otherwise be emitted. This study designs an optimal production scheduling model to reduce both carbon emissions during the processes of production, transport and storage, and setup cost by leveraging on green technology efforts in an imperfect production process where a fraction of items is erroneous so that the firm may run out of inventory. The producer implements a rework strategy to rectify the flawed products, and a flexible rework rate is offered since the rework might be executed on various schemes. The flexible rework allows the producer to choose therework rate, which can differ from the production rate, as well as the rework process itself, which can be asynchronous or synchronous. The two forms of green investments: quadratic and exponential are considered in the study. The main point of the study is to derive a solution procedure of the various problem settings associated with the rework rate, rework process and green investment. The findings suggest that developing the optimal production schedule (lot-sizes, backorders, setup cost and green investment amount) can lower the manufacturing sector's excessive ecological carbon emissions. The findings also support the idea that making green investments is the most cost-effective way to cut carbon emissions and setup cost simultaneously.

Keywords: carbon emissions (CO2); green investment; imperfect production; rework process

# 1. Introduction

The Economic Production Quantity (EPQ) inventory techniqueis one of the most vital approaches in the manufacturing system for managing production since it notifies the producer when to halt production and use the products in inventory to meet consumer demand. The EPQ is based on the assumption that the company will create its own quantity or that the components will be delivered to the company as they are built, allowing orders to be available or received incrementally while the products are being produced. A shortage occurs when demand for a product or service exceeds available supply. This is a transitory state since the item will be restocked, and the market will return to balance. Unfortunately, no factory's production is perfect. Product faults abound in the manufacturing industry. They are available in a range of shapes and sizes. Moreover, they are an issue that might have a significant influence on their bottom line as an importer. As a result, we expect to diminish the amount of faulty goods by modifying them.

**Citation:** Udayakumar, R.; Priyan, S.; Mittal, M.; Jirawattanapanit, A.; Rajchakit, G.; Kaewmesri, P. A Sustainable Production Scheduling with Backorders under Different forms of Rework Process and Green Investment. *Sustainability* **2022**, *14*, 16999.

https://doi.org/10.3390/su142416999

Academic Editor: Mosè Gallo

Received: 16 October 2022 Accepted: 9 December 2022 Published: 19 December 2022

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



**Copyright:** © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Product rework plays a critical role in the execution of the retail inventory system. It is a word that refers to the processes needed to alter or repair items in order to satisfy a firm's inventory needs.Rework of a product may be necessary by businesses to address real or perceived quality concerns through adjustments or repairs to a product. For instance, an imported product may have entered the country and included mold that has to be cleaned. There could have been a production error in other cases.Examples of product errors include sewing alterations or corrections, refinishing footwear to meet a brand's color and finish designs, and replacement of poor-quality hardware or incorrect components on a shipment of finished goods. Therefore, product rework may be a crucial function to use to succeed in our supply chain execution tactic as we fulfill demands for inventory availability, regardless of whether a firm is an importer or an exporter of items.

Costs are another inevitable aspect of the inventory system. The long-term goal of cost reduction is to reduce costs without compromising the quality of the product. It is a technique to make a company's operations more effective. Every organization benefits from a small upfront investment to reduce setup and problematic production costs. Due to a significant opening expenditure used to support upgraded machinery and other measures to improve the system, each individual setup cost is decreased and the quantity of defective items is reduced.

The third stream of the literature related to our model is carbon emissions (CO<sub>2</sub>). The literature in this stream is vast. The main cause of global warming today is the greenhouse gas impact, which is brought on by growing pollution levels. About 1/5th of greenhouse gas CO<sub>2</sub> comes from manufacturing, food processing, mining, and building. Numerous activities result in direct CO<sub>2</sub>, such as the on-site burning of fossil fuels for heat and electricity, the use of fossil fuels for purposes other than energy, and chemical processes involved in the production of iron, steel, and cement. Industry emits indirect CO<sub>2</sub> as a result of the centrally generated power it uses. The industrial sector accounts for around onequarter of overall power sales. The burning of fossil fuels generates energy and heat, and transportation is the largest source of  $CO_2$  in the atmosphere (Source: Annual Energy Outlook 2021). Figure 1 depicts this. The industrial segment may reduce greenhouse gas CO<sub>2</sub> in a number of methods, including energy efficiency, fuel shifting, combined heat and power, renewable energy, green investment, carbon tax, more efficient raw material utilization, and recycling. Green investments are business ventures that concentrate on areas of environmental protection, such as strategies for reducing pollution. Many industrial operations do not have a low-CO<sub>2</sub> alternative, necessitating long-term CO<sub>2</sub> capture and storage to minimize CO<sub>2</sub>. Green technology, when applied correctly, has the potential to have a moral influence in terms of CO2 reduction.

Resource conservation and efficiency are ensured through sustainable industrialdevelopment. Producers must analyze how raw materials are mined, components are made, products are created, and return markets are structured in order to optimize the supply chain and increase resource productivity. Think about innovative business models that would give us more control over every aspect of our operations to ensure that we are practicing environmental safety. The reduced ecological effect through pollution avoidance is one of the most crucial elements of sustainability. Waste produces pollution, which can be avoided, repurposed, or decreased to provide environmental protection. There areseveral financial advantages to sustainable industrial growth. The sector itself promotes the employment and revenue opportunities connected to lessening ecological impacts. Additionally, sustainable industrial growth may help firms cut operational expenses. Processes that are efficient and sustainable require less energy, water, and materials, which may save a lot of money. The reduced ecological impact is possibly the most evident benefit of sustainable industrialization. Many industrial firms are moving toward ecologically friendly development in order to conserve their ethical agreement to guarantee a safer and cleaner ecosystem. Sustainable industrial development aims to reduce greenhouse gas CO<sub>2</sub> while conserving natural resources.

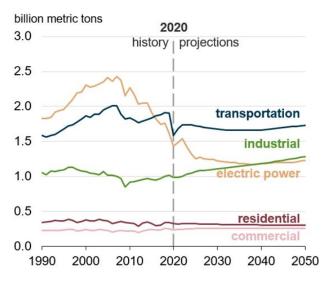



Figure 1. Sector global greenhouse gas CO<sub>2</sub>.

## 1.1. Literature Review

Rosenblatt and Lee [1] invented an EPQ model for a flawed production procedure with a constant, linear, exponential, or multistate defective rate. Later, a number of scholars extended Rosenblatt and Lee's [1] work with avariety of hypotheses (see [2–9]), and all of these models utilize a method for removing damaged products once they are detected. Rather than being discarded, broken products are recovered and used as raw materials in everyday production. In view of this, Liu and Yang's [10] EPQ model argues that a flawed manufacturing system can create damaged items that are both reworkable and non-reworkable. Hayek and Salameh [11] estimated the manufacturing lot-size when shortages are granted, and the portion of spoiled goods is a random variable.

Liao et al. [12,13] evaluated the EPQ and optimal preemptive upkeep schedule for inadequate production activity including the rework of damaged goods. Krishnamurthy et al. [14] extended an EPQ model withaproblematic manufacturing structure to include frequent manufacturing rework and sales returns. After production, defective items are detected and reworked. If manufacturing demands are unique, production planning may be a challenge. In the case of defective production, for example, requirements may vary with the amount of stock; this issue is examined and appraised in [15]. Repairingdamaged items may be conducted in two ways: after-producing rework and during-producing rework. Rework of items and manufacturingare considered synchronous operations, but the rework of faulty goods after production is considered asynchronous. Nihar et al. [16] implied the requirement of taking the synchronous and asynchronous decision-making activities of diverse inventory systems. They studied how the various synchronous and asynchronous functions affect the system's actions. Al-Salamah [17] formed an EPQ inventory model with synchronous and asynchronous variable rework rates to account for an imperfect manufacturing process. He offered two configurations for the rework process. Imperfect components may only be modified utilizing the asynchronous rework option after the entire lot has been formed.Instead, with synchronous rework, damaged items may be repaired as soon as they are made.

Coates et al. [18] derived a method for lowering the cost of product setup in industries. Sarkar and Moon [19] created a quality improvement model with a variable setup cost and backorder rate using the concept of Porteus [20]. Lung Hou [21] established an EPQ model that included capital expenditure which is a function of setup cost and process quality. For the EPQ model with flaws, Freimer et al. [22] calculated the worth of setup cost reduction optimization. To decrease the setup in production systems with work-inprocess inventories, Nye et al. [23] adopted an optimum investment. Sarkar et al. [24] designed a setup cost reduction inventory model with quality upgrading. Then, Tiwari et al. [25] studied an integrated multi-echelon inventory system whose coordination is hampered by quality concerns and human error. By conductingan early investment in the vendor's manufacturing amenities, the buyer is prepared to minimize the vendor's setup costs.

Different sustainable strategies to reduce CO2 have been established by the carbon regulating bodies in many industrialized nations. The main sustainable approaches are limited CO<sub>2</sub>, carbon taxation, carbon cap and trade, and Green Lean Six Sigma (GLSS) which are often adopted by governments and private industries. In this connection, Bouchery et al. [26] explored traditional inventory procedures while analyzing the approach ofsustainability. They highlighted how CO<sub>2</sub> was slashed to a single goal function in terms of sustainable growth. Benjaafar et al. [27] created a model based on the cost function and CO<sub>2</sub> footprint by connecting CO<sub>2</sub> quantities to a variety of decision criteria. They were able to broaden their stance on CO<sub>2</sub> cut by making small operational changes, such as investing in green technologies. Toptal et al. [28] explored a joint inventory strategy with three unique CO<sub>2</sub> investment policies. Dye and Yang [29] investigated a trade-creditinventory system that included issues ondemand sustainability depending on credit terms. They discussed how credit duration and environmental restrictions influence the inventory model in the context of a CO<sub>2</sub> levy and cap system, with default risk rates. Qin et al. [30] developed a trade-credit inventory model for a CO<sub>2</sub> tax, a CO<sub>2</sub> cap, and a demandbased trade strategy under credit-period demand. Then, Datta [31] analyzed the effect of green investment to reduce CO<sub>2</sub> in an EPQ model. Following that, Huang et al. [32] derived a supply chain system that considered logistics, green investment, and various CO<sub>2</sub> norms. Mishra et al. [33] developed a long-term production-inventory model to reduce CO<sub>2</sub> when resources are scarce. Hasanet al. [34] figured out how to maximize inventory levels and technical investment withdifferent CO<sub>2</sub> strategies. We notice that the aforesaid papers considered the first three sustainable approaches. Despite rising curiosity about GLSS, only a small amount of research has been conducted on its use, and there has been no research conducted on the obstacles that prevent GLSS from being employed. The reduction in GLSS implementation hurdles in the industrial sector was examined by Kaswan et al. [35] based on their interaction with one another. Then, Kaswanet al. [36] proposed a GLSS implementation framework for enhanced organizational performance. The selection of the GLSS project for the industrial sector in the dynamic decision-making ecosystem is the focus of the study. Rathi et al. [37] also recently created a systematic GLSS framework for increasing operational effectivenesstogether with social and environmental sustainability. The framework, which covers the systematic application of numerous Green paradigm, Lean, and Six Sigma techniques from the identification and evaluation of the problem to the maintenance of the realized measures, was created with perceptions learned from the literature and industrial people. Mohan et al. [38] offered an analysis of GLSS research focused on a systematic literature study and expedited the organization's readiness to apply sustainable GLSS practice via deep knowledge of realization.

#### 1.2. Research Gaps and Contributions

The majority of studies in the collection of imperfect production were designed with reworks, repairs, etc. Although synchronous and asynchronous rework processes were studied by a few scholars, sustainable EPQ CO<sub>2</sub> tax and cap models of optimizing setup cost and CO<sub>2</sub> simultaneously under bothaforementioned rework processes are notaccessible. We enhance Al Salamah's [17] approach in order to reduce setup costs and control CO<sub>2</sub> since the presence of CO<sub>2</sub> and cost reductions in setup make the model more realistic. The overview of the literature is given in Table 1. In comparison to earlier studies, our study made the following contributions: This research takes into account a flawed production system with two rework processes. Previously published studies avoided the availability of green technologies to manage CO<sub>2</sub> and setup costs at the same time. According to Porteus [20], a logarithmic expression may be utilized to lessen the setup cost,

and two distinct types of CO<sub>2</sub> reduction functions for green technology are being investigated to reduce CO<sub>2</sub>.

Table 1. Literature overview.

| Author(s)                 | Rework       | Synchronous and<br>Asynchronous | Setup Cost<br>Reduction | Backorders   | CO <sub>2</sub> | Green<br>Investment |
|---------------------------|--------------|---------------------------------|-------------------------|--------------|-----------------|---------------------|
| Hsu et al. [4]            |              |                                 |                         | 1            |                 |                     |
| Taleizadeh et al. [5]     | 1            |                                 |                         | $\checkmark$ |                 |                     |
| Hsu et al. [6]            |              |                                 |                         | 1            |                 |                     |
| Ganesan et al. [7]        |              |                                 |                         |              |                 |                     |
| Sujit et al. [8]          | $\checkmark$ |                                 |                         | $\checkmark$ |                 |                     |
| Liu et al. [10]           | ✓            |                                 |                         | 1            |                 |                     |
| Hayek et al. [11]         | 1            |                                 |                         |              |                 |                     |
| Liao et al. [12]          | $\checkmark$ |                                 |                         |              |                 |                     |
| Liao et al. [13]          | 1            |                                 |                         |              |                 |                     |
| Krishnamurthy et al. [14] | ✓            |                                 |                         | ✓            |                 |                     |
| Shah et al. [15]          | 1            |                                 |                         |              |                 |                     |
| Nihar et al. [16]         | 1            | 1                               |                         |              |                 |                     |
| Al-Salamah [17]           | 1            | 1                               |                         | $\checkmark$ |                 |                     |
| Sarkar et al. [19]        |              |                                 | 1                       |              |                 |                     |
| Ouyang et al. [39]        |              |                                 | 1                       |              |                 |                     |
| Hou et al. [21]           | 1            |                                 | 1                       |              |                 |                     |
| Freimer et al. [22]       |              |                                 | 1                       |              |                 |                     |
| Nye et al. [23]           |              |                                 | 1                       |              |                 |                     |
| Tiwari et al. [25]        |              |                                 | ✓                       |              |                 |                     |
| Bouchery et al. [26]      |              |                                 |                         |              | 1               |                     |
| Benjaafar et al. [27]     |              |                                 |                         |              | 1               |                     |
| Toptal et al. [28]        |              |                                 |                         |              | ✓               | ✓                   |
| Dye et al. [29]           |              |                                 |                         |              | 1               |                     |
| Qin et al. [30]           |              |                                 |                         |              | ✓               |                     |
| Datta [31]                |              |                                 |                         |              | ✓               |                     |
| Huang et al. [32]         |              |                                 |                         |              | 1               | 1                   |
| Mishra et al. [33]        |              |                                 |                         |              | 1               | <b>√</b>            |
| Kaswan et al. [36]        |              |                                 |                         |              | ✓               | ✓                   |
| This paper                | 1            | 1                               | ✓                       | ✓            | 1               | ✓                   |

## 1.3. Research Methodology

The models in this study are based on mathematically oriented inventory theory, and the methodology used is the quantitative method, which is based on the principles of operations research and management science. The schematic diagram of the methodology is shown in Figure 2. In this study, we develop mathematical models and use differential calculus optimization techniques to find the optimal solutions for the models. The methodology followed in this research to find the optimal production scheduling (lot-sizes, backorders, setup cost and green investment amount) islisted below:

- Description of the problem
- Mathematical model formulation
- Solution procedure
- Numerical Analysis

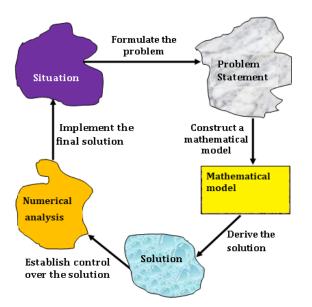



Figure 2. Schematic diagram of the research methodology.

The rest of the study is designed in the same way: Section 2 shows the research's required notations and assumptions. Sections 3 and 4 formulate the mathematical models along with solution techniques. The sensitivity and numerical analysis are discussed in Section 5. Section 6 concludes the paper.

#### 2. Descriptions of Problem

A producer creates inventory items in a flawed production system in order to supply customer-ordered quantities. A 100% inspection is performed to classify the problematic parts, which are stored apart from faultless ones and remodeled separately. The rework rate is variable and different from the manufacturing rate, and the rework activity can be synchronous or asynchronous. We examine CO<sub>2</sub> and extreme setup costs as a result of the system's many industrial processes. The company intends to shift toward a greener production system by investing in modern technology, energy-efficient equipment, setup costs, non-traditional energy, and other elements. The amount of money that may be invested appears to be limited. The producer's budget for the green technology renovation venture is denoted by this ceiling. With the producer's approval, the back-ordering of shortage items is also feasible. The mathematical models were developed using the following assumptions and notations.

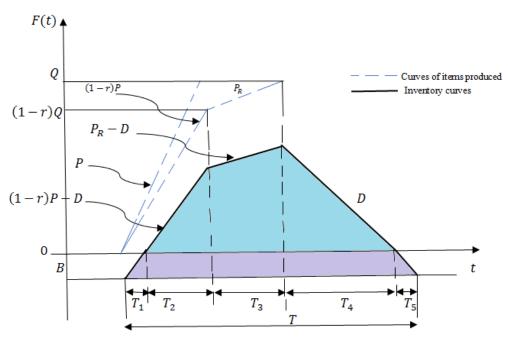
#### Assumptions

- Consumer requirement(demand) and production rate are constant.
- CO<sub>2</sub> are generated from the process of production, transportation, and storage.
- There are two primary forms that green technology might reduce CO2:
- (i)  $R_1(G) = \alpha G \beta G^2$ , where  $\alpha$  stands for the offsetting CO<sub>2</sub> reduction factor and  $\beta$  for the CO<sub>2</sub> reduction efficiency factor (Huang et al. [32]).
- (ii)  $R_2(G) = \xi(1 e^{-mG}) \Longrightarrow G = -\left(\frac{1}{m}\right) \left[ \ln\left(1 \frac{F}{\xi}\right) \right]$  where *m* stands for the effectiveness of greener technology in decreasing CO<sub>2</sub>,  $\xi$  is a proportion of CO<sub>2</sub> after investment in green technology, and *F* is a fraction of average CO<sub>2</sub> reduction (Mishra et al. [33]).
- The relationship between setup cost reduction and capital investment may be defined using the logarithmic investment cost function. Therefore, *S* and the capital expenditure for *S* reduction ( $\Pi$ ) may be recorded as  $\Pi(S) = Mln\left(\frac{S_0}{S}\right)$  for  $0 < S \leq S_0$  where  $M = 1/\delta, \delta$  is the fractional cut in *S*\dollar rise in  $\Pi(S)$ .

#### 3. Production Scheduling with Asynchronous Rework

Due to the accumulation and rework of defective items occurring only after the manufacturing lot is ended, the production and rework processes are not synchronized. Due to the adaptability of rework and the potential for manufacturer-dependent variations, there are two options to take into account. The inventory curvature will have a positive slope if perfect inventory accumulates during  $T_2$  as a result of  $P_R$  being larger than D. However, if  $P_R$  is less than D, the inventory of the perfect items constantly drops over  $T_2$ , resulting in a negative slope on the inventory curve for the perfect goods. In the next subsections, we examine each circumstance separately and compute the optimal Q, S, B, and G for each type of green investment.

#### 3.1. The $P_R$ Is Higher Than $D(P_R > D)$

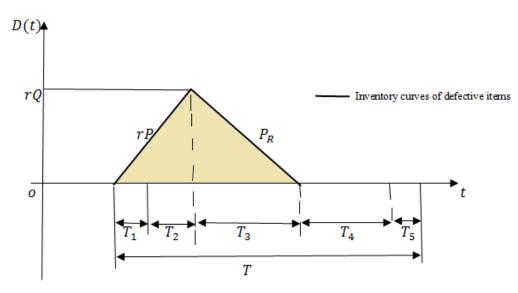

The following can be calculated from Figure 3, which depicts the inventory curve of perfect items in a cycle with backorders.

The curve of back-order is  $B_1(t) = [(1-r)P - D]t$  with the initial conditions  $B_1(0) = 0$  and  $B_1(T_1) = B$  during  $T_1$ . Hence,  $B_1(T_1) = [(1-r)P - D]T_1$  implies  $T_1 = \frac{B}{(1-r)P-D}$ . The total backorder quantities during  $T_1$  is provided by  $\int_0^{T_1} B_1(t)dt = \frac{B^2}{2[(1-r)P-D]}$ .

During the production period  $T_1 + T_2$ , the Q units of products produced. That is,  $(T_1 + T_2)P = Q$ . Then  $T_2 = \frac{Q}{p} - T_1 = \frac{Q}{p} - \frac{B}{(1-r)P-D}$ .

The inventory curve is  $F_1(t) = B_1(t)$  during  $T_2$ . Then the total amount of inventory during  $T_2$  is condcuted by  $\int_0^{T_2} F_1(t) dt = \frac{1}{2} \left( (1-r)P - D \right) \left( \frac{Q}{P} - \frac{B}{(1-r)P - D} \right)^2 = \Pi_0(Q, B).$ 

The period  $T_3$  is the time of rework rQ items, and  $T_3 = \frac{rQ}{P_R}$  since the rework rate is  $P_R$ . For the period  $T_3$ , the inventory curve is  $F_2(t) = (P_R - D)t + ((1 - r)P - D)T_2$ with the initial condition  $f_2(0) = f_1(T_2) = ((1 - r)P - D)T_2$ . Then the total inventory during  $T_3$  is  $\int_0^{T_3} F_2(t)dt = \frac{1}{2}(P_R - D)\left(\frac{rQ}{P_R}\right)^2 + ((1 - r)P - D)\left(\frac{Q}{P} - \frac{B}{(1 - r)P - D}\right)\left(\frac{rQ}{P_R}\right)$ .




**Figure 3.** Inventory curves of perfect items when  $P_R > D$  (asynchronous rework). Bule represents available stock, and purple represents out of stock.

The inventory curve is  $F_3(t) = Dt$  with the end value  $F_3(T_4) = F_2(T_3) = (P_R - D)T_3 + ((1-r)P - D)T_2$  during  $T_4$ . The  $T_4$  can be derived as  $T_4 = \frac{(P_R - D)T_3 + ((1-r)P - D)T_2}{D} = \frac{Q}{D} - \frac{B}{D} - \frac{Q}{P} - \frac{rQ}{P_R}$  from the terminal value.

The total inventory during  $T_4$  is  $\int_0^{T_4} F_3(t) dt = \frac{1}{2} D \left( \frac{Q}{D} - \frac{B}{D} - \frac{Q}{P} - \frac{rQ}{P_R} \right)^2$ . The function of backorder quantities is  $B_2(t) = Dt$  with terminal value is  $B_2(T_5) = B$  during  $T_5 = \frac{B}{D}$ . Hence, during  $T_5$ , the total backorder is  $\int_0^{T_5} B_2(t) dt = \frac{1}{2} \frac{B^2}{D}$ .

Next, we evaluate the inventory, which is depicted in Figure 4 as a curve of flawed items with asynchronous rework. The following can be deduced from Figure 4.



**Figure 4.** Inventory curves of the flawed items when  $P_R > D$  (asynchronous rework).

During the period  $T_1 + T_2$ , the inventory curve of flawed items is  $D_1(t) = rPt$  with the terminal value  $D_1(T_1 + T_2) = rP(T_1 + T_2) = rQ$ . Since  $T_1 + T_2 = \frac{Q}{P}$ , the total inventory of the flawed products during  $T_1 + T_2$  is  $\int_0^{T_1+T_2} D_1(t)dt = \frac{1}{2}\frac{rQ^2}{P}$ .

The inventory curve of the flawed products during  $T_3$  is  $D_2(t) = P_R t$ . Then the total inventory of the flawed products during  $T_3 = \frac{rQ}{P_R}$  is  $\int_0^{T_3} D_2(t) dt = \frac{1}{2} \frac{r^2 Q^2}{P_R}$ .

Now the CO<sub>2</sub> throughout production setup, manufacture and inspection, shipping, and inventory keeping for perfect and flawed items.

$$CE_{A1}(Q,B) = \frac{e_s D}{Q} + De_P + \frac{D}{Q}e_T d + e_{h1} \left[\frac{D}{Q}\Pi_0(Q,B) + \frac{1}{2}(P_R - D)\left(\frac{r^2 QD}{P_R^2}\right) + \Pi_1(Q,B) + \Pi_2(Q,B)\right] + e_{h2} QD \left[\frac{1}{2}\frac{r}{P} + \frac{1}{2}\frac{r^2}{P_R}\right]$$

where  $\Pi_1(Q,B) = \left((1-r)P - D\right) \left(\frac{Q}{P} - \frac{B}{(1-r)P - D}\right) \left(\frac{rD}{P_R}\right); \Pi_2(Q,B) = \frac{1}{2} \frac{D^2}{Q} \left(\frac{Q}{D} - \frac{B}{D} - \frac{Q}{P} - \frac{rQ}{P_R}\right)^2.$ 

The average inventory total cost per cycle is the sum of the following costs: setup, production, rework, backorder per unit of time and backorder per item, holding cost of perfect and flawed items, the CO<sub>2</sub> tax, and the investment cost function to cut the setup cost. It is mathematically derived as

$$TC_{A1}(Q, B, S) = \frac{SD}{Q} + (C_m + C_R r)D + b \left[\frac{1}{2}\frac{B^2D}{[(1-r)P - D]Q} + \frac{1}{2}\frac{B^2}{Q}\right] + \frac{C_b BD}{Q} + h_2 QD \left[\frac{1}{2}\frac{r}{P} + \frac{1}{2}\frac{r^2}{P_R}\right] + h_1 \left[\frac{D}{Q}\Pi_0(Q, B) + \frac{1}{2}(P_R - D)\left(\frac{r^2QD}{P_R^2}\right) + \Pi_1(Q, B) + \Pi_2(Q, B)\right] + \tau M ln \left(\frac{S_0}{S}\right)$$

3.1.1. Carbon Tax with Quadratic Form of Green Investment Function

The manufactureris willing to spend money on eco-friendly technology to cut CO<sub>2</sub> and pay a CO<sub>2</sub> tax. Here  $CE_{A1}(Q, B)R_1(G)$  is the reduction in CO<sub>2</sub> after the investment of G. The cost of CO<sub>2</sub> is  $C_t[Z - CE_{A1}(Q, B)R_1(G)]$ . The manufacturer's CO<sub>2</sub> is less than the CO<sub>2</sub> cap Z when  $Z - CE_{A1}(Q, B)R_1(G) > 0$ . Thus, the manufacturer can profit by selling the permit. The manufacturer's CO<sub>2</sub> is greater than the CO<sub>2</sub> cap Z when  $Z - CE_{A1}(Q, B)R_1(G) > 0$ . Thus, the manufacturer can profit by selling the permit. The manufacturer's CO<sub>2</sub> is greater than the CO<sub>2</sub> cap Z when  $Z - CE_{A1}(Q, B)R_1(G) < 0$ . As a result, the manufacturer mustobtaina permit, which incurs a cost. Hence, the average total cost when  $P_R > D$  under a carbon cap and tax functions for a quadratic form of green investment case is

$$TC_{Aq1}(Q, B, G, S) = (S + \Pi_3(B))\frac{D}{Q} + (C_m + C_R r + C_t e_P R_1(G))D + b\left[\frac{1}{2}\frac{B^2 D}{[(1 - r)P - D]Q} + \frac{1}{2}\frac{B^2}{Q}\right] + (C_t e_{h1}R_1(G) + h_1)\left[\frac{D}{Q}\Pi_0(Q, B) + \frac{1}{2}(P_R - D)\left(\frac{r^2 QD}{P_R^2}\right) + \Pi_1(Q, B) + \Pi_2(Q, B)\right] + (C_t e_{h2}R_1(G) + h_2)QD\left[\frac{1}{2}\frac{r}{P} + \frac{1}{2}\frac{r^2}{P_R}\right] + G - C_t[Z - CE_{A1}(Q, B)R_1(G)] + \tau Mln\left(\frac{S_0}{S}\right)$$
(1)

subject to  $0 < S \leq S_0$ .

where  $\Pi_3(B) = C_t e_s R_1(G) + C_t e_T dR_1(G) + C_b B$ .

The above-mentioned problem looks to be constrained non-linear programming (NLP). We use a method that is comparable to that used in the majority of the NLP literature to solve this type of NLP. Initially, we briefly ignore the constraint  $0 < S \leq S_0$ , then attempt to determine the optimal solution of  $TC_{q1}(Q, B, G, S)$  through the following theorems and results.We also propose the following Algorithm 1 to pick the optimal Q, B, G, and S in the given situation.

**Theorem 1.** For fixed B, S and G,  $TC_{Aq1}(Q, B, G, S)$  is convex in Q.

**Proof**. See Appendix A.  $\Box$ 

**Result 1.** By equating Equation (A1) to zero, the optimal  $Q_{Aq1}$  as

$$Q_{Aq1}^{*} = \left\{ \frac{2\left(S + \Pi_{3}(B) + \left(b + C_{t}e_{h1}R_{1}(G) + h_{1}\right)\frac{B^{2}}{2}\Pi_{4}\right)}{\left(C_{t}e_{h1}R_{1}(G) + h_{1}\right)\Delta_{1} + \left(C_{t}e_{h2}R_{1}(G) + h_{2}\right)r\left[\frac{1}{p} + \frac{r}{p_{R}}\right]} \right\}^{\frac{1}{2}}$$
(2)

**Theorem 2.** For fixed Q, S and G,  $TC_{Aq1}(Q, B, G, S)$  is convex in B.

**Proof.** See Appendix B. □

**Result 2.** By equating Equation (A2) to zero, the optimal  $B_{Aq1}$  as

$$B_{Aq1}^{*} = \frac{Q(C_{t}e_{h1}R_{1}(G) + h_{1}) - DC_{b}}{\left(\frac{D}{((1-r)P-D)} + 1\right)(b + C_{t}e_{h1}R_{1}(G) + h_{1})}$$
(3)

**Theorem 3.** For fixed Q, B and G,  $TC_{Aq1}(Q, B, G, S)$  is convex in S.

**Proof.** See Appendix C.  $\Box$ 

**Result 3.** By equating Equation (A3) to zero, the optimal SAq1 is

$$S_{Aq1}^* = \frac{\tau MQ}{D} \tag{4}$$

**Theorem 4.** For fixed Q, B and  $S, TC_{Aq1}(Q, B, G, S)$  is convex in G.

**Proof:** See Appendix D.  $\Box$ 

**Result 4.** By equating Equation (A4) to zero, the optimal  $G_{Aq1}$  is

$$G_{Aq1}^{*} = \frac{1}{2} C E_{A1}(Q, B) \left(\frac{\alpha}{\beta} - \frac{1}{c_t \beta}\right).$$
(5)

| Algorithm 1. Optimal Solution for the Quadratic Case                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1. Determine G from Equation (5)<br>Step 2. Loop step (1.1)–(1.3) until the values Q, B and S have converged, and the solutions signify by $(\tilde{Q}, \tilde{B}, \tilde{S})$ . |
| (1.1) Start with $B_1 = \frac{DC_b}{b}$ and $S_1 = S_0$ .<br>(1.2) Replacing B <sub>1</sub> and S <sub>1</sub> into Equation (3) calculates Q <sub>1</sub> .                          |
| (1.3) Applying $Q_1$ find $B_1$ by Equation (3) and $S_2$ from Equation (4).                                                                                                          |
| Step 3. Compare $\tilde{S}$ with $S_0$                                                                                                                                                |
| (i) If $\tilde{S} < S_0$ , go to step (5).                                                                                                                                            |
| (ii) If $\tilde{S} > S_0$ , go to step (4).                                                                                                                                           |
| Step 4. Loop step (2.1) to (2.3) until the values Q and B have converged, and the                                                                                                     |
| solutions denote by $(\dot{Q}, \dot{B})$ .                                                                                                                                            |
| (2.1) Let $\tilde{S} = S_0$ and $B_1 = DC_b/b$                                                                                                                                        |
| (2.2) Substitute B <sub>1</sub> in Equation (2) (switch S by S <sub>0</sub> ) toobtain the new $Q_1$ .                                                                                |
| (2.3) Utilizing $Q_1$ determines $B_1$ by Equation (3).                                                                                                                               |
| Step 5. Compute $TC_{Aq1}(Q, G, S, B)$ by Equation (1), set $(Q^*, G^*, S^*, B^*)$ is an optimal                                                                                      |
| solution.                                                                                                                                                                             |
|                                                                                                                                                                                       |

3.1.2. Carbon Tax with Exponential Form of Green Investment Function

In this case, we take into account green investment as an exponential function. The average total cost of the proposed problem for this case when  $P_R > D$  under a CO<sub>2</sub> cap and tax functions is designed by

$$TC_{AE1}(Q, B, G, S) = (S + C_b B) \frac{D}{Q} + (C_m + C_R r)D + b \left[\frac{1}{2} \frac{B^2 D}{[(1 - r)P - D]Q} + \frac{1}{2} \frac{B^2}{Q}\right] + h_1 \left[\frac{D}{Q} \Pi_0(Q, B) + \frac{1}{2} (P_R - D) \left(\frac{r^2 Q D}{P_R^2}\right) + \Pi_1(Q, B) + \Pi_2(Q, B)\right] + h_2 Q D \left[\frac{1}{2} \frac{r}{P} + \frac{1}{2} \frac{r^2}{P_R}\right] + G - C_t \left[Z - C E_{A1}(Q, B) \left\{ \left(1 - \xi(1 - e^{-mG})\right) \right\} \right] + \tau M ln \left(\frac{S_0}{S}\right)$$
(6)

Subject to  $0 < S \leq S_0$ .

Here,  $CE_{A1}(1 - \xi(1 - e^{-mG}))$  is the reduction in CO<sub>2</sub> after investment of G. The CO<sub>2</sub> cost is  $C_t\{Z - CE_{A1}(1 - \xi(1 - e^{-mG}))\}$ . Similar to the case of aquadratic form, the average total cost for the current case is written as

$$TC_{AE1}(Q, B, G, S) = \left(S + \tilde{\Pi}_{3}(B)\right) \frac{D}{Q} + (C_{m} + C_{R}r + C_{t}e_{P}\varphi)D + b\left[\frac{1}{2}\frac{B^{2}D}{[(1-r)P - D]Q} + \frac{1}{2}\frac{B^{2}}{Q}\right] \\ + (C_{t}e_{h1}\varphi + h_{1})\left[\frac{D}{Q}\Pi_{0}(Q, B) + \frac{1}{2}(P_{R} - D)\left(\frac{r^{2}QD}{P_{R}^{2}}\right) + \Pi_{1}(Q, B) + \Pi_{2}(Q, B)\right] \\ + (C_{t}e_{h2}\varphi + h_{2})QD\left[\frac{1}{2}\frac{r}{P} + \frac{1}{2}\frac{r^{2}}{P_{R}}\right] + G - C_{t}Z + \tau Mln\left(\frac{S_{0}}{S}\right)$$
(7)

Subject to  $0 < S \leq S_0$ 

where  $\varphi = 1 - \xi(1 - e^{-mG})$  and  $\widetilde{\Pi}_3 = C_b B + C_t (e_S + e_T d) \varphi$ .

Thesolution approach for problem (7) is similar to that of the previous case 3.1.1. The same solution procedures are omitted in this theoretical derivation to avoid redundancy.

**Result 5.** The optimal  $Q_{AE1}$  as

$$Q_{AE1}^{*} = \left\{ \frac{2\left(S + \widetilde{\Pi}_{3}(B) + (b + C_{t}e_{h1}\varphi + h_{1})\frac{B^{2}}{2}\Pi_{4}\right)}{(C_{t}e_{h1}\varphi + h_{1})\Delta_{1} + (C_{t}e_{h2}\varphi + h_{2})r\left[\frac{1}{p} + \frac{r}{P_{R}}\right]} \right\}^{\overline{2}}$$
(8)

**Result 6.** The optimal  $G_{AE1}$  as

$$G_{AE1}^{*} = \frac{1}{m} \ln(C_t C E_A(Q, B) \xi m)$$
(9)

**Result 7.** The optimal  $B_{AE1}$  as

$$B_{AE1}^{*} = \frac{Q(C_{t}e_{h1}\varphi + h_{1}) - DC_{b}}{\left(\frac{D}{((1-r)P - D)} + 1\right)(b + C_{t}e_{h1}\varphi + h_{1})}$$
(10)

**Remark 1.** Equation (4) is still valid for finding the optimal value of  $S_{AE1}$  in the exponential green investment case as it does not change by any assumption about green investment. We present Algorithm 2 to find the optimal Q, B, G and S for the current case.

#### Algorithm 2. Optimal Solution for the Exponential Case

Step 1. Do step (1.1)–(1.3) until the values Q, B, G and S have converged, and the solutions represented by  $(\tilde{Q}, \tilde{B}, \tilde{G}, \tilde{S})$ .

(1.1) Start with  $B_1 = DC_b/b$ ,  $G_1 = ln\xi$  and  $S_1 = S_0$ .

(1.2) Substituting B<sub>1</sub>, S<sub>1</sub> and S<sub>1</sub> into Equation (8) evaluates Q<sub>1</sub>.

(1.3) Applying  $Q_1$  defines  $B_2$ ,  $G_2$  and  $S_2$  from Equations (10), (9) and (4), respectively.

Step 2. Compare Swith S<sub>0</sub>

(i) If  $\tilde{S} < S_0$ , go to step (4).

(ii) If  $\tilde{S} > S_0$ , go to step (3).

Step 3. Do step (2.1)–(2.3)until the values Q, B and G have converged, and the solutions represented by  $(\dot{Q}, \dot{B}, \dot{G})$ .

(2.1) Let  $\tilde{S} = S_0, B_1 = DC_b/b$  and  $G_1 = ln\xi$ .

(2.2) Substitute B1 and G1 in Equation (8) (replace S by S0) toobtain the new Q1.

(2.3) Utilizing  $Q_1$  determines  $B_1$  and  $G_1$  by Equations (9) and (10).

Step 4. Compute  $TC_{AE1}(Q, G, S, B)$  by Equation (1) and set  $(Q^*, G^*, S^*, B^*)$  is an optimal solution.

### 3.2. The $P_R$ Is Lower Than $D(P_R < D)$

If  $P_R < D$ , excellent items are retrieved from inventory at a faster rate than purchasing, resulting in a drop in inventory during the rework phase and a negative slope on the inventory curve. The inventory curves in this situation are depicted in Figure 5. The inventory curves for flawed products retain the same shape as in Figure 4.

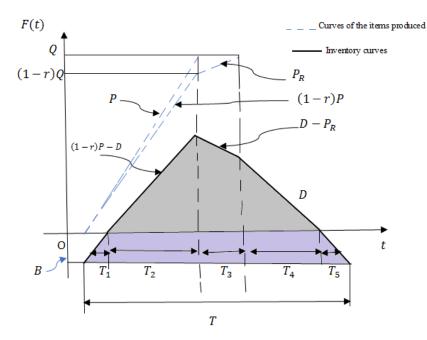
The total inventory and backorder for the perfect items in the period  $T_1$ ,  $T_2$ ,  $T_4$ ,  $T_5$  and the inventory of flawed items for the period  $T_3$  defined in Section 3.1 ( $P_R > D$ ) are the same in the case that  $P_R < D$  as any assumption regarding  $P_R$  has no effect on these values.

The inventory rate is decreasing during  $T_3$ , so the inventory curve during  $T_3$  altered by  $F_2(t) = (D - P_R)t + DT_4 = (D - P_R)t + D\left(\frac{Q}{D} - \frac{B}{D} - \frac{Q}{P} - \frac{rQ}{P_R}\right)$  with the initial values  $F_3(0) = F_3(T_4) = D\left(\frac{Q}{D} - \frac{B}{D} - \frac{Q}{P} - \frac{rQ}{P_R}\right).$ 

Since  $T_3 = \frac{rQ}{P_R}$ , the total inventory of perfect items during  $T_3$  is  $\int_0^{T_3} F_2(t) dt =$ 

$$\frac{1}{2}(D-P_R)\left(\frac{rQ}{P_R}\right)^2 + D\left(\frac{Q}{D} - \frac{B}{D} - \frac{Q}{P} - \frac{rQ}{P_R}\right)\left(\frac{rQ}{P_R}\right)$$
Hence, the average total cost per cur-

Hence, the average total cost per cycle and  $CO_2$  for this case  $P_R < D$  is


$$TC_{A2}(Q, S, B) = \frac{SD}{Q} + (C_m + C_R r)D + b \left[\frac{1}{2}\frac{B^2 D}{[(1-r)P - D]Q} + \frac{1}{2}\frac{B^2}{Q}\right] + \frac{C_b BD}{Q} + h_1 \left[\frac{D}{Q}\Pi_0(Q, B) + \frac{1}{2}(D - P_R)\left(\frac{r^2 DQ}{P_R^2}\right) + \Pi_5(Q, B) + \Pi_2(Q, B)\right] + h_2 DQ \left(\frac{1}{2}\frac{r}{P} + \frac{1}{2}\frac{r^2}{P_R}\right) + \tau M ln \left(\frac{S_0}{S}\right)$$

Subject to  $0 < S \leq S_0$ 

and

$$\begin{aligned} CE_{A2}(Q,B) &= \frac{e_{s}D}{Q} + De_{P} + \frac{D}{Q}e_{T}d \\ &+ e_{h1}\left[\frac{D}{Q}\Pi_{0}(Q,B) + \frac{1}{2}(D - P_{R})\left(\frac{r^{2}DQ}{P_{R}^{2}}\right) + \Pi_{5}(Q,B) + \Pi_{2}(Q,B)\right] \\ &+ e_{h2}DQ\left(\frac{1}{2}\frac{r}{P} + \frac{1}{2}\frac{r^{2}}{P_{R}}\right) \end{aligned}$$

respectively. where  $\Pi_5(Q,B) = D^2 \left(\frac{Q}{D} - \frac{B}{D} - \frac{Q}{P} - \frac{rQ}{P_R}\right) \left(\frac{r}{P_R}\right).$ 



**Figure 5.** Inventory curves of perfect items with asynchronous rework and  $P_R < D$ . Grey represents available stock, and purple represents out of stock.

# 3.2.1. Carbon Tax with Quadratic Form of Green Investment

The average total cost when  $P_R < D$  and quadratic form of investment for the present scenario is

$$TC_{Aq2}(Q, B, S, G) = (S + \Pi_3(B))\frac{D}{Q} + (C_m + C_R r + C_t e_P R_1(G))D + b \left[\frac{1}{2}\frac{B^2 D}{[(1 - r)P - D]Q} + \frac{1}{2}\frac{B^2}{Q}\right] + (C_t e_{h1}R_1(G) + h_1)\left[\frac{D}{Q}\Pi_0(Q, B) + \frac{1}{2}(D - P_R)\left(\frac{r^2 D Q}{P_R^2}\right) + \Pi_5(Q, B) + \Pi_2(Q, B)\right] + (C_t e_{h2}R_1(G) + h_2)DQ\left[\frac{1}{2}\frac{r}{P} + \frac{1}{2}\frac{r^2}{P_R}\right] + G - C_t R_1(G) + \tau M ln\left(\frac{S_0}{S}\right)$$
(11)

Subject to  $0 < S \leq S_0$ .

**Theorem 5.** For fixed B, S and  $G, TC_{Aq2}(Q, B, S, G)$  is convex in Q.

**Proof.** See Appendix E.  $\Box$ 

**Result 8.** By equating Equation (A5) to zero, the optimal  $Q_{Aq2}$  as

$$Q_{Aq2}^{*} = \left\{ \frac{2\left(S + \Pi_{3}(B) + (b + C_{t}e_{h1}R_{1}(G) + h_{1})\frac{B^{2}}{2}\Pi_{4}\right)}{(C_{t}e_{h1}R_{1}(G) + h_{1})\Delta_{2} + (C_{t}e_{h2}R_{1}(G) + h_{2})r\left[\frac{1}{p} + \frac{r}{P_{R}}\right]} \right\}^{\frac{1}{2}}$$
(12)

**Remark 2.** Equations (3)–(5) are still applicable toobtain the optimal  $B_{Aq2}$ ,  $S_{Aq2}$  and  $G_{Aq2}$ , respectively, under the case  $P_R < D$  since any assumption regarding  $P_R$  has no effect on these values. Moreover, we may utilize the same Algorithm 1 approach that was generated in the earlier part toobtain the optimal values in the present scenario.

#### 3.2.2. Carbon Tax with Exponential Form of Green Investment Function

The total cost of the current scenario when 
$$P_R < D$$
 per cycle is  
 $TC_{AE2}(Q, B, G, S) = (S + C_b B) \frac{D}{Q} + (C_m + C_R r)D + b \left[\frac{1}{2} \frac{B^2 D}{[(1 - r)P - D]Q} + \frac{1}{2} \frac{B^2}{Q}\right]$   
 $+ h_1 \left[\frac{D}{Q} \Pi_0(Q, B) + \frac{1}{2} (D - P_R) \left(\frac{r^2 D Q}{P_R^2}\right) + \Pi_5(Q, B) + \Pi_2(Q, B)\right]$   
 $+ h_2 DQ \left[\frac{1}{2} \frac{r}{P} + \frac{1}{2} \frac{r^2}{P_R}\right] + G - [C_t Z - C_t C E_{A2} \{1 - \xi(1 - e^{-mG})\}] + \tau M ln \left(\frac{S_0}{S}\right)$ 

Subject to  $0 < S \leq S_0$ .

That is,  

$$TC_{AE2}(Q, B, G, S) = \left(S + \widetilde{\Pi}_{3}(B)\right) \frac{D}{Q} + (C_{m} + C_{R}r + C_{t}e_{P}\varphi)D + (C_{t}e_{h1}\varphi + h_{1}) \left[\frac{D}{Q}\Pi_{0}(Q, B) + \frac{1}{2}(D - P_{R})\left(\frac{r^{2}QD}{P_{R}^{2}}\right) + \Pi_{5}(Q, B) + \Pi_{2}(Q, B)\right] + b \left[\frac{1}{2}\frac{B^{2}D}{[(1 - r)P - D]Q} + \frac{1}{2}\frac{B^{2}}{Q}\right] + (C_{t}e_{h2}\varphi + h_{2})QD\left[\frac{1}{2}\frac{r}{P} + \frac{1}{2}\frac{r^{2}}{P_{R}}\right] + G - C_{t}Z + \tau Mln\left(\frac{S_{0}}{S}\right)$$
(13)s

Subject to  $0 < S \le S_0$ 

Thesolution approach for problem (13) is similar to that of previous case Section 3.2.1. The same solution procedures are omitted in this theoretical derivation to avoid redundancy.

**Result 9.** The optimal  $Q_{AE2}$  as

$$Q_{AE2}^{*} = \left\{ \frac{2\left(S + \widetilde{\Pi}_{3}(B) + (b + C_{t}e_{h1}\varphi + h_{1})\frac{B^{2}}{2}\Pi_{4}\right)}{(C_{t}e_{h1}\varphi + h_{1})\Delta_{2} + (C_{t}e_{h2}\varphi + h_{2})r\left[\frac{1}{p} + \frac{r}{P_{R}}\right]} \right\}^{\frac{1}{2}}$$
(14)

**Result 10.** The optimal  $G_{AE2}$  as

$$G_{AE2}^* = \frac{1}{m} \ln(C_t C E_{A2} \xi m) \tag{15}$$

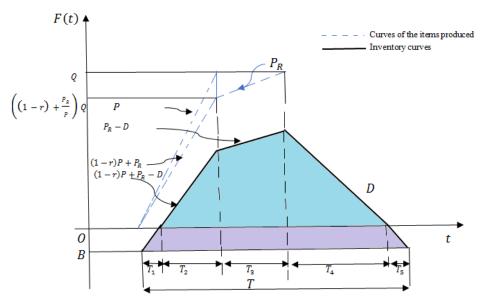
**Remark 3.** Equations (4) and (10) are still applicable to determine the optimal values of  $B_{AE2}$  and  $S_{AE2}$ , respectively, under the case  $P_R < D$  since any assumption regarding  $P_R$  has no effect on these values. Moreover, in the current scenario, we may utilize the same Algorithm 2 method that was generated in the preceding case to find the optimal values.

#### 4. Production Scheduling with Synchronous Rework

The concept of a manufacturing process with synchronous rework offers the advantage of permitting faulty inventory items to be removed and backorders to be filled more quickly. There are two cases that must be investigated, and they are as follows:  $P_R > D$  and  $P_R < D$ .

# 4.1. The $P_R$ Is Higher Than D ( $P_R > D$ )

Figure 6 depicts the inventory curve of perfect items under the premise of synchronous rework, whereas Figure 7 depicts the inventory curve of flawed items.


The inventory curve has a slope  $((1 - r)P + P_R - D)$  throughout the production period  $T_1 + T_2$ , since perfect items emerge from the rework process at a rate of  $P_R$ . Additionally, it is assumed that  $P_R < rP$  to prevent disruption in the rework process.

During  $T_1 = \frac{B}{(1-r)P+P_R-D'}$  the total amount of backorder is  $\frac{B^2}{2[(1-r)P+P_R-D]}$ . For the period  $T_2 = \frac{Q}{P} - \frac{B}{(1-r)P+P_R-D'}$  the total amount of inventory  $\Pi_6(Q,B) = \frac{1}{2}((1-r)P+P_R-D)$  $D\left(\frac{Q}{P} - \frac{B}{(1-r)P+P_R-D}\right)^2$ .

During  $T_3 = \frac{rQ}{p_R} - \frac{Q}{p_r}$ , the amount of inventory is  $\frac{1}{2}(P_R - D)\left(\frac{rQ}{p_R} - \frac{Q}{p}\right)^2 + ((1 - r)P + P_R - D)\left(\frac{Q}{p} - \frac{B}{(1 - r)P + P_R - D}\right)\left(\frac{rQ}{p_R} - \frac{Q}{p}\right)$ . During  $T_4 = \frac{Q}{D} - \frac{B}{D} - \frac{rQ}{P_R}$ , the total amount of inventory is  $\frac{1}{2}D\left(\frac{Q}{D} - \frac{B}{D} - \frac{rQ}{P_R}\right)^2$ . During  $T_5 = \frac{B}{D'}$  the total backorder is  $\frac{1}{2}\frac{B^2}{D}$ .

The total inventory of flawed items may be calculated as follows: For time  $T_1 + T_2$ , the total inventory of flawed items is  $\frac{1}{2} \frac{rP - P_R}{P^2} Q^2$ .

During  $T_3$ , the total inventory of flawed items is  $\frac{1}{2} \frac{(rP - P_R)^2}{P_R P^2} Q^2$ .



**Figure 6.** Inventory curves of perfect items with synchronous rework. Blue represents available stock, and purple represents out of stock.

Then the average total cost per cycle for the  
current case when 
$$P_R > D$$
 is  
$$TC_{S1}(Q, B, S) = \frac{SD}{Q} + (C_m + C_R r)D + b \left[\frac{B^2D}{2[(1-r)P + P_R - D]Q} + \frac{1}{2}\frac{B^2}{Q}\right] + \frac{C_b BD}{Q} + h_1 \left[\frac{D}{2Q}\Pi_6(Q, B) + \Pi_8(Q) + \Pi_6(Q, B)D\left(\frac{r}{P_R} - \frac{1}{P}\right) + \Pi_7(Q, B)\right] + h_2 \frac{DQ(rP - P_R)}{2P^2} \left[1 + \frac{(rP - P_R)}{P_R}\right] + \tau Mln\left(\frac{S_0}{S}\right)$$

Subject to  $0 < S \leq S_0$ 

where 
$$\Pi_7(Q, B) = \frac{1}{2} \frac{D^2}{Q} \left( \frac{Q}{D} - \frac{B}{D} - \frac{rQ}{P_R} \right)^2$$
 and  $\Pi_8(Q) = \frac{1}{2} (P_R - D) DQ \left( \frac{r}{P_R} - \frac{1}{P} \right)^2$ .

Then, the CO<sub>2</sub> is given by

$$CE_{S1}(Q,B) = \frac{e_{s}D}{Q} + De_{P} + \frac{D}{Q}e_{T}d + e_{h2}\frac{DQ}{2P^{2}}\left[(rP - P_{R}) + \frac{(rP - P_{R})^{2}}{P_{R}}\right] + e_{h1}\left[\frac{D}{2Q}\Pi_{6}(Q,B) + \Pi_{8}(Q) + \Pi_{6}(Q,B)\left(\frac{r}{P_{R}} - \frac{1}{P}\right)D + \Pi_{7}(Q,B)\right]$$

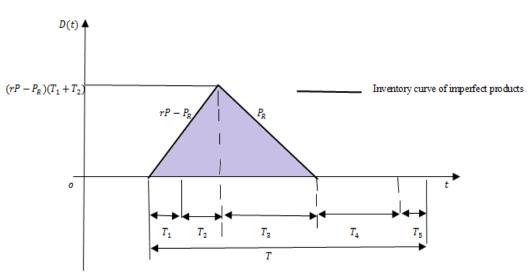



Figure 7. Inventory curves of flawed items with synchronous rework.

4.1.1. Carbon Tax with Quadratic form of Green Investment Function

The average total cost per cycle with variable green investment is

$$\begin{aligned} TC_{Sq1}(Q, B, S, G) &= (S + \Pi_3(B)\frac{D}{Q} + (C_m + C_R r + C_t e_P R_1(G))D \\ &+ b\left[\frac{B^2 D}{2[(1 - r)P + P_R - D]Q} + \frac{1}{2}\frac{B^2}{Q}\right] \\ &+ (C_t e_{h1}R_1(G) + h_1)\left[\frac{D}{2Q}\Pi_6(Q, B) + \Pi_8(Q) + \Pi_6(Q, B)\left(\frac{r}{P_R} - \frac{1}{P}\right)D + \Pi_7(Q, B)\right] \\ &+ (C_t e_{h2}R_1(G) + h_2)\frac{DQ}{2P^2}\left[(rP - P_R) + \frac{(rP - P_R)^2}{P_R}\right] \\ &+ G - C_t[Z - CE_{S1}(Q, B)R_1(G)] + \tau Mln\left(\frac{S_0}{S}\right) \end{aligned}$$
(16)

Subject to  $0 < S \leq S_0$ .

**Theorem 6.** For fixed B, S and G,  $TC_{Sq1}(Q, B, S, G)$  is convex in Q.

**Proof.** See Appendix F.  $\Box$ 

**Result 11.** By equating Equation (A6) to zero, the optimal  $Q_{Sq1}$  as

$$Q_{Sq1}^{*} = \left\{ \frac{2\left(S + \Pi_{3}(B) + (b + C_{t}e_{h1}R_{1}(G) + h_{1})\frac{B^{2}}{2}\Pi_{9}\right)}{(C_{t}e_{h1}R_{1}(G) + h_{1})\Delta_{3} + (C_{t}e_{h2}R_{1}(G) + h_{2})\frac{(rP - P_{R})}{P^{2}}\left[1 + \frac{(rP - P_{R})}{P_{R}}\right] \right\}^{\frac{1}{2}}$$
(17)

**Theorem 7.** For fixed Q, S and  $G, TC_{Sq1}(Q, B, S, G)$  is convex in B.

**Proof.** See Appendix G.  $\Box$ 

Т

**Result 12.** By equating Equation (A7) to zero, the optimal  $B_{Sq1}$  as

$$B_{Sq1}^{*} = \frac{Q(C_{t}e_{h1}R_{1}(G) + h_{1}) - DC_{b}}{\left[\frac{D}{((1-r)P + P_{R} - D)} + 1\right](b + C_{t}e_{h1}R_{1}(G) + h_{1})}$$
(18)

**Remark 4.** Equations (4) and (5) are still applicable to obtain the optimal  $S_{Sq1}$  and  $G_{Sq1}$ , respectively, under the case of quadratic green investment since any assumption regarding synchronous rework has no effect on these values. Moreover, we can utilize the same Algorithm 1 from Section 3 to obtain the optimal values for the current situation.

4.1.2. Carbon Tax with Exponential Form of Green Investment Function

With exponential green investment, the average total cost per cycle is

$$\begin{aligned} \mathcal{C}_{SE1}(Q,B,S,G) &= (S+C_bB)\frac{D}{Q} + (C_m+C_Rr)D + b\left[\frac{B^2D}{2[(1-r)P+P_R-D]Q} + \frac{1}{2}\frac{B^2}{Q}\right] \\ &+ h_1\left[\frac{D}{2Q}\Pi_6(Q,B) + \Pi_6(Q,B)\left(\frac{r}{P_R} - \frac{1}{P}\right)D + \Pi_8(Q) + \Pi_7(Q,B)\right] \\ &+ \tau M ln\left(\frac{S_0}{S}\right) + h_2\frac{DQ}{2P^2}\left[(rP-P_R) + \frac{(rP-P_R)^2}{P_R}\right] + G - C_t[Z-C_tCE_7(1-\xi(1-e^{-mG}))] \end{aligned}$$

Subject to  $0 < S \leq S_0$ .

That is,

$$TC_{SE1}(Q, B, S, G) = \left(S + \widetilde{\Pi}_{3}(B)\right) \frac{D}{Q} + (C_{m} + C_{R}r + C_{t}e_{P}\varphi)D + b\left[\frac{1}{2}\frac{B^{2}D}{[(1-r)P + P_{R} - D]Q} + \frac{1}{2}\frac{B^{2}}{Q}\right] + (C_{t}e_{h1}\varphi + h_{1})\left[\frac{D}{2Q}\Pi_{6}(Q, B) + \Pi_{8}(Q) + \Pi_{6}(Q, B)\left(\frac{r}{P_{R}} - \frac{1}{P}\right)D + \Pi_{7}(Q, B)\right] + (C_{t}e_{h2}\varphi + h_{2})\frac{DQ}{2P^{2}}\left[(rP - P_{R}) + \frac{(rP - P_{R})^{2}}{P_{R}}\right] + G - C_{t}Z + \tau Mln\left(\frac{S_{0}}{S}\right)$$
(19)

Subject to  $0 < S \leq S_0$ .

Thesolution approach for problem (19) is similar to that of previous case Section 4.1.1. The same solution procedures are omitted in this theoretical derivation to avoid redundancy.

**Result 13.** The optimal  $Q_{SE1}$  as

$$Q_{SE1}^{*} = \left\{ \frac{2\left[S + \widetilde{\Pi}_{3}(B) + (b + C_{t}e_{h1}\varphi + h_{1})\frac{B^{2}}{2}\Pi_{9}\right]}{(C_{t}e_{h1}\varphi + h_{1})\Delta_{3} + (C_{t}e_{h2}\varphi + h_{2})\frac{(rP - P_{R})}{P^{2}}\left[1 + \frac{(rP - P_{R})}{P_{R}}\right]}\right\}^{\frac{1}{2}}$$
(20)

**Result 14.** The optimal  $B_{SE1}$  as

$$B_{SE1}^{*} = \frac{Q(C_{t}e_{h1}\varphi + h_{1}) - DC_{b}}{\left[\frac{D}{((1-r)P + P_{R} - D)} + 1\right](b + C_{t}e_{h1}\varphi + h_{1})}$$
(21)

**Result 15.** The optimal  $G_{SE1}$  as

$$G_{SE1}^* = \frac{1}{m} \ln(C_t \ C E_{S1} \xi m).$$
(22)

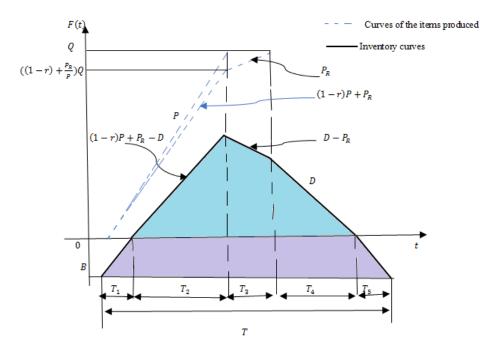
**Remark 5.** Equation (4) is still valid to determine the optimal  $S_{SE1}$  under the exponential green investment case since this value does not change by any assumption about synchronous rework.

*Furthermore, we may use Algorithm 1 from Section 3 toobtainthe optimal values for the current scenario.* 

## 4.2. The $P_R$ Is Lower Than D ( $P_R < D$ )

Figure 8 depicts the inventory curve for perfect items. When  $P_R > D$ , as shown in Figure 7, the inventory curves of flawed items have the same functional forms as flawed items. The inventory curve of the perfect products during  $T_3$  is  $F_2(t) = (D - P_R)t + D\left(\frac{Q}{D} - \frac{B}{D} - \frac{rQ}{P_R}\right)$  with the initial value  $F_2(0) = D\left(\frac{Q}{D} - \frac{B}{D} - \frac{rQ}{P_R}\right)$ .

During  $T_3 = \frac{rQ}{P_R} - \frac{Q}{P'}$  the total inventory is


$$\int_0^{T_3} F_2(t)dt = \frac{1}{2}(D-P_R)\left(\frac{rQ}{P_R}-\frac{Q}{P}\right)^2 + D\left(\frac{Q}{D}-\frac{B}{D}-\frac{rQ}{P_R}\right)\left(\frac{rQ}{P_R}-\frac{Q}{P}\right).$$

 $\begin{aligned} \text{Inventory cost per cycle for the current scenario when } P_R < D \text{ is} \\ TC_{S2}(Q,B,G) &= (S+C_bB)\frac{D}{Q} + (C_m+C_Rr)D + b\left[\frac{B^2D}{2[(1-r)P+P_R-D]Q} + \frac{1}{2}\frac{B^2}{Q}\right] \\ &+ h_1\left[\frac{1}{2}\frac{((1-r)P+P_R-D)D}{Q}\left(\frac{Q}{P} - \frac{B}{(1-r)P+P_R-D}\right)^2 + \Pi_{11}(Q) + D^2\left(\frac{Q}{D} - \frac{B}{D} - \frac{rQ}{P_R}\right)\left(\frac{r}{P_R} - \frac{1}{P}\right) + \Pi_7(Q,B)\right] + \frac{DQh_2}{2P^2}(rP - P_R)\left[1 + \frac{(rP - P_R)}{P_R}\right] + \tau Mln\left(\frac{S_0}{S}\right) \end{aligned}$ 

Subject to  $0 < S \leq S_0$ .

where 
$$\Pi_{11}(Q) = \frac{1}{2}DQ(D - P_R)\left(\frac{r}{P_R} - \frac{1}{P}\right)^2$$
.  
Then the CO<sub>2</sub> is given by

 $CE_{S2}(Q,B) = \frac{e_{s}D}{Q} + De_{p} + \frac{D}{Q}e_{T}d$ +  $e_{h1}\left[\frac{D}{2Q}\Pi_{6}(Q,B) + \Pi_{11}(Q) + D^{2}\left(\frac{Q}{D} - \frac{B}{D} - \frac{rQ}{P_{R}}\right)\left(\frac{r}{P_{R}} - \frac{1}{P}\right) + \Pi_{7}(Q,B)\right]$ +  $e_{h2}\frac{DQ}{2P^{2}}(rP - P_{R})\left[1 + \frac{(rP - P_{R})}{P_{R}}\right]$ 



**Figure 8.** Inventory curves of perfect products with synchronous rework when  $P_R < D$ . Blue represents available stock, and purple represents out of stock.

4.2.1. Carbon Tax with Quadratic Form of Green Investment Function

The average total cost when  $P_R < D$  with the quadratic form of investment is D

$$TC_{Sq2}(Q, B, S, G) = (S + \Pi_{3}(B))\frac{D}{Q} + (C_{m} + C_{R}r + C_{t}e_{P}R_{1}(G))D + b\left[\frac{B^{2}D}{2[(1-r)P + P_{R} - D]Q} + \frac{1}{2}\frac{B^{2}}{Q}\right] + (C_{t}e_{h1}R_{1}(G) + h_{1})\left[\frac{D}{2Q}\Pi_{6}(Q, B) + \Pi_{11}(Q) + D^{2}\left(\frac{Q}{D} - \frac{B}{D} - \frac{rQ}{P_{R}}\right)\left(\frac{r}{P_{R}} - \frac{1}{P}\right) + \Pi_{7}(Q, B)\right] + (C_{t}e_{h2}R_{1}(G) + h_{2})\frac{DQ}{2P^{2}}(rP - P_{R})\left[1 + \frac{(rP - P_{R})}{P_{R}}\right] + G$$
(23)  
$$- C_{t}[Z - CE_{S2}(Q, B)R_{1}(G)] + \tau Mln\left(\frac{S_{0}}{S}\right)$$

Subject to  $0 < S \leq S_0$ .

**Theorem 8.** For fixed B, S and G,  $TC_{Sq2}(Q, B, S, G)$  is convex in Q.

**Proof.** See Appendix H.  $\Box$ 

**Result 16.** *By setting Equation (A8) to zero, the optimal*  $Q_{Sq2}$  *as* 

$$Q_{Sq2}^{*} = \left\{ \frac{2\left(S + \Pi_{3}(B) + (b + C_{t}e_{h1}R_{1}(G) + h_{1})\frac{B^{2}}{2}\Pi_{9}\right)}{(C_{t}e_{h1}R_{1}(G) + h_{1})\Delta_{4} + (C_{t}e_{h2}R_{1}(G) + h_{2})\frac{(rP - P_{R})}{P^{2}}\left[1 + \frac{(rP - P_{R})}{P_{R}}\right] \right\}^{\frac{1}{2}}$$
(24)

**Remark 6.** Equations (4), (5) and (18) are still applicable to determine the optimal values of  $B_{Sq2}$ ,  $S_{Sq2}$  and  $G_{Sq2}$ , respectively, under the case  $P_R < D$  since any assumption regarding  $P_R$  has no effect on these values. Moreover, in the present scenario, we may utilize the same Algorithm 1 method that was generated in the preceding case to find the optimal values.

4.2.2. Carbon Tax with Exponential Form of Green Investment Function

The average total cost with exponential green investment is

$$\begin{aligned} TC_{SE2}(Q,B,S,G) &= S\frac{D}{Q} + (C_m + C_R r)D + b \left[ \frac{1}{2} \frac{B^2 D}{[(1-r)P + P_R - D]Q} + \frac{1}{2} \frac{B^2}{Q} \right] \\ &+ h_1 \left[ \frac{D}{2Q} \Pi_6(Q,B) + \Pi_{11}(Q) + D^2 \left( \frac{Q}{D} - \frac{B}{D} - \frac{rQ}{P_R} \right) \left( \frac{r}{P_R} - \frac{1}{P} \right) + \Pi_7(Q,B) \right] \\ &+ (C_t e_{h2} + h_2) \frac{DQ}{2P^2} (rP - P_R) \left[ 1 + \frac{(rP - P_R)}{P_R} \right] + G \\ &- C_t [Z - CE_{S2} \left( 1 - \xi (1 - e^{-mG}) \right)] + \tau M ln \left( \frac{S_0}{S} \right) \end{aligned}$$

Subject to  $0 < S \leq S_0$ .

That is,

$$TC_{SE2}(Q, B, S, G) = (S + \tilde{\Pi}_{3}(B))\frac{D}{Q} + (C_{m} + C_{R}r + C_{t}e_{P}\varphi) + \frac{bB^{2}D}{2Q} \left[\frac{1}{[(1-r)P + P_{R} - D]Q} + \frac{1}{D}\right] + (C_{t}e_{h1}\varphi + h_{1})\left[\frac{D}{2Q}\Pi_{6}(Q, B) + \Pi_{11}(Q) + D^{2}\left(\frac{Q}{D} - \frac{B}{D} - \frac{rQ}{P_{R}}\right)\left(\frac{r}{P_{R}} - \frac{1}{P}\right) + \Pi_{7}(Q, B)\right] + (C_{t}e_{h2}\varphi + h_{2})\frac{DQ}{2P^{2}}\left[(rP - P_{R}) + \frac{(rP - P_{R})^{2}}{P_{R}}\right] + G - C_{t}Z + \tau Mln\left(\frac{S_{0}}{S}\right)$$
(25)

Subject to  $0 < S \leq S_0$ .

Thesolution approach for problem (25) is similar to that of previous case Section 4.2.1. The same solution procedures are omitted in this theoretical derivation to avoid redundancy.

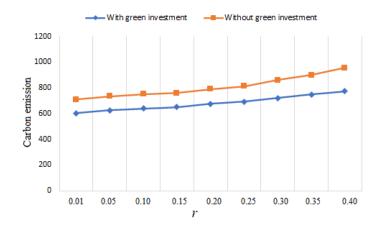
**Result 17.** The optimal  $Q_{SE2}$  as

$$Q_{SE2}^{*} = \left\{ \frac{2\left(S + \widetilde{\Pi}_{3}(B) + (b + C_{t}e_{h1}\varphi + h_{1})\frac{B^{2}}{2}\Pi_{9}\right)}{(C_{t}e_{h1}\varphi + h_{1})\Delta_{4} + (C_{t}e_{h2}\varphi + h_{2})\frac{(rP - P_{R})}{P^{2}}\left[1 + \frac{(rP - P_{R})}{P_{R}}\right] \right\}^{\frac{1}{2}}$$

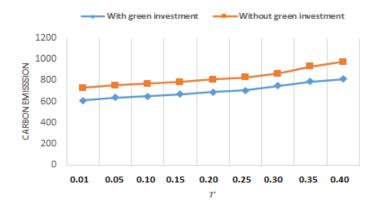
**Result 18.** The optimal  $G_{SE2}$  as

$$G_{SE2}^* = \frac{1}{m} \ln(C_t C E_{S2} \xi m).$$

**Remark 7.** Equations (4) and (21) are still valid toobtain the optimal  $B_{SE2}$  and  $S_{SE2}$ , respectively, under the case  $P_R < D$  since any assumption regarding  $P_R$  has no effect on these values. Furthermore, we may utilize the same Algorithm 2 approach that was generated in the preceding case to obtain the optimal values in the present scenario.


## 5. Numerical and Sensitivity Assessment

#### 5.1. Asynchronous Rework


We will utilize numerical assessment to explain the solution approach in this section. The subsequent parameters have values that are very close to those in Al-Salamah [17] and Mishra [33]: D = 4800 units, P = 24,000 units/year,  $S_0 = \$120$ ,  $C_m = \$3.1$ , r = 0.01,  $h_1 = \$0.6/\text{unit/year}$ ,  $h_2 = 0.3/\text{unit/year}$ ,  $C_b = \$0.1/\text{unit short}$ , b = \$14.4 /unit short/year,  $C_R = \$0.000125P_R/\text{unit}$ , Z = 900kg/year,  $C_t = 0.33$  kg/year, m = 0.8 unit,  $\xi = 0.2$  unit,  $e_P = 40$  kg/year ,  $e_s = 60$  kg/year,  $e_{h1} = 4$  kg/year,  $e_{h2} = 3$  kg/year,  $e_T = 50$  kg/year, d = 100000 kg/year,  $\tau = 0.1/\text{year}$ , M = 5800.

We study the variations in optimal solutions subject to two main parameters r and  $P_R$  for both quadratic and exponential cases. All the parameters are retained constant in the initial event, with the exclusion of r, which is altered to see how it affects decision variables for both quadratic ( $Q_{Aqi}$ ,  $B_{Aqi}$ ,  $G_{Aqi}$ ,  $S_{Aqi}$ ) and exponential ( $Q_{AEi}$ ,  $B_{AEi}$ ,  $G_{AEi}$ ,  $S_{AEi}$ ) cases, i = 1,2. Similarly, the rework rate  $P_R$  is examined in the second event to see how the values of decision variables for both cases vary for low and high rework rates.

Table 2 reveals the optimal  $Q_{Aq1}$ ,  $B_{Aq1}$ ,  $G_{Aq1}$  and  $S_{Aq1}$  for a range of values of r when  $P_R = 40,000$  items/year. The result is compared to the total cost with and without the green investment, which is also included in Table 2, to show how reducing setup costs and CO<sub>2</sub>affect each other. Figures 9 and 10 visualize the flotuations of CO<sub>2</sub> against r with and without green investment vs. r when  $P_R > D$ .



**Figure 9.** Comparison of the CO<sub>2</sub> when  $P_R > D$  with and without green investment vs. *r*.



**Figure 10.** Comparison of the CO<sub>2</sub> when  $P_R < D$  with and without green investment vs. *r*.

| Quadratic Green Investment FunctionValuatic Green Investment Function $r$ $Q_{Aq1}$ $B_{Aq1}$ $G_{Aq1}$ $S_{Aq1}$ $CE_{A1}(.)$ $TC_{Aq1}(.)$ $Q_{Aq1}$ $B_{Aq1}$ $G_{Aq1}$ $S_{Aq1}$ $CE_{A1}(.)$ $TC_{Aq1}(.)$ Savings (%)0.01134321.616075602309,276139823.8711335,2318.40.05135220.417181625317,634142622.4735354,37411.60.10136119.118285641324,569145621.6751372,37114.70.15136918.919687650331,548147120.8761385,36516.20.20137818.120292676339,876149820.1790400,27317.70.25138617.621694693347,984151619.5813415,07619.30.30139216.7231100721356,654153518.7861434,06721.70.35141015.1253102748362,098155017.7899448,07123.70.40142314.727110477384,876157416.6- <th></th> <th></th> <th></th> <th></th> <th></th> <th>Α</th> <th>synchrono</th> <th>us Rewo</th> <th>ork <math>P_R</math></th> <th>&gt; D</th> <th></th> <th></th> <th></th> <th></th> |      |           |           |           |           | Α            | synchrono     | us Rewo   | ork $P_R$ | > D       |           |              |               |             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|-----------|-----------|-----------|--------------|---------------|-----------|-----------|-----------|-----------|--------------|---------------|-------------|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |           |           |           |           | Quac         | lratic Green  | n Invest  | ment Fu   | inction   | l 👘       |              |               |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |           | w         | ith Gre   | een Inv   | vestment     |               |           | with      | out Gr    | een In    | vestment     |               |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | r    | $Q_{Aq1}$ | $B_{Aq1}$ | $G_{Aq1}$ | $S_{Aq1}$ | $CE_{A1}(.)$ | $TC_{Aq1}(.)$ | $Q_{Aq1}$ | $B_{Aq1}$ | $G_{Aq1}$ | $S_{Aq1}$ | $CE_{A1}(.)$ | $TC_{Aq1}(.)$ | Savings (%) |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01 | 1343      |           |           |           | 602          | 309,276       | 1398      |           |           |           |              | 335,231       | 8.4         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.05 | 1352      | 20.4      | 171       | 81        | 625          | 317,634       | 1426      | 22.4      | -         | -         | 735          | 354,374       | 11.6        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10 | 1361      | 19.1      | 182       | 85        | 641          | 324,569       | 1456      | 21.6      | -         | -         | 751          | 372,371       | 14.7        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.15 | 1369      | 18.9      | 196       | 87        | 650          | 331,548       | 1471      | 20.8      | -         | -         | 761          | 385,365       | 16.2        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.20 | 1378      | 18.1      | 202       | 92        | 676          | 339,876       | 1498      | 20.1      | -         | -         | 790          | 400,273       | 17.7        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.25 | 1386      | 17.6      | 216       | 94        | 693          | 347,984       | 1516      | 19.5      | -         | -         | 813          | 415,076       | 19.3        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.30 | 1392      | 16.7      | 231       | 100       | 721          | 356,654       | 1535      | 18.7      | -         | -         | 861          | 434,067       | 21.7        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.35 | 1410      | 15.1      | 253       | 102       | 748          | 362,098       | 1550      | 17.7      | -         | -         | 899          | 448,071       | 23.7        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.40 | 1423      | 14.7      | 271       | 104       | 774          | 384,876       | 1574      | 16.6      | -         | -         | 957          | 481,379       | 25.1        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |           |           |           |           | Expoi        | nential Gree  | en Inves  | tment F   | unctio    | ı         |              |               |             |
| 0.01         1391         22.2         172         77         602         309,316         1391         22.4         -         -         711         336,132         8.6           0.05         1402         20.9         183         85         625         317,743         1402         21.3         -         -         735         354,794         11.7           0.10         1410         20.1         194         87         641         324,641         1410         20.8         -         -         751         372,729         14.8           0.15         1448         19.8         208         89         650         331,678         1448         20.5         -         -         761         386,481         16.5                                                                                                                                |      |           | W         | ith Gre   | een Inv   | restment     |               |           | with      | iout Gr   | een In    | vestment     |               |             |
| 0.01         1391         22.2         172         77         602         309,316         1391         22.4         -         -         711         336,132         8.6           0.05         1402         20.9         183         85         625         317,743         1402         21.3         -         -         735         354,794         11.7           0.10         1410         20.1         194         87         641         324,641         1410         20.8         -         -         751         372,729         14.8           0.15         1448         19.8         208         89         650         331,678         1448         20.5         -         -         761         386,481         16.5                                                                                                                                | r    | $Q_{AE1}$ | $B_{AE1}$ | $G_{AE1}$ | $S_{AE1}$ | $CE_{A1}(.)$ | $TC_{AE1}(.)$ | $Q_{AE1}$ | $B_{AE1}$ | $G_{AE1}$ | $S_{AE1}$ | $CE_{A1}(.)$ | $TC_{AE1}(.)$ | Savings (%) |
| 0.10         1410         20.1         194         87         641         324,641         1410         20.8         -         -         751         372,729         14.8           0.15         1448         19.8         208         89         650         331,678         1448         20.5         -         761         386,481         16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01 | 1391      | 22.2      | 172       | 77        | 602          | 309,316       | 1391      |           |           | -         | 711          | 336,132       | 8.6         |
| 0.15 1448 19.8 208 89 650 331,678 1448 20.5 761 386,481 16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.05 | 1402      | 20.9      | 183       | 85        | 625          | 317,743       | 1402      | 21.3      | -         | -         | 735          | 354,794       | 11.7        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.10 | 1410      | 20.1      | 194       | 87        | 641          | 324,641       | 1410      | 20.8      | -         | -         | 751          | 372,729       | 14.8        |
| 0.20 1462 19.1 221 99 676 339,991 1462 20.1 790 401,104 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.15 | 1448      | 19.8      | 208       | 89        | 650          | 331,678       | 1448      | 20.5      | -         | -         | 761          | 386,481       | 16.5        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.20 | 1462      | 19.1      | 221       | 99        | 676          | 339,991       | 1462      | 20.1      | -         | -         | 790          | 401,104       | 17.9        |

**Table 2.** Changeable *r* and asynchronous rework with  $P_R > D$ .

| 0.25 | 1516 | 18.2 | 231 | 102 | 693 | 348,220 | 1516 | 19.5 | - | - | 813 | 417,026 | 19.7 |
|------|------|------|-----|-----|-----|---------|------|------|---|---|-----|---------|------|
| 0.30 | 1542 | 17.4 | 243 | 104 | 721 | 356,743 | 1542 | 18.1 | - | - | 861 | 436,071 | 22.2 |
| 0.35 | 1571 | 16.1 | 269 | 106 | 748 | 362,142 | 1571 | 17.6 | - | - | 899 | 448,631 | 23.8 |
| 0.40 | 1598 | 15.3 | 281 | 109 | 774 | 384,966 | 1598 | 17.1 | - | - | 957 | 483,003 | 25.5 |

5.2. Synchronous Rework

We will utilize the same firm as in the preceding section, but this time we will assume that products with flaws are fixed as soon as they are made. Once the manufacturing lot is complete, each defective item that was not corrected during production is individually remade. The model must meet the assumptions that  $P_R < rP$  and  $D < P_R$ , according to Al-Salamah [17], which states that D = 190 items per year and  $P_R$  = 200 items per year. In Table 3, the results are compared to the total cost with and without the green investment. The visual comparison of CO<sub>2</sub> and tax with and without green investment vs. *r* when  $P_R > D$  is shown in Figures 11 and 12.



**Figure 11.** Comparison of CO<sub>2</sub> with and without green investment vs. *r* when  $P_R > D$ .

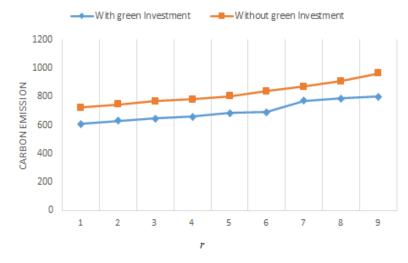



Figure 12. CO<sub>2</sub> comparison with and without green investment vs. r.

#### 5.3. Discussion and Comparison of Findings

This study explores the connection between green investments and CO<sub>2</sub>. Using the quadratic and exponential forms of CO<sub>2</sub> reduction functions offered by Huang et al. [32] and Mishra et al. [33], this study examines the dependence structure between green technology and CO<sub>2</sub>.

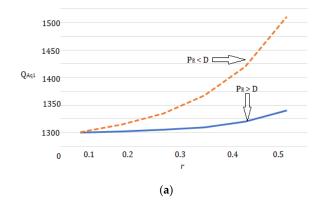
- According to Tables 2–5 and Figures 13 and 14, Al-Salamah's [17] model performs similarly to ours, with the exception that the optimum lotsizes (*Q<sub>Aq1</sub>*, *Q<sub>AE1</sub>*, *Q<sub>Sq2</sub>*, *Q<sub>SE2</sub>) increase and backorders (<i>B<sub>Aq1</sub>*, *B<sub>AE1</sub>*, *B<sub>Sq2</sub>*, *B<sub>SE2</sub>) decrease more quickly.* It should be noted that Al-Salamah's [17] model disregards green investments as a means of reducing CO<sub>2</sub> and setup costs. Moreover, if green technology is not employed to lower setup costs and CO<sub>2</sub>, costs and CO<sub>2</sub> increase. A firm may save between 8.4% and 25.5% in costs when it invests in green technology to lower setup and CO<sub>2</sub> emissions. Green technology therebydecreases the system's overall cost of production and cuts CO<sub>2</sub>.
- Since the optimal lot size raises as the percentage of flawed rises, Figures 15a, 16a, 17a, 18a, 19a, 20a, 21a and 22a explore the combined effects of both *r* and *P*<sub>R</sub> on lotsizes ( $Q_{Aq1}, Q_{AE1}, Q_{Sq2}, Q_{SE2}$ ). For large values of *r*, the optimum lot sizes ( $Q_{Aq1}, Q_{AE1}, Q_{Sq2}, Q_{SE2}$ ) are more sensitive to changes in the *P*<sub>R</sub> for high values of *r* than for small values of *r* < 0.1, as seen in the picture. As a result, when *r* > 0.1, it is claimed that lot sizes ( $Q_{Aq1}, Q_{AE1}, Q_{Sq2}, Q_{SE2}$ ) on the other hand, are less sensitive to changes in the *P*<sub>R</sub> for large values of *r* than when the percentage is small (*r* < 0.1), as shown in Figures 15c, 16c, 17c, 18c, 19c, 20c, 21c and 22c. Backorder size behavior leads to a similar conclusion. Figures 15b, 16b, 17b, 18b, 19b, 20b, 21b, and 22b indicate that a rise in *P*<sub>R</sub> induces a big fall in ( $B_{Aq1}, B_{AE1}, B_{Sq2}, B_{SE2}$ ) for values of *r* > 0.1.
- Figures 23–26 show the CO<sub>2</sub> reduces due to the increase in  $C_t$  with r = 0.1.
- The lot-sizes  $(Q_{Aq1}, Q_{AE1})$  and green investments  $(G_{Aq1}, G_{AE1})$  under the asynchronous rework model are slightly lower than the lot sizes  $(Q_{Aq2}, Q_{AE2})$  and  $(G_{Aq2}, G_{AE2})$  under the synchronous rework model for the range of *r* values indicated in Tables 2–5. When the rework is asynchronous, the backorder is much higher than when it is synchronous for most values of *r*; though the differences between the backorders are minor, and certain backorders are almost equal for r = 0.4.
- Our research found that increasing  $C_t$  lowers CO<sub>2</sub> levels. The findings of Dwicahyani et al. [40] and Hasanov et al. [41], who found that tariffs had a beneficial effect on CO<sub>2</sub> reduction, are consistent with this conclusion. The firm has new options for lowering CO<sub>2</sub> produced by industrial operations with the use of green technology. The firm will gain from less CO<sub>2</sub> even though green technology has higher direct costs. Studies, including Bai et al. [42] and others, have produced results that are similar.
- According to the findings (Tables 2–5), the optimal  $Q_{Aq1}$ ,  $G_{Aq1}$  and  $S_{Aq1}$  grow continuously as *r* increases, whereas  $B_{Aq1}$  progressively decreases as the fraction of defectives rises. The model of Al-Salamah [17] shows a similar pattern, with the exception that the optimal lot size grows faster, and the backorder decreases more slowly than ours. It is worth noting that Al-Salamah's [17] approach ignores green investment in terms of CO<sub>2</sub> and setup costs. In addition, CO<sub>2</sub> and total cost increase when green technology is not used for both CO<sub>2</sub> and setup costs.
- We may look at Table 4 and Figures 18 and 24 to see how the optimal solutions react when  $P_R$  assumptions fluctuate. When *r* is increased, it is shown that  $Q_{Aq2}$  for  $P_R < D$  rises more quickly than  $Q_{Aq1}$  for  $P_R > D$  does if  $P_R = 2500$  units/year. The optimal backorders respond in a number of ways when *r*'s value rises.  $B_{Aq1}$  declines when *r* rises, as was previously discovered. On the other hand, raising the value of *r* causes  $B_{Aq2}$  to rise. Additionally, Figures 12 and 24 provide a visual comparison of tax and CO<sub>2</sub> with and without green investment vs. *r* when  $P_R < D$ .
- Table 5 and Figures 22 and 26 show how the optimal solutions change when the  $P_R$  assumption changes. When  $P_R = 2500$  units/year, it is seen that, similar to the asynchronous situation when *r* is increased,  $Q_{Aq2}$  for  $P_R < D$  raises faster than  $Q_{Aq1}$  for  $P_R > D$ . The optimal backorders react in a number of ways as the value of *r* increases. As previously discovered,  $B_{Aq1}$  lessens as *r* rises. In contrast, increasing the value of

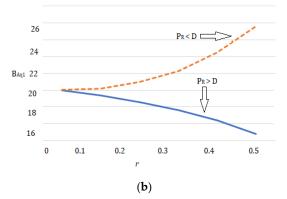
*r* results in an increase in  $B_{Aq2}$ . Besides, Figures 12 and 26 depict a visual contrast of CO<sub>2</sub> and taxes with and without green investment vs. *r* when  $P_R < D$ .

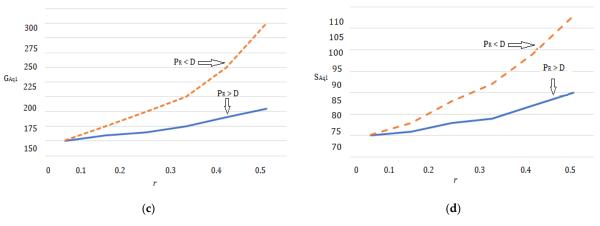
|      |           |                  |                  |                  | 0            | 5             |           |                  |           | n                |              |               |             |
|------|-----------|------------------|------------------|------------------|--------------|---------------|-----------|------------------|-----------|------------------|--------------|---------------|-------------|
|      |           |                  |                  |                  | 5            | Synchronou    | ıs Rewo   | ork $P_R$        | > D       |                  |              |               |             |
|      |           |                  |                  |                  | Quad         | dratic Gree   | n Inves   | tment l          | Functio   | n                |              |               |             |
|      |           | w                | ith Gre          | en Inv           | vestment     |               |           |                  |           |                  | nvestment    | :             |             |
| r    | $Q_{Sq1}$ | B <sub>Sq1</sub> | G <sub>Sq1</sub> | S <sub>Sq1</sub> | $CE_{S1}(.)$ | $TC_{Sq1}(.)$ | $Q_{Sq1}$ | B <sub>Sq1</sub> | $G_{Sq1}$ | S <sub>sq1</sub> | $CE_{S1}(.)$ | $TC_{Sq1}(.)$ | Savings (%) |
| 0.01 | 1364      | 22.3             | 165              | 81               | 612          | 317,964       | 1432      | 24.6             | -         | -                | 732          | 349,941       | 10.1        |
| 0.05 | 1371      | 21.4             | 176              | 86               | 627          | 324,587       | 1464      | 23.5             | -         | -                | 753          | 365,248       | 12.5        |
| 0.10 | 1379      | 20.6             | 184              | 92               | 638          | 339,641       | 1494      | 22.7             | -         | -                | 778          | 385,742       | 13.6        |
| 0.15 | 1385      | 19.5             | 193              | 98               | 652          | 348,423       | 1531      | 21.2             | -         | -                | 791          | 401,345       | 15.2        |
| 0.20 | 1394      | 18.6             | 210              | 104              | 671          | 356,214       | 1549      | 20.1             | -         | -                | 820          | 418,476       | 17.5        |
| 0.25 | 1399      | 17.2             | 219              | 109              | 690          | 367,198       | 1563      | 19.5             | -         | -                | 847          | 436,546       | 18.9        |
| 0.30 | 1411      | 16.7             | 236              | 114              | 712          | 376,347       | 1585      | 18.3             | -         | -                | 876          | 451,253       | 19.9        |
| 0.35 | 1420      | 15.4             | 254              | 117              | 735          | 383,695       | 1598      | 17.6             | -         | -                | 910          | 470,197       | 22.6        |
| 0.40 | 1432      | 14.7             | 278              | 121              | 760          | 394,322       | 1627      | 16.4             | -         | -                | 968          | 488,752       | 24.0        |
|      |           |                  |                  |                  | Expo         | nential gre   | en inve   | stment           | functic   | n                |              |               |             |
|      |           | М                | vith gre         | en inv           | estment      |               |           | wit              | hout g    | reen in          | vestment     |               |             |
| r    | $Q_{SE1}$ | $B_{SE1}$        | $G_{SE1}$        | $S_{SE1}$        | $CE_{S1}(.)$ | $TC_{SE1}(.)$ | $Q_{SE1}$ | $B_{SE1}$        | $G_{SE1}$ | $S_{SE1}$        | $CE_{S1}(.)$ | $TC_{SE1}(.)$ | Savings (%) |
| 0.01 | 1398      | 21.6             | 176              | 81               | 612          | 309,867       | 1442      | 24.9             | -         | -                | 732          | 342,954       | 10.7        |
| 0.05 | 1416      | 20.3             | 187              | 92               | 627          | 319,675       | 1456      | 22.8             | -         | -                | 753          | 361,056       | 13.0        |
| 0.10 | 1423      | 18.5             | 196              | 99               | 638          | 328,542       | 1479      | 20.5             | -         | -                | 778          | 380,864       | 15.9        |
| 0.15 | 1439      | 17.1             | 201              | 105              | 652          | 339,671       | 1493      | 19.3             | -         | -                | 791          | 402,217       | 18.4        |
| 0.20 | 1451      | 16.4             | 225              | 110              | 671          | 344,755       | 1513      | 18.2             | -         | -                | 820          | 411,245       | 19.3        |
| 0.25 | 1476      | 15.7             | 251              | 114              | 690          | 359,876       | 1532      | 17.8             | -         | -                | 847          | 430,976       | 19.8        |
| 0.30 | 1586      | 14.9             | 269              | 118              | 712          | 367,423       | 1580      | 16.9             | -         | -                | 876          | 443,547       | 20.7        |
| 0.35 | 1594      | 14.1             | 282              | 121              | 735          | 372,547       | 1612      | 16.4             | -         | -                | 910          | 454,245       | 21.9        |
| 0.40 | 1607      | 13.5             | 290              | 125              | 760          | 389,451       | 1635      | 16.1             | -         | -                | 968          | 486,547       | 24.9        |
|      |           |                  |                  |                  |              |               |           |                  |           |                  |              |               |             |

**Table 3.** Changeable *r* and synchronous rework with  $P_R > D$ .

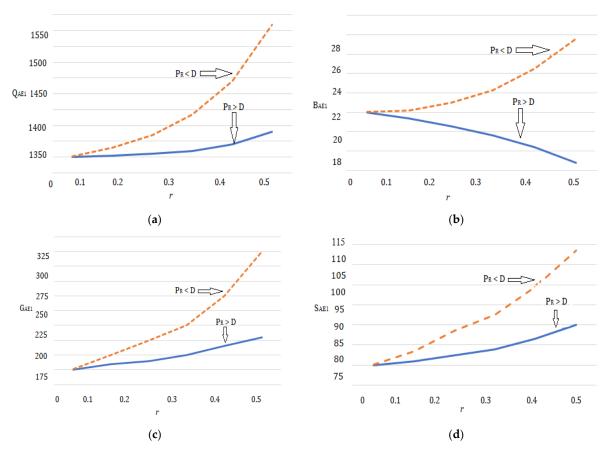
**Table 4.** Changeable *r* and asynchronous rework with  $P_R < D$ .


|      | Asynchronous Rework $P_R < D$                  |           |           |           |              |               |           |           |           |           |              |               |             |
|------|------------------------------------------------|-----------|-----------|-----------|--------------|---------------|-----------|-----------|-----------|-----------|--------------|---------------|-------------|
|      |                                                |           |           |           | Quad         | lratic Greei  | n Invest  | ment Fu   | inction   | 1         |              |               |             |
|      |                                                | w         | ith Gre   | en Inv    | vestment     |               |           | with      | out Gr    | een In    | vestment     |               |             |
| r    | $Q_{Aq2}$                                      | $B_{Aq2}$ | $G_{Aq2}$ | $S_{Aq2}$ | $CE_{A2}(.)$ | $TC_{Aq2}(.)$ | $Q_{Aq2}$ | $B_{Aq2}$ | $G_{Aq2}$ | $S_{Aq2}$ | $CE_{A2}(.)$ | $TC_{Aq2}(.)$ | Savings (%) |
| 0.01 | 1659                                           | 22.3      | 171       | 82        | 611          | 311,564       | 1721      | 24.5      | -         | -         | 731          | 341,165       | 9.5         |
| 0.05 | 1668                                           | 21.5      | 179       | 89        | 637          | 319,785       | 1739      | 23.6      | -         | -         | 755          | 357,874       | 11.9        |
| 0.10 | 1679                                           | 19.1      | 186       | 95        | 651          | 330,219       | 1770      | 22.4      | -         | -         | 771          | 376,247       | 13.9        |
| 0.15 | 1691                                           | 18.4      | 195       | 102       | 672          | 338,425       | 1782      | 21.7      | -         | -         | 786          | 390,014       | 15.2        |
| 0.20 | 1705                                           | 17.5      | 214       | 109       | 689          | 342,100       | 1798      | 19.7      | -         | -         | 811          | 406,570       | 18.8        |
| 0.25 | 1716                                           | 16.2      | 231       | 115       | 706          | 348,589       | 1817      | 18.5      | -         | -         | 829          | 418,214       | 20.0        |
| 0.30 | 1723                                           | 15.1      | 245       | 119       | 750          | 360,210       | 1836      | 18.0      | -         | -         | 864          | 441,429       | 22.6        |
| 0.35 | 1728                                           | 14.3      | 271       | 124       | 789          | 375,674       | 1860      | 17.4      | -         | -         | 932          | 465,478       | 23.9        |
| 0.40 | 1739                                           | 13.8      | 292       | 134       | 814          | 396,574       | 1895      | 17.3      | -         | -         | 976          | 495,425       | 24.9        |
|      |                                                |           |           |           | Expo         | nential gree  | en inves  | tment fu  | unction   | L         |              |               |             |
|      | with green investment without green investment |           |           |           |              |               |           |           |           |           |              |               |             |
| r    | $Q_{AE2}$                                      | $B_{AE2}$ | $G_{AE2}$ | $S_{AE2}$ | $CE_{A2}(.)$ | $TC_{AE2}(.)$ | $Q_{AE2}$ | $B_{AE2}$ | $G_{AE2}$ | $S_{AE2}$ | $CE_{A2}(.)$ | $TC_{AE2}(.)$ | Savings (%) |
| 0.01 | 1668                                           | 22.6      | 181       | 86        | 611          | 312,458       | 1712      | 24.6      | -         | -         | 731          | 343,214       | 9.8         |
| 0.05 | 1718                                           | 21.3      | 189       | 92        | 637          | 325,013       | 1741      | 23.6      | -         | -         | 755          | 358,478       | 10.3        |

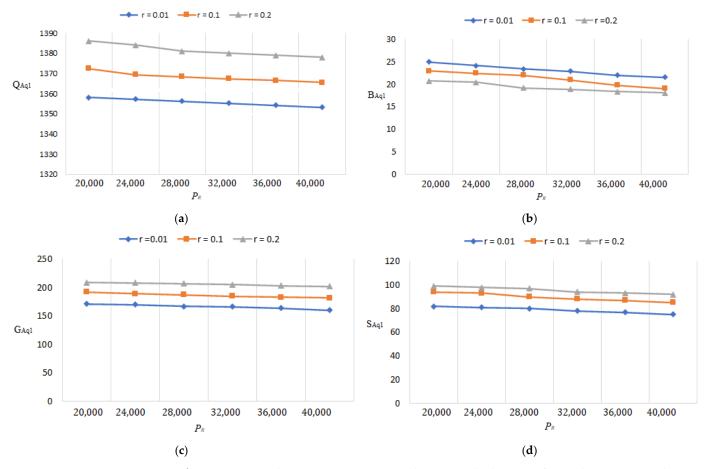

| 0.10 | 1730 | 20.4 | 211 | 98  | 651 | 342,480 | 1769 | 22.7 | - | - | 771 | 379,987 | 11.0 |
|------|------|------|-----|-----|-----|---------|------|------|---|---|-----|---------|------|
| 0.15 | 1759 | 19.1 | 224 | 111 | 672 | 351,245 | 1784 | 21.8 | - | - | 786 | 397,163 | 13.1 |
| 0.20 | 1831 | 18.3 | 230 | 116 | 689 | 359,654 | 1821 | 21.0 | - | - | 811 | 411,245 | 14.3 |
| 0.25 | 1870 | 17.4 | 241 | 120 | 706 | 368,412 | 1830 | 19.3 | - | - | 829 | 425,741 | 15.6 |
| 0.30 | 1892 | 15.8 | 263 | 125 | 750 | 375,147 | 1854 | 18.4 | - | - | 864 | 438,320 | 16.8 |
| 0.35 | 1915 | 14.9 | 280 | 129 | 789 | 385,430 | 1876 | 17.3 | - | - | 932 | 462,147 | 19.9 |
| 0.40 | 1956 | 14.1 | 291 | 134 | 814 | 396,478 | 1899 | 16.9 | - | - | 976 | 489,217 | 23.4 |


**Table 5.** Changeable *r* and synchronous rework with  $P_R < D$ .

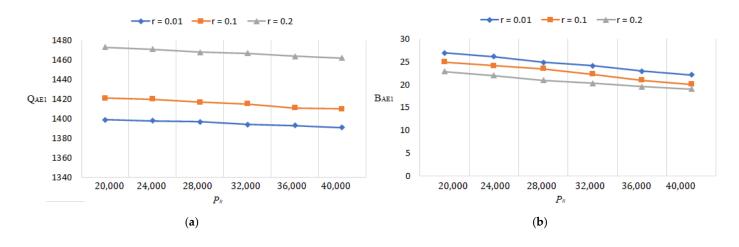
| Quadratic Green Investment Functionwith Green Investmentr $Q_{Sq2}$ $B_{Sq2}$ $G_{Sq2}$ $S_{Sq2}$ $CE_{Sq2}(.)$ $TC_{Sq1}(.)$ $Q_{Sq2}$ $B_{Sq2}$ $G_{Sq2}$ $S_{Sq2}$ $CE_{S2}(.)$ $TC_{Sq2}(.)$ $Savings (2)$ 0.01165621.916278609310,387171524.1723340,1249.50.05166320.717384632319,978173323.3747361,24812.90.10167218.418489648325,741176222.5768375,68715.30.15168017.619894659336,425177721.8781392,75516.70.20168917.121197685352,413179419.9804415,54717.90.25169816.2225101692361,214181219.1839429,57818.90.30170615.1241104770372,457183218.4871445,87419.70.35171814.5264107786385,424185717.6-910463,85620.40.40173213.9282110799389,842188317.1964476,254                                                                                                                                                                                                                                                |                                                               |           |           |           |           | S             | ynchronou     | s Rewo    | $\mathbf{rk} P_R$ | < D       |           |              |               |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------|-----------|-----------|-----------|---------------|---------------|-----------|-------------------|-----------|-----------|--------------|---------------|-------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                               |           |           |           |           | Quad          | ratic Green   | l Invest  | ment F            | unctio    | n         |              |               |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                               |           | w         | ith Gr    | een Inv   | vestment      |               |           | wit               | hout G    | reen I    | nvestment    |               |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r                                                             | $Q_{Sq2}$ | $B_{Sq2}$ | $G_{Sq2}$ | $S_{Sq2}$ | $CE_{Sq2}(.)$ | $TC_{Sq1}(.)$ | $Q_{Sq2}$ | $B_{Sq2}$         | $G_{Sq2}$ | $S_{Sq2}$ | $CE_{S2}(.)$ | $TC_{Sq2}(.)$ | Savings (%) |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.01                                                          |           |           |           | 78        |               | 310,387       |           | 24.1              | -         | -         | 723          | 340,124       | 9.5         |
| 0.15         1680         17.6         198         94         659         336,425         1777         21.8         -         -         781         392,755         16.7           0.20         1689         17.1         211         97         685         352,413         1794         19.9         -         -         804         415,547         17.9           0.25         1698         16.2         225         101         692         361,214         1812         19.1         -         -         839         429,578         18.9           0.30         1706         15.1         241         104         770         372,457         1832         18.4         -         -         871         445,874         19.7           0.35         1718         14.5         264         107         786         385,424         1857         17.6         -         -         910         463,856         20.4 | 0.05                                                          | 1663      | 20.7      | 173       | 84        | 632           | 319,978       | 1733      | 23.3              | -         | -         | 747          | 361,248       | 12.9        |
| 0.20         1689         17.1         211         97         685         352,413         1794         19.9         -         -         804         415,547         17.9           0.25         1698         16.2         225         101         692         361,214         1812         19.1         -         -         839         429,578         18.9           0.30         1706         15.1         241         104         770         372,457         1832         18.4         -         -         871         445,874         19.7           0.35         1718         14.5         264         107         786         385,424         1857         17.6         -         -         910         463,856         20.4                                                                                                                                                                                    | 0.10                                                          | 1672      | 18.4      | 184       | 89        | 648           | 325,741       | 1762      | 22.5              | -         | -         | 768          | 375,687       | 15.3        |
| 0.25         1698         16.2         225         101         692         361,214         1812         19.1         -         -         839         429,578         18.9           0.30         1706         15.1         241         104         770         372,457         1832         18.4         -         -         871         445,874         19.7           0.35         1718         14.5         264         107         786         385,424         1857         17.6         -         -         910         463,856         20.4                                                                                                                                                                                                                                                                                                                                                                       | 0.15 1680 17.6 198 94 659 336,425 1777 21.8 781 392,755 16.7  |           |           |           |           |               |               |           |                   |           |           |              | 16.7          |             |
| 0.30         1706         15.1         241         104         770         372,457         1832         18.4         -         -         871         445,874         19.7           0.35         1718         14.5         264         107         786         385,424         1857         17.6         -         910         463,856         20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.20 1689 17.1 211 97 685 352,413 1794 19.9 804 415,547 17.9  |           |           |           |           |               |               |           |                   |           |           |              |               |             |
| 0.35 1718 14.5 264 107 786 385,424 1857 17.6 910 463,856 20.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.25 1698 16.2 225 101 692 361,214 1812 19.1 839 429,578 18.9 |           |           |           |           |               |               |           |                   |           |           |              |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.30 1706 15.1 241 104 770 372,457 1832 18.4 871 445,874 19.7 |           |           |           |           |               |               |           |                   |           |           |              |               |             |
| 0.40 1732 13.9 282 110 799 389,842 1883 17.1 964 476,254 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.35                                                          | 1718      | 14.5      | 264       | 107       | 786           | 385,424       | 1857      | 17.6              | -         | -         | 910          | 463,856       | 20.4        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.40                                                          | 1732      | 13.9      | 282       | 110       | 799           | 389,842       | 1883      | 17.1              | -         | -         | 964          | 476,254       | 22.2        |
| Exponential green investment function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                               |           |           |           |           |               |               |           |                   |           |           |              |               |             |

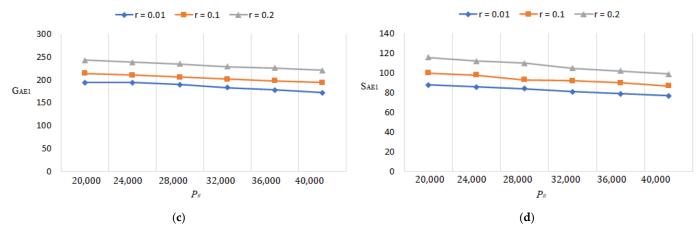

|      |           | V         | vith gre  | een inv   | restment      |               | without green investment |           |           |           |               |               |             |
|------|-----------|-----------|-----------|-----------|---------------|---------------|--------------------------|-----------|-----------|-----------|---------------|---------------|-------------|
| r    | $Q_{SE2}$ | $B_{SE2}$ | $G_{SE2}$ | $S_{SE2}$ | $CE_{SE2}(.)$ | $TC_{SE2}(.)$ | $Q_{SE2}$                | $B_{SE2}$ | $G_{SE2}$ | $S_{SE2}$ | $CE_{SE2}(.)$ | $TC_{SE2}(.)$ | Savings (%) |
| 0.01 | 1703      | 22.4      | 178       | 81        | 609           | 311,457       | 1405                     | 22.8      | -         | -         | 723           | 341,547       | 9.6         |
| 0.05 | 1712      | 20.6      | 189       | 89        | 632           | 321,654       | 1418                     | 20.3      | -         | -         | 747           | 359,734       | 11.8        |
| 0.10 | 1720      | 19.5      | 201       | 93        | 648           | 332,158       | 1423                     | 19.4      | -         | -         | 768           | 374,247       | 12.7        |
| 0.15 | 1752      | 18.3      | 212       | 98        | 659           | 339,868       | 1456                     | 18.2      | -         | -         | 781           | 388,542       | 14.2        |
| 0.20 | 1793      | 17.6      | 225       | 105       | 685           | 347,654       | 1516                     | 17.6      | -         | -         | 804           | 399,345       | 14.9        |
| 0.25 | 1843      | 17.0      | 240       | 109       | 692           | 359,873       | 1547                     | 16.9      | -         | -         | 839           | 416,541       | 15.8        |
| 0.30 | 1872      | 16.2      | 252       | 113       | 770           | 367,871       | 1578                     | 16.1      | -         | -         | 871           | 428,278       | 16.4        |
| 0.35 | 1889      | 15.8      | 275       | 115       | 786           | 378,453       | 1591                     | 15.4      | -         | -         | 910           | 449,802       | 18.9        |
| 0.40 | 1913      | 15.1      | 287       | 119       | 799           | 389,871       | 1621                     | 14.9      | -         | -         | 964           | 479,847       | 23.1        |



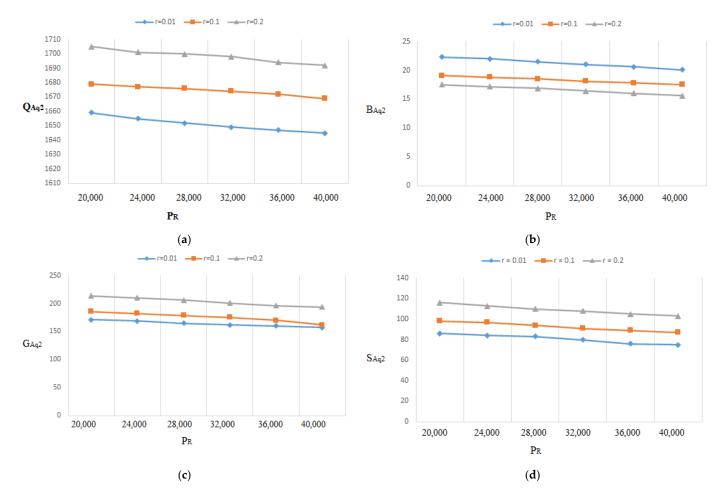




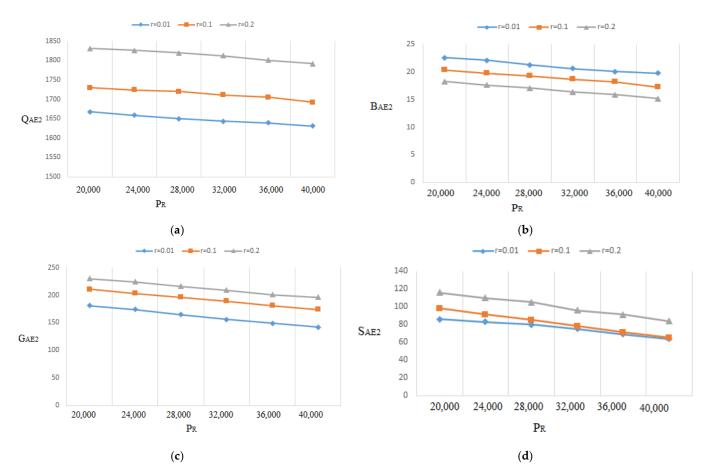


**Figure 13.** Optimal  $Q_{Aq1}, B_{Aq1}, G_{Aq1}, S_{Aq1}$  vs. *r* under the asynchronous rework (Quadratic case). (a)  $Q_{Aq1}$  vs. *r*; (b)  $B_{Aq1}$  vs. *r*; (c)  $G_{Aq1}$  vs. *r*; (d)  $S_{Aq1}$  vs. *r*.



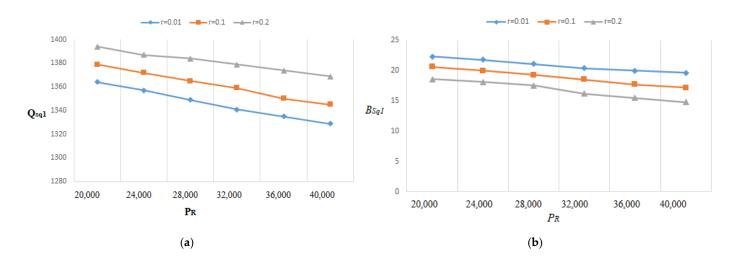

**Figure 14.** Optimal  $Q_{AE1}$ ,  $B_{AE1}$ ,  $G_{AE1}$ ,  $S_{AE1}$  vs. r under the asynchronous rework (Exponential case). (a)  $Q_{AE1}$  vs. r; (b)  $B_{AE1}$  vs. r; (c)  $G_{AE1}$  vs. r; (d)  $S_{AE1}$  vs. r.




**Figure 15.** How the  $Q_{Aq1}$ ,  $B_{Aq1}$ ,  $G_{Aq1}$ ,  $S_{Aq1}$  changes with the rate of asynchronous rework  $P_R > D$  (Quadratic case). (a) Quantity lot size  $Q_{Aq1}$  variations with  $P_R$ ; (b) Backorder  $B_{Aq1}$  variations with  $P_R$ ; (c) Green investment  $G_{Aq1}$  variations with  $P_R$ ; (d) Setup cost  $S_{Aq1}$  variations with  $P_R$ .

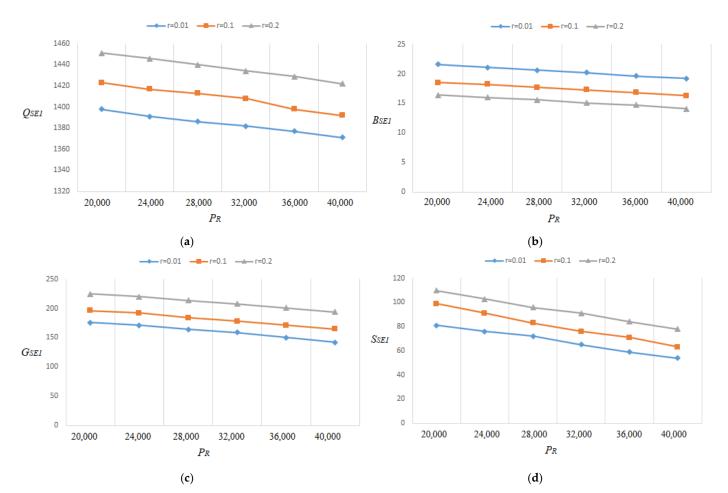




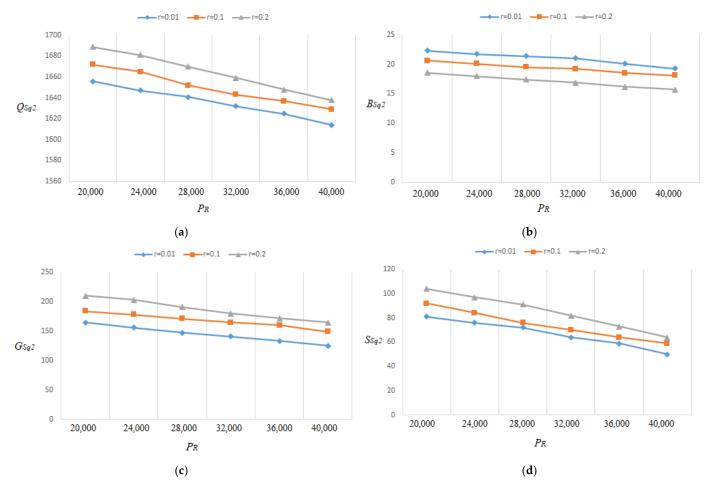


**Figure 16.** How the  $Q_{AE1}$ ,  $B_{AE1}$ ,  $G_{AE1}$ ,  $S_{AE1}$  changes with the rate of asynchronous rework  $P_R > D$  (Exponential case). (a) Quantity lot size  $Q_{AE1}$  variations  $P_R$ ; (b) Backorder  $B_{AE1}$  variations with  $P_R$ ; (c) Green investment  $G_{AE1}$  variations with  $P_R$ ; (d) Setup cost  $S_{AE1}$  variations with  $P_R$ .



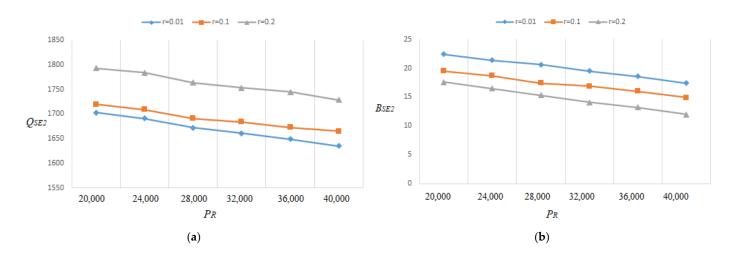

**Figure 17.** How the  $Q_{Aq2}$ ,  $B_{Aq2}$ ,  $G_{Aq2}$ ,  $S_{Aq2}$  changes with the rate of asynchronous rework  $P_R < D$  (Quadratic case). (a) Quantity lot size  $Q_{Aq2}$  variations with  $P_R$ ; (b) Backorder  $B_{Aq2}$  variations with  $P_R$ ; (c) Green investment  $G_{Aq2}$  variations with  $P_R$ ; (d) Setup cost  $S_{Aq2}$  variations with  $P_R$ .

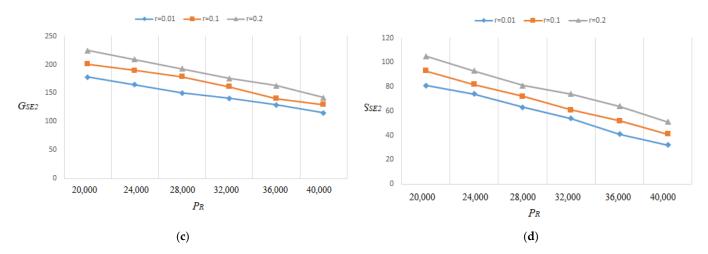


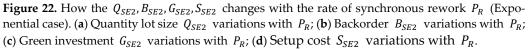

**Figure 18.** How the  $Q_{AE2}$ ,  $B_{AE2}$ ,  $G_{AE2}$ ,  $S_{AE2}$  changes with the rate of asynchronous rework  $P_R < D$  (Exponential case). (a) Quantity lot size  $Q_{AE2}$  variations with  $P_R$ ; (b) Backorder  $B_{AE2}$  variations with  $P_R$ ; (c) Green investment  $G_{AE2}$  variations with  $P_R$ ; (d) Setup cost  $S_{AE2}$  variations with  $P_R$ .

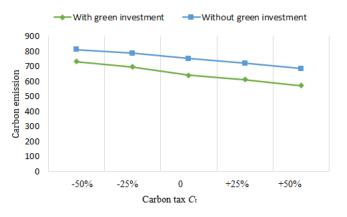




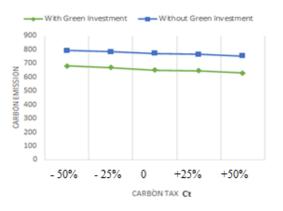


**Figure 19.** How the  $Q_{Sq1}, B_{Sq1}, G_{Sq1}, S_{Sq1}$  changes with the rate of synchronous rework  $P_R$  (Quadratic case). (a) Quantity lot size  $Q_{Sq1}$  variations with  $P_R$ ; (b) Backorder  $B_{Sq1}$  variations with  $P_R$ ; (c) Green investment  $G_{Sq1}$  variations with  $P_R$ ; (d) Setup cost  $S_{Sq1}$  variations with  $P_R$ .



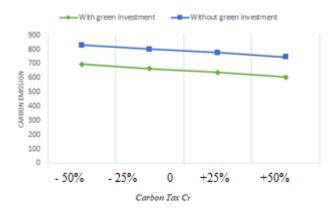


**Figure 20.** How the  $Q_{SE1}$ ,  $B_{SE1}$ ,  $G_{SE1}$ ,  $S_{SE1}$  changes with the rate of synchronous rework  $P_R$  (Exponential case). (a) Quantity lot size  $Q_{SE1}$  variations with  $P_R$ ; (b) Backorder  $B_{SE1}$  variations with  $P_R$ ; (c) Green investment  $G_{SE1}$  variations with  $P_R$ ; (d) Setup cost  $S_{SE1}$  variations with  $P_R$ .



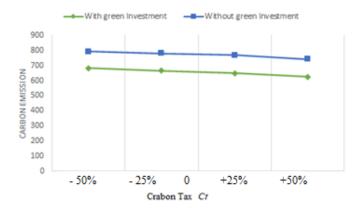

**Figure 21.** How the  $Q_{Sq2}$ ,  $B_{Sq2}$ ,  $G_{Sq2}$ ,  $S_{Sq2}$  changes with the rate of synchronous rework  $P_R$  (Quadratic case). (a) Quantity lot size  $Q_{Sq2}$  variations with  $P_R$ ; (b) Backorder  $B_{Sq2}$  variations with  $P_R$ ; (c) Green investment  $G_{Sq2}$  variations with  $P_R$ ; (d) Setup cost  $S_{Sq2}$  variations with  $P_R$ .









**Figure 23.** CO<sub>2</sub> for various  $C_t$  with r = 0.1 when  $P_R > D$ .



**Figure 24.** CO<sub>2</sub> for various  $C_t$  with r = 0.1 when  $P_R < D$ .



**Figure 25.** CO<sub>2</sub> for various  $C_t$  with r = 0.1 when  $P_R > D$ .



**Figure 26.** CO<sub>2</sub> for various  $C_t$  with r = 0.1.

#### 5.4. Insights and Implications for the Industry

The financial industry has been a significant pillar of human progress since the commencement of the industrial revolution. The global financial sector's fundamental function is to make optimal use of global savings. Investments that are used wisely can improve people's quality of life. People have invested their resources in ecologically hazardous initiatives, particularly those that worsen human-induced climate change, as a result of the banking system's collapse. Despite the fact that finance plays a critical part in the anthropogenic (i.e., human effect on the environment), nothing has been performed to integrate environmental problems into finance. Green investments have obtained a lot of attention in the financial industry in recent years, which has helped to advance sustainable growth. Green investment is an intersection between environmentally friendly behavior and the financial and business world. On the basis of the results, the managerial insights can be derived as follows:

Making decisions to improve the sustainability of the inventory system, such asoptimizing payout backorder and lot size, may assist the green inventory model. Businesses will be better able to concentrate on reducing the overall inventory in storage facilities if CO<sub>2</sub> costs are included in the model. This will help to reduce the price of CO<sub>2</sub> from storage. Firms must focus on transportation if they want to reduce overall costs.

This paper demonstrates that shifting to sustainable invention significantly affects the inventory system. Producers can use green technology to reduce CO<sub>2</sub> from manufacturing, transport, and storage to abide by CO<sub>2</sub> price rules. Green technology includes recycling technology, eco-friendly polymers, green chemical processes, and renewable energy (solar, wind, hydro). Policymakers must thus sensibly prefer the optimal kind of green technology. They must take into account additional factors in addition to economic aspects when choosing the exact technology, such as the technology's ability to reduce pollution and compatibility with machines.

Managers can adjust the production rate using the suggested approach by controlling production allocation. A strategy of production rate adjustment is essential when the rate of production has a substantial impact on the volume of CO<sub>2</sub> generated. According to our research, the system can profit from a decrease in production rate by balancing supply and demand and reducing CO<sub>2</sub>. Unfortunately, this benefit was not accessible since earlier inventory models did not take these limitations into account. Our research shows that the decision-making criteria and ultimate cost are affected by concerns about CO<sub>2</sub>. The study's conclusions also provide a roadmap that inventory decision-makers may use to achieve successful long-term inventory management.

#### 6. Conclusions

Today an increasing number of businesses have made sustainability a top priority in their strategy and operations to boost growth and global competitiveness. This movement currently encompasses several well-known businesses from a wide range of industries, considerably beyond the small number of firms that previously positioned themselves as green. This study offers an extension to anearlier study that intends at cutting the CO<sub>2</sub> and setup cost simultaneously in a backorder situation. This research considers an imperfect production process where a fraction of the items is faulty, and the firm employs a rework approach to rectify the faulty items under two realistic scenarios: asynchronous and synchronous. We used twoforms of green investment to attain the lowest cost in terms of optimal lot size, backorder and decreased setup cost while reducing CO<sub>2</sub>. We have formulated eight mathematical models under various problem settings. Iterativesolution approaches are derived and proved analytically and numerically for all models. The examples show how the lot size grows and the backorder reduces as the fraction of defects for asynchronous rework with a rework rate greater than the demand rises.

The proposed model can be expanded upon in future research because this study has some limitations. The failure of this research to demonstrate the impact of COVID-19 on the company's transportation system is a limitation. The pandemic may, therefore, affect customer demand, leading to a fluctuating demand that changes over time. This type of work could be a great extension of this study. We also missedincluding the effect of learning onquality. If so, a more intriguing extension would be to look into whether investing in screening-related learning is worthwhile. Moreover, the limitations of utilizing a CO<sub>2</sub> reduction process, such as Green Lean Six Sigma, cap-and-trade and carbon offsets, were lacking in this research.

Author Contributions: Conceptualization, R.U.; Data Curation, S.P. and M.M.; Formal Analysis, G.R., A.J. and P.K.; Funding Acquisition, G.R. and P.K.; Investigation, R.U., S.P. and M.M.; Methodology, R.U., S.P., M.M. and G.R.; Project Administration, G.R., A.J. and P.K.; Resources, R.U., S.P., P.K. and G.R.; Supervision, S.P.; Validation, R.U., S.P., M.M., A.J. and P.K.; Visualization, G.R. and P.K.; Writing—original draft, R.U., S.P. and M.M.; Writing—review andediting, R.U., S.P., M.M., G.R., A.J. and P.K. All authors have read and agreed to the published version of the manuscript.

**Funding:** The project is funded by National Research Council of Thailand (NRCT) (Grant No: N42A650183).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No data were deposited in an official repository.

Conflicts of Interest: The authors declare no conflict of interest.

## Notations

- *Q* Lot-size
- *G* Green investment amount
- B Backorder
- *S* Set up cost
- S<sub>0</sub> The initial setup cost
  - au Capital fractional opportunity cost
  - D Demand rate
  - *P* Rate of production P > D
  - *r* Proportion of the flawed/or faulty products (0 < r < 1)
- $P_R$  Rework rate
- T Cycle Length
- *T*<sub>1</sub> Production time
- *T*<sub>2</sub> Rework period
- $C_m$  Production and inspection cost
- $C_R$  Rework cost of flawed products
- *b* Backorder cost per unit of time
- $C_b$  Backorder cost per item
- $h_1$  Holding cost for perfect items
- *h*<sub>2</sub> Holding cost for defective products
- *d* Transportation distance
- $e_s$  CO<sub>2</sub> during production setup
- $e_P$  CO<sub>2</sub> from production phase
- $e_T$  CO<sub>2</sub> through transportation
- $e_{h1}$  CO<sub>2</sub> while having perfect items
- $e_{h2}$  CO<sub>2</sub> by keeping defective items
- $C_t$  Carbon tax per unit item
- Z Cap on CO<sub>2</sub>

## Appendix A

Takingthefirst two derivatives of Equation (1) with respect to (w.r.t) Q, we get

$$\frac{\partial TC_{Aq1}(Q,B,G,S)}{\partial Q} = -\frac{D}{Q^2} \left( S + \Pi_3(B) + (b + C_t e_{h1} R_1(G) + h_1) \frac{B^2}{2} \Pi_4 \right) + (C_t e_{h1} R_1(G) + h_1) \frac{1}{2} D\Delta_1 \\ + (C_t e_{h2} R_1(G) + h_2) \frac{1}{2} Dr \left[ \frac{1}{P} + \frac{r}{P_R} \right] \\ \text{where } \Delta_1 = \frac{((1-r)P-D)}{P^2} + \frac{(P_R-D)r^2}{P_R^2} + 2 \frac{((1-r)P-D)r}{PP_R} + \frac{1}{D} + \frac{D}{P^2} + \frac{r^2D}{P_R^2} - \frac{2}{P} - \frac{2r}{P_R} + \frac{2rD}{PP_R} \\ \Pi_4 = \frac{1}{((1-r)P-D)} + \frac{1}{D} \text{ and} \\ \frac{\partial^2 TC_{Aq1}(Q,B,G,S)}{\partial Q} = \frac{2D}{P} \left( S + \Pi_2(B) + (b + C_t e_{h1} R_1(G) + h_1) \frac{B^2}{D} \Pi_4 \right) > 0$$

$$\frac{\partial^{-1} C_{Aq1}(Q, B, G, S)}{\partial Q^{2}} = \frac{2D}{Q^{3}} \left( S + \Pi_{3}(B) + (b + C_{t}e_{h1}R_{1}(G) + h_{1})\frac{B}{2}\Pi_{4} \right) > 0$$

Hence,  $TC_{Aq1}(Q, B, G, S)$  is convex in Q for fixed B, S and G.

#### Appendix B

Takingthefirst two derivatives of Equation (1) w.r.t B, we get

$$\frac{\partial TC_{Aq1}(Q,B,G,S)}{\partial B} = \frac{C_b D}{Q} + \frac{bBD}{Q} \Pi_4 + D(C_t e_{h1} R_1(G) + h_1) \left(\frac{B}{Q((1-r)P - D)} + \frac{B}{DQ} - \frac{1}{D}\right) (A2)$$

and

$$\frac{\partial^2 TC_{Aq1}(Q,B,G,S)}{\partial B^2} = \frac{D}{Q} \Pi_4[b + C_t e_{h1} R_1(G) + h_1] > 0$$

Hence,  $TC_{Aq1}(Q, B, G, S)$  is convex in *B* for fixed *Q*, *S* and *G*.

# Appendix C

Takingthefirst two derivatives of Equation (1) w.r.t S, we get

$$\frac{\partial TC_{Aq1}(Q, B, G, S)}{\partial S} = \frac{D}{Q} - \frac{\tau M}{S}$$
(A3)

and

$$\frac{\partial^2 TC_{Aq1}(Q,B,G,S)}{\partial S^2} = \frac{2\tau M}{S^2} > 0.$$

Therefore, Q, B and G,  $TC_{Aq1}(Q, B, G, S)$  is convex in S.

# Appendix D

Taking the first two derivatives of Equation (1) w.r.t G, we get

$$\frac{\partial TC_{Aq1}(Q,G,S,B)}{\partial G} = 1 - C_t CE_{A1}(Q,B)(\alpha - 2\beta G)$$
(A4)

and

$$\frac{\partial^{2}TC_{Aq1}(Q,G,S,B)}{\partial G^{2}} = 2\beta CE_{A1}(Q,B)C_{t} > 0$$

Thus, for fixed Q, B and S,  $TC_{Aq1}(Q, B, G, S)$  is convex in G.

# Appendix E

Taking the first two derivatives of Equation (11) w.r.t *Q*, we get

$$\begin{aligned} \frac{\partial TC_{Aq2}(Q,B,S,G)}{\partial Q} &= -\frac{D}{Q^2} \left( S + \Pi_3(B) + (b + C_t e_{h1} R_1(G) + h_1) \frac{B^2}{2} \Pi_4 \right) + (C_t e_{h1} R_1(G) + h_1) \frac{1}{2} D \Delta_2 \\ &+ (C_t e_{h2} R_1(G) + h_2) \frac{1}{2} Dr \left[ \frac{1}{P} + \frac{r}{P_R} \right] \end{aligned} \tag{A5}$$

$$\begin{aligned} \text{where } \Delta_2 &= \frac{((1-r)P-D)}{P^2} + \frac{(D-P_R)r^2}{P_R^2} + \frac{2r}{P_R} \left( 1 - D \left\{ \frac{1}{P} + \frac{r}{P_R} \right\} \right) + \frac{1}{D} + \frac{D}{P^2} + \frac{r^2D}{P_R^2} - \frac{2}{P} - \frac{2r}{P_R} + \frac{2rD}{PP_R} \\ \frac{\partial^2 TC_{Aq2}(Q,B,S,G)}{\partial Q^2} &= 2 \frac{D}{Q^3} \left( S + C_t e_s R_1(G) + C_t e_T dR_1(G) + (b + C_t e_{h1} R_1(G) + h_1) \frac{B^2}{2} \Pi_4 \right) > 0 \\ \text{Hence, } TC_{Aq2}(Q,B,S,G) \text{ is convex in } Q \text{ for fixed } B, S \text{ and } G. \end{aligned}$$

# Appendix F

Taking the first two derivatives of Equation (16) w.r.t *Q*, we get

$$\frac{\partial TC_{Sq1}(Q, B, S, G)}{\partial Q} = (C_t e_{h1} R_1(G) + h_1) \frac{D}{2} \theta_{13}$$

$$= -\frac{D}{Q^2} \left( S + \Pi_3(B) + (b + C_t e_{h1} R_1(G) + h_1) \frac{B^2}{2} \Pi_9 \right)$$

$$+ (C_t e_{h2} R_1(G) + h_2) \frac{D(rP - P_R)}{2P^2} \left[ 1 + \frac{(rP - P_R)}{P_R} \right]$$
(A6)

where  

$$\Delta_{3} = \frac{\left((1-r)P + P_{R} - D\right)}{P^{2}} + \left(P_{R} - D\right)\left(\frac{r}{P_{R}} - \frac{1}{P}\right)^{2} + \frac{2}{P}\left((1-r)P + P_{R} - D\right)\left(\frac{r}{P_{R}} - \frac{1}{P}\right) + \frac{1}{D} + \frac{r^{2}D}{P_{R}^{2}} - \frac{2r}{P_{R}}$$

$$\Pi_{9} = \frac{1}{\left((1-r)P + P_{R} - D\right)} + \frac{1}{D}$$
and

and

$$\frac{\partial^2 T C_{Sq1}(Q,B,S,G)}{\partial Q^2} = \frac{2D}{Q^3} \left( S + \Pi_3(B) + (b + C_t e_{h1} R_1(G) + h_1) \frac{B^2}{2} \Pi_9 \right) > 0$$

Hence,  $TC_{Sq1}(Q, B, S, G)$  is convex in Q for fixed B, S and G.

## Appendix G

Taking the first and second derivative of Equation (16) w.r.t B, we get

$$\frac{\partial TC_{Sq1}(Q,B,S,G)}{\partial B} = \frac{C_b D}{Q} + bB\frac{D}{Q}\Pi_9 + (C_t e_{h1}R_1(G) + h_1)D\left[\frac{B}{Q((1-r)P + P_R - D)} + \frac{B}{DQ} - \frac{1}{D}\right]$$
(A7)

and

$$\frac{\partial^2 T C_{Sq1}(Q, B, S, G)}{\partial B^2} = (b + C_t e_{h1} R_1(G) + h_1) \frac{D}{Q} \Pi_9 > 0$$

## Appendix H

Taking the first two derivatives of Equation (23) w.r.t Q, we get  $\frac{\partial TC_{Sq2}(Q,B,S,G)}{\partial Q}$ 

$$= (C_t e_{h1} R_1(G) + h_1) \frac{D}{2} \Delta_4 - \frac{D}{Q^2} \left( S + \Pi_3(B) + (b + C_t e_{h1} R_1(G) + h_1) \frac{B^2}{2} \Pi_9 \right)$$
(A8)  
+  $(C_t e_{h2} R_1(G) + h_2) \frac{D(rP - P_R)}{2P^2} \left[ 1 + \frac{(rP - P_R)}{P_R} \right]$   
where  $\Delta_4 = \frac{((1-r)P + P_R - D)}{P^2} + (D - P_R) \left( \frac{r}{P_R} - \frac{1}{P} \right)^2 + 2 \left( 1 - \frac{rD}{P_R} \right) \left( \frac{r}{P_R} - \frac{1}{P} \right) + \frac{1}{D} + \frac{r^2 D}{P_R^2} - \frac{2r}{P_R}$   
and  
 $\partial^2 T C = (0, P, S, C) = 2D \left( \frac{r}{P_R} - \frac{1}{P} \right)^2 + 2 \left( 1 - \frac{rD}{P_R} \right) \left( \frac{r}{P_R} - \frac{1}{P} \right) + \frac{1}{D} + \frac{r^2 D}{P_R^2} - \frac{2r}{P_R}$ 

$$\frac{\partial^2 T C_{Sq2}(Q, B, S, G)}{\partial Q^2} = \frac{2D}{Q^3} \left( S + \Pi_3(B) + (b + C_t e_{h1} R_1(G) + h_1) \frac{B^2}{2} \Pi_9 \right) > 0$$

Hence,  $TC_{Sq2}(Q, B, S, G)$  is convex in Q for fixed B, S and G.

## References

- Rosenblatt, M.J.; Lee, H.L. Economic Production Cycles with Imperfect Production Processes. *IIE Trans.* 1986, 18, 48–55. https://doi.org/10.1080/07408178608975329.
- 2. Khouja, M.; Abraham, M. An economic production lot size model with imperfect quality and variable production rate. *J. Oper. Res. Soc.* **1994**, *45*, 1405–1417.
- Brojeswar, P.; Shib, S.S.; Kripasindhu, C. A mathematical model on EPQ for stochastic demand in an imperfect production system. J. Manuf. Syst. 2013, 32, 260–270.
- Hsu, J.-T.; Hsu, L.-F. Two EPQ models with imperfect production processes, inspection errors, planned backorders, and sales returns. *Comput. Industr. Eng.* 2013, 64, 389–402.
- Taleizadeh, A.A.; Cárdenas-Barrón, L.E.; Mohammadi, B. A deterministic multi product single machine EPQ model with backordering, scraped products, rework and interruption in manufacturing process. *Int. J. Prod. Econ.* 2014, 150, 9–27. https://doi.org/10.1016/j.ijpe.2013.11.023.
- Hsu, L.-F.; Hsu, J.-T. Economic production quantity (EPQ) models under an imperfect production process with shortages backordered. *Int. J. Syst. Sci.* 2014, 47, 852–867. https://doi.org/10.1080/00207721.2014.906768.
- Ganesan, S.; Uthayakumar, R. EPQ models for an imperfect manufacturing system considering warm-up production run, shortages during hybrid maintenance period and partial backordering. *Adv. Ind. Manuf. Eng.* 2020, 1, 100005. https://doi.org/10.1016/j.aime.2020.100005.
- 8. De Sujit, K.; Nayak, P.K.; Khan, A.; Bhattacharya, K.; Smarandache, F. Solution of an EPQ model for imperfect production process under game and neutrosophic fuzzy approach. *Appl. Soft Comput.* **2020**, *93*, 106397.
- 9. Dipankar, B.; Apratim, G. Economic production lot sizing under imperfect quality, on-line inspection, and inspection errors: Full vs. sampling inspection. *Comput. Industr. Eng.* **2021**, *160*, 107565.
- 10. Liu, J.J.; Yang, P. Optimal lot-sizing in an imperfect production system with homogeneous reworkable jobs. *Eur. J. Oper. Res.* **1996**, *91*, 517–527. https://doi.org/10.1016/0377-2217(94)00339-4.
- 11. Hayek, P.A.; Salameh, M.K. Production lot sizing with the reworking of imperfect quality items produced. *Prod. Plan. Control* **2001**, *12*, 584–590.

- Liao, G.-L.; Chen, Y.H.; Sheu, S.-H. Optimal economic production quantity policy for imperfect process with imperfect repair and maintenance. *Eur. J. Oper. Res.* 2009, 195, 348–357. https://doi.org/10.1016/j.ejor.2008.01.004.
- Liao, G.-L.; Sheu, S.-H. Economic production quantity model for randomly failing production process with minimal repair and imperfect maintenance. *Int. J. Prod. Econ.* 2011, 130, 118–124. https://doi.org/10.1016/j.ijpe.2010.12.004.
- 14. Krishnamoorthi, C.; Panayappan, S. An EPQ Model with Imperfect Production Systems with Rework of Regular Production and Sales Return. *Am. J. Oper. Res.* **2012**, *2*, 225–234. https://doi.org/10.4236/ajor.2012.22026.
- Shah, N.H.; Patel, D.G.; Shah, D.B. EPQ model for returned/reworked inventories during imperfect production process under price-sensitive stock-dependent demand. *Oper. Res.* 2018, 18, 343–359. https://doi.org/10.1007/s12351-016-0267-4.
- Nihar, S.; Marianthi, I.; John, W. Synchronous and asynchronous decision-making strategies in supply chains. *Comput. Chem. Eng.* 2013, 71, 116–129.
- 17. Al-Salamah, M. Economic production quantity in an imperfect manufacturing process with synchronous and asynchronous flexible rework rates. *Oper. Res. Perspect.* **2019**, *6*, 100103. https://doi.org/10.1016/j.orp.2019.100103.
- 18. Coates, E.R.; Sarker, B.R.; Ray, T.G. Manufacturing setup cost reduction. Comput. Industr. Eng. 1996, 31, 111–114.
- Sarkar, B.; Moon, I. Improved quality, setup cost reduction, and variable backorder costs in an imperfect production process. *Int. J. Prod. Econ.* 2014, 155, 204–213. https://doi.org/10.1016/j.ijpe.2013.11.014.
- Porteus, E.L. Optimal Lot Sizing, Process Quality Improvement and Setup Cost Reduction. Oper. Res. 1986, 34, 137–144. https://doi.org/10.1287/opre.34.1.137.
- Hou, K.-L. An EPQ model with setup cost and process quality as functions of capital expenditure. *Appl. Math. Model.* 2007, 31, 10–17. https://doi.org/10.1016/j.apm.2006.03.034.
- Freimer, M.; Thomas, D.; Tyworth, J. The value of setup cost reduction and process improvement for the economic production quantity model with defects. *Eur. J. Oper. Res.* 2006, 173, 241–251. https://doi.org/10.1016/j.ejor.2004.11.024.
- Nye, T.J.; Jewkes, E.M.; Dilts, D.M. Optimal investment in setup reduction in manufacturing systems with WIP inventories. *Eur. J. Oper. Res.* 2002, 135, 128–141. https://doi.org/10.1016/s0377-2217(00)00308-8.
- Sarkar, B.; Chaudhuri, K.; Moon, I. Manufacturing setup cost reduction and quality improvement for the distribution free continuous-review inventory model with a service level constraint. *J. Manuf. Syst.* 2015, 34, 74–82. https://doi.org/10.1016/j.jmsy.2014.11.003.
- Tiwari, S.; Kazemi, N.; Modak, N.M.; Cárdenas-Barrón, L.E.; Sarkar, S. The effect of human errors on an integrated stochastic supply chain model with setup cost reduction and backorder price discount. *Int. J. Prod. Econ.* 2020, 226, 107643. https://doi.org/10.1016/j.ijpe.2020.107643.
- Bouchery, Y.; Ghaffari, A.; Jemai, Z.; Dallery, Y. Including sustainability criteria into inventory models. *Eur. J. Oper. Res.* 2012, 222, 229–240. https://doi.org/10.1016/j.ejor.2012.05.004.
- Benjaafar, S.; Li, Y.; Daskin, M. Carbon Footprint and the Management of Supply Chains: Insights From Simple Models. *IEEE Trans. Autom. Sci. Eng.* 2013, 10, 99–116. https://doi.org/10.1109/tase.2012.2203304.
- Toptal, A.; Özlü, H.; Konur, D. Joint decisions on inventory replenishment and emission reduction investment under different emission regulations. *Int. J. Prod. Res.* 2014, 52, 243–269. https://doi.org/10.1080/00207543.2013.836615.
- Dye, C.-Y.; Yang, C.-T. Sustainable trade credit and replenishment decisions with credit-linked demand under carbon emission constraints. *Eur. J. Oper. Res.* 2015, 244, 187–200. https://doi.org/10.1016/j.ejor.2015.01.026.
- Qin, J.; Bai, X.; Xia, L. Sustainable Trade Credit and Replenishment Policies under the Cap-And-Trade and Carbon Tax Regulations. *Sustainability* 2015, 7, 16340–16361. https://doi.org/10.3390/su71215818.
- Datta, T.K. Effect of Green Technology Investment on a Production-Inventory System with Carbon Tax. Adv. Oper. Res. 2017, 2017, 4834839. https://doi.org/10.1155/2017/4834839.
- Huang, Y.-S.; Fang, C.-C.; Lin, Y.-A. Inventory management in supply chains with consideration of Logistics, green investment and different carbon emissions policies. *Comput. Ind. Eng.* 2019, 139, 106207. https://doi.org/10.1016/j.cie.2019.106207.
- Mishra, U.; Wu, J.-Z.; Sarkar, B. A sustainable production-inventory model for a controllable carbon emissions rate under shortages. J. Clean. Prod. 2020, 256, 120268. https://doi.org/10.1016/j.jclepro.2020.120268.
- Hasan, R.; Roy, T.C.; Daryanto, Y.; Wee, H.-M. Optimizing inventory level and technology investment under a carbon tax, capand-trade and strict carbon limit regulations. *Sustain. Prod. Consum.* 2020, 25, 604–621. https://doi.org/10.1016/j.spc.2020.12.005.
- Kaswan, M.S.; Rathi, R.; Reyes, J.A.G.; Antony, J. Exploration and Investigation of Green Lean Six Sigma Adoption Barriers for Manufacturing Sustainability. *IEEE Trans. Eng. Manag.* 2021, 1–15. https://doi.org/10.1109/tem.2021.3108171.
- Kaswan, M.S.; Rathi, R.; Garza-Reyes, J.A.; Antony, J. Green lean six sigma sustainability–oriented project selection and implementation framework for manufacturing industry. *Int. J. Lean Six Sigma* 2022, *ahead-of-print*. https://doi.org/10.1108/ijlss-12-2020-0212.
- Rathi, R.; Kaswan, M.S.; Garza-Reyes, J.A.; Antony, J.; Cross, J. Green Lean Six Sigma for improving manufacturing sustainability: Framework development and validation. J. Clean. Prod. 2022, 345, 131130. https://doi.org/10.1016/j.jclepro.2022.131130.
- Mohan, J.; Rathi, R.; Kaswan, M.S.; Nain, S.S. Green lean six sigma journey: Conceptualization and realization. *Mater. Today* Proc. 2021, 50, 1991–1998. https://doi.org/10.1016/j.matpr.2021.09.338.
- Ouyang, L.-Y.; Chen, C.-K.; Chang, H.-C. Quality improvement, setup cost and lead-time reductions in lot size reorder point models with an imperfect production process. *Comput. Oper. Res.* 2002, 29, 1701–1717. https://doi.org/10.1016/s0305-0548(01)00051-x.

- 40. Dwicahyani, A.R.; Jauhari, W.A.; Rosyidi, C.N.; Laksono, P.W. Inventory decisions in a two-echelon system with remanufacturing, carbon emission and energy effects. *Cogent Eng.* **2017**, *4*, 1–17.
- 41. Hasanov, P.; Jaber, M.; Tahirov, N. Four-level closed loop supply chain with remanufacturing. *Appl. Math. Model.* **2019**, *66*, 141–155. https://doi.org/10.1016/j.apm.2018.08.036.
- 42. Bai, Q.; Xua, J.; Chauhan, S.C. Effects of sustainability investment and risk aversion on a two-stage supply chain coordination under a carbon tax policy. *Comp. Industr. Eng.* **2020**, *142*, 106324.