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Applicability of modified weibull 
extension distribution in modeling 
censored medical datasets: 
a bayesian perspective
Navid Feroze 1*, Uroosa Tahir 1, Muhammad Noor‑ul‑Amin 2, Kottakkaran Sooppy Nisar 3, 
Mohammed S. Alqahtani 4,5, Mohamed Abbas 6,7, Rashid Ali 8* & Anuwat Jirawattanapanit 9*

There are some contributions analyzing the censored medical datasets using modifications of the 
conventional lifetime distribution; however most of the said contributions did not considered the 
modification of the Weibull distribution (WD). The WD is an important lifetime model. Due to its prime 
importance in modeling life data, many researchers have proposed different modifications of WD. One 
of the most recent modifications of WD is Modified Weibull Extension distribution (MWED). However, 
the ability of MWED to model the censored medical data has not yet been explored in the literature. 
We have explored the suitability of the model in modeling censored medical datasets. The analysis has 
been carried out using Bayesian methods under different loss functions and informative priors. The 
approximate Bayes estimates have been computed using Lindley’s approximation. Based on detailed 
simulation study and real life analysis, it has been concluded that Bayesian methods performed better 
as compared to maximum likelihood estimates. In case of small samples, the performance of Bayes 
estimates under ELF and informative prior was the best. However, in case of large samples, the choice 
of prior and loss function did not affect the efficiency of the results to a large extend. The MWED 
performed efficiently in modeling real censored datasets relating to survival times of the leukemia 
and bile duct cancer patients. The MWED was explored to be a very promising candidate model for 
modeling censored medical datasets.

The literature contains many valuable contributions for analysis of lifetime data using different modifications 
of the Weibull distribution. Silva et al.1 introduced beta modified Weibull distribution and showed that it is 
suitable in modeling data with monotone failure rates. Almalki and  Yuan2 introduced a new modified Weibull 
distribution and estimated its model parameters based on order statistics using moment estimates, MLE and Bayes 
estimates. Sarhan and  Apalo3 proposed exponentiated modified Weibull extension distribution and discussed its 
applications in different fields. Peng and  Yan4 introduced extended Weibull distribution, estimated the model 
parameters and explored applicability of the model. Ahmad and  Iqbal5 developed the generalized flexible Weibull 
extension distribution and compared its modeling capabilities with some conventional life models. El-Morshedy 
et al.6 proposed three parametric exponentiated inverse flexible Weibull extension distribution. The proposed 
model was shown to be better than other modifications of Weibull distributions in modeling life datasets. Tahir 
et al.7 introduced transmuted Weibull-Pareto and evaluated its important properties. Lindley-Weibull distribution 
was introduced by Cordeiro et al.8, as a better alternate to Weibull distribution.
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The Bayes estimation for Weibull distributions and its modified forms has attracted many researchers 
recently. Feroze et al.9 used LA, Tierney and Kadane’s approximation, Gibbs sampler and importance sampling 
for Bayesian analysis of right censored Weibull distribution. Kaur et al.10 considered LA for Bayesian estimation 
of generalized inverse Weibull distribution. Nofal et al.11 introduced transmuted exponentiated additive Weibull 
distribution and claimed it as more flexible model to analyze the real data under classical and Bayesian methods. 
Yari and  Tondpour12 introduced burr XII exponential distribution. The MLE and Bayesian methods were used 
to estimate the model parameters. The Bayes estimates were obtained using MCMC and LA methods. Saboor 
et al.13 discussed the estimation for parameters of modified beta modified Weibull distribution using MLE and 
Bayes methods. Shahzad et al.14 considered the estimation of beta exponentiated modified Weibull distribution 
using MLE. Xu and  Gui15 introduced entropy estimation of inverse Weibull distribution by using type-II 
progressive hybrid censoring via LA. Rao and  Mbwambo16 used MCMC method to analyze different properties 
of exponentiated inverse Rayleigh distribution. It was shown that MCMC method performs better than MLE. 
Babacan and  Kaya17 used LA and method of MCMC for estimation of different properties of Weibull distribution.

The researchers have frequently considered various modifications of lifetime models for modeling censored 
medical datasets, however majority of the proposed models were not the generalizations of the Weibull 
distribution. The modified Weibull extension model (MWED), having bathtub hazard rate, has been recently 
introduced by Xie et al.18. The additional feature of MWED is that the confidence interval for the shape parameter 
and joint confidence interval can be derived explicitly. Xie et al.18 proved the superiority of MWED over Weibull 
and exponentiated Weibull model, in modeling lifetime data. The applications of the MWED in satellite reliability 
engineering have been explored by Yang et al.19.

From the above discussion, it can be assessed that classical and Bayesian estimation for the modifications 
of Weibull distribution is receiving significant interest of the researchers. Exploring new models for modeling 
censored medical datasets is quite important. Different modifications of the Weibull distribution have been 
employed to model the medical datasets. The few recent studies include the followings.  Klakattawi20 dealt with 
survival analysis of cancer patients using extended Weibull model. Wahed et al.21 proposed a generalization of 
the Weibull distribution to model the survival times of the breast cancer patients. Alahmadi et al.22 considered 
weighted Weibull distribution to model COVID-19 data. Adam et al.23 introduced modified Weibull distribution 
for biomedical signal denoising. However, the analysis of MWED using censored medical datasets has not been 
discussed in the literature yet. In addition, the Bayesian analysis of medical datasets using MWED is still lacking 
in literature. This paper bridges these gaps by proposing Bayesian analysis of censored medical datasets using 
MWED. The informative priors have been assumed for posterior estimation. In addition, different loss functions 
such as, squared error loss function (SELF), quadratic loss function (QLF), precautionary loss function (PLF) 
and entropy loss function (ELF) have been be used for the posterior estimation. The SELF is symmetric loss 
function while, QLF, PLF and ELF are asymmetric loss functions. The symmetric loss function is used in the 
situations where over-estimation and under-estimation are equally important. On the other hand, when either 
over-estimation or under-estimation is more important, an asymmetric loss function is used. As the posterior 
estimates do not have explicit forms, Lindley’s approximation (LA) has been used for the numerical solutions. 
LA is used to approximate the ratio of multiple integrals, when the analytical solutions are nor possible. The 
numerical computations have been done using Mathematica and R softwares. The suitability of the MWED in 
modeling real censored datasets regarding survival times of the leukemia and bile duct cancer patients has been 
explored.

Materials and methods
The posterior estimation for the parameters of MWED has been considered informative priors. For posterior 
estimation of the parameters of the MWED, different symmetric and asymmetric loss functions such as, SELF, 
PLF, QLF and ELF, have been used. In order to obtain the numerical solutions, the LA method has been used. The 
performance of the proposed Bayes estimators has been compared under a simulation study. The applications of 
the MWED have been explored in medical field involving analysis of two censored real life datasets.

Modified Weibull extension distribution (MWED). This section includes the introduction of MWED. 
The MWED is very useful lifetime model, especially when the hazard rate has bathtub shape (Yang et al.19). 
In addition, the modeling of failure times and reliability using MWED is quite convenient due to its closed 
form expressions for cumulative distribution function (Xie et al.18). The additional feature of MWED is that the 
confidence interval for the shape parameter and joint confidence interval can be derived explicitly. Due to these 
features, the MWED is very suitable candidate to model the censored lifetimes. The analysis of applicability of 
MWED to model censored datasets relating to medical field can be very interesting. After defining the basic 
formulation about MWED in this Section, the estimates based MWED has been used to model the right censored 
medical datasets. The density function and some important characteristics of MWED have been reported in the 
following equations.

The probability density function (PDF) of the MWED is

where θ , σ ,µ ≥ 0 are the parameters of the model and x ≥ 0.
The cumulative distribution function (CDF) of the MWED is

The reliability function for the MWED is

(1)f
(
x|θ , σ ,µ

)
= σµ

(
(x/θ)σ−1

)
Exp

[
(x/θ)σ + µθ

{
1− Exp(x/θ)σ

}]

(2)F
(
x|θ , σ ,µ

)
= 1− Exp

[
µθ

{
1− Exp(x/θ)σ

}]
, θ , σ ,µ ≥ 0, t ≥ 0
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The failure rate function for the MWED is

The quantile function of MWED is

where θ is a scale parameter and σ, µ are shape parameters and ‘u’ is uniformly distributed over range (0, 1). This 
model has Weibull distribution as a special and asymptotic case, so it can be considered as a Weibull extension 
distribution. When σ ≥ 1 the hazard rate function is an increasing function and when σ ≤ 1 the hazard rate 
function is a bathtub-shaped function.

Bayesian estimation of the MWED using right censored datasets. The important part of the 
Bayesian estimation is to obtain the likelihood function for the sampling distribution. The likelihood function 
under type-II censored samples can be defined as. Suppose that ‘n’ items are put on a test and the test was 
terminated when the ‘r’ failures were observed. Hence the ‘n − r’ items were type-II right censored. Then the 
likelihood function for the said type-II right censored dataset is

The Likelihood function under censored samples

Prior and posterior distributions. The additional advantage of the Bayesian methods is that they can incorporate 
the prior information to update the current state of knowledge about the model parameters. This study will 
include the assumption of non-informative and informative priors for the derivation of Bayes estimates under 
different loss functions.

The joint informative prior assuming gamma prior for each parameter of MWED is.

where a1, a2, a3, b1, b2, b3 are hyper-parameters.
The values of the hyper-parameters have been chosen by using prior mean approach. In prior mean, the 

values of the prior-parameters are selected in the way that prior means becomes approximately equal to the true 
parametric values. In case of real datasets, the true parametric values are not available, so the values of the hyper-
parameters has been chosen to be so that the prior mean become approximately equal to the MLEs for the model 
parameters. The MLE estimators have been obtained by maximizing (7) with respect to model parameters. The 
R Code for obtaining MLEs has been given in Supplementary information.

The posterior distribution under Gamma prior

As the closed form expressions for the Bayes estimates of model parameters under SELF, PLF, QLF and ELF 
are not possible, the Bayesian approximate method, namely, Lindley’s approximate has been used to obtain the 
numerical solutions for model parameters under the said loss functions. The results under Bayes estimates have 
also been compared with most commonly used classical method, namely, MLE.

Loss functions. The introduction of the loss functions used in the study is presented in the following. The SELF 
is defined as: L(θ , θSELF) = (θ − θSELF)

2 . The Bayes estimator and posterior risks under SELF are θSELF = E(θ) 
and P(θSELF) = E

(
θ2
)
− {E(θ)}2 , respectively. The PLF is defined as:L(θPLF, θ) = (θPLF−θ)2

θPLF
 . The Bayes estimator 

and posterior risk considering PLF are θPLF =
{
E
(
θ2
)1/2} and P(θPLF) = 2{θPLF − E(θ)} , respectively. The 
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as:L(θ , θELF) =
(
θELF
θ

)
− ln

(
θELF
θ

)
− 1 . The Bayes estimator and posterior risk for ELF are θELF =

[
E
(
θ−1

)]−1 
and P(θELF) = E{L(θELF, γ )} = E{ln (θ)} − ln(θELF) , respectively.

Lindley’s approximation (LA). Having sufficiently large samples,  Lindley24 proposed that function of the form

where � = (θ , σ ,µ) , h(�) is some function involving � , I(�|x) is the logarithmic of likelihood function and 
G(�) in the logarithmic of g(�) given in (8), can be given in the following form

where �̂ is MLE of the parametric set � , Wt = h1St1 + h2St2 + h3St3,

(10)I(�) = E[h(�)] =
∫∞φ h(�)eI(�|x)+G(�)d�

∫∞φ eI(�|x)+G(�)d�

(11)I(�) = h
(
�̂

)
+ (h1v1 + h2v2 + h3v3 + v4 + v5)+

1

2
(K1W1 + K2W2 + K3W3)

Table 1.  MLEs, BEs and MSEs for MWED using θ = 1, σ = 1 and μ = 1.

n MLE SELF PLF QLF ELF

20 θ 1.1048 1.211 1.0944 1.1072 1.1488

0.5177 0.1597 0.1038 0.145 0.1386

σ 1.1291 1.1186 1.1054 1.1474 1.1187

0.6739 0.0698 0.0633 0.2049 0.0406

μ 1.1813 1.1377 1.1427 1.1527 1.0760

1.1853 0.1073 0.1146 0.0593 0.0342

50 θ 1.0919 1.1622 1.0836 1.0679 1.0869

0.3290 0.1084 0.0897 0.0775 0.0886

σ 1.1217 1.0836 1.0986 1.1015 1.0868

0.2847 0.0483 0.0541 0.1345 0.0236

μ 1.1678 1.1030 1.1116 1.1386 1.0576

1.0115 0.0344 0.0469 0.0377 0.0178

100 θ 1.0742 1.1076 1.0720 1.0449 1.0283

0.1430 0.0170 0.0119 0.0344 0.0118

σ 1.0923 1.0388 1.0291 1.0125 1.0393

0.1559 0.0026 0.0018 0.0071 0.0079

μ 1.1218 1.0453 1.0784 1.0757 1.0256

0.5557 0.0113 0.0124 0.0103 0.0066

Table 2.  MLEs, BEs and MSEs for MWED using θ = 1, σ = 2 and μ = 1.

n MLE SELF PLF QLF ELF

20 θ 1.0939 1.0722 1.0856 1.0964 1.0781

0.8806 0.0339 0.0342 0.0352 0.0187

σ 2.1138 2.1026 2.0929 2.1249 2.1242

0.4525 0.5188 0.2436 0.0878 0.0539

μ 1.1350 1.0736 1.1137 1.0783 1.0729

1.0225 0.0934 0.0933 0.0822 0.0425

50 θ 1.0878 1.0544 1.0504 1.0884 1.0715

0.5027 0.0059 0.0137 0.0182 0.0062

σ 2.1041 2.0444 2.0837 2.0631 2.1147

0.3627 0.0371 0.0885 0.0349 0.0387

μ 1.0941 1.0689 1.0945 1.063 1.0528

0.7252 0.0263 0.0404 0.0381 0.0254

100 θ 1.0348 1.0037 1.0041 1.0499 1.0476

0.2317 0.0008 0.0010 0.0113 0.0026

σ 2.0648 2.0269 2.0280 2.0238 2.0518

0.3119 0.0061 0.0072 0.1388 0.0144

μ 1.0710 1.0243 1.0293 1.0458 1.0342

0.2822 0.0073 0.0079 0.0252 0.0075
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and Stu is the (t, u)th element of the inverse of the matrix {Ltu} , where the elements of {Ltu} will be evaluated using 
MLEs of the model parameters.

Kt = S11L11t + S22L22t + S33L33t + 2S12L12t + 2S13L13t + 2S23L23t ,

vt = A1St1 + A2St2 + A3St3, t = 1, 2, 3,

v6 = h12S12 + h13S13 + h23S23 + h23S23,

v7 =
1

2
(h11S11 + h22S22 + h33S33),

At =
∂G(�)

∂�t
, t = 1, 2, 3,� = (θ , σ ,µ),

htu =
∂2h(�)

∂�t∂�u
, Ltu =

∂2L(�)

∂�t∂�u
, t, u = 1, 2, 3, Ltuk =

∂3l(�)

∂�t∂�µ∂�k
, t, u, k = 1, 2, 3,

Table 3.  MLEs, BEs and MSEs for MWED using θ = 1, σ = 2 and μ = 2.

n MLE SELF PLF QLF ELF

20 θ 1.0927 1.0722 1.0743 1.1374 1.1252

1.0682 0.0142 0.0148 0.7354 0.0242

σ 2.0801 2.1122 2.1143 2.1127 2.0779

0.9407 0.2494 0.1373 0.2144 0.0276

μ 2.2013 2.1231 2.1296 2.1411 2.0979

1.4127 0.3088 0.1714 0.4371 0.0433

50 θ 1.0790 1.0257 1.0277 1.0763 1.0337

0.7869 0.0055 0.0056 0.5436 0.0038

σ 2.0735 2.0546 2.0894 2.1081 1.9949

0.6464 0.0781 0.0449 0.1502 0.0107

μ 2.1722 2.0655 2.1058 2.1335 1.9888

1.1692 0.1263 0.0706 0.4039 0.0149

100 θ 1.0601 1.0056 1.0007 1.0249 1.0003

0.2150 0.0028 0.0028 0.1827 0.0010

σ 2.0249 2.0112 2.0205 2.1012 1.9855

0.3468 0.0376 0.0190 0.0150 0.0051

μ 2.1208 2.0222 2.0374 2.0878 1.9807

0.6539 0.0622 0.0318 0.2820 0.0073

Table 4.  MLEs, BEs and MSEs for MWED using θ = 2, σ = 1, and μ = 1.

n MLE SELF PLF QLF ELF

20 θ 2.0961 2.1491 2.103 2.1287 2.0943

1.2391 0.1435 0.0692 0.0564 0.0399

σ 1.1165 1.0904 1.1035 1.0703 1.0956

0.4704 0.0384 0.0409 0.0415 0.0261

μ 1.2117 1.0547 1.0574 1.1050 1.0873

1.0286 0.0331 0.0356 0.0970 0.0301

50 θ 2.0920 2.0882 2.0633 2.1262 2.0797

0.7882 0.0841 0.0357 0.0360 0.0154

σ 1.1036 1.0714 1.0764 1.0423 1.0701

0.2211 0.0156 0.0157 0.0129 0.0111

μ 1.1893 1.0337 1.0257 1.0422 1.0501

0.7136 0.0187 0.0195 0.0122 0.0113

100 θ 2.0709 2.0248 2.0181 2.0798 2.0501

0.1741 0.0434 0.0216 0.0150 0.0067

σ 1.0825 1.0186 1.0234 1.0135 1.0203

0.1734 0.0053 0.0054 0.0072 0.0039

μ 1.1446 1.0014 0.9909 1.0043 1.0016

0.3897 0.0076 0.0077 0.007 0.0032
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Results
This section deals with the analytical and numerical estimation for the parameters of MWED using MLE and 
Bayesian method. The Bayes estimates have been obtained using different loss functions and informative priors. 
The LA has been used to obtain the numerical results for the Bayes estimates. The performance of different 
estimates has been compared using different simulated datasets. The suitability of the MWED has been explored 
in modeling the censored medical datasets. In particular, two censored medical datasets have been used for 
analysis.

Simulation study using right censored datasets. The MLEs, Bayes estimates (BEs) and amounts of 
mean square errors (MSEs) for MWED under different loss functions SELF, PLF, QLF and ELF using different 
parametric spaces and sample sizes have been reported in this section. The results using censored simulated 
datasets have been reported in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. The simulated datasets have been 
generated using different sample sizes and different true parametric values. In particular, the samples of size 

Table 5.  MLEs, BEs and MSEs for MWED using θ = 2, σ = 2 and μ = 2.

n MLE SELF PLF QLF ELF

20 θ 2.0851 2.1256 2.1132 2.1079 2.1443

2.2909 0.0357 0.0227 0.0238 0.0233

σ 2.1164 2.1589 2.1185 2.1001 2.1182

0.7689 0.0464 0.0245 0.0200 0.0182

μ 2.2546 2.1878 2.0869 2.0774 2.1753

1.4630 0.1869 0.0903 0.1211 0.0547

50 θ 2.0815 2.0807 2.0739 2.0913 2.1053

1.3059 0.0135 0.0089 0.0117 0.0081

σ 2.1136 2.1078 2.1192 2.0794 2.1015

0.3862 0.0216 0.0193 0.0081 0.0125

μ 2.2288 2.0915 2.0217 2.0483 2.1582

0.9203 0.0786 0.0378 0.0982 0.0335

100 θ 2.0486 2.0032 2.0023 2.0106 2.0095

0.4421 0.0050 0.0025 0.0011 0.0001

σ 2.0971 2.0011 2.0005 2.0020 2.0123

0.3103 0.0067 0.0034 0.0011 0.0010

μ 2.2081 2.0386 1.9923 2.0016 2.0353

0.3594 0.0495 0.0249 0.0106 0.0042

Table 6.  MLEs, BEs and MSEs for MWED using θ = 2, σ = 2 and μ = 1.

n MLE SELF PLF QLF ELF

20 θ 2.0822 2.1347 2.1434 2.1223 2.0792

2.1371 0.0395 0.0463 0.0252 0.0136

σ 2.1992 2.0704 2.1158 2.1255 2.1879

0.9408 0.2108 0.1148 0.0553 0.0567

μ 1.1197 1.0848 1.1198 1.0662 1.1024

0.7065 0.1214 0.1241 0.0752 0.0501

50 θ 2.0808 2.0462 2.0517 2.082 2.0792

1.1630 0.0183 0.0126 0.0130 0.0035

σ 2.1976 2.0337 2.0605 2.0954 2.1173

0.4824 0.1561 0.0751 0.0291 0.0227

μ 1.1181 1.0845 1.1057 1.0308 1.0797

0.5847 0.0541 0.0536 0.0321 0.0197

100 θ 2.0007 2.0103 2.0136 2.0032 2.0039

0.5303 0.0133 0.0067 0.0024 0.0012

σ 2.1649 2.0142 2.0339 1.9758 2.0914

0.3812 0.0800 0.0191 0.0113 0.0145

μ 1.0963 1.0120 1.0250 0.9733 1.0051

0.2036 0.0147 0.0153 0.0164 0.0090
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20, 50 and 100 have been generated from the MWED for analysis. The samples have been assumed to be 20% 
right censored in all samples. The inverse transformation has been employed to generate the said samples. 
The numerical values for the prior parameters have been chosen using prior mean methodology. The prior 
mean approach chooses the values of the hyper-parameters in such a way that prior mean approximate to true 
parametric value. The comparison between MLE and Bayesian estimation methods has been carried out using 
the amount of MSEs associated with respective estimates. In Tables, the amount of MSEs has been presented in 
the bold fonts.

The steps to generate the right censored simulated samples and to compute estimates have been given in the 
following.

Step 1: Generate a sample of size ‘n’ from MWED using inverse transformation technique.
Step 2: Sort the generated sample in ascending order of magnitudes of the values.
Step 3: Decide the censoring rate, that is, what number/proportion of values will be censored.
Step 4: Let we have starting ‘r’ number of items are completely observed, then remaining ‘n –r’ number of 

items are assumed censored.

Table 7.  MLEs, BEs and MSEs for MWED using θ = 0.1, σ = 0.5 and μ = 0.1.

n MLE SELF PLF QLF ELF

20 θ 0.1136 0.1527 0.1616 0.1211 0.1166

0.0666 0.0048 0.0216 0.2220 0.0685

σ 0.5106 0.5235 0.5291 0.5109 0.5131

0.4391 0.0064 0.0120 0.0543 0.0039

μ 0.1066 0.1151 0.1244 0.1062 0.1198

0.7250 0.0022 0.0192 0.3767 0.1139

50 θ 0.1114 0.1208 0.1166 0.1085 0.1116

0.0535 0.0017 0.0111 0.1947 0.0095

σ 0.5065 0.5140 0.5098 0.5095 0.5122

0.2225 0.0041 0.0077 0.0472 0.0011

μ 0.1051 0.1133 0.1172 0.1035 0.1041

0.4141 0.0015 0.0171 0.2523 0.0719

100 θ 0.1096 0.1072 0.1103 0.1009 0.1048

0.0300 0.0004 0.0035 0.1149 0.0066

σ 0.4925 0.5071 0.5026 0.5005 0.5039

0.1522 0.0003 0.0005 0.0296 0.0005

μ 0.0950 0.1115 0.1130 0.1014 0.1010

0.2253 0.0006 0.0049 0.1452 0.0195

Table 8.  MLEs, BEs and MSEs for MWED using θ = 0.1, σ = 0.5 and μ = 0.5.

n MLE SELF PLF QLF ELF

20 θ 0.1137 0.1036 0.1278 0.1080 0.1310

0.3843 0.0054 0.0491 0.1314 0.1320

σ 0.5108 0.5122 0.5134 0.5286 0.5107

0.3117 0.0081 0.0064 0.0289 0.0094

μ 0.5320 0.5238 0.5178 0.5384 0.5091

1.1339 0.0364 0.0369 0.4839 0.0588

50 θ 0.1111 0.1034 0.1163 0.1034 0.1097

0.1663 0.0012 0.0110 0.1210 0.0732

σ 0.5090 0.5084 0.5108 0.5196 0.5092

0.2981 0.0026 0.0034 0.0153 0.0070

μ 0.5197 0.5136 0.5130 0.5132 0.5035

0.7611 0.0179 0.0211 0.2812 0.0406

100 θ 0.1069 0.1013 0.1095 0.1021 0.1056

0.1137 0.0001 0.001 0.0483 0.0261

σ 0.5054 0.5011 0.503 0.5152 0.5003

0.1661 0.0001 0.0017 0.0069 0.0033

μ 0.4964 0.5055 0.5013 0.5058 0.5009

0.1150 0.0079 0.0152 0.2412 0.0298
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Step 5: Take rth observed item as the value of  xr.
Step 6: Apply the LA given in Section “Lindley’s Approximation (LA)” to obtain the numerical estimates.
Step 7: Repeat Step-1 to Step-6 10,000 times and report the average of the estimates and their MSEs.
The graphs for amounts of MSEs associated with estimates using simulated datasets of size n = 20 and 100 

for different parametric values, have been placed in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. In the said figures, 
MLE1 along X-axis represents the amount of MSEs associated with estimates using n = 20, while MLE2 indicates 
the amount of MSEs under SELF, PLF, QLF and ELF using n = 20 have represented by SELF1, PLF1, QLF1 and 
ELF1. On the other hand, the amounts of MSEs under different loss functions, for n = 100 have been denoted by 
SELF2, PLF2, QLF2 and ELF2. From Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12, it can be assessed that the amounts 
of MSEs for n = 100 are considerably smaller as compared to those for n = 20. Hence, the MSEs tend to decrease by 
increasing the sample size. Further, the amounts of MSEs under Bayesian estimation are smaller than those under 
MLEs, in majority of the cases, especially in the small samples (n = 20). Additionally, the amounts of MSEs are 
the minimum under ELF, with only few exceptions. Hence, the results from simulate censored datasets revealed 

Table 9.  MLEs, BEs and MSEs for MWED using θ = 0.5, σ = 0.5 and μ = 0.5.

n MLE SELF PLF QLF ELF

20 θ 0.5181 0.5428 0.5364 0.5327 0.5293

3.2499 0.0885 0.1442 0.0820 0.1222

σ 0.5061 0.5234 0.5368 0.5334 0.5244

0.3035 0.0186 0.0356 0.0462 0.036

μ 0.5234 0.5315 0.5272 0.5146 0.5085

0.3734 0.0346 0.0647 0.1195 0.0705

50 θ 0.5031 0.5400 0.5330 0.5234 0.5116

1.8339 0.0445 0.0203 0.0406 0.1078

σ 0.5051 0.5198 0.5318 0.5194 0.5199

0.2001 0.0125 0.0047 0.0253 0.0275

μ 0.5141 0.5259 0.5228 0.5112 0.5031

0.2786 0.0216 0.0190 0.0869 0.0457

100 θ 0.4988 0.5051 0.5058 0.5145 0.5006

0.3804 0.0138 0.0120 0.0208 0.0939

σ 0.4907 0.5088 0.5118 0.5059 0.5099

0.1052 0.0039 0.0026 0.0142 0.0103

μ 0.4996 0.5065 0.5130 0.5031 0.4998

0.1122 0.0078 0.0114 0.0257 0.0080

Table 10.  MLEs, BEs and MSEs for MWED using θ = 0.5, σ = 0.5 and μ = 0.1.

n MLE SELF PLF QLF ELF

20 θ 0.5068 0.5137 0.5465 0.5464 0.5366

0.6290 0.0988 0.0311 0.2118 0.0738

σ 0.5259 0.5165 0.5254 0.5116 0.5131

0.3110 0.0318 0.0443 0.0244 0.0370

μ 0.1147 0.1272 0.1298 0.1123 0.1215

0.2327 0.0041 0.0212 0.3981 0.1049

50 θ 0.5027 0.5119 0.5228 0.5320 0.5347

0.5373 0.0802 0.0291 0.1069 0.0246

σ 0.5114 0.5128 0.5210 0.5083 0.5099

0.2980 0.0312 0.0376 0.0105 0.0353

μ 0.1130 0.1233 0.1164 0.1117 0.1206

0.1203 0.0028 0.0153 0.3981 0.0616

100 θ 0.4969 0.5065 0.5013 0.5029 0.5094

0.1887 0.0098 0.0013 0.0288 0.0200

σ 0.5065 0.5052 0.5163 0.5009 0.5007

0.2128 0.0156 0.0076 0.0082 0.0220

μ 0.1043 0.1059 0.1019 0.1032 0.1060

0.1023 0.0002 0.0003 0.1820 0.0128



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17157  | https://doi.org/10.1038/s41598-022-21326-w

www.nature.com/scientificreports/

that the posterior estimation under ELF can provide gains in efficiencies for estimating the model parameter 
from MWED, especially in the small samples.

Applicability of MWED in modeling censored medical datasets. This section explores the 
applicability and suitability of MWED to model censored medical datasets. Two real datasets have been utilized 
for this purpose. The first dataset is about remission times (in weeks) of 30 leukemia patients having a particular 
type of therapy. The observations of the said dataset are: 1, 1, 2, 4, 4, 6, 6, 6, 7, 8, 9, 9, 10, 12, 13, 14, 18, 19, 24, 26, 
29, 31*, 42, 45*, 50*, 57, 60, 71*, 85* and 91. The starred values (*) represent the censored times. This dataset has 
been named as D1. The second dataset is about the survival times (in days) of 22 bile duct cancer patients having 
radiation and drug treatment. The survival times are as follows: 30, 67, 79*, 82*, 95, 148, 170, 171, 176, 193, 200, 
221, 243, 261, 262, 263, 399, 414, 446, 446*, 464 and 777. These data has been named as D2. Both of the datasets 
have been reported by  Lawless25.

Table 11.  MLEs, BEs and MSEs for MWED using θ = 0.5, σ = 0.1, and μ = 0.1.

n MLE SELF PLF QLF ELF

20 θ 0.5142 0.5315 0.5202 0.5435 0.5405

7.7511 0.0900 0.0788 0.3361 0.1927

σ 0.1152 0.1260 0.1320 0.1211 0.1143

0.0371 0.0028 0.0355 0.3459 0.0795

μ 0.126 0.1229 0.1252 0.1322 0.1275

0.4915 0.0043 0.0448 0.415 0.1644

50 θ 0.5082 0.5288 0.5171 0.5250 0.5311

4.4693 0.0427 0.0353 0.2698 0.1711

σ 0.1046 0.1194 0.1221 0.1116 0.1096

0.031 0.0018 0.0123 0.1660 0.0525

μ 0.1233 0.1173 0.1202 0.1117 0.1187

0.1764 0.0024 0.0324 0.1825 0.1461

100 θ 0.4991 0.5195 0.5035 0.5139 0.5118

3.217 0.0163 0.0300 0.1976 0.1015

σ 0.1006 0.1115 0.1156 0.1012 0.1003

0.0128 0.0012 0.0095 0.0803 0.0131

μ 0.1053 0.1002 0.1092 0.0937 0.1142

0.1354 0.0005 0.0058 0.0876 0.0731

Table 12.  MLEs, BEs and MSEs for MWED using θ = 0.1, σ = 0.1 and μ = 0.1.

n MLE SELF PLF QLF ELF

20 θ 0.1132 0.1319 0.1176 0.1350 0.1351

0.5643 0.0183 0.0934 0.1644 0.1861

σ 0.1151 0.1362 0.1464 0.0828 0.112

0.0624 0.0066 0.0431 0.1997 0.4868

μ 0.1266 0.1313 0.1344 0.1146 0.1105

0.6851 0.0065 0.0458 0.0839 0.5767

50 θ 0.1082 0.1289 0.1086 0.1046 0.1314

0.3488 0.0056 0.0345 0.1151 0.1323

σ 0.1107 0.1158 0.1274 0.0651 0.1109

0.0467 0.0031 0.0240 0.1593 0.2792

μ 0.1165 0.1175 0.1343 0.1136 0.1103

0.4343 0.0045 0.0349 0.0651 0.5162

100 θ 0.1043 0.1199 0.1009 0.0681 0.1012

0.1931 0.0027 0.0166 0.0516 0.0929

σ 0.1025 0.1094 0.1196 0.0580 0.1041

0.0241 0.0019 0.0116 0.1321 0.1061

μ 0.1051 0.1109 0.1174 0.0736 0.1036

0.1380 0.0013 0.0211 0.0159 0.2265
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Since the estimation under ELF outperformed its counterparts in the simulation study, we have reported the 
description of estimates under ELF in detail. For that purpose, the density plots and CDF plots for two censored 
real medical datasets have been reported in Figs. 13, 14, 15 and 16. These Figures indicate that the estimates 
under ELF have been quite efficient in describing the behavior of each real datasets. This is due to the fact that 
estimated density curves and CDF curves, under ELF, are quite closer to the corresponding empirical curves.

Figure 1.  MSEs for estimates using θ = 1, σ = 1, μ = 1.

Figure 2.  MSEs for estimates using θ = 1, σ = 2, μ = 1.

Figure 3.  MSEs for estimates using θ = 1, σ = 2, μ = 2.
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The amounts of MSEs associated with estimates under MLE and Bayesian methods, using two censored 
real medical datasets, have been presented in Figs. 17 and 18, respectively. These Figures elucidate that all the 
estimation methods have provided satisfactory estimates. However, the estimates under ELF are slightly better 
than those under MLE, SELF, QLF and PLF. On the other hand, the reliability functions for MWED using both 
datasets have been given in Figs. 19 and 20, respectively. From these figures, it can be assessed that the survivors 

Figure 4.  MSEs for estimates using θ = 1, σ = 2, μ = 2.

Figure 5.  MSEs for estimates using θ = 2, σ = 2, μ = 1.

Figure 6.  MSEs for estimates using θ = 2, σ = 2, μ = 2.
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of the patients are more accurately modeled using the Bayes estimates under ELF. The efficiency of the proposed 
estimators in modeling the survivors of the patients is more evident in Fig. 19 developed for 30 leukemia patients.

Figure 7.  MSEs for estimates using θ = .1, σ = .1, μ = .1

Figure 8.  MSEs for estimates using θ = .1, σ = .5, μ = .1

Figure 9.  MSEs for estimates using θ = .5, σ = .1, μ = .1
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Discussions
The MWED is very important distribution to model failure times and reliability of the data. It is often preferred 
over other modifications of the Weibull distribution owing to the fact that the model possesses closed form CDF 
and hazard rate. The use of MWED is especially advantageous when the hazard rate of the data is of bathtub 
shape. The models with closed form CDF and hazard rate are also preferred to model the censored datasets. 

Figure 10.  MSEs for estimates using θ = .5, σ = .5, μ = .1

Figure 11.  MSEs for estimates using θ = .1, σ = .5, μ = .5

Figure 12.  MSEs for estimates using θ = .5, σ = .5, μ = .5
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It is worth mentioning here that the survival times of the patients often possess bathtub shaped hazard rate 
 (Kayid26). So, the MWED having bathtub shaped hazard rate is very relevant in modeling the survival times and 
reliability of the patients. However, according to the best of our knowledge, no earlier study has reported this 
aspect of MWED. In addition, the Bayesian analysis of the censored datasets using different modifications of 
the Weibull distribution has been quite frequent in literature. A careful review of the literature suggests that the 
Bayesian analysis of censored datasets using MWED has not been discussed in detail in literature. Especially, 
the suitability of the MWED in modeling censored medical datasets using Bayesian methods has not been 
discussed in literature. The gap has been bridged, in this paper, by considering Bayesian analysis of the censored 

Figure 13.  Density curve for censored real D1.

Figure 14.  CDF plot for censored real D1.

Figure 15.  Density curve for censored real D2.
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medical datasets using MWED. The detailed simulation study suggests that the estimates based on MWED 
possess the consistency property. The estimates using Bayesian methods were found to be better than those 
under MLE method. In case of Bayesian methods, the estimates under ELF were quite better as compared to 
their counterparts. These finding are in agreement with the earlier studies conducted for generalized exponential 
distribution (Mitra abd  Kundu27) and for Weibull model  (Kundu28). The suitability of the MWED in modeling 
censored medical datasets was evaluated by modeling two right censored datasets regarding survival times of the 
cancer patients. It was encouraging to observe that MWED was able to represent the behavior of both the datasets. 

Figure 16.  CDF plot for censored real D2.

Figure 17.  MSEs for estimates using D1.

Figure 18.  MSEs for estimates D2.
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Hence, MWED is a very suitable candidate model to analyze the censored medical datasets. The efficiency of the 
estimates based on MWED can further be improved by employing Bayesian methods in place of MLE method.

Conclusion
Although the literature contains the analysis of censored medical datasets using the modified versions of the 
lifetime distributions, most of the proposed models were not modifications of the Weibull distribution. Especially 
the Bayesian estimation of censored medical datasets using the modified version of Weibull distribution is rarely 
found in literature. The Weibull distribution is very important lifetime model and many authors have proposed 
different modifications of this model. The recent modification of Weibull distribution, namely MWED, has been 
shown to perform better than Weibull and mixture of Weibull distribution in modeling lifetime datasets. We 
have proposed Bayesian analysis of censored medical datasets using MWED. The results have been compared 
with most frequently used MLE method. The informative priors and different loss functions have been used for 
the analysis. The reliability characteristics of the said datasets have also been evaluated. The detailed simulation 
study has been conducted to prove the consistency and efficiency of the proposed estimates as compared to 
MLE. The applicability and suitability of the MWED is modeling censored medical datasets has been explored 
using two real datasets.

The results confirmed the consistency property of the estimates. In addition, the performance of the Bayes 
estimates was better as compared to MLE. This feature of Bayes estimates was more evident in the small samples. 
In particular, the Bayes estimates under ELF and informative prior were the best. The proposed estimators 
were quite insensitive with respect the different choices of true parametric values. Further, the performance of 
the proposed Bayes estimates, in modeling the censored real medical datasets, was better as compared to their 
counterparts. In particular, the survivors of the patients are more accurately modeled using the Bayes estimates 
under ELF. Finally, the MWED was explored to be a very potential candidate for modeling censored medical 
datasets. The proposed model was able to represent the behavior of both censored real medical datasets. The 
study is useful for the researchers dealing with censored medical datasets, especially when more flexibility in 
modeling is needed.

Figure 19.  Reliability plot for censored real D1.

Figure 20.  Reliability plot for censored real D2.



17

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17157  | https://doi.org/10.1038/s41598-022-21326-w

www.nature.com/scientificreports/

Data availability
All data generated or analyzed during this study are included in this published article.

Received: 25 March 2022; Accepted: 26 September 2022

References
 1. Silva, G. O., Ortega, E. M. & Cordeiro, G. M. The beta modified Weibull distribution. Life Time Data Anal. 163, 409–430 (2010).
 2. Almalki, S. J. & Yuan, J. A new modified Weibull distribution. Reliab. Eng. Syst. Saf. 111, 164–170 (2013).
 3. Sarhan, A. M. & Apalo, J. Exponentiated modified Weibull extension distribution. Reliab. Eng. Syst. Saf. 112, 137–144 (2013).
 4. Peng, X. & Yan, Z. Estimation and application for a new extended Weibull distribution. Reliab. Eng. Syst. Saf. 121, 34–42 (2014).
 5. Ahmad, Z. & Iqbal, B. Generalized flexible Weibull extension distribution. Circul. Comput. Sci. 24, 68–75 (2017).
 6. El-Morshedy, M., El-Bassiouny, A. H. & El-Gohary, A. Exponentiated inverse flexible Weibull extension distribution. J. Stat. Appl. 

Probab. 61, 169–183 (2017).
 7. Tahir, A., Akhter, A. S. & Haq, M. A. U. Transmuted new Weibull–Pareto distribution. Appl. Appl. Math. 131, 30–46 (2018).
 8. Corderio, G. M., Afify, A. Z., Yousaf, H. M., Cakmakypan, S. & Ozel, G. The Lindley Weibull distribution. Properties and 

application. Anais Da Academia Brasileira De Ciencias 903, 2579–2598 (2018).
 9. Feroze, N., Aslam, M., Raftab, M. & Abbasi, B. A. On bayesian analysis of right censored Weibull distribution. Reliab. Stat. Stud. 

112, 193–217 (2018).
 10. Kaur, K., Mahajan, K. K. & Arora, S. Bayesian and semi Bayesian estimation of parameters of generalized inverse Weibull 

distribution. J. Mod. Appl. Stat. Methods 171, eP2522. https:// doi. org/ 10. 22237/ jmasm/ 15360 67915 (2018).
 11. Nofal, Z. M., Afify, A. Z., Yousof, H. M., Granzotto, D. C. T. & Louzada, F. Transmuted exponentiated additive Weibull distribution. 

J. Mod. Appl. Stat. Methods https:// doi. org/ 10. 22237/ jmasm/ 15251 33340 (2018).
 12. Yari, G. & Tondpour, Z. Estimation of Burr XII-exponential distribution parameters. Appl. Appl. Math. 131, 47–56 (2018).
 13. Saboor, A. et al. Modified beta modified Weibull distribution. Comput. Stat. https:// doi. org/ 10. 1007/ s00180- 018- 0822-y (2019).
 14. Shahzad, M. N., Ullah, E. & Hussanan, A. Beta exponentiated modified Weibull distribution, properties and application. Symmetry 

https:// doi. org/ 10. 3390/ sym11 060781 (2019).
 15. Xu, R. & Gui, W. Entropy estimation of inverse Weibull distribution under adaptive type-II progressive hybrid censoring schemes. 

Symmetry https:// doi. org/ 10. 3390/ sym11 121463 (2019).
 16. Rao, G. S. & Mbwambo, S. Exponentiated inverse Rayleigh distribution and an application to coating weights of iron sheets data. 

J. Probab. Stat. 2019, 7519429. https:// doi. org/ 10. 1155/ 2019/ 75194 29 (2019).
 17. Babacan, E. K. & Kaya, S. A simulation study of the Bayes estimator for parameters in Weibull distribution. Commun. Fac. Sci. 

Univ. Ankara Ser. Al Math. Stat. 682, 1664–1674 (2019).
 18. Xie, M., Tang, Y. & Goh, T. N. A modified Weibull extension with bathtub-shaped failure rate function. Reliab. Eng. Syst. Saf. 763, 

279–285 (2002).
 19. Yang, Y. J., Wang, W., Zhang, X. Y., Xiong, Y. L. & Wang, G. H. Lifetime data modeling and reliability analysis based on modified 

Weibull extension distribution and Bayesian approach. J. Mech. Sci. Technol. 3211, 5121–5126 (2018).
 20. Klakattawi, H. S. Survival analysis of cancer patients using a new extended Weibull distribution. PLoS ONE 17(2), e0264229 (2022).
 21. Wahed, A. S., Luong, T. M. & Jeong, J. H. A new generalization of Weibull distribution with application to a breast cancer data set. 

Stat. Med. 28(16), 2077–2094 (2009).
 22. Alahmadi, A., Alqawba, M., Almutiry, W., Shawki, A. W., Alrajhi, S., Al-Marzouki, S., & Elgarhy, M. A new version of weighted 

Weibull distribution: Modelling to COVID-19 data. Discrete Dyn. Nat. Soc. 2022 (2022).
 23. Adam, A. M., El-Desouky, B. S. & Farouk, R. M. Modified Weibull distribution for biomedical signals denoising. Neurosci. Inform. 

2(1), 100038 (2022).
 24. Lindley, D. V. Approximate Bayes methods. Bayesian Statistics, Valency (1980).
 25. Lawless, J. F. Statistical Models and Methods for Lifetime Data, Second Edition, Wiley Series in Probability and Statistics (2003).
 26. Kayid, M. Some new results on bathtub-shaped hazard rate models. Math. Biosci. Eng. 19(2), 1239–1250 (2022).
 27. Mitra, S. & Kundu, D. Analysis of left censored data from the generalized exponential distribution. J. Stat. Comput. Simul. 78(7), 

669–679 (2008).
 28. Kundu, D. Bayesian inference and life testing plan for the weibull distribution in presence of progressive censoring. Technometrics 

50(2), 144–154 (2008).

Acknowledgements
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University (KKU) 
for funding this work through the Research Group Program Under the Grant Number: (GRP/393/43).

Author contributions
N.F. generated the research idea, stated the problem, and wrote the codes to perform the numerical calculations 
and plot the graphical results and supervised the work. U.T and M.N.A, R.A. performed the analysis and verified 
the numerical results, stated the problem. K.S.N, M.S.A, A.J and M.A reviewed the manuscript and contributed 
to the final version of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 21326-w.

Correspondence and requests for materials should be addressed to N.F., R.A. or A.J.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.22237/jmasm/1536067915
https://doi.org/10.22237/jmasm/1525133340
https://doi.org/10.1007/s00180-018-0822-y
https://doi.org/10.3390/sym11060781
https://doi.org/10.3390/sym11121463
https://doi.org/10.1155/2019/7519429
https://doi.org/10.1038/s41598-022-21326-w
https://doi.org/10.1038/s41598-022-21326-w
www.nature.com/reprints


18

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17157  | https://doi.org/10.1038/s41598-022-21326-w

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022, corrected publication 2022

http://creativecommons.org/licenses/by/4.0/

	Applicability of modified weibull extension distribution in modeling censored medical datasets: a bayesian perspective
	Materials and methods
	Modified Weibull extension distribution (MWED). 
	Bayesian estimation of the MWED using right censored datasets. 
	Prior and posterior distributions. 
	Loss functions. 
	Lindley’s approximation (LA). 


	Results
	Simulation study using right censored datasets. 
	Applicability of MWED in modeling censored medical datasets. 

	Discussions
	Conclusion
	References
	Acknowledgements


