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Abstract: In cluster synchronization (CS), the constituents (i.e., multiple agents) are grouped into
a number of clusters in accordance with a function of nodes pertaining to a network structure. By
designing an appropriate algorithm, the cluster can be manipulated to attain synchronization with
respect to a certain value or an isolated node. Moreover, the synchronization values among various
clusters vary. The main aim of this study is to investigate the asymptotic and CS problem of
coupled delayed complex-valued neural network (CCVNN) models along with leakage delay in finite-
time (FT). In this paper, we describe several sufficient conditions for asymptotic synchronization by
utilizing the Lyapunov theory for differential systems and the Filippov regularization framework for the
realization of finite-time synchronization of CCVNNs with leakage delay. We also propose sufficient
conditions for CS of the system under scrutiny. A synchronization algorithm is developed to indicate
the usefulness of the theoretical results in case studies.
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1. Introduction

In contrast to conventional neural networks (NNs) [1], coupled NNs (CNNs) are often susceptible
to exhibit complex dynamical properties due to sub-network contact and cooperation [2–5]. CNNs
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are becoming important because of their potential in various application domains, e.g., electrical grid,
medical science, image processing, and compression coding [6, 7]. Although complex-valued signals
are common in real-world applications, CNNs are unable to process them since real-valued signals are
involved, e.g., in coupled real-valued neural networks (CRVNNs) [3–6].

In order to deal with complex-valued data [8–11], coupled complex-valued neural network
(CCVNNs) are introduced. They can provide efficient and complex characteristics by incorporating
complex variables as network elements [12–18]. The activation function selection poses the biggest
challenge for a complex-valued neural network. There are two different activation functions in
complex-valued neural networks (CVNNs): amplitude/phase activation and real/imaginary activation.
The node activation function in a real case is often a smooth, bounded, nonconstant function. These
constraints on the activation function are quite simple, so choosing a real function that satisfies them
is not hard. In a complex valued neural network, any regular analytic function cannot be bounded
unless it reduces to a constant. This is known as Liouville’s theorem [19]. That is to say, activation
functions in complex-valued neural networks cannot be both bounded and analytic. As a result, the
primary difficulty for complex-valued neural networks is the activation functions. compared with
CRVNNs, CCVNNs can solve various practical issues, e.g, a neuron with complex signal and
orthogonal decision boundary can efficiently handle the XOR and symmetry detection
problems [20, 21]. In [22], CCVNNs can accurately represent optical wave fields of phase-conjugate
resonators, since their phase and amplitude characteristics can be interpreted by complex-valued
signals. Furthermore, CCVNNs have a number of advantages, including faster learning and reliability
as well as powerful computing capabilities. Therefore, CCVNNs have attracted attention pertaining to
their dynamic studies for real-world applications.

Many stability and synchronization studies have been reported, e.g., finite-time Mittag-Leffler
stability [23], global stability [24, 26], input-to-state stability [27] and lag synchronization, complete
synchronization, anti-synchronization [28–44]. Among these, CNN synchronization has been popular
due to its effectiveness in various applications, e.g, image encryption, image protection, and secure
communication [45]. In cluster synchronization (CS), the elements in a network are grouped into
various clusters. In this respect, the elements from the same cluster are completely synchronized,
while those in different clusters are desynchronized. For example, two subgroups will be naturally
formed in social networks when a crowd of people chooses to accept or reject an opinion according to
their preference. Subtasks will divide the robot network into communities when a collection of robots
is to complete a complex task, and consensus should be reached within each community. Many
research studies on CS have been conducted since this phenomenon exists in many different systems,
and it is applicable to different complex networks including cellular and metabolic networks, social
networks, electrical power grid networks, biological NNs, and telephone cell graphs [2, 3, 46–49]. Liu
et al. [50] considered the fractional-ordered linearly coupled system consisting of N NNs. Zhang
et al. [51] explored CS of delayed CNNs with fixed and switching coupling topologies by employing
Lyapunov theory and differential inequalities method. Yang et al. [52] discussed the CS issue of
fractional-order networks subject to nonlinear coupling in finite time with complex variables based on
the decomposition method. While CS of complex networks has received substantial attention,
research on CS of complex-valued networks is new, despite its potential use. In [52], CS of a complex
variable dynamical complex network was studied, but without considering time delays. Therefore, the
problem of CS for complex variable networks in finite time requires further investigation.
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The majority of studies focused mostly on asymptotic or exponential synchronization of networks
through traditional control techniques. However, in reality, the networks might always be expected to
achieve synchronization as quickly as possible, particularly in engineering fields. To achieve a faster
convergence rate in time-delay complex networks, an effective method is to use finite-time (FT)
synchronization control techniques. FT synchronization means the optimality in convergence time.
Investigation of finite-time CS (FTCS) of CCVNNs is useful from a practical perspective. FTCS
denotes the ability of the controlled systems to achieve synchronization in a predetermined amount of
time with the assistance of some suitable controllers. Comparing with asymptotic synchronization,
which occurs as the time approaches omit infinity, in certain instances synchronization in FT not only
improves synchronization speed but also has the advantage of low disruption and perseverance in the
presence of uncertainty. Therefore, it is worthwhile to investigate the CS of CCVNNs in FT. Yu et
al. [53] analyzed FTCS pertaining to coupled dynamical systems without time delays. Concerning the
prescribed-time stability for nonlinear PWS systems, two novel lemmas are established in [42], where
the stable time can be arbitrarily specified and is independent of any control settings and initial values.
The global fixed-time convergence principle of nonlinear systems with semi-Markovian switching is
developed in [49], to ensure the cluster synchronization in finite/fixed time for a semi-Markovian
switching complex dynamical network with discontinuous dynamic nodes. He et al. [54] studied
adaptive CS in FT based on a neutral type of CNN models with mixed delays. FTCS for a coupled
fuzzy cellular NNs was investigated in [55]. These studies are generally based on the premise that the
parameters of complex networks are in the real domain. There are very few results on the CS of
CCVNNs in FT. Furthermore, it is well understood that time delays are unavoidable in NN models,
which can result in oscillations or asynchronization [56]. As a result, it is essential to examine time
delays affect on CNNs. Furthermore, several studies have reported that constant time delays and
time-varying delays in NNs can result in chaotic behaviors. In many real-world problems, leakage
delays appear as negative feedback terms in a system, which can have a substantial impact on the
dynamics of NNs [57–61]. Because of the impact on many real-world systems such as automatic
control systems, it is important to investigate synchronization of NNs with time-varying delays and
leakage delays [62–64]. We investigate asymptotic and CS of CCVNNs in FT with leakage and
time-varying delays, and provide several useful criteria in this paper. Our research contributions
include:

(i) Examining CCVNN models with leakage and time-varying delays, which constitute a class of
coupling systems. Finding a suitable activation function subject to complex functions is the
primary goal of many studies on CVNNs. We employ the real and imaginary types of activation
functions in this paper. In addition, it is useful to divide them into their corresponding real and
imaginary parts of models for the analysis of FT synchronization of the drive-response CCVNN
model with leakage time delays.

(ii) Deriving the sufficient conditions with respect to asymptotical synchronization of the
drive-response CCVNN model with time delays. This is achieved by constructing some
non-negative functions, along with inequality techniques. Moreover, the CS criteria are
presented.

(iii) Formulating the conditions in terms of nonsingular M-matrices for determining asymptotic and
FTCS of the CCVNN model. Comparing with other conditions such as the Linear Matrix
Inequalities (LMIs), the main benefit of the adequate condition includes non-singularity of the
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M-matrix [65–67]. Unlike recent studies on CS in FT with nonlinear coupling and no time delay
of CVNN models [52], our method is applicable to CVNN models with both leakage and time
variable delays. As such, our results are more general, as compared with those in the existing
literature.

2. Model description and preliminaries

Graph theory. Consider a graph G = (V,E,G) with a set of nodes V = {1, . . . ,V}(V > 2), E ⊆
V × V, and coupling matrix J =

[
i j

]
V×V
∈ RV×V with ii = −

∑V
j=1, j,i i j for i = 1, . . . ,V , where

i j > 0 if there is an interaction between nodes i and j, or else i j = 0. Denote {C1,C2, . . . ,CM} with
Ck = {lk−1 + 1, lk−1 + 2, . . . , lk} as a set of partitions of nodes V with non-empty subset M such that
(2 ≤ M < V).

Consider a linear CCVNN model consisting of V CVNNs with both leakage and time-varying
delays. Referring to the ith node, its dynamics can be represented by:

żi(t) = − Aizi(t − δ) + Ci f (zi(t)) + Di f (zi(t − τ(t))) + Îi +

V∑
j=i

i jz j(t) + ui(t), (2.1)

where i ∈ Ck with k ∈ {1, . . . ,M}, zi(t) = (zi1(t), . . . , zin(t))T
∈ Cn denotes the ith CCVNN’s state vector

(2.1) at time t; τ(t) is the time-varying delay; δ is the leakage term; f (zi(t)) = ( f1 (zi1(t)) , . . . , fn (zin(t)))T

denotes the vector of neuron activations; Ai = diag
(
ai

1, a
i
2, . . . , a

i
n

)
> 0; Ci =

[
ci

lr

]
n×n
∈ Cn×n and

Di =
[
di

lr

]
n×n
∈ Cn×n are the interconnection weight matrices, l, r = 1, 2, . . . , n; Îi = (Îi

1, . . . , Î
i
n)T ∈ Cn

denotes an external input source. We will design the control law ui(t) later. The initial states that
correspond to (2.1) are:

zi(s) = ϕi(s), s ∈ [t0 − τ, t0] , i = 1, . . . ,V, (2.2)

where ϕi(s) = (ϕi1(s), . . . , ϕin(s))T
∈ Cn is continuous.

Remark 2.1. The terms f (zi(t − τ(t))) and f (zi(t)) are referred to as activation functions with and
without time delay, respectively. There are significant time delays in every biological process. Time
delay occurs in the propagation of action potentials along the axon and transmitting signals across
the synapse for connected neurons. Discrete delays reflect the system’s centralized effects of delays,
whereas distributed delays have effects on neural networks at some duration or period relative to the
discrete point of delays. Further research using discrete and distributed delays on this model will be
carried out in the near future.

Assumption 2.1. Let any given k = 1, 2, . . . ,M, Alk−1+1 = Alk−1+2 = · · · = Alk = Āk,Clk−1+1 = Clk−1+2 =

· · · = Clk = C̄k,Dlk−1+1 = Dlk−1+2 = · · · = Dlk = D̄k, and Îlk−1+1 = Îlk−1+2 = · · · = Îlk = Īk.

The activation function in (2.1) is Lipschitz continuous throughout this study.

Assumption 2.2. For z(t) = aR(t) + ibI(t) ∈ C, aR(t), bI(t) ∈ R, fk(zk(t)) is divided into its real and
imaginary parts: fk(zk(t)) = f R

k (aR
k (t)) + i f I

k (bI
k(t)), k = 1, 2, . . . , n. With the existence of some constants

κ̂−k , κ̌
−
k , κ̂

+
k , κ̌

+
k , k = 1, . . . , n such that for any u, v ∈ R and u , v, f R

k (·), f I
k (·), gR

k (·), gI
k(·) satisfies the

following:

κ̂−k ≤
f R
k (u) − f R

k (v)
u − v

≤ κ̂+
k , κ̌

−
k ≤

f I
k (u) − f I

k (v)
u − v

≤ κ̌+
k .
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Remark 2.2. The proposed generalized activation function class in this paper can describe the
activation functions more flexibly and more specifically. The constants κ̂−k , κ̌

−
k and κ̂+

k , κ̌
+
k in Assumption

2.2 may be positive, negative, or zero, as illustrated in [68]. Especially, when κ̂−k = κ̌−k = 0 and
κ̂+

k > 0, κ̌+
k > 0 Assumption 2.2 describes the class of globally Lipschitz continuous and monotone

nondecreasing activation functions. And when κ̂+
k > κ̂

−
k > 0 and κ̌+

k > κ̌
−
k > 0 Assumption 2.2 describes

the class of globally Lipschitz continuous and monotone increasing activation functions. Obviously,
sigmoid and piecewise linear neuron activation functions are special cases of the functions meeting
Assumption 2.2.

Assumption 2.3. Assume that the coupling matrix J satisfies the following:

J =


J11 J12 · · · J1M

J21 J22 · · · J2M
...

...
. . .

...

JM1 JM2 · · · JMM

 ,
where Jkk ∈ R

(lk−lk−1)×(lk−lk−1) is a zero row-sum matrix consisting of non negative off-diagonal values.
Jkr ∈ R

(lk−lk−1)×(lr−lr−1)(k , r), k, r = 1, . . . ,M is a zero row-sum matrix.

Definition 2.1. The CCVNN model in (2.1) is said to achieve CS in FT with partition {C1,C2, . . . ,CM},
if t∗ > t0 such that for any i ∈ Ck, k = 1, 2, . . . ,M lim

t→t∗
‖zi(t) − Rk(t)‖ = 0,

‖zi(t) − Rk(t)‖ = 0, ∀t ≥ t∗,

and the following equation is satisfied by Rk(t) = âR
k (t) + ib̂I

k(t).

Ṙk(t) = − ĀkRk(t − δ) + C̄k f (Rk(t)) + D̄k f (Rk(t − τ(t))) + ˆ̄Ik. (2.3)

Assumption 2.3 and (2.3) are combined. As such, for any i ∈ Ck, k = 1, 2, . . . ,M∑
j∈Ck

i jrk(t) = 0. (2.4)

Lemma 2.1. [69] Consider the following differential inequality with time delay:{ dx(t)
dt ≤ −ax(t) + bx(t − τ(t)),

x(r) = s(r), r ∈ [−τ, 0]
(2.5)

where τ > 0, x(t) ∈ R is continuously differential and non-negative function. If a > b > 0, then
lim

t→+∞
x(t) = 0.

Remark 2.3. In [70], different dynamical behaviors for RVNN models with time-varying delays were
examined using Lyapunov stability theory. Here, we study CVNN models, i.e the states, connection
weights and external inputs belong to the complex domain. Therefore, the derived theoretical results
are complementary to those in [70].

AIMS Mathematics Volume 8, Issue 1, 2018–2043.



6

3. Main results

3.1. Asymptotic CS of CVNN models

The new criteria for asymptotic and CS in FT for CCVNN models are established. Let ei(t) =

zi(t) − Rk(t) for i ∈ Ck. As such, the control lawsUR(t) andUI(t) can be devised as:

UR
i (t) = −λ̄keR

i (t) + ĀkeR
i (t − δ),UI

i (t) = −λ̄keI
i (t) + ĀkeI

i (t − δ). (3.1)

It follows that the error dynamical models are characterized by (2.1), (2.4) and Assumption 2.1

ėR(t) = − ĀkeR(tδ) + C̄R
k f R(eR, eI) − C̄I

k f I(eR, eI) + D̄R
k f R(eR

τ , e
I
τ) − D̄I

k f I(eR
τ , e

I
τ)

+

V∑
j=1

i jeR
j (t) − λ̄keR

i (t) + ĀkeR
i (tδ),

ėI(t) = − ĀkeR(tδ) + C̄R
k f I(eR, eI) + C̄I

k f R(eR, eI) + D̄R
k f I(eR

τ , e
I
τ) + D̄I

k f R(eR
τ , e

I
τ)

+

V∑
j=1

i jeI
j(t) − λ̄keI

i (t) + ĀkeI
i (tδ),

(3.2)

where i ∈ Ck, f R(eR, eI), f I(eR, eI), f R(eR
τ , e

I
τ), f I(eR

τ , e
I
τ), e

R
i (tδ), eI

i (tδ) are real and imaginary parts of
f (ei(t)) = f (zi(t) − f (Rk(t))), f (ei(t)) = f (zi(t − τ(t)) − f (Rk(t − τ(t)))), ei(t − δ(t) = zi(t − δ) − Rk(t − δ),
respectively.

Denote Λ̄ = diag
(
λ̄1, . . . , λ̄M

)
, Ā = diag

(
a1

min, . . . , a
M
min

)
with ak

min = min
1≤ j≤n

{
ai

l | l = 1, . . . , n, i ∈ Ck

}
for k = 1, 2, . . . ,M,

ck
min = min

1≤ j≤n

{
ci

l | l = 1, . . . , n, i ∈ Ck

}
for k = 1, . . . ,M,

L = diag (L1, . . . , Ln) , Ā = diag
(∥∥∥Ā1L

∥∥∥
1
, . . . ,

∥∥∥ĀML
∥∥∥

1

)
,

C̄RR =diag
{
||C̄R

1µ
RR||1 + ||C̄R

1µ
RI ||1, . . . , ||C̄R

nµ
RR|| + ||C̄R

nµ
RI ||1

}
,

C̄II =diag
{
||C̄I

1µ
IR||1 + ||C̄I

1µ
II ||1, . . . , ||C̄I

nµ
IR|| + ||C̄I

nµ
II ||1

}
,

C̄RI =diag
{
||C̄R

1µ
IR||1 + ||C̄R

1µ
II ||1, . . . , ||C̄R

nµ
IR|| + ||C̄R

nµ
II ||1

}
,

C̄IR =diag
{
||C̄I

1µ
RR||1 + ||C̄I

1µ
RI ||1, . . . , ||C̄I

nµ
RR|| + ||C̄I

nµ
RI ||1

}
,

D̄RR =diag
{
||D̄R

1θ
RR||1 + ||D̄R

1θ
RI ||1, . . . , ||D̄R

nθ
RR|| + ||D̄R

nθ
RI ||1

}
,

D̄II =diag
{
||D̄I

1θ
IR||1 + ||D̄I

1θ
II ||1, . . . , ||D̄I

nθ
IR|| + ||D̄I

nθ
II ||1

}
,

D̄RI =diag
{
||D̄R

1θ
IR||1 + ||D̄R

1θ
II ||1, . . . , ||D̄R

nθ
IR|| + ||D̄R

nθ
II ||1

}
,

D̄IR =diag
{
||D̄I

1θ
RR||1 + ||D̄I

1θ
RI ||1, . . . , ||D̄I

nθ
RR|| + ||D̄I

nθ
RI ||1

}
.

D̄ = diag (dmax, . . . , dmax) ∈ RM×M, withdmax = max
1≤k≤M

{∥∥∥D̄kL
∥∥∥

1

}
,

and J̄ =
[
J̄kp

]
M×M

∈ RM×M with

J̄kp =

 max
i∈Ck

{ ∑
j∈Ck

 ji

}
, if p = k,∥∥∥Jkp

∥∥∥
1
, if p , k.
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Theorem 3.1. If Assumptions 2.1–2.3 hold, the CCVNN model in (2.1) with t0 = 0 can achieve CS
asymptotically under controller (3.1) if Λ̃ + Ã − C̃ − D̃ − J̃ is a non-singular M-matrix.

Proof: Since Λ̃ + Ã − C̃ − D̃ − J̃ is a non-singular M-matrix, there exists a positive vector J =

(J1, . . .JM)T ∈ CM such that (Λ̃ + Ã − C̃ − D̃ − J̃)J ≥ 0, where,

Λ̃ =

(
Λ̄ 0
0 Λ̄

)
, Ã =

(
Ā 0
0 Ā

)
, C̃ =

(
C̄RR −C̄II

C̄IR C̄RI

)
,

D̃ =

(
D̄RR −D̄II

D̄IR D̄RI

)
, J̃ =

(
J̄ 0
0 J̄

)
. (3.3)

As most of the majority of neural network stability criteria are derived from the Lyapunov theory,
they are all conservative. Reducing the conservatism has been the topic of much research. The
reduction can be achieved with the Lyapunov stability theory primarily through two phases: a)
choosing the suitable Lyapunov functional and b) estimating its derivative. Therefore, we constructed
the following non-negative function as follows:

V(t) =

n∑
k=1

∑
i∈Ak

Yk||eR(t)|| +
n∑

k=1

∑
i∈Ak

Yk||eI(t)||. (3.4)

The derivative of V(t) along the solution of model (3.2) gives

V̇(t) ≤
M∑

k=1

∑
i∈Ck

Yksgn(eR
i (t))T ėR

i (t) +

M∑
k=1

∑
i∈Ck

Yksgn(eI
i (t))

T ėR
i (t),

=

M∑
k=1

∑
i∈Ck

Yksgn(eR
i (t))T

[
− ĀkeR(tδ) + C̄R

k f R(eR, eI) − C̄I
k f I(eR, eI) + D̄R

k f R(eR
τ , e

I
τ)

− D̄I
k f I(eR

τ , e
I
τ) +

N∑
j=1

i jeR
j (t) − λ̄keR

i (t) + ĀkeR
i (t − δ(t))

]

+

M∑
k=1

∑
i∈Ck

Yksgn(eI
i (t))

T

[
− ĀkeI(tδ) + C̄R

k f I(eR, eI) + C̄I
k f R(eR, eI) + D̄R

k f I(eR
τ , e

I
τ)

+ D̄I
k f R(eR

τ , e
I
τ) +

N∑
j=1

i jeI
j(t) − λ̄keI

i (t) + ĀkeI
i (t − δ(t))

]
.

As such, from Assumption 2.2

M∑
k=1

∑
i∈Ck

Yksgn(eR
i (t))TC̄R

k f R(eR, eI)

≤

M∑
k=1

∑
i∈Ck

n∑
s=1

n∑
r=1

Yk|ckR

rs |µ
RR|eR

is(t)| +
M∑

k=1

∑
i∈Ck

n∑
s=1

n∑
r=1

Yk|ckR

rs |µ
RI |eI

is(t)|

≤

M∑
k=1

∑
i∈Ak

max
1≤s≤n
{

n∑
r=1

|ckR

rs |µ
RR}Yk|eR

is(t)| +
M∑

k=1

∑
i∈Ck

max
1≤s≤n
{

n∑
r=1

|ckR

rs |µ
RI}Yk|eI

is(t)|
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=

M∑
k=1

||C̄R
k µ

RR||1

∑
i∈Ck

Yk||eR
i (t)|| +

M∑
k=1

||C̄R
k µ

RI ||1

∑
i∈Ck

Yk||eI
i (t)||. (3.5)

Similarly
M∑

k=1

∑
i∈Ck

Yksgn(eR
i (t))TC̄I

k f I(eR, eI) =

M∑
k=1

||C̄I
kµ

IR||1

∑
i∈Ck

Yk||eR
i (t)||

+

M∑
k=1

||C̄I
kµ

II ||1

∑
i∈Ck

Yk||eI
i (t)||,

M∑
k=1

∑
i∈Ck

Yksgn(eI
i (t))

TC̄R
k f I(eR, eI) =

M∑
k=1

||C̄R
k µ

IR||1

∑
i∈Ck

Yk||eR
i (t)||

+

M∑
k=1

||C̄R
k µ

II ||1

∑
i∈Ck

Yk||eI
i (t)||,

M∑
k=1

∑
i∈Ck

Yksgn(eI
i (t))

TC̄I
k f R(eR, eI) =

M∑
k=1

||C̄I
kµ

RR||1

∑
i∈Ck

Yk||eR
i (t)||

+

M∑
k=1

||C̄I
kµ

RI ||1

∑
i∈Ck

Yk||eI
i (t)||,

and
M∑

k=1

∑
i∈C

Yksgn(eR
i (t))T D̄R

k f R(eR
τ , e

I
τ) =

M∑
k=1

||d̄R
k θ

RR||1

∑
i∈Ck

Yk||eR
i (tτ)||δReR

i (t)

+

M∑
k=1

||d̄R
k θ

RI ||1

∑
i∈Ck

Yk||eI
i (tτ)||δ

IeI
i (t),

M∑
k=1

∑
i∈Ck

Yksgn(eR
i (t))T D̄I

k f I(eR
τ , e

I
τ) =

M∑
k=1

||d̄I
kθ

IR||1

∑
i∈Ck

Yk||eR
i (tτ)||δReR

i (t)

+

M∑
k=1

||d̄I
kθ

II ||1

∑
i∈Ck

Yk||eI
i (tτ)||δ

IeI
i (t),

M∑
k=1

∑
i∈Ck

Yksgn(eI
i (t))

T D̄R
k f I(eR

τ , e
I
τ) =

M∑
k=1

||D̄R
k θ

IR||1

∑
i∈Ck

Yk||eR
i (tτ)||δReR

i (t)

+

M∑
k=1

||D̄R
k θ

II ||1

∑
i∈Ck

Yk||eI
i (tτ)||δ

IeI
i (t),

M∑
k=1

∑
i∈Ck

Yksgn(eI
i (t))

T D̄I
k f R(eR

τ , e
I
τ) =

M∑
k=1

||D̄I
kθ

RR||1

∑
i∈Ck

Yk||eR
i (tτ)||δReR

i (t)

+

M∑
k=1

||D̄I
kθ

RI ||1

∑
i∈Ck

Yk||eI
i (tτ)||δ

IeI
i (t). (3.6)
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On the other hand, since
M∑

k=1

∑
i∈Ck

Yk sgn
(
eR

i (t)
)T

N∑
j=1

i jeR
j (t)

=

M∑
k=1

∑
i∈Ck

ii
∥∥∥eR

i (t)
∥∥∥

1
+

M∑
k=1

∑
i∈Ck

∑
j∈Ck , j,i

Yk sgn
(
eR

i (t)
)T
i jeR

j (t)

+

M∑
k=1

M∑
p=1,p,k

∑
i∈Ck

∑
j∈Cp

Yk sgn
(
eR

i (t)
)T
i jeR

j (t),

≤

M∑
k=1

∑
i∈Ck

ii
∥∥∥eR

i (t)
∥∥∥

1
+

M∑
k=1

∑
i∈Ck

∑
j∈Ck , j,i

Yk

∣∣∣ i j

∣∣∣ ||eR
j (t)‖1

+

M∑
k=1

M∑
p=1,p,k

∑
i∈Ck

∑
j∈Cp

Yk

∣∣∣ i j

∣∣∣ ∥∥∥eR
j (t)

∥∥∥
1
, (3.7)

we obtain the following results based on the characteristics of matrix J,

M∑
k=1

∑
i∈Ck

ii
∥∥∥eR

i (t)
∥∥∥

1
+

M∑
k=1

∑
i∈Ck

∑
j∈Ck , j,i

Yk | i j

∥∥∥eR
j (t)

∥∥∥
1

=

M∑
k=1

∑
i∈Ck

ii
∥∥∥eR

i (t)
∥∥∥

1
+

M∑
k=1

∑
j∈Ck

∑
i∈Ck ,i, j

Yk

∣∣∣  ji∣∣∣ ||eR
i (t)‖1

=

M∑
k=1

∑
i∈Ck

ii
∥∥∥eR

i (t)
∥∥∥

1
+

M∑
k=1

∑
i∈Ck

∑
j∈Ck , j,i

Yk

∣∣∣  ji∣∣∣ ∥∥∥eR
i (t)

∥∥∥
1

=

M∑
k=1

∑
i∈Ck

∑
j∈Ck

Yk

∣∣∣  ji∣∣∣ ||eR
i (t)‖1

≤

M∑
k=1

max
i∈Ck

∑
j∈Ck

∣∣∣  ji∣∣∣∑
i∈Ck

Yk

∥∥∥eR
i (t)

∥∥∥
1
, (3.8)

and
M∑

k=1

M∑
p=1,p,k

∑
i∈Ck

∑
j∈Cp

Yk

∣∣∣ i j

∣∣∣ ∥∥∥eR
j (t)

∥∥∥
1

=

M∑
p=1

M∑
k=1,k,p

∑
j∈Cp

∑
i∈Ck

Yp |  ji‖|eR
i (t)‖1

=

M∑
k=1

M∑
p=1,p,k

∑
j∈Cp

∑
i∈Ck

Yp

∣∣∣  ji∣∣∣ ∥∥∥eR
i (t)

∥∥∥
1

≤

M∑
k=1

 M∑
p=1,p,k

Yp

Yk
max
i∈Ck

∑
j∈Cp

∣∣∣  ji∣∣∣

∑

i∈Ck

Yk

∥∥∥eR
i (t)

∥∥∥
1

=

M∑
k=1

 M∑
p=1,p,k

Yp

Yk

∥∥∥Jkp

∥∥∥
1

∑
i∈Ck

Yk

∥∥∥eR
i (t)

∥∥∥
1
. (3.9)
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As a result of (3.7), it follows that

M∑
k=1

∑
i∈Ck

Yk sgn
(
eR

i (t)
)T

N∑
j=1

i jeR
j (t) ≤

M∑
k=1

max
i∈Ck

∑
j∈Ck

 ji

 +

M∑
p=1,p,k

Yp

Yk

∥∥∥Jkp

∥∥∥
1

∑
i∈Ck

Yk

∥∥∥eR
i (t)

∥∥∥
1
. (3.10)

Similarly, we can have

M∑
k=1

∑
i∈Ck

Yk sgn
(
eI

i (t)
)T

N∑
j=1

i jeI
j(t) ≤

M∑
k=1

max
i∈Ck

∑
j∈Ck

 ji

 +

M∑
p=1,p,k

Yp

Yk

∥∥∥Jkp

∥∥∥
1

∑
i∈Ck

Yk

∥∥∥eI
i (t)

∥∥∥
1
. (3.11)

From (3.7)–(3.11) we have,

V̇(t) ≤
M∑

k=1

1
Yk

Yk(||C̄R
k µ

RR||1 + ||C̄I
kµ

IR||1 + ||C̄R
k µ

IR||1 + ||C̄I
kµ

RR||1 + max
i∈Ck
{
∑
i∈Ck

i j} − d̄k)

+
∑

p=1,p,k

Yp

Yk
||Jkp||1

∑
i∈Ck

Yk||eR
i (t)|| +

M∑
k=1

1
Yk

[
(Yk(|C̄R

k µ
RI ||1 + ||C̄I

kµ
II ||1 + ||C̄R

k µ
II ||1

+‖|C̄I
kµ

RI ||1) + max
i∈Ck
{
∑
j∈Ck

i j} − d̄k) +
∑

p=1,p,k

Yp

Yk
||Jkp||1

∑
i∈Ck

Yk||eI
i (t)||

+

M∑
k=1

1
Yk

[
Yk(||D̄R

k θ
RR||1 + ||D̄I

kθ
IR||1 + ||D̄R

k θ
IR||1 + ||D̄I

kθ
RR||1)

]∑
i∈Ck

Yk||eR
i (tτ)||

+

M∑
k=1

1
Yk

[
Yk(||D̄R

k θ
RI ||1 + ||D̄I

kθ
II ||1 + ||D̄R

k θ
II ||1 + ||D̄I

kθ
RI ||1)

]∑
i∈Ck

Yk||eI
i (τ)||

≤min{A,B}V(t) + max{AτB}τV(t − τ(t))
≤ − aminV(t) + bmaxV(t − τ(t)). (3.12)

where

A =

M∑
k=1

1
Yk

[
Yk(||C̄R

k µ
RR||1 + ||C̄I

kµ
IR||1 + ||C̄R

k µ
IR||1 + ||C̄I

kµ
RR||1 + max

i∈Ck
{
∑
i∈Ck

i j} − d̄k)

+
∑

p=1,p,k

Yp

Yk
||Jkp||1

]∑
i∈Ck

Yk,

B =

M∑
k=1

1
Yk

[
(Yk(|C̄R

k µ
RI ||1 + ||C̄I

kµ
II ||1 + ||C̄R

k µ
II ||1 + ‖|C̄I

kµ
RI ||1) + max

i∈Ck
{
∑
j∈Ck

i j} − d̄k)

+
∑

p=1,p,k

Yp

Yk
||Jkp||1

]∑
i∈Ck

Yk,

Aτ =

M∑
k=1

1
Yk

[
Yk(||D̄R

k θ
RR||1 + ||D̄I

kθ
IR||1 + ||D̄R

k θ
IR||1 + ||D̄I

kθ
RR||1)

]∑
i∈Ck

Yk,
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Bτ =

M∑
k=1

1
Yk

[
Yk(||D̄R

k θ
RI ||1 + ||D̄I

kθ
II ||1 + ||D̄R

k θ
II ||1 + ||D̄I

kθ
RI ||1)

]∑
i∈Ck

Yk,

amin = min{A,B}, bmax = max{Aτ,Bτ}.

As a result of (Λ̃ + Ã − C̃ − D̃ − J̃)J ≥ 0, amin > bmax > 0. Then according to Lemma 2.1, one can
obtain that limt→+∞ V(t) = 0, which implies that the coupled complex-valued neural networks (2.1) can
achieve cluster synchronization asymptotically. This completes the proof of Theorem 8.

Remark 3.1. CS is a more feasible collective behavior than complete synchronization, is thought
to be important in biological research and communication engineering [71]. Generally, if all of the
neurons in neural networks are separated into many clusters, nodes within the same cluster can achieve
complete synchronization, but there is no uniform behavior between various clusters. In this paper,
we investigate cluster synchronization of the model (2.1) using the synchronization manifold method
described in [72]. It should be noted that we do not assume the coupling matrix is symmetric or
diagonal. However, the majority of previous works on network synchronization are predicated on
this assumption [73, 74]. Moreover, only the simple Lyapunov function is used in this paper. As a
result, the conditions of Theorems are strict. To further reduce the conservativeness and improve
the conditions for this cluster synchronization problem, a delay partitioning approach or the free-
weight matrix method [75, 76] could be used. However, these methods will significantly increase the
complexity of the proof procedure. Therefore, it is omitted here. In the near future, this model will
be subjected to additional research using the delay partitioning approach or the free-weight matrix
method.

3.2. CS of CVNN models in FT

In the following, the solution of model (2.1) is designed in the sense of Filippov. As such, the control
inputsUR(t),UI(t) to be constructed is discontinuous and the differential inclusion can be written as:

żi(t) ∈ − Aizi(t − δ) + Ci f (zi(t)) + Di f (zi(t − τ(t))) + Ii +

n∑
j=i

gi jz j(t) + KUi(t), (3.13)

where K[Ui(t)] represents the closure of the convex hull of Ui(t). There exists a measurable function
Si(t) ∈ K[Ui(t)] when the measurable selection theorem is applied such that

żi(t) = − Aizi(t − δ) + Ci f (zi(t)) + Di f (zi(t − τ(t))) + Ii +

n∑
j=i

gi jz j(t) + Si(t). (3.14)

From [77,78], it is straightforward to establish that if Assumption 2.2 holds, then there exists a solution
z(t) for the IVP combined with (2.1) on [t0,∞ ) with controller inputs UR

i (t),UI
i (t) for given initial

condition (2.2). Consider the controller inputs in the following form:

UR
i (t) = − m̄keR

i (t) + AkeR
i (t − δ) − (αk + βR

k ||e
R
i (t − τ)||1)sgn(eR

i (t)),
UI

i (t) = − m̄keI
i (t) + AkeI

i (t − δ) − (αk + βI
k||e

I
i (t − τ)||1)sgn(eI

i (t)). (3.15)
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From Assumption 2.1 as well as (2.1) and (2.4), the synchronization errors become

ėR(t) = − ĀkeR(tδ) + C̄R
k f R(eR, eI) − C̄I

k f I(eR, eI) + D̄R
k f R(eR

τ , e
I
τ) − D̄I

k f I(eR
τ , e

I
τ)

+

n∑
j=1

i jeR
j (t) − m̄keR

i (t) + AkeR
i (t − δ) − (αk + βR

k ||e
R
i (t − τ)||1)sgn(eR

i (t)),

ėI(t) = − ĀkeR(tδ) + C̄R
k f I(eR, eI) + C̄I

k f R(eR, eI) + D̄R
k f I(eR

τ , e
I
τ) + D̄I

k f R(eR
τ , e

I
τ)

+

n∑
j=1

i jeR
j (t) − m̄keI

i (t) + AkeI
i (t − δ) − (αk + βI

k||e
I
i (t − τ)||1)sgn(eI

i (t)),

(3.16)

and the set valued mapUi(t) is denoted by

K[UR
i (t)] = − m̄keR

i (t) + AkeR
i (t − δ) − (αk + βR

k ||e
R
i (t − τ)||1))Ksgn(eR

i (t)),
K[UR

i (t)] = − m̄keI
i (t) + AkeI

i (t − δ) − (αk + βI
k||e

I
i (t − τ)||1))Ksgn(eI

i (t)). (3.17)

Then there exists Oi(t) ∈ K[sgn(ei(t))] such that t ≥ t0

ėR(t) = − ĀkeR(tδ) + C̄R
k f R(eR, eI) − C̄I

k f I(eR, eI) + D̄R
k f R(eR

τ , e
I
τ) − D̄I

k f I(eR
τ , e

I
τ)

+

n∑
j=1

i jeR
j (t) − m̄keR

i (t) + AkeR
i (t − δ) − (αk + ηR1

k ||e
R
i (tτ)||1

+ ηI1
k ||e

I
i (tτ)||1)OR

i (t),
ėI(t) = − ĀkeR(tδ) + C̄R

k f I(eR, eI) + C̄I
k f R(eR, eI) + D̄R

k f I(eR
τ , e

I
τ) + D̄I

k f R(eR
τ , e

I
τ)

+

n∑
j=1

i jeR
j (t) − m̄keI

i (t) + AkeI
i (t − δ) − (αk + ηR2

k ||e
R
i (tτ)||1

+ ηI2
k ||e

I
i (tτ)||1)OI

i (t).

(3.18)

Definition 3.1. [79] The response model of (2.3) is said to be synchronized with the drive model of
(2.1) in FT under a suitable designed controller (3.15), if a constant T ∗ > 0 exists such that ‖e (T ∗)‖1 =

0 and ‖e(t)‖1 ≡ 0 for t > T ∗, where ‖e(t)‖1 =
∑n

i=1 |ei(t)|, e(t) = (eR(t), eI(t))T . Note that T is denoted as
the settling time of synchronization if T = inf {T ∗ ≥ 0 for t ≥ T ∗} .

Based on the above account, a theorem is put forward, as follows.

Theorem 3.2. Based on Assumptions 2.1 and 2.2, if ηR1
k ≥ ||d̄R

k θ
RR||1 − ||d̄I

kθ
IR||1, η

I1
k ≥ ||d̄

R
k θ

RI ||1 −

||d̄I
kθ

II ||1, η
R2
k ≥ ||d̄

R
k θ

IR||1 + ||d̄I
kθ

RR||1, η
I2
k ≥ ||d̄

R
k θ

II ||1 + ||d̄I
kθ

RI ||1, Ȳ ≥ 0, for k = 1, . . . ,M and Λ̃ + Ã− C̃ − J̃
is a non singular M−matrix, i.e, there exists a positive vector Y = (Y1, . . . ,Y2M)T ∈ R2M such that
(Λ̃+ Ã−C̃− J̃)Y > 0 ∈ R2M, then the coupled CVNN model of (3.13) can realize FTCS under controller
(3.15).

Proof: Leveraging on the non-singularity of J matrix
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V̇(t) ≤
M∑

k=1

∑
i∈Ck

Yksgn(eR
i (t))T ėR

i (t) +

M∑
k=1

∑
i∈Ck

Yksgn(eI
i (t))

T ėR
i (t) (3.19)

=

M∑
k=1

∑
i∈Ck

Yksgn(eR
i (t))T

[
− ĀkeR(tδ) + C̄R

k f R(eR, eI) − C̄I
k f I(eR, eI) + D̄R

k f R(eR
τ , e

I
τ)

− D̄I
k f I(eR

τ , e
I
τ) +

N∑
j=1

i jeR
j (t) − λ̄keR

i (t) + ĀkeR
i (t − δ(t)) − (αk + ηR1

k ||e
R
i (tτ)||1

+ ηI1
k ||e

I
i (tτ)||1)OR

i (t)
]

+

M∑
k=1

∑
i∈Ck

Yksgn(eI
i (t))

T

[
− ĀkeI(tδ) + C̄R

k f I(eR, eI) + C̄I
k f R(eR, eI) + D̄R

k f I(eR
τ , e

I
τ)

+ D̄I
k f R(eR

τ , e
I
τ) +

N∑
j=1

i jeI
j(t) − λ̄keI

i (t) + ĀkeI
i (t − δ(t)) − (αk + ηR2

k ||e
R
i (tτ)||1

+ ηI2
k ||e

I
i (tτ)||1)OI

i (t)
]
. (3.20)

We can obtain

−

M∑
k=1

∑
i∈Ck

Yksgn(eR
i (t))T (αk + ηR1

k ||e
R
i (tτ)||1 + ηI1

k ||e
I
i (tτ)||1)OR

i (t)

= −

M∑
k=1

∑
i∈Ck

Yk(αk + ηR1
k ||e

R
i (tτ)||1 + ηI1

k ||e
I
i (tτ)||1)δR(eR

i (t)), (3.21)

−

M∑
k=1

∑
i∈Ck

Yksgn(eI
i (t))

T (αk + ηR2
k ||e

R
i (tτ)||1 + ηI2

k ||e
I
i (tτ)||1)OI

i (t)

= −

M∑
k=1

∑
i∈Ck

Yk(αk + ηR2
k ||e

R
i (tτ)||1 + ηI2

k ||e
I
i (tτ)||1)δI(eI

i (t)). (3.22)

According to ηR1
k ≥ ||d̄

R
k θ

RR||1 − ||d̄I
kθ

IR||1, η
I1
k ≥ ||d̄

R
k θ

RI ||1 − ||d̄I
kθ

II ||1, η
R2
k ≥ ||d̄

R
k θ

IR||1 + ||d̄I
kθ

RR||1, η
I2
k ≥

||d̄R
k θ

II ||1 + ||d̄I
kθ

RI ||1 for k = 1, . . . ,M, (3.6), (3.21) and (3.22), one can obtain

M∑
k=1

∑
i∈Ck

Yksgn(eR
i (t))T

[
D̄R

k f R(eR
τ , e

I
τ) − D̄I

k f I(eR
τ , e

I
τ)
]

−

M∑
k=1

∑
i∈Ck

Yk(η
R1
k ||e

R
i (tτ)||1 + ηI1

k ||e
I
i (tτ)||1)δR(eR

i (t)) ≤ 0, (3.23)

M∑
k=1

∑
i∈Ck

Yksgn(eI
i (t))

T
[
D̄R

k f I(eR
τ , e

I
τ) + D̄I

k f R(eR
τ , e

I
τ)
]
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−

M∑
k=1

∑
i∈Ck

Yk(η
R2
k ||e

R
i (tτ)||1 + ηI2

k ||e
I
i (tτ)||1)δI(eI

i (t)) ≤ 0. (3.24)

The above equations yield

V̇(t) ≤
M∑

k=1

1
Yk

[
Yk(||C̄R

k µ
RR||1 + ||C̄I

kµ
IR||1 + ||C̄R

k µ
IR||1 + ||C̄I

kµ
RR||1

+ max
i∈Ck
{
∑
i∈Ck

i j} − d̄k) +
∑

p=1,p,k

Yp

Yk
||Jkp||1

∑
i∈Ck

Yk||eR
i (t)||

+

M∑
k=1

1
Yk

[
(Yk(|C̄R

k µ
RI ||1 + ||C̄I

kµ
II ||1 + ||C̄R

k µ
II ||1 + ‖|C̄I

kµ
RI ||1)

+ max
i∈Ck
{
∑
j∈Ck

i j} − d̄k) +
∑

p=1,p,k

Yp

Yk
||Jkp||1

]∑
i∈Ck

Yk||eI
i (t)||

−

M∑
k=1

∑
i∈Ck

Yk(αkδ
R(eR

i (t)) + αkδ
I(eI

i (t))),

≤ȲV(t) −
M∑

k=1

∑
i∈Ck

2Ykᾱki,

≤ − ȲV(t) − min
1≤k≤M

2Ykαk, (3.25)

where ᾱki = αk if eR
i (t) , 0, eI

i (t) , 0 otherwise ᾱki = 0.

V̇(t) ≤ − min
1≤k≤M

2Ykαk, t ∈ (0,+∞]. (3.26)

Integrating both sides of the above inequality from 0 to t gives

V(t) − V(0) ≤ − min
1≤k≤M

2Ykαkt, t ≥ 0. (3.27)

Note that as ||e(t)||1 ≥ 0, it indicates that

min
1≤k≤M

2Ykαk ≥ 0.

It then follows from (3.25) that limt→+∞ V(t) = −∞, which contradicts V(t) > 0, for t ∈ (0,+∞).
Hence there exists T ∗ ∈ (0,+∞) such that V (T ∗) = 0, which implies that

‖e (T ∗)‖1 = 0. (3.28)

Next, we show that ‖e(t)‖1 ≡ 0 for ∀t ≥ T ∗. Otherwise, suppose that there exists T1 > T ∗ such that
‖e (T1)‖1 > 0. Let

Ts = sup {t ∈ [T ∗,T1] : ‖e(t)‖1 = 0} .

It then follows from the fact ‖e (T ∗)‖1 = 0 that Ts is nonempty. Notice that Ts < T1, ‖e (Ts)‖1 = 0
and ‖e(t)‖1 > 0 for all t ∈ (Ts,T1] . As such, there exists T2 ∈ [Ts,T1] such that V̇(t)

∣∣∣
t=T2

> 0, otherwise,
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∀t ∈ [Ts,T1] , V̇(t) ≤ 0. Then V(t) is monotone increasing, we obtain 0 = V (Ts) ≥ V (T1) > 0, which
is a contradiction. Therefore, there exists T2 ∈ (Ts,T1] such that V̇(t)

∣∣∣
t=T2

> 0. On the other hand, note
that ‖e (T2)‖1 > 0 implies that

min
1≤k≤M

2Ykαk ≥ 0,

It follows from inequality (3.25) that V̇ (T2) < 0, which is also a contradiction. As such, ‖e(t)‖1 ≡
0,∀t ≥ T ∗. Consequently, based on Definition 3.1, response model (2.1) is synchronized with drive
model (2.3) in FT under controller (3.15). The proof of is completed.

Remark 3.2. Different from [70] in this study, 1-norm of vectors is used to construct the real and
imaginary types of Lyapunov functions. The necessary sufficient criterion is derived in the form of a
non-singular M-matrix using the constructed Lyapunov function (3.4), which can be easily verified. In
addition, other Lyapunov functions that prove CS of different NN models are available, e.g., Euclidean
norm or positive-definite quadratic form. Nonetheless, the resulting adequate conditions are in the
form of LMIs or eigenvalues, which are more difficult to be verified.

Remark 3.3. Referring to Theorems 8 and 10, when aR
i (t) = bI

i (t), â
R
k (t) = b̂I

k(t),

n∑
k=1

∑
i∈Ak

Yk||eR(t)|| =
n∑

k=1

∑
i∈Ak

Yk||eI(t)||,

we can establish new adequate conditions for asymptotic CS and FTCS for NN models described by
differential equations. Therefore, the results can be used for analyzing FTCS of NN models with a
differential equation as well as with two differential equations.

Remark 3.4. In [52], the dynamical properties of ordinary difference equations in the real domain
were studied. However, very few results on coupled network models in the complex domain are
available. Different from the existing literature, we investigate CCVNN models and analyze their
dynamical behaviours in this study.

4. Numerical example

A simulation example to demonstrate the usefulness of the theoretical results is presented.

Example 4.1. Consider a two-neuron coupled CVNN model of (2.1) with leakage and time varying
delays, where f (·) = ( f1(·), f2(·))T = (tanh(·), tanh(·))T , τ(t) = 2,M = 3 and

C̄1 =

(
1.95 + i2 0.1 + i0.3
−5 − i4.5 3 + i2.5

)
, C̄2 =

(
2 + i2 0.3 + i0.3
−5 − i4.5 2.8 + i3

)
,

C̄3 =

(
2 + i2 0.3 + i0.3
−5 − i4.5 2.8 + i3

)
, D̄1 =

(
2 + i2 0.3 + i0.3
−5 − i4.5 2.8 + i3

)
,

D̄2 =

(
2 + i2 0.3 + i0.3
−5 − i4.5 2.8 + i3

)
, D̄3 =

(
2 + i2 0.3 + i0.3
−5 − i4.5 2.8 + i3

)
,

Ā1 =Ā2 = Ā3 =

(
1 0
0 1

)
, Î1 = .Î2 = Î3 =

(
0
0

)
.
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The initial values for k = 1, 2, 3 are Rk(t) = (0.8,−8)T for t ∈ [−1, 0]. The phase portraits are shown
in Figure 1, demonstrating their chaotic behaviors.
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Figure 1. Choatic behaviour of leader node R(t).

The coupling matrix G for CCVNN model (2.1) is

G =



−6 3 3 0.5 −0.5 −0.4 0.4
3 −3 0 0.2 −0.2 0.2 −0.2
2 2 −4 0.3 −0.3 0.5 −0.5

0.5 0.5 −1 −1 1 −0.1 0.1
0.8 −0.8 0 1 −1 −0.2 0.2
0.2 0.2 −0.4 0.1 −0.1 −1 1
0.1 0.1 −0.2 −0.2 0.2 2 −2


.

Then, model (2.1) can be separated into three clusters C1 = {1, 2, 3},C2 = {4, 5}, and C3 = {6, 7}. With
the above-mentioned settings, we can obtain A = diag(1, 1, 1), µRR = µRI = µIR = µII = θRR = θRI =

θIR = θII = diag(1, 1, 1), C̄RR = C̄RI = C̄IR = C̄II = diag(14, 14.2, 14), D̄RR = D̄RI = D̄IR = D̄II =

diag(5.2, 5.1, 5), and

J̄ =


2 1 1.1

1.3 0 0.3
0.6 0.3 3

 .
Case 1 : Let Λ̄ = diag(20, 19, 20), one can achieve

Λ̃ + Ã − C̃ − D̃ − J̃ =



−0.2 −1 −19 −19.2 0 0
−1.3 0.7 −0.3 0 −19.3 0
−0.6 −0.3 −1 0 0 −19
−19.2 0 0 −0.2 −1 −1.1

0 −19.3 0 −1.3 0.7 −0.3
0 0 −19 −0.6 −0.3 −1


,
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which is a non-singular M-matrix. Based on Theorem 8, CCVNN model (2.1) can realize CS
asymptotically under (3.1) with respect to C1,C2,C3. To analyze the CS process, the error in each
cluster is

ek(t) =
∑

i, j∈Ck

‖zi(t) − Rk(t)‖1 , k = 1, 2, 3.

For k = 1, 2, 3 in Figures 2–4, we have ek(t) → 0 when t → +∞, which implies that all states achieve
CS asymptotically.
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Figure 2. The state trajectories of error e(t) in C1.
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Figure 3. The state trajectories of the error e(t) in C2.
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Figure 4. The state trajectories of the error e(t) in C3.

Case 2 : Let Λ̄ = diag(19, 18, 18), β1 = 3, β2 = 2.73, β3 = 2.5, αR
1 = αR

2 = αR
3 = 1, αI

1 = αI
2 = αI

3 = 1.
As such, the control law (3.15) follows that

Λ̃ + Ã − C̃ − J̃ ==



4 −1 −1.1 −14 0 0
−1.3 4.8 −0.3 0 −14.2 0
−0.6 −0.3 2 0 0 −14
−14 0 0 4 −1 −1.1

0 −14.2 0 −1.3 4.8 −0.3
0 0 −14 −0.6 −0.3 2


implying that Λ̃ + Ã − C̃ − J̃ = is a strictly diagonally dominant matrix.
Case 3 : In this case, we take three neurons instead of two neurons in above two cases, the three
dimensional interconnection weight matrices are taken as follows:

C̄1 =


1.9 + i0.01 21 + i0.04 0.1 + i0.3
0.2 + i0.1 1.9 + i0.01 0.2 + i0.1
0.2 + i0 0 + i0.01 0.1 + i0.1

 , C̄2 =


1.9 + i0.01 21 + i0.04 0.1 + i0.3
0.2 + i0.1 1.9 + i0.01 0.2 + i0.1
0.2 + i0 0 + i0.01 0.1 + i0.1

 ,
D̄1 =


−1.4 − i0.12 0.21 + i0 0.1 + 0.21i
0.11 + i0.01 −1.4 − 0i 0.1 + i0.03
0.22 + i0.007 −0.1 − i0.09 0.1 + i0.01

 , D̄2 =


−1.4 − i0.12 0.21 + i0 0.1 + 0.21i
0.11 + i0.01 −1.4 − 0i 0.1 + i0.03

0.22 + i0.007 −0.1 − i0.09 0.1 + i0.01

 ,
Ā1 =Ā2 =


1 0 0
0 1 0
0 0 1

 , Î1 = Î2 =


0
0
0

 .
Then activation functions f (zi(t)) and f (zi(t − τ(t))) in (2.1) can be selected as

f (zi(t)) = tanh(zi(t)), f (zi(t − τ(t))) = tanh(zi(t − τ(t))) and the transmission time-varying delay is
τ(t) = et

et+1 .
For the existence of the constants κ̂−k = 0.5, κ̌−k = 0.5, κ̂+

k = 1, κ̌+
k = 1 Assumption 3.2 is satisfies for

the activation functions f (zi(t)) = tanh(zi(t)), f (zi(t − τ(t))) = tanh(zi(t − τ(t))).
The leakage term is selected as δ = 1.2. The initial conditions associated with model (2.1) is

chosen as z1(0) = (0.51− i0.32,−0.29− i0.31, 0.01 + 0.01)T , z2(0) = (−0.32− i0.3,−0.3− i0.31, 0.01 +
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i0.01)T , z3(0) = (−0.311− i0.3,−0.31− i0.32, 0.01 + i0.01)T , z4(0) = (−0.2− i0.3,−0.32− i0.31, 0.01 +

i0.01)T . The coupling matrix G for CCVNN model (2.1) is

G =


1 −1 −1 0
0 1 0 0
0 −1 1 0
0 0 0 1

 .
Then, model (2.1) can be separated into two clusters C1 = {1, 2} and C2 = {3, 4}. From the above

findings we can easily show that the matrix Λ̃ + Ã − C̃ − D̃ − J̃ is a non-singular matrix for suitable
Λ̃. Based on Theorem 8, CCVNNs (2.1) can realize CS asymptotically under the controller (3.1) with
respect to C1,C2. To analyze the CS process, the error in each cluster is

ek(t) =
∑

i, j∈Ck

‖zi(t) − Rk(t)‖1 , k = 1, 2.

For k = 1, 2 in Figures 5–6, we have ek(t)→ 0 when t → +∞, which implies that all states achieve CS
asymptotically.
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Figure 5. The state trajectories of the error e(t) in C1.
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Figure 6. The state trajectories of the error e(t) in C2.
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5. Conclusions

This study has examined the FT asymptotic and CS problem of delayed CVNN models with
leakage delay. By utilizing the Lyapunov theory for differential systems and the Filippov
regularization framework, new sufficient conditions to ensure the FT asymptotic and the CS for the
considered drive-response coupled complex-valued models have been obtained. The conditions are
formulated in terms of non-singular M-matrices for determining FT asymptotic and CS of CCVNN
models. A simulation example with two cases has been given to validate the theoretical results.
Although there exist many studies on CS [2, 3, 47, 50] of CNNs and network control methods such as
adaptive control [50], investigations on adaptive control schemes to realize adaptive and CS CCVNN
models are limited. In this study, asymptotic CS of CCVNN models has been realized under adaptive
control. The obtained results can extend further to those in the existing literature [2, 3, 47, 50]. For
further research, the dynamics of coupled delayed CVNN models with stochastic disturbances and
impulsive effects will be investigated.
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