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A B S T R A C T

In this paper, we study an existence theory as well as stability results to the new fractional Nabla difference
biological model of glucose–insulin regulatory system (GIRS) on diabetes mellitus involving the Atangana
Baleanu–Caputo (ABC) derivative. We consider the proposed model under ABC derivative, and it has the
nonsingular Mittag-Leffler function as its kernel. We utilize the fixed point technique for the existence and
uniqueness analysis. The stability of the concerned solution in Hyers–Ulam sense is also investigated. Further
to derive the approximate solution in the form of series to the considered model, we use iterative technique
method. Numerical simulations are given to support the theoretical results. The results show that order of
the fractional derivative has a significant effect on the dynamic process. Many informations on the dynamics
of GIRS in diabetes mellitus were obtained using this model. It is recognized as a deterministic fractional
Nabla difference model for diabetes mellitus that provides a better control approach at fractional values for
the development of an artificial pancreas.
1. Introduction

Diabetes mellitus (DM) is a worldwide epidemic disease character-
ized by plasma glucose concentrations that are mostly above normal
due to an absolute or relative lack of insulin. Insulin, which is produced
by the pancreas, is the most significant element in the regulation of
blood glucose levels in the body. In general, the DM is caused by an
insufficiency of insulin relative to the requirement of tissues. Diabetes
is the most common disease that affects millions of people worldwide.
Billions of dollars are spent on its treatment each year. The Interna-
tional Diabetes Federation (IDF) Diabetes Atlas, that approximately 415
million people in the world are living with the disease and studies also
indicate that the number of diabetic patients worldwide may increase
to 629 million by year 2045 [1]. The IDF had recently given the
information to the effect that the top five countries in the world have
the highest numbers of diabetes patients (see Fig. 1). It is a very serious
problem of the world. This bleak scenario has provided numerous
researchers to investigate new methods and ways to improve diabetes
therapy. DM is a disease of the GIRS [2] also known as hyperglycemia
(see Fig. 2 for plasma glucose–insulin interaction loops). Diabetes is a
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prevalent long-term disease of the GIRS that can be classified into two
types: 1 and 2. The cause of type-1 diabetes differs from that of type-2.
The first is caused by a failure to produce insulin due to the lack or
incorrect functionality of 𝛽-cells, while the second is defined by insulin
resistance in the human body. Although much less severe than type-1
DM, type-2 DM accounts for 85% − 95% of all diabetes cases, having
a significant impact on worldwide National Health Systems, since an
untimely control of hyperglycemia facilitates the emergence of many
and diverse diabetic complications such as nefropathy, neuropathy,
retinopathy and etc., in both type-1 DM and type-2 DM. In type-
1 DM, the individual has to measure their blood glucose levels and
inject exogenous insulin with a pump several times a day. A device
that does this automatically is called an artificial pancreas (AP) and
would greatly improve the life of a type-1 DM. The AP is a related
technologies that includes control systems, actuators, and sensors to
provide a suggested plasma glucose control therapy (see Fig. 3). Many
results for type-1 diabetes, i.e. diabetic patients with no pancreatic
endogenous insulin release, are given in the AP literature (see [3–6]).
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Fig. 1. Top 10 countries (or) territories for number of adults (20–79 years) with diabetes in 2021 and 2045.

Fig. 2. Plasma glucose–insulin interaction loops.

Fig. 3. The block diagram of the closed-loop system including the glucose–insulin model.
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In view of that, mathematical models are valuable tools for diabetes
prevention and treatment programs, and obtaining an exact solution
with a good interpretation is critical. Developing bilateral interplay
mathematical models of glucose–insulin from experimental research
has also played a significant role in expanding the researchers vi-
sion and saving time and money. Previous estimates of current and
future diabetes prevalence have been published [7–9]. Mathematical
modeling has proven to be an valuable tool for better understanding
disease dynamics, predicting disease outbreaks and assessing preven-
tion or intervention efforts [10,11]. Recently, many researchers have
contributed valuable information about blood sugar modeling, diabetes
modeling and so on. In their mathematical model of GIRS on DM,
Mahata et al. [12] constructed a fuzzy and crisp environment. The
glucose dynamics in the whole body for bursting electrical activity in
pancreatic 𝛽-cells were discussed by Han et al. [13] and numerical
imulations for the GIRS were obtained. Yang et al. [14] have devel-
ped glucose infusion modeling rates and insulin injections to obtain
umerical simulations for GIRS on DM recovered infected populations.
hese new aspects emphasize the importance of developing more ef-
ective technologies to address the blood glucose regulation problem
n diabetes.

In the domains of science and engineering, differential equations
an be utilized to real-world problems [15–20]. The advantages and
mportance of fractional-order modeling are numerous. Two crucial
eatures of fractional derivatives are the generalization of the model
nd its memory effects [21–29]. A novel generalized Hattaf fractional
GHF) derivative with non-singular kernel which includes many frac-
ional derivatives such as Atangana–Baleanu (AB) and Caputo–Fabrizio
CF) (see [30,31]). Some authors recently introduced new non-local
erivatives with non-singular kernels, which have been successfully ap-
lied to some real-world problems [32,33]. To understand the dynamics
f these pandemic diseases, fractional calculus play a vital role in the
ield of biological sciences and numbers of diseases have been modeled
uch as Covid-19, dengue fever, HIV and measles epidemic [34–38].
he importance of dealing with fractional-order derivatives is the in-
olvement of memory and hereditary properties that gives a more
ealistic way to diabetes model. In order to explore the transmission
ynamics of glucose–insulin for diabetes, researchers have developed
ractional derivative mathematical models in recent years [39]. In [40],
he fractional modeling of DM via Liouville–Caputo and ABC fractional
erivatives is analyzed. Global dynamics of a diabetic patients with
mpulsive insulin injections model for CF fractional derivative were
nvestigated in [41]. Therefore, it is of great significance to carry out
esearch on the dynamic behavior of DM in fractional modeling, which
as inspired a great deal of interest.

However, in real-world applications, the memory feature of frac-
ional derivatives or non-locality can easily lead to numerical errors
r the loss of critical information in the original systems. Some highly
ccurate numerical approaches were established. In practice, it re-
ains unavailable for long-term modeling or control. This is also one

f the reasons why there are fewer results in discrete time control
nd other discrete concerns in fractional calculus. The application of
iscrete fractional calculus to introduced memory effects is a novel
echnique [42–44]. For 𝛾 ∈ R, the domain is a discrete set of values
uch as N𝛾 = {𝛾, 𝛾 + 1, 𝛾 + 2,… , }. Therefore, the discrete fractional
ifference systems are an important topic with promising applications
n fields such as biology, medical science, economics and so on (see [45,
6]). Following that, the significant results for fractional difference
quations, which are the discrete analogues of fractional differential
quations is reported [47–49]. The discrete versions of new types of
ractional operators involving non-singular kernels, as well as some of
heir features are examined [50–52], adding a new insight to discrete
ractional calculus. Abdeljawad and Baleanu investigated the newly
efined Nabla fractional difference operator ABC, also known as the
ittag-Leffler function in fractional discrete calculus [53]. Therefore,
3

f these new Nabla fractional difference operators are to be used to
represent the dynamics of biological systems, discovering their discrete
counterparts is critical. Until now, there is no reported the GIRS in type-
1 DM patients with Nabla discrete ABC fractional-order. Even so, the
discrete fractional calculus of DM model is still in its primitive stage.

In this paper, according to dynamical analysis, in which mathe-
matical models of glucose–insulin. We present a modified DM model
involves the Nabla discrete ABC fractional-order derivative gives more
appropriate and comfortable behavior in a system for closed-loop de-
sign which helps to develop the AP. By the use of Nabla discrete ABC
fractional-order derivative, the modified DM model permits from the
incorporation of memory effects.

2. Methods

We recall some of the fundamental definitions of discrete fractional
calculus in this section. Recently, several new definitions of Nabla
fractional difference from derivatives with and without non-singular
kernel [50–53]. In this paper, we generalize the model (3) involving
Nabla discrete ABC fractional derivative. In this study, we aimed to
derive the existence, uniqueness, and Hyers–Ulam stability results for
the model based on the results discussed above and existing literature
(3).

2.1. Background of discrete fractional calculus

Definition 2.1 ([49]). We define the gamma function 𝛤 (𝜉) by the
integral

𝛤 (𝜉) = ∫

∞

0
𝑒−𝜅𝜅𝜉−1𝑑𝜅.

Definition 2.2 ([53]). The backward difference operator is defined as
follows ∇𝜁 (𝜅) = 𝜁 (𝜅) − 𝜁 (𝜅 − 1) and the iteratively operator is ∇𝜆𝜁 (𝜅) =
(∇𝜆−1𝜁 (𝜅)), 𝜅 ∈ N1.

(i) The 𝑚 ascending function of 𝑡 for a natural number 𝑚 is

𝑡�̄� = 𝑡(𝑡 + 1)(𝑡 + 2),… , (𝑡 + 𝑚 − 1), 𝑡 ∈ R

and 𝑡0̄ = 1, where 𝑡�̄� to 𝑚 rising.
(ii) Let 𝜆 ∈ R, then

𝜅�̄� =
𝛤 (𝜅 + 𝜆)
𝛤 (𝜅)

,

where 𝜅 ∈ R∖{...,−2,−1, 0}, 0�̄� = 0.

Definition 2.3 (see [45,50,53]). Let 𝜚(𝜅) = 𝜅 − 1 denote the backward
jump operator. Then, for a function 𝜙 ∶ N𝛾 = {𝛾, 𝛾 + 1, 𝛾 + 2,… , } → R,
the Nabla left fractional sum is written as

∇−𝜆
𝛾 𝜙(𝜅) = 1

𝛤 (𝜆)

𝜅
∑

𝜉=𝛾+1
(𝜅 − 𝜚(𝜉))𝜆−1𝜙(𝜉), 𝜅 ∈ N𝛾+1. (1)

Definition 2.4 ([53]). For �̂� ∈ R, |�̂�| < 1, and 𝜆, 𝜁 , �̂� ∈ C with R(𝜆) >
0 with two parameters, the Nabla discrete Mittag-Leffler function is
defined as

E𝜆,�̂�(�̂�, 𝜁 ) =
∞
∑

ℏ=0
�̂�ℏ

𝜁ℏ𝜆+�̂�−1

𝛤 (𝜆ℏ + �̂�)
. (2)

Definition 2.5 (see [45,50,53]). For 𝜆 ∈ (0, 1) and a function 𝜙,
the Atangana and Baleanu Nabla discrete new (Caputo) fractional
difference is

𝐴𝐵𝐶
𝛾 ∇𝜆𝜙(𝜅) =

ℳ(𝜆)
1 − 𝜆

𝜅
∑

𝜉=𝛾+1
∇𝜉𝜙(𝜉)E�̄�

( −𝜆
1 − 𝜆

, 𝜅 − 𝜚(𝜉)
)

=
ℳ(𝜆)
1 − 𝜆

[

∇𝜙(𝜅) ∗ E�̄�
( −𝜆
1 − 𝜆

, 𝜅
)]

, 𝜆 ∈ (0, 1
2
).
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Fig. 4. Flow chart for the model (3).
The Atangana and Baleanu Nabla discrete new (Riemann–Liouville)
fractional difference is

𝐴𝐵𝑅
𝛾 ∇𝜆𝜙(𝜅) =

ℳ(𝜆)
1 − 𝜆

∇𝜉
𝜅
∑

𝜉=𝛾+1
𝜙(𝜉)E�̄�

( −𝜆
1 − 𝜆

, 𝜅 − 𝜚(𝜉)
)

=
ℳ(𝜆)
1 − 𝜆

∇𝜉
[

∇𝜙(𝜅) ∗ E�̄�
( −𝜆
1 − 𝜆

, 𝜅
)]

, 𝜆 ∈ (0, 1
2
),

where ℳ(𝜆) is a normalization constant with ℳ(0) = ℳ(1) = 1.

Definition 2.6 ([50]).The fractional sum associated to 𝐴𝐵𝑅
𝛾 ∇𝜆𝜙(𝜅) is

defined as by

𝐴𝐵
𝛾 ∇−𝜆𝜙(𝜅) = 1 − 𝜆

ℳ(𝜆)
𝜙(𝜅) + 𝜆

ℳ(𝜆)
∇−𝜆
𝛾 𝜙(𝜅),

where 0 < 𝜆 < 1.

2.2. Model description

Several biological phenomena have been extensively addressed
in recent years utilizing the theory of fractional-order discrete sys-
tems; the system that consists of finite fractional-order difference
equations [45]. Specifically, the fractional-order discrete systems are
used, along with their associated digital data, to approximation the
corresponding fractional-order differential equations. Among all math-
ematical models proposed for describing the behavior of the GIRS,
Bergman minimal model (BMM) which shows the blood glucose con-
centration level of diabetic patients with continuous-time nonlinear
dynamic representation (see [40,41]), is very common. In this paper,
we consider BMM for modeling the GIRS in type-1 DM patients with
nabla discrete ABC fractional-order, the use of the AP system as shown
in Fig. 3 and the model structure as well as visualization of how the
three states interact with each other have been depicted in Fig. 4.

The equations model are given by

⎧

⎪

⎨

⎪

⎩

𝐴𝐵𝐶
𝛾 ∇𝜆(𝜅) = −℘1 +℘2 +℘1𝑏,
𝐴𝐵𝐶
𝛾 ∇𝜆(𝜅) = −℘2 +℘3 −℘3𝑏 +℘6𝑏,
𝐴𝐵𝐶
𝛾 ∇𝜆(𝜅) = −℘3 +℘4 +℘4℘5 −℘6 +℘6𝑏,

(3)

where 𝐴𝐵𝐶
𝛾 ∇𝜆 denotes the nabla discrete ABC fractional-order with

order 𝜆 (0 < 𝜆 < 1); (𝜅) is the plasma glucose concentration; (𝜅)
is the insulin effect on glucose concentration reduction; (𝜅) is the
insulin concentration in plasma;  is the basal pre injection value of
4

𝑏

plasma glucose (mg∕dl); 𝑏 is the basal pre injection value of plasma
insulin (μU∕ml); ℘1 is the insulin independent rate constant of glucose
rate uptake in muscles, liver and adipose tissue (min−1); ℘2 is the rate
of decrease in tissue glucose uptake ability (min−1); ℘3 is the insulin
independent increase in glucose uptake ability in tissue per unit of in-
sulin concentration 𝑏 (min−2 (μU∕ml)); ℘4 is the rate of the pancreatic
𝛽-cells release of insulin after the glucose injection and with glucose
concentration above (h((μU∕ml)min−2 (mg∕dl)−1)); ℘5 is the threshold
value of glucose above which the pancreatic 𝛽-cells release insulin
(mg∕dl); ℘6 is the decay rate for insulin in plasma (min−1) pancreatic
𝛽-cells release insulin (min−1).

To accomplish this, we write the right hand sides of (3) as

⎧

⎪

⎨

⎪

⎩

𝜃1(𝜅,, ,) = −℘1 +℘2 +℘1𝑏,

𝜃2(𝜅,, ,) = −℘2 +℘3 −℘3𝑏 +℘6𝑏,

𝜃3(𝜅,, ,) = −℘3 +℘4 +℘4℘5 −℘6 +℘6𝑏,

(4)

and with initial conditions

(𝛾) = 𝛾 ,(𝛾) = 𝛾 ,(𝛾) = 𝛾 .

Further we use

ℑ(𝜅) =

⎧

⎪

⎨

⎪

⎩

(𝜅)
(𝜅)
(𝜅),

ℑ(𝛾) =

⎧

⎪

⎨

⎪

⎩

(𝛾)
(𝛾)
(𝛾),

𝛩(𝜅,ℑ(𝑡)) =

⎧

⎪

⎨

⎪

⎩

𝜃1(𝜅,, ,)
𝜃2(𝜅,, ,)
𝜃3(𝜅,, ,),

(5)

and

𝛩𝛾 =

⎧

⎪

⎨

⎪

⎩

𝜃1(𝛾,(𝛾),(𝛾),(𝛾))
𝜃2(𝛾,(𝛾),(𝛾),(𝛾))
𝜃3(𝛾,(𝛾),(𝛾),(𝛾)).

(6)

Eqs. (3) and (6), it is possible to write
𝐴𝐵𝐶∇𝜆𝛾ℑ(𝜅) = 𝛩(𝜅,ℑ(𝜅)), 𝜅 ∈ N𝛾 . (7)

By applying AB fractional integral in the solution of system (7), and it
follows from Definition 2.6 that

ℑ(𝜅) = ℑ(𝛾) + 1 − 𝜆
ℳ(𝜆)

𝛩(𝜅,ℑ(𝜅)) + 𝜆
ℳ(𝜆)𝛤 (𝜆)

𝜅
∑

𝜉=𝛾+1
(𝜅 − 𝜚(𝜉))𝜆−1𝛩(𝜉,ℑ(𝜉)).

(8)

For onward analysis, we claim the assumptions to be hold:
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(A1). There exist 𝜂𝛼 > 0, such that

|𝛩(𝜅,ℑ) − 𝛩(𝜅, ℑ̂)| ≤ 𝜂𝛼|ℑ − ℑ̂|.

(A2). There exist constants 𝜑𝛼 > 0 and 𝜓𝛼 > 0, such that for any
ℑ, ℑ̂ ∈ R, we have |𝛩(𝜅,ℑ)| ≤ 𝜑𝛼 and |𝛩(𝜅, ℑ̂)| ≤ 𝜓𝛼 .

Lemma 2.7 ([50]). If 0 < 𝜆 < 1, we have
𝐴𝐵
𝛾 ∇−𝜆(𝐴𝐵𝐶

𝛾 ∇𝜆𝜙(𝜅)
)

= 𝜙(𝜅) − 𝜙(𝛾).

Lemma 2.8 (Krassnoselski Fixed Point Theorem [31]). Let ℧ ⊂ 𝑋 be a
closed, bounded, convex non empty subset of𝑋 and there exist two operators
𝛺 and 𝛯 such that

(1) 𝛺 is a contraction mapping.
(2) 𝛺ℑ + 𝛯ℑ̂ ∈ ℧ whenever ℑ, ℑ̂ ∈ ℧.
(3) 𝛯 is compact and continuous.
Then there exists at least one solution ℑ ∈ ℧ such that 𝛺ℑ + 𝛯ℑ = ℑ.

2.3. Existence and uniqueness of the solution

In this section, we investigate the existence and the uniqueness
of the solutions of the considered model (3). Fixed point theory is a
powerful tool to use to study the afore required need. Therefore, we
use the fixed point theorem to determine the existence findings for at
least one solution to model (3).

Theorem 2.9. Under the Assumption (A1) and (A2), the problem (7) has
a solution if

(𝑖) ℜ < 1,

(𝑖𝑖)
‖ℑ𝛾‖𝑐 + 

1 −ℜ
≤ 𝛽,

here  = 1−𝜆
ℳ(𝜆)𝜑𝛼 +

1
ℳ(𝜆)𝐁(𝐾−𝛾,𝜆)𝜓𝛼 , ℜ =

(

(1−𝜆)
ℳ(𝜆) +

1
ℳ(𝜆)𝐁(𝐾−𝛾,𝜆)

)

𝜂𝛼 .
Consequently the considered model (3) has a solution.

roof. A closed and compact set ℧ is defined as ℧ = {ℑ ∈ ℧ ∶ ‖ℑ‖ ≤
𝛽}.

We define two operators 𝛺 and 𝛯 as

𝛺ℑ(𝜅) =ℑ𝛾 +
1 − 𝜆
ℳ(𝜆)

𝛩(𝜅,ℑ(𝜅)), (9)

𝛯ℑ(𝜅) = 𝜆
ℳ(𝜆)𝛤 (𝜆)

𝜅
∑

𝜉=𝛾+1
(𝜅 − 𝜚(𝜉))𝜆−1𝛩(𝜉,ℑ(𝜉)). (10)

The operator equation can be written as ℑ(𝜅) = 𝛺ℑ(𝜅) + 𝛯ℑ(𝜅). For
∈ (𝛾, 𝐾], we provide proof in various steps as:

tep 1: We prove that 𝛺 is contraction.
For ℑ(𝜅), ℑ̂(𝜅) ∈ ℧ and Assumption (A1), then

𝛺ℑ(𝜅) −𝛺ℑ̂(𝜅)‖ ≤ 1 − 𝜆
ℳ(𝜆)

𝜂𝛼‖ℑ(𝜅) − ℑ̂(𝜅)‖,

if 1−𝜆
ℳ(𝜆) 𝜂𝛼 < 1. Therefore 𝛺 is contraction mapping.

tep 2: We prove 𝛺ℑ̂(𝜅) + 𝛯ℑ(𝜅) ∈ ℧, for ℑ̂(𝜅),ℑ(𝜅) ∈ ℧.
By using Minkowski inequality, it follows that

‖𝛺ℑ̂(𝜅) + 𝛯ℑ(𝜅)‖ ≤‖ℑ𝛾‖𝑐 + sup
𝛾<𝜅≤𝐾

1 − 𝜆
ℳ(𝜆)

|

|

|

𝛩(𝜅, ℑ̂(𝜅)) − 𝛩(0)||
|

+ sup
𝛾<𝜅≤𝐾

𝜆
ℳ(𝜆)𝛤 (𝜆)

×
𝜅
∑

𝜉=𝛾+1
(𝜅 − 𝜚(𝜉))𝜆−1||

|

𝛩(𝜉,ℑ(𝜉)) − 𝛩(0)|

+ sup
𝛾<𝜅≤𝐾

1 − 𝜆
ℳ(𝜆)

|

|

|

𝛩(0)||
|

+ sup
𝛾<𝜅≤𝐾

𝜆
ℳ(𝜆)𝛤 (𝜆)

𝜅
∑

𝜉=𝛾+1
(𝜅 − 𝜚(𝜉))𝜆−1||

|

𝛩(0)|. (11)
5

y using Assumptions (A1), one has

sup
<𝜅≤𝐾

1 − 𝜆
ℳ(𝜆)

|

|

|

𝛩(𝜅, ℑ̂(𝜅)) − 𝛩(0)||
|

≤
(1 − 𝜆)𝜂𝛼
ℳ(𝜆)

‖ℑ̂(𝜅)‖ (12)

and

sup
𝛾<𝜅≤𝐾

𝜆
ℳ(𝜆)𝛤 (𝜆)

𝜅
∑

𝜉=𝛾+1
(𝜅 − 𝜚(𝜉))𝜆−1||

|

𝛩(𝜉,ℑ(𝜉)) − 𝛩(0)|

≤
𝜆𝜂𝛼

ℳ(𝜆)𝛤 (𝜆)

𝜅
∑

𝜉=𝛾+1
(𝜅 − 𝜚(𝜉))𝜆−1(𝜅 − 𝛾)0̄‖ℑ(𝜅)‖.

Take (𝜅 − 𝛾)0̄ = 1 and from Definition 2.3, it follows that
𝜅
∑

𝜉=𝛾+1
(𝜅 − 𝜚(𝜉))𝜆−1(𝜅 − 𝛾)0̄ =

𝛤 (𝜅 − 𝛾 + 𝜆)
𝜆𝛤 (𝜅 − 𝛾)

.

Therefore

sup
𝛾<𝜅≤𝐾

𝜆
ℳ(𝜆)𝛤 (𝜆)

𝜅
∑

𝜉=𝛾+1
(𝜅 − 𝜚(𝜉))𝜆−1||

|

𝛩(𝜉,ℑ(𝜉)) − 𝛩(0)|

≤
𝜂𝛼

ℳ(𝜆)𝐁(𝐾 − 𝛾, 𝜆)
‖ℑ(𝜅)‖. (13)

Combing (11)–(13), we have

‖𝛺ℑ̂(𝜅) + 𝛯ℑ(𝜅)‖ ≤‖ℑ𝛾‖𝑐 +
(1 − 𝜆)
ℳ(𝜆)

𝜑𝛼 +
1

ℳ(𝜆)𝐁(𝐾 − 𝛾, 𝜆)
𝜓𝛼

+
( (1 − 𝜆)𝜂𝛼

ℳ(𝜆)
+

𝜂𝛼
ℳ(𝜆)𝐁(𝐾 − 𝛾, 𝜆)

)

𝛽

≤‖ℑ𝛾 |‖𝑐 +  +ℜ𝛽 ≤ 𝛽.

tep 3: We prove that operator 𝛯 is continuous and 𝛯(℧) is relatively
compact.

For ℑ(𝜅) ∈ ℧, taking a sequence ℑ𝑚(𝜅), whose limit ℑ(𝜅)

‖𝛯ℑ𝑚(𝜅) − 𝛯ℑ(𝜅)‖ ≤
𝜂𝛼

ℳ(𝜆)𝐁(𝐾 − 𝛾, 𝜆)
‖ℑ𝑚(𝜅) −ℑ(𝜅)‖. (14)

Thus, we conclude from (14) that 𝛯ℑ𝑚(𝜅) → 𝛯ℑ(𝜅) as ℑ𝑚(𝜅) → ℑ(𝜅),
his implies that the operator 𝛯 is continuous.

Then, we show that 𝛯 is relatively compact.
For ℑ(𝜅) ∈ ℧, we have

ℑ(𝜅) = |

|

|

sup
𝛾<𝜅≤𝐾

𝜆
ℳ(𝜆)

𝜅
∑

𝜉=𝛾+1
(𝜅 − 𝜚(𝜉))𝜆−1𝛩(𝜉,ℑ(𝜉))||

|

≤ 𝛽,

which means that operator 𝛯 is bounded.
Let N0 ∈ N𝛾 and N0 < 𝜅1 < 𝜅2, we get from Definition 2.3 that

‖𝛯ℑ(𝜅2) − 𝛯ℑ(𝜅1)‖ ≤
𝜑𝛼

ℳ(𝜆)
(

∇−𝜆
𝛾 (𝜅2 − 𝛾)0̄ − ∇−𝜆

𝑎 (𝜅1 − 𝛾)0̄

+ ∇−𝜆
𝜅1
(𝜅2 − 𝜅1)0̄

)

≤
𝜑𝛼

ℳ(𝜆)

(

(𝜅2 − 𝛾)�̄� − (𝜅1 − 𝛾)�̄� + (𝜅2 − 𝜅1)�̄�
)

𝛤 (𝜆 + 1)
,

hich implies that ‖𝛯ℑ(𝜅2) − 𝛯(𝜅1)‖ → 0 as 𝜅2 → 𝜅1. Thus, the
operator 𝛯 is uniformly cauchy in ℧. Consequently, by Arzela–Ascoli
theorem [31], is relatively compact.
Step 4: There exists a solution ℑ(𝜅) ∈ ℧ when ℑ(𝜅) = 𝛺ℑ(𝜅) + 𝛯ℑ(𝜅).

If ℑ(𝜅) = 𝛴ℑ(𝜅) = 𝛺ℑ(𝜅) + 𝛯ℑ(𝜅), by using Minkowski inequality,
we get

‖ℑ(𝜅)‖ = ‖𝛺ℑ(𝜅) + 𝛯ℑ(𝜅)‖ ≤ ‖ℑ𝛾‖𝑐 +
1 − 𝜆
ℳ(𝜆)

𝜑𝛼

+ 1
ℳ(𝜆)𝐁(𝐾 − 𝛾, 𝜆)

𝜓𝛼 ≤ 𝛽,

which means that ℑ(𝜅) ∈ ℧. By the consequence of Krasnoselskii fixed
point theorem, therefore, model (3) admits at least one solution.

Theorem 2.10. Under the continuity 𝛩 together with Assumption (A1)
nd if the condition 𝜇𝛼 < 1, then the problem (7) has a unique solution,
here 𝜇𝛼 = 1−𝜆

ℳ(𝜆) +
1

ℳ(𝜆)𝐁(𝐾−𝛾,𝜆) 𝜂𝛼 . Consequently the model (3) has unique
solution.
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2.4. Ulam–Hyers (U–H) and Ulam–Hyers Rassias (U–H–R) stability

Ulam suggested the stability of functional equations derived from
the stability problem of group homomorphism in 1940. Hyers solves
the stability problem of additive mappings over Banach spaces in 1941.
Since then, U–H stability has developed rapidly. The concept of U–H
type stability is very important in many realistic situations in biology.
This kind of stability ensures that a close exact solution exists. Recently,
U–H and U–H–R stability for fractional derivatives have been studied
in many research articles (refer [31,37]).

Definition 2.11 (see [31,37]). Let ℑ(𝜅) ∈ 𝑋 be any solution of
𝐴𝐵𝐶
𝛾 ∇𝜆ℑ(𝜅) − 𝛩(𝜅,ℑ(𝜅))‖ ≤ 𝜖, for 𝜖 > 0, then model (3) is U–H stable
f there is a unique solution to model (3) with 𝜇𝛼 > 0 such that

ℑ(𝜅) − ℑ̂(𝜅)‖ ≤ 𝜇𝛼𝜖, 𝜖 > 0.

emark 2.12 (see [31,45]). Consider a small perturbation 𝜛 ∈ (𝛾, 𝐾]
atisfy following

(i) |𝜛(𝜅)| < 𝜖, for 𝜖 > 0.
(ii) For 𝜅 ∈ (𝛾, 𝐾], we have the model
𝐴𝐵𝐶
𝛾 ∇𝜆ℑ(𝜅) = 𝛩(𝜅,ℑ(𝜅)) +𝜛(𝜅),

ℑ(𝛾) = ℑ𝛾 .

emma 2.13. The solution of the perturbed problem
𝐴𝐵𝐶
𝛾 ∇𝜆ℑ(𝜅) = 𝛩(𝜅,ℑ(𝜅)) +𝜛(𝜅),

ℑ(𝛾) = ℑ𝛾 ,
(15)

atisfies the relation

ℑ(𝑘) −ℑ(𝜅)‖ ≤
( 1 − 𝜆
ℳ(𝜆)

+ 1
ℳ(𝜆)𝐁(𝐾 − 𝛾, 𝜆)

)

𝜖.

Theorem 2.14. Under Assumption (A1) with Lemma 2.13, the solution of
problem (7) is U–H stable, if the following condition hold,

( 1−𝜆
ℳ(𝜆) +

1
ℳ(𝜆)𝐁(𝐾−𝛾,𝜆)

)

[

1 −
( 1−𝜆
ℳ(𝜆) +

1
ℳ(𝜆)𝐁(𝐾−𝛾,𝜆)

)

𝜂𝛼
]

< 1.

onsequently the approximate solution of the considered model (3) is U–H
table.

efinition 2.15 (see [31,37]). Let 𝜓(𝜅) ∈ C[(𝛾, 𝐾],R] and ℑ(𝜅) ∈ 𝑋
e any solution of ‖

𝐴𝐵𝐶
𝛾 ∇𝜆ℑ(𝜅) − 𝛩(𝜅,ℑ(𝜅))‖ ≤ 𝜓(𝜅)𝜖, for 𝜖 > 0, then

odel (3) is U–H–R stable there is a unique solution to model (3) with
𝛼 > 0, such as

ℑ(𝜅) − ℑ̂(𝜅)‖ ≤ 𝜓(𝜅)𝜇𝛼𝜖, 𝜖 > 0.

emark 2.16 (see [37,45]). Consider a small perturbation 𝜛 ∈ (𝛾, 𝐾]
ith the properties

(i) |𝜛(𝜅)| < 𝜓(𝜅)𝜖, for 𝜖 > 0.
(ii) For 𝜅 ∈ (𝛾, 𝐾], we have the following model
𝐴𝐵𝐶
𝛾 ∇𝜆ℑ(𝜅) = 𝛩(𝜅,ℑ(𝜅)) +𝜛(𝜅),

ℑ(𝛾) = ℑ𝛾 .

Lemma 2.17. The solution of the perturbed problem
{

𝐴𝐵𝐶
𝛾 ∇𝜆ℑ(𝜅) = 𝛩(𝜅,ℑ(𝜅)) +𝜛(𝜅),

ℑ(𝛾) = ℑ𝛾 ,
(16)

satisfies the given relation

∥ ℑ(𝑘) −ℑ(𝜅)| ≤
( 1 − 𝜆 + 1 )

𝜓(𝜅)𝜖.
6

ℳ(𝜆) ℳ(𝜆)𝐁(𝐾 − 𝛾, 𝜆)
Theorem 2.18. Under Assumption (A1) with Lemma 2.17, the solution of
problem (7) is U–H–R stable, if the following condition hold,

( 1−𝜆
ℳ(𝜆) +

1
ℳ(𝜆)𝐁(𝐾−𝛾,𝜆)

)

[

1 −
( 1−𝜆
ℳ(𝜆) +

1
ℳ(𝜆)𝐁(𝐾−𝛾,𝜆)

)

𝜂𝛼
]

< 1.

Consequently the approximate solution of the considered model (3) is
U–H–R stable.

2.5. Approximate solution of the considered model

Since the DM model with Nabla discrete ABC fractional derivative
has three equations. To obtain the solution, we will use an iterative
technique with the help of the Nabla discrete AB integral operator.

Now we apply Eq. (8) on the solution (3), and get the below results

(𝜅) = (𝛾) + 1 − 𝜆
ℳ(𝜆)

𝜃1(𝜅,(𝜅),(𝜅),(𝜅))

+ 𝜆
ℳ(𝜆)𝛤 (𝜆)

𝜅
∑

𝜉=𝛾+1
(𝜅 − 𝜚(𝜉))𝜆−1𝜃1(𝜉,(𝜉),(𝜉),(𝜉)),

(𝜅) = (𝛾) + 1 − 𝜆
ℳ(𝜆)

𝜃2(𝜅,(𝜅),(𝜅),(𝜅))

+ 𝜆
ℳ(𝜆)𝛤 (𝜆)

𝜅
∑

𝜉=𝛾+1
(𝜅 − 𝜚(𝜉))𝜆−1𝜃2(𝜉,(𝜉),(𝜉),(𝜉)),

(𝜅) = (𝛾) + 1 − 𝜆
ℳ(𝜆)

𝜃3(𝜅,(𝜅),(𝜅),(𝜅))

+ 𝜆
ℳ(𝜆)𝛤 (𝜆)

𝜅
∑

𝜉=𝛾+1
(𝜅 − 𝜚(𝜉))𝜆−1𝜃3(𝜉,(𝜉),(𝜉),(𝜉)).

The following iterative scheme is formulated

𝑛(𝜅) = 𝑛(𝛾) +
1 − 𝜆
ℳ(𝜆)

𝜃1(𝜅,𝑛−1(𝜅),𝑛−1(𝜅),𝑛−1(𝜅))

+ 𝜆
ℳ(𝜆)𝛤 (𝜆)

𝜅
∑

𝜉=𝛾+1
(𝜅 − 𝜚(𝜉))𝜆−1

× 𝜃1(𝜉,𝑛−1(𝜉),𝑛−1(𝜉),𝑛−1(𝜉)), (17)

𝑛(𝜅) = 𝑛(𝛾) +
1 − 𝜆
ℳ(𝜆)

𝜃2(𝜅,𝑛−1(𝜅),𝑛−1(𝜅),𝑛−1(𝜅))

+ 𝜆
ℳ(𝜆)𝛤 (𝜆)

𝜅
∑

𝜉=𝛾+1
(𝜅 − 𝜚(𝜉))𝜆−1

× 𝜃2(𝜉,𝑛−1(𝜉),𝑛−1(𝜉),𝑛−1(𝜉)), (18)

𝑛(𝜅) = 𝑛(𝛾) +
1 − 𝜆
ℳ(𝜆)

𝜃3(𝜅,𝑛−1(𝜅),𝑛−1(𝜅),𝑛−1(𝜅))

+ 𝜆
ℳ(𝜆)𝛤 (𝜆)

𝜅
∑

𝜉=𝛾+1
(𝜅 − 𝜚(𝜉))𝜆−1

× 𝜃3(𝜉,𝑛−1(𝜉),𝑛−1(𝜉),𝑛−1(𝜉)). (19)

The exact solution of the problem can be determined as follows if the
iteration system is established for terms bigger than 𝑛 ∶

(𝜅) = lim
𝑛→∞

𝑛(𝜅),

(𝜅) = lim
𝑛→∞

𝑛(𝜅),

(𝜅) = lim
𝑛→∞

𝑛(𝜅).

Thus, we get the required solution.

3. Results and discussion

The numerical results and discussion for the approximate solution
for the considered model are provided in this section. To obtain the
effect of the Nabla discrete ABC fractional derivative on the approxi-
mation solution (17)–(19) of the model (3). For the model we choose
some suitable values for where the normal person and type-1 diabetes
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Fig. 5. Different differential order of the visualization of chaotic attractor of system (3) by trajectory with initial condition of (0) = 0.83, (0) = 1.83, (0) = 1.03 for the parameters
given in Table 1.
Fig. 6. The system (3) bifurcation diagram based on different values of parameters ℘3 and ℘6.
Fig. 7. Concentration profile for normal person with Nabla discrete fractional derivative of (a) (𝜅), (b) (𝜅), (c) (𝜅).
parameters value as shown in Table 1. The model dynamics are affected
by a change in the value, according to these simulations.

First, we can obtain chaotic dynamics by varying the parameters;
here, we focus on the varied dynamical behavior induced by different
differential order 𝜆 as illustrated in Fig. 5. Following that, bifurcation
7

diagrams of the model (3) for various parameters are shown, and the
biological significance of these diagrams is addressed. The quantities
obtained or approaching stability by a system (chaotic attractors or pe-
riodic orbits, fixed points) are displayed against a bifurcation variable
in the system in a bifurcation diagram. According to past research, if
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Fig. 8. Concentration profile for type-1 diabetes with Nabla discrete fractional derivative of (a) (𝜅), (b) (𝜅), (c) (𝜅).

Fig. 9. Compare the plasma glucose and plasma insulin results.
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Fig. 10. The glucose–insulin system for a normal person as well as for type 1 diabetes mellitus.
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Table 1
Parameters of normal person and type-1 diabetes in the model (see [40]).

Parameter Normal person Type-1 diabetes

𝑏 80 80
𝑏 7 15
℘1 0.0317 0
℘2 0.0123 0.017
℘3 4.92 × 10−6 5.3 × 10−6

℘4 0.0039 0.0042
℘5 79.053 80.25
℘6 0.2659 0.264

a system exhibits chaotic behavior, it indicates the presence of various
disorder [8]. In the present work, whenever system acts chaotically we
specify it as some kind of disorder. The suggested mathematical model
simulates common GIRS-related disorders. Fig. 6 depicts the model of
bifurcation diagram for various values of ℘3 and ℘6. The local maxima
of the time series (max) are plotted for a few thousand iterations before
he system is given time to settle down in order to depict the bifurcation
iagrams of the system for each value of the control parameter. The
ystem is stable for large values of parameters ℘3 and ℘6 but as these
alues (3.54 to 4) are increased, the system exhibits chaotic behavior.

Figs. 7–9 demonstrate the bounded solution for a normal person and
ype-1 diabetes based on normal glucose, insulin basal level, and insulin
n plasma concentration. It should be noted that either low insulin
ensitivity (low 𝛽-cell) or (−𝐼𝑛𝑠 = 𝛽, dashed green line), sensitivity
= 𝐼𝑛𝑠 − 𝛽, dashed-dotted cyan line) lead to increased and prolonged
lasma glucose concentrations (top row of plots). High sensitivity in
nother system can somewhat make up for low sensitivity in one
ystem. For example, low insulin sensitivity and high 𝛽-cell sensitivity
−𝐼𝑛𝑠 + 𝛽, dotted red line) results in relatively normal plasma glucose
oncentrations (top row of plots). In this scenario, however, the result-
ng plasma insulin levels is exceedingly high (bottom row of plots).
ig. 10 depicts the entire behavior of the glucose–insulin system in both
ormal and type-1 diabetes. The graphical representations illustrate
hat the model is very dependent on the fractional-order 𝜆 and the

model parameters chosen. We see that the classical system (i.e. 𝜆 = 1)
fails to stable the GIRS for both normal and type-1 DM, and does not
maintain the close-loop design for an AP, for the GIRS presented in
Figs. 8 and 9. Fig. 11 depicts a comparison of the GIRS Nabla ABC
fractional derivative and the Nabla Caputo fractional derivative for a
normal person and type-1 diabetes in each compartment. Therefore,
the mathematical formulation established by the Nabla ABC fractional
difference operator is useful in the simulation results indicates the
actual and control situation of discrete monitoring of GIRS for the
development of AP.

We discovered that when the derivative order 𝜆 is decreased from
1, the systems memory effect increases, causing the infection to spread
slowly and the population of type-1 diabetics to grow for a long time.
9

Because fractional derivatives have a memory property, the derivative b
order 𝜆 influences the dynamics that describe patients with type-1 dia-
betes. When 𝜆 tends to 0, we find that the maximum levels of infection
are reduced. The memory effect characterized by fractional derivative
is reduced when 𝜆 limits to 1. Therefore, by reducing the memory
effect, the maximum levels of the infection are reduced. Furthermore,
the results demonstrated that the fractional-order model provides better
insight into the effect of treatment on type-1 diabetes than the classical
model with integer-order derivatives. On the other hand, by taking
into consideration mathematical models on time scales, i.e. dynamic
models can be used to find solutions to corresponding continuous and
discrete models. This helps to avoid solving models individually on
their own domain. This has been demonstrated to be significant when
analyzing the type-1 DM dynamics model. It is also worth noting that
a mathematical model on time scales can provide not only continuous
model, but a discrete models as well.

4. Conclusion

In this paper, the new models of GIRS on DMs to the concept of
Nabla discrete ABC fractional derivative operator and AB fractional in-
tegral operator are introduced. The model implementation is based on
the ABC derivative and discretization while using the nabla fractional-
order difference. Note that, the memory effect and the non-singular
kernel constitute two properties that characterize the Nabla discrete
ABC fractional derivative and explain its emergence these last years in
modeling biological phenomena. We study the impact of fractional or-
ders of the model derivatives on the dynamic properties of the proposed
model. The existence and uniqueness of solution of the Nabla discrete
ABC fractional diabetes model is established by using the Banach fixed
point theorem approach. We obtain the approximate solution of the
models and a numerical solution of the models which shows that effect
of time on the concentrations (𝜅), (𝜅), (𝜅) and also the difference
etween a normal person and diabetic person is shown in the GIRS.
he model provide the continues glucose measuring in limited time and
olutions are bounded in normal values for healthy person and type-1
iabetes. The results are very useful to design the AP to overcome the
isk of hyperglycemia.

We hope this work will help the some researchers work in further
ew direction of applied mathematics:

(1) Many countries are now seeing an increase in the spread of the
OVID-19 pandemic, which has major economic, social, and health

mplications. We propose a Nabla discrete ABC fractional difference
perator mathematical model for the dynamics of how COVID-19 dis-
ase spreads, as well as a mathematical model for the dynamics of
iabetes, and then highlight the harmful effect quarantine has on
iabetic health [54].

(2) The practical implementation of the controller employing AP
see [2,3]), as well as further development of the discrete-time con-
rol method to address the problem of glucose–insulin hemostat using

i-hormonal insulin and glucagon synthesis.
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Fig. 11. The glucose–insulin system for a normal person as well as for type 1 diabetes mellitus.
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