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Owing to the various physical aspects of nanofluids as thermally enhanced working

fluids and the significance of swirling flows in rheological devices as well as in the

spin coating and lubrication applications, the current comprehensive examination

aimed to explore the important features of spinning flows of chemically reactive

Newtonian nanofluids over a uniformly revolving disk in the existence of a radially

applied magnetic field along with an exponentially decaying space-dependent heat

source, in the case where the disk surface is heated convectively and unaffected by

the vertical nanoparticles’ mass flux. Based on feasible boundary layer

approximations and Buongiorno’s nanofluid formulation, the leading coupled

differential equations are stated properly in the sense of Arrhenius’s and Von

Kármán’s approaches. By employing an advanced generalized differential

quadrature algorithm, the obtained boundary layer equations are handled

numerically with a higher order of accuracy to generate adequate graphical and

tabular illustrations for the different values of the influencing flow parameters. As

findings, the graphical results confirm that the nanofluid motion decelerates

meaningfully thanks to the resistive magnetic influence. A significant thermal

amelioration can be achieved by strengthening the magnetic impact, the

generation of heat, the thermal convective process, and the thermophoresis
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mechanism.Moreover, it is found that the thermo-migrationof nanoparticles canbe

reinforced more via the intensification in the convective process, the thermo-

migration of nanoparticles, and the activation energy.
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enhanced swirling nanofluid flow, non-homogeneous model, radial magnetic field,
arrhenius kinetics, zero mass flux condition

1 Introduction

During the last decades, the topic of heat/mass enhancement

through multi-phase flows (e.g., monotype/hybrid/ternary

nanofluid flows) has attracted amazing consideration from the

scientific communities around the globe owing to their

widespread necessity in several practical domains (e.g., the

ameliorating the combustion characteristics of diesel fuel in

compression ignition engines). In this context, it was

demonstrated through a benchmark experimental

investigation [1] and other authenticated sources [2, 3] that

regular liquids (e.g., oil, ethylene glycol, and water) are not

preferred thermally as working fluids due to their weak

thermal conductance. As technical propositions, it was advised

that the insertion of tiny/nano-sized particles (e.g., alumina,

graphene, copper oxide, gold, titania, silver, copper, as well as

single- and multi-walled carbon nanotubes) is among the best

feasible way for improving the thermal performances of pure

fluids on the condition that the adding solid nanoparticles should

have a higher thermal conductivity as compared with the host

fluid. Such a biphasic mixture (i.e., nanoparticles and base fluid)

was named a nanofluid for the first time in 1995 by Choi and

Eastman [4]. Thanks to the latest progress in the mixture theory

and the science therein, the existing experimental and theoretical

literature surveys involve an exhaustive overview regarding the

principal specific appearances describing persuasively the

physical, thermal, and rheological aspects of nanofluids

[5–10]. In this respect, it was reported that the

thermophysical proprieties of nanofluids depend on several

influential factors (e.g., shape/size of nanoparticles as well as

their concentration and temperature) that can affect significantly

the heat transfer within a nanofluidic medium and its flow

pattern. By linking theoretically the bioconvection occurrence

phenomenon to other thermal and mass transport processes,

Waqas et al. [11] proposed advanced non-homogeneous flow

models constrained by realistic physical impacts to explore the

consequence of swimming motile microorganisms on the

hydrothermal and mass features of slippery nanofluid flows

near a variable thick surface of a rotating disk. More recently,

Shah et al. [12] exploited the possibility of hybridizing the

nanoparticles MWCNT and Fe3O4 in a suitable base fluid to

examine thermodynamically the behavior of a magnetized hybrid

nanofluid inside a porous cavity structure in the presence of a

tilted magnetic field. The same solid mixture was employed also

byManeengam et al. [13] in pure water to study the irreversibility

features and MHD flow patterns of the hybrid nanofluid

(Fe3O4 +MWCNT) −H2O inside a lid-driven corrugated

porous cavity. Further hydrothermal and entropic appearances

of the nanofluid Al2O3 −H2O were evidenced comprehensively

by Alshare et al. [14] during its MHD natural convective motion

inside a lid-driven wavy cavity with an elliptical obstacle by

emplying a robust numerical code based on the Galerkin

weighted residual finite element technique.

Convective flows over rotating heated disk-shaped bodies are

considered among the main popular dynamical problems treated

fundamentally in fluid mechanics and heat transfer since a long

time ago. Further, the dealing of flows near rotating disks is of great

interest to the majority of researchers not only for comprehending the

occurring flow regimes but also for their diverse uses (e.g., stability

control of swirling flows, domestic devices, rotating heat exchangers,

visco-rheometers, chemical stirring operations, spinning disk reactors,

vehicle engines, and productive aero-hydrodynamic turbines). In this

respect, several examinations were accomplished roughly for such flow

problems [15–17]. In 1921, Von Kármán [18] was the first pioneering

scientist who discussed theoretically the dynamical axisymmetric aspect

of steady swirling flows driven over a rotating infinite disk for

incompressible viscous fluids. Based on the boundary layer theory,

Navier-Stokes’s mathematical formulation of this famous fluid flow

problem can be extended reasonably to the case of non-Newtonian

fluids [19, 20] (e.g., Bingham and tangent hyperbolic fluid models).

Mathematically, the simplified boundary layer equations canbe reduced

to a nonlinear system of coupled ordinary differential equations, whose

similar solutions can be derived semi-analytically or numerically

through the modified so-called Von Kármán’s integral momentum

equation. Keeping in mind the rheological and thermal importance of

nanofluids and their applicabilities inVonKármán’sflowconfiguration,

several scrutinizations were performed recently on nanofluid flows over

a rotating disk. In this context, Waini et al. [21] performed a numerical

stability analysis of unsteady axisymmetric swirling flows of (Al2O3 +
Cu) −H2O hybrid nanofluids over an isothermally heated disk. By

utilizing the samehybridmixture,Kumar et al. [22] invoked the entropy

minimization approach along with Von Kármán’s strategy to quantify

the different thermodynamical irreversibilities that can be happened

during the radiativemagnetohydrodynamic slippingflows of (Al2O3 +
Cu) −H2O hybrid nanofluids over a rotating heated disk when the

strengths of Ohmic heating and viscous dissipation are significant.

Similarly, Mandal and Shit [23] assumed the effective contribution of

non-Newtonian viscous dissipation and Joule heating to carry out a

numerical entropic scrutinization on unsteady axisymmetric MHD

flows of radiative Casson nanofluids over a turning permeable disk,
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which was supposed to be heated convectively, stretched radially, and

embedded horizontally in a quiescent nanofluidic medium containing

ethylene glycol or water as a holding fluid and alumina or copper as

nanoparticles. From another strategical point of view, Magodora et al.

[24] preferred employing the non-homogeneous nanofluid model of

Buongiorno [25] to show the significance of Brownian and

thermophoresis diffusions of nanoparticles on the onset of heat and

mass transport during the axisymmetric swirlingmotion of a chemically

reacting nanofluid containing water and gold nanomaterials nanofluid

near a rotating heated disk. In another multi-diffusive problem, Latiff

et al. [26] considered Stefan’s blowing influence and bioconvection

occurrence to examine the hydrothermal appearances along with the

resulting mass transport phenomena during the unsteady nanofluid

motion over a spinning stretchable disk.

Nonetheless, inclusive studies on the significant impacts of

Arrhenius’s chemical reactive kinetics, the thermo-migration

diffusive process, and the Brownian motion of nanoparticles on

MHDVon Kármán non-homogeneous flows of chemically reacting

nanofluids over a horizontal turning disk are still rare in the available

literature, in the case of zero mass flux and thermal convective

conditions, and especially when the electrically conducting

nanofluidic medium is exposed to an adjustable magnetic source

acting radially, which is enhanced thermally via an exponentially

decaying space-dependent heat source. Motivated by this pending

scientific concern, the present examination aimed surely to provide

definitive answers on this open topic. Accordingly, an appropriate

MHD nanofluid flow model has been developed properly in this

regard by adopting the renovated version of Buongiorno’s approach.

Based on the generalized boundary layer simplifications and other

admissible physical assumptions, the leading conservation equations

are derivedmathematically in the form of coupled partial differential

equations (PDEs) together with their corresponding realistic

boundary conditions (BCs), which are rewritten thereafter as a

set of strongly nonlinear ordinary differential equations (ODEs)

having no closed-form solutions. For this reason, an advanced

hybrid algorithm has been implemented numerically in Matlab

software. After performing extensive validating tests, the generated

datasets are presented skillfully to provide a comprehensive physical

discussion through the following research questions:

1- How can formulate a proper MHD non-homogeneous Von

Kármán flow model for a chemically reactive nanofluid by

considering the effective contribution of Brownian and

thermophoresis diffusions and utilizing the molar

concentration notion, in the case where the external

magnetic field is exerted radially in the presence of an

exponentially decaying heat generation?

2- How can associate the generalized differential quadrature

algorithm with Newton-Raphson’s technique in a

methodological solution to evidence the present three-

dimensional MHD convective nanofluid motion and

determine the temperature and nanoparticles’ molar

concentration distributions?

3- What are the advantages of using GDQM- NRIT as a

hybrid numerical approach?

4- When and to what computational level we can

consider that the outputted results are numerically

admissible?

5-What are the dynamical and thermal impacts of the applied

external magnetic field?

6- Which control parameters can exhibit an enhancing

thermal trend?

7- How can determine the unknown wall characteristics

related to the nanoparticles’ molar concentration and

the temperature by exploiting the conditions of zero

mass flux and convective heating?

8- What are the mass influences of convective heating and

Arrhenius’s chemical reaction on the Brownian and

thermophoretic migrations of nanoparticles?

2 Governing equations and physical
model

Let’s consider a steady laminarnanofluidflowover an impermeable

disk of infinite extension, which is rotated uniformly around its

symmetrical z−axis with an angular velocity Ω and heated

convectively thanks to a surrounding hot working fluid of

temperature Tf. As an additional presumption, a destructive

reactive process is taken place chemically throughout the Newtonian

nanofluidic medium according to Arrhenius’s kinetics. Initially, the

geometrical configuration is positioned horizontally in a quiescent

nanofluidic medium, which is featured physically by the pressure

p∞, the temperature T∞, and the nanoparticles’ molar

concentration χ∞ as schematized tri-dimensionally in Figure 1. For

a better description of the proposed nanofluid model, an appropriate

cylindrical frame is chosen herein to provide a proper mathematical

formulation in the cylindrical coordinate system (r, ϕ, z). Moreover,

the convective swirling nanofluidmotion has happened spatially nearby

to a magnetic source applying radially a uniform magnetic field of

intensity B in the presence of an exponentially decaying space-

dependent thermal source. Furthermore, the wall characteristics

(Tw, χw) corresponding to the nanofluid temperature and

nanoparticles’ molar concentration at the contact surface are

unknown as boundary conditions. However, their approximate

values can be estimated computationally through the gradient

expressions of the thermal and concentration boundary conditions

(i.e., the convective heating and zero vertical mass flux conditions). For

reducing the complexity of the nanofluid flow problem under

consideration, the following physical presumptions are taken into

account:

− The viscous nanofluid has a Newtinanan rheological trend

and behaves as a weakly electrically conducting medium, in

which the induced magnetic field can be ignored in front of

the externally applied magnetic field.

Frontiers in Physics frontiersin.org03

Wakif et al. 10.3389/fphy.2022.988275

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.988275


− Since the strength of the applied magnetic field is not strong

enough, the physical influence of Hall’s current can be

neglected obviously.

− In addition to the convective heating process and the existence

of solid nanoparticles within the viscous nanofluidic medium,

the occurred boundary layer regions are due also to the

uniform rotation of the geometrical configuration.

− The momentum, thermal, and concentration boundary

layer approximations are adopted along with the

renewed Buongiorno’s model to formulate the proposed

nanofluid flow model.

− The governing PDEs of thermal energy and nanoparticles’

distribution are adjusted appropriately by utilizing the

molar concentration of nanoparticles χ instead of their

volume fraction φ, where χ � δχφ.

− The contribution of Brownian motion and thermophoresis

mechanism are incorporated effectively in the proposed

nanofluid flow model by invoking the two-phase nanofluid

model.

− The base fluid is in local thermal equilibrium with the solid

nanomaterials.

Based on the above statements, the leading conservation

PDEs are written as:

zu
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+ zw
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TABLE 1 Pertinent flow parameters and their characteristics.

Parameters Symbols/expressions Default values Ranges

Reynolds number Rer � Ωr2

υ
------------ ------------

Prandtl number Pr � υ(ρCP )
κ

3 Unchanged

Exponentially decaying parameter δ 1 Unchanged

Fitted rate constant n 0.5 Unchanged

Temperature difference parameter ϖ � Tf−T∞
T∞

0.2 Unchanged

Chemical reaction parameter Γ � Kχ

Ω
1 Unchanged

Magnetic parameter M � σB2

Ωρ
1 1≤M≤ 3

Heat generation parameter QE � υQ
κΩ 0.1 0.1≤QE ≤ 0.3

Thermal Biot number Bi � hf
κ

��
υ
Ω
√ 5 1≤Bi≤ 5

Thermophoresis parameter NT � (ρCP )npDTϖ
(ρCP )υ

0.2 0.01≤NT ≤ 0.20

Activation energy parameter E � EA
KBT∞

1 0.4≤E≤ 1.0

Brownian motion parameter NB � (ρCP)npDBχ∞
(ρCP)υδχ

0.1 0.1≤NB ≤ 0.3

Schmidt number Sc � υ
DB

1 1≤ Sc≤ 3

FIGURE 1
Proposed MHD nanofluid flow model.
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These conservation equations are governed by the

following BCs:

BCs(u,v,p): { u(r, z � 0) � 0, v(r, z � 0) � Ωr, w(r, z � 0) � 0,
u(r, z → ∞) → 0, v(r, z → ∞) → 0, p(r, z → ∞) → p∞

}, (7)
BCsT: {zT

zz
(r, z � 0) � hf

κ
[T(r, z � 0)

− Tf], T(r, z → ∞) → T∞}, (8)

BCsχ : {zχ
zz

(r, z � 0) � − δχDT

DBT∞

zT

zz
(r, z � 0), χ(r, z → ∞) → χ∞}. (9)

For the sake of briefness, the meanings of the physical symbols

and abbreviations used above are well regrouped in the

nomenclature table. Further, it is preferable to introduce feasible

similarity alterations into Eqs. 1–9 as suggested below:

{ξ � ��
Ω
υ

√
z, F(ξ) � u

Ωr
, G(ξ) � v

Ωr
, H(ξ) � w���

Ωυ
√ , P(ξ)

� p − p∞
ρυΩ , Θ(ξ) � T − T∞

Tf − T∞
, C(ξ) � χ − χ∞

χ∞
}. (10)

Accordingly, the following ODEs and BCs are yielded:

H′(ξ) + 2F(ξ) � 0, (11)
F″(ξ) + G2(ξ) − F2(ξ) − F′(ξ)H(ξ) � 0, (12)

G″(ξ) −MG(ξ) − 2F(ξ)G(ξ) − G′(ξ)H(ξ) � 0, (13)
P′(ξ) −H″(ξ) +MH(ξ) +H(ξ)H′(ξ) � 0, (14)

Θ″(ξ) + PrNTΘ′2(ξ) + PrNB Θ′(ξ) C′(ξ) − PrH(ξ)Θ′(ξ)
+QE e

−δξ � 0, (15)
C″(ξ)+NT

NB
Θ″(ξ)−ScH(ξ)C′(ξ)−ΓSc[1+ϖΘ(ξ)]nC(ξ)e −E

1+ϖΘ(ξ) � 0,
(16)

F(ξ � 0) � 0, G(ξ � 0) � 1, H(ξ � 0) � 0, Θ′(ξ � 0) − BiΘ(ξ � 0)
� −Bi, C′ (ξ � 0) � −NT

NB
Θ′(ξ � 0),

(17)
F(ξ → ξ∞) → 0, G(ξ → ξ∞) → 0, P(ξ → ξ∞) → 0 ,

Θ(ξ → ξ∞) → 0, C(ξ → ξ∞) → 0. (18)

For more clarification on the influencing parameters

involved in Eqs. 13–17, a technical list of the pertinent flow

parameters is provided properly as seen in Table 1.

Fundamentally, the total viscous frictional coefficient Cfr and the

thermal transfer rate Nur featuring hydrothermally the present

nanofluid flow are defined locally by:

Cfr �
��������
τ2wr + τ2wϕ
√
ρ(Ωr)2 , (19)

Nur � rqT

k(Tf − T∞). (20)

Besides, the wall shear stress components (τwr , τwϕ ) and the
wall heat flux qT are given by:

τwr � μ(zu
zz

+ zw

zr
)

z�0
, (21)

τwϕ � μ(zv
zz

+ 1
r

zw

zϕ
)

z�0
, (22)

qT � −k( zT

zz
)

z�0
. (23)

By injecting the transformations of Eq. 10 into Eqs. 19–23, we

get the reduced forms :

Cf �
�������������
F′2(0) + G′2(0)
√

, (24)
Nu � −Θ′(0). (25)

As underlined above, the reduced quantities (Cf,Nu) are
given by:

Cf � Rer
1
2Cfr , (26)

Nu � Re−
1
2

r Nur . (27)

Before starting the numerical modeling of the present

nanofluid flow problem, the spatial physical domain [0, ξ∞]
should be altered to the computational domain [0, 1] by

introducing another spatial variable ς into the dimensionless

functions {F(ξ), G(ξ), H(ξ), P(ξ),Θ(ξ), C(ξ)} and their

derivatives

{F(m)(ξ), G(m)(ξ), H(m)(ξ), P(m)(ξ),Θ(m)(ξ), C(m)(ξ)} as

follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F(ξ)
G(ξ)
H(ξ)
P(ξ)
Θ(ξ)
C(ξ)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭ �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
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H(ξ∞ς)
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�F(ς)
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�H(ς)
�P(ς)
�Θ(ς)
�C(ς)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
and ς � ξ

ξ∞

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (28)

By focussing only on the physical function

{F(ξ), G(ξ), H(ξ),Θ(ξ), C(ξ)}and adopting the transformation

of Eq. 28, the following differential system is obtained:

Frontiers in Physics frontiersin.org05

Wakif et al. 10.3389/fphy.2022.988275

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.988275


⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�F(ς) � 0, when ς � 0,

1

ξ2∞
F″(ς) + �G

2(ς) − �F
2(ς) − 1

ξ∞
�H(ς)F′(ς) � 0, when ς ≠ 0, 1,

�F(ς) → 0, when ς → 1,

�G(ς) − 1 � 0, when ς � 0,

1

ξ2∞
G″(ς) −M �G(ς) − 2�F(ς) �G(ς) − 1

ξ∞
�H(ς)G′(ς) � 0, when ς ≠ 0, 1,

�G(ς) → 0, when ς → 1,

�H(ς) � 0, when ς � 0,

1
ξ∞

H′(ς) + 2�F(ς) � 0, when ς ≠ 0,

1
ξ∞

Θ′(ς) − Bi �Θ(ς) + Bi � 0, when ς � 0,

1

ξ2∞
Θ″(ς) + PrNT

ξ2∞
Θ′2(ς) + PrNB

ξ2∞
Θ′(ς) C′(ς)

− Pr
ξ∞

�H(ς)Θ′(ς) + QEe
−δξ∞ς � 0, when ς ≠ 0, 1,

�Θ(ς) → 0, when ς → 1,

1
ξ∞

C′ (ς) � − NT

ξ∞NB
Θ′(ς), when ς � 0,

1

ξ2∞
C″(ς) + NT

ξ2∞NB

Θ″(ς) − Sc

ξ∞
�H(ς)C′(ς) − ΓSc[1 + ϖ�Θ(ς)]n

�C(ς)e −E
1+ϖ�Θ(ς) � 0, when ς ≠ 0, 1,

�C(ς) → 0, when ς → 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(29)

Also, Eq. 24 and 25 are altered to:

Cf � 1
ξ∞

�������������
F′2(0) + G′2(0)
√

, (30)

Nu � − 1
ξ∞

Θ′(0). (31)

3 Numerical solution methodology

Numerically, the precise approximate solutions

satisfying the nonlinear coupled differential system of Eq.

29 can be developed easily via an advanced hybrid algorithm

GDQM-NRIT, which is principally based on the generalized

differential quadrature method (GDQM) and Newton-

Raphson’s iterative technique (NRIT). For this purpose, a

non-uniform distribution of spatial collocation nodes ςi
along the reduced computational domain [ς1, ςN] is

considered based on Gauss-Lobatto’s grid points, which

are defined as:

ςi � 1
2
− 1
2
cos(πi − π

N − 1
), (32)

[ς1, ςN] � [0, 1] �∪p�N−1
p�1 [ςp, ςp+1], (33)

where 1≤ i≤N.

In the framework of the proposed numerical procedure,

the following generalized differential quadrature

approximations are invoked during the ς−discretization of

the resulting equations in the one-dimension Gauss-Lobatto

space:

�F
(m)(ςi) �∑N

j�1
d(m)
ij

�Fj, (34)

�G
(m)(ςi) �∑N

j�1
d(m)
ij

�Gj, (35)

�H
(m)(ςi) �∑N

j�1
d(m)
ij

�Hj, (36)

�Θ(m)(ςi) �∑N
j�1
d(m)
ij

�Θj, (37)

�C
(m)(ςi) �∑N

j�1
d(m)
ij

�Cj, (38)

in which

{ �F(ςj) � �Fj, �G(ςj) � �Gj, �H(ςj) � �Hj, �Θ(ςj) � �Θj, �C(ςj) � �Cj}.
(39)

Computationally, the mathematical algorithm of the

weighing GDQ coefficients d(m)
ij of Eqs. 34–38 is structured

as follows:

d(m)
ij � ∏N

p�1, p ≠ i(ςi − ςp)(ςi − ςj)∏N
p�1, p ≠ j(ςj − ςp),

for m � 1, i ≠ j, and 1≤ i, j≤N,where d(1)
ij � Qij,

d(m)
ij � m⎡⎢⎣d(n−1)

ii d(1)
ij − d(n−1)

ij(ςi − ςj)⎤⎥⎦,
for m> 1, i ≠ j, and 1≤ i, j≤N,where d(2)

ij � Rij,

d(m)
ij � − ∑N

p�1,p ≠ i

d(m)
ip , for m≥ 1, i � j, and 1≤ i, j≤N,

where ςi � 1
2
− 1
2
cos(πi − π

N − 1
),

ςj � 1
2
− 1
2
cos(πj − π

N − 1
), and ςp � 1

2
− 1
2
cos(πp − π

N − 1
)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(40)
Accordingly, we obtain the following nonlinear algebraic

system:
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�Fi � 0, when i � 1,

1

ξ2∞
∑N
j�1
Rij

�Fj + �G
2
j − �F

2
j −

1
ξ∞

�Hi∑N
j�1
Qij

�Fj � 0, when i ≠ 1, N,

�Fi → 0, when i � N,

�Gi − 1 � 0, when i � 1,

1

ξ2∞
∑N
j�1
Rij

�Gj −M�Gi − 2�Fi
�Gi − 1

ξ∞
�Hi∑N

j�1
Qij

�Gj � 0, when i ≠ 1, N,

�Gi → 0, when i � N,

�Hi � 0, when i � 1,

1
ξ∞
∑N
j�1
Qij

�Hj + 2�Fi � 0, when i ≠ 1,

1
ξ∞
∑N
j�1
Qij

�Θj − Bi�Θi + Bi � 0, when i � 1,

1

ξ2∞
∑N
j�1
Rij

�Θj + PrNT

ξ2∞
⎛⎝∑N

j�1
Qij

�Θj
⎞⎠2

+ PrNB

ξ2∞
∑N
j�1
Qij

�Θj∑N
j�1
Qij

�Cj

− Pr
ξ∞

�Hi∑N
j�1
Qij

�Θj + QEe
−δξ∞ςi � 0, when i ≠ 1, N,

�Θi → 0, when i � N,

1
ξ∞
∑N
j�1
Qij

�Cj � − NT

ξ∞NB
∑N
j�1
Qij

�Θj, when i � 1,

1

ξ2∞
∑N
j�1
Rij

�Cj + NT

ξ2∞NB

∑N
j�1
Rij

�Θj − Sc

ξ∞
�Hi∑N

j�1
Qij

�Cj − ΓSc(1 + ϖ�Θi)n

�Ci e
−E

1+ϖ�Θi � 0, when i ≠ 1, N,

�Ci → 0, when i � N

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(41)

An efficient NRIT algorithm has been developed properly to

generate accurate discrete solutions {(�Fi, �Gi, �Hi, �Θi, �Ci),
where 1≤ i≤N } for the above gigantic algebraic system with a

higher order of exactitude. Sequel to this numerical treatment, the

following square residual errors (SREs) are assessed numerically:

Δ�F � ∫1
0

[ 1

ξ2∞
F″(ς) + �G

2(ς) − �F
2(ς) − 1

ξ∞
�H(ς)F′(ς)]2dς, (42)

Δ �G � ∫1
0

[ 1

ξ2∞
G″(ς) −M �G(ς) − 2�F(ς) �G(ς) − 1

ξ∞
�H(ς)G′(ς)]2dς,

(43)

Δ �H � ∫1
0

[ 1
ξ∞

H′(ς) + 2�F(ς)]2dς, (44)

Δ�Θ � ∫1
0

[ 1

ξ2∞
Θ″(ς) + PrNT

ξ2∞
Θ′2(ς) + PrNB

ξ2∞
Θ′(ς)C′(ς) − Pr

ξ∞
�H(ς)Θ′(ς) + QEe

−δξ∞ ς]2dς,
(45)

Δ�C � ∫1
0

[ 1

ξ2∞
C″(ς) + NT

NBξ
2
∞
Θ″(ς) − Sc

ξ∞
�H(ς)C′(ς) − ΓSc[1 + ϖ�Θ(ς)]n �C(ς)e −E

1+ϖ�Θ(ς)]2dς,
(46)

Briefly, the most important strategic steps involved in the

suggested methodological solution are outlined in Figure 2.
Once the computed SREs reach very low values, the following

dimensionless physical quantities can be deduced accurately:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
F(ξ i) � �F(ςi), where 1≤ i≤Nand ξ � ξ∞ς,
G(ξi) � �G(ςi), where 1≤ i≤Nand ξ � ξ∞ς,
H(ξ i) � �H(ςi), where 1≤ i≤Nand ξ � ξ∞ς,
Θ(ξ i) � �Θ(ςi), where 1≤ i≤Nand ξ � ξ∞ς,
C(ξ i) � �C(ςi), where 1≤ i≤Nand ξ � ξ∞ς

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭, (47)

FIGURE 2
Detailed flowchart of the employed solution methodology.
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F′(0) � 1
ξ∞
∑N
j�1
Q1j

�Fj, (48)

G′(0) � 1
ξ∞
∑N
j�1
Q1j

�Gj, (49)

H(∞) � �H(ςN) (50)

Cf � 1
ξ∞

������������������������⎛⎝∑N
j�1
Q1j

�Fj
⎞⎠2

+⎛⎝∑N
j�1
Q1j

�Gj
⎞⎠2

√√
, (51)

Θ(0) � �Θ(ς1), (52)

Θ′(0) � 1
ξ∞
∑N
j�1
Q1j

�Θj, (53)

Nu � − 1
ξ∞
∑N
j�1
Q1j

�Θj, (54)

Cp(0) � χw
χ∞

� �C(ς1) + 1, (55)

C′(0) � 1
ξ∞
∑N
j�1
Q1j

�Cj. (56)

4 Multiple validations of generalized
differential quadrature method-
Newton-Raphson’s iterative
technique results

A perfect authentication of the executed GDQM-NRIT

code has been demonstrated evidently in Table 2 for the

quantities {F′(0), G′(0), H(∞),Θ′(0)} by comparing the

computed GDQM-NRIT values with those estimated by

previously Turkyilmazoglu [27] in a certain special case

study using the semi-analytical ESAT procedure. As

anticipated, the extensive comparative tests performed

quantitatively between the results of GDQM-NRIT and

ESAT reflect forcefully the correctness of our outputted

GDQM-NRIT outcomes, which are evaluated accordingly

with very small square residual errors {ΔF,ΔG,ΔH,ΔΘ}. To
check again the correctness of the present GDQM-NRIT

numerical simulation, a general corroboration has been

carried out for the studied nanofluid flow problem as

shown in Table 3 by examining the accurateness order of

the results given by the proposed GDQM-NRIT algorithm to

those outputted additionally via another most commonly

used method based on an efficient RKFM-ST numerical

subroutine. Quantitatively, it is found an outstanding

agreement between the results of GDQM-NRIT and

RKFM-ST. Thus, the prime preliminary emphasized

objectives of the present investigation can be accessed

accurately via the developed GDQM-NRIT code.

Furthermore, it is worth noting here that all the tabular

results are provided with an absolute accuracy level of the

order of 10−10.

5 Results and discussion

This illustrative section is dedicated especially to the physical

deliberations of MHD Von Kármán’s flow that can be happened

suddenly within a chemically reactive nanofluidic medium in the

presence of an internal heat generation. In this respect, several

physical aspects have been explored for this kind of axisymmetric

flow under the significant impact of a radial magnetic source. To

strengthen the onset of heat and mass transport phenomena

within the nanofluidic medium, a chemical reaction mechanism

is taken place destructively according to Arrhenius’s kinetics and

the thermal aid of an exponentially decaying space-dependent

heat generation source, in the case where the disk surface is

heated convectively and unaffected by the vertical nanoparticles’

mass flux. Based on the generated GDQM-NRIT outputs,

numerous dimensionless demonstrations are portrayed

properly for the radial, azimuthal, and transverse velocity

fields {F(ξ), G(ξ), H(ξ)}, the nanofluid temperature and

nanoparticles’ molar concentration profiles {Θ(ξ), C(ξ)}, the
local frictional and heat transfer rate factors {Cf, Nu}, as well
as the wall characteristics {Θ(0), C*(0) } as revealed graphically

and tabularly in Figures 3–15, Table 4 and Table 5. To provide

noticeably comparable graphical upshots, the curves of Figures

3–15 are plotted skilfully via professional graphical tools (e.g.,

Grapher and Surfer) to evidence the responses of dimensionless

quantities {F(ξ), G(ξ), H(ξ),Θ(ξ), C(ξ), C*(0)} against the

mounting parametric values of M−Magnetic parameter,

TABLE 2 Comparison between the results of GDQM-NRIT and ESAT.

{M � 0.5, Pr � 1, Bi → ∞, QE � 0, NT � 0, Sc � 0, Γ � 0, ξ∞ � 10, N � 70}

ESAT [27] GDQM-NRIT

F′(0) � 0.426484 F′(0) � 0.4264843113 ΔF � 5.87 × 10−21

G′(0) � −0.877127 G′(0) � −0.8771269589 ΔG � 2.58 × 10−28

H(∞) � −0.706957 H(∞) � −0.7069566789 ΔH � 8.34 × 10−31

Θ′(0) � −0.340652 Θ′(0) � −0.3406523300 ΔΘ � 8.21 × 10−22
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QE−Heat generation parameter, Bi−Thermal Biot number,

NT−Thermophoresis parameter, E−Activation energy

parameter, NB−Brownian motion parameter, and Sc−Schmidt

number by varying one of these parameters and keeping the

others fixed at their default values underlined in Table 1.

The unified dynamical influence of the magnetic

parameter M on the dimensionless profiles

{F(ξ), G(ξ),−H(ξ)} is clearly shown in Figures 3–5.

Graphically, it is demonstrated from Figure 3 that the

intense radial motion is seen near the rotating disk. Also, it

is noticed from Figures 3–5 that the strengthening values of the

magnetic parameter M create a considerable decline in the

profiles {F(ξ), G(ξ),−H(ξ)}, which leads to an extensive

overall opposition to the nanofluid motion in the

(r, ϕ,−z)−directions. This fact can be explicated by the

resistive influence of Lorentz’s forces, which are induced

magnetically within the electrically conducting nanofluidic

medium as a consequence of the physical interaction

between the radially exerted magnetic field and the

nanofluid motion.

Keeping in mind the hindering mechanical demeanor of

Lorentz’s forces towards the nanofluid motion, an amount of

thermal energy is communicated substantially. For this

reason, the temperature profile Θ(ξ) heightens with the

elevating values of the magnetic parameter Mas witnessed

in Figure 6. From an energetical point of view, the

TABLE 4 Numerical estimation of frictional factor Cf .

M {Pr � 3, δ � 1, n � 0.5, � 0.2, Γ � 1, ξ∞ � 10, N � 70}

Cf ΔF ΔG

1 1.1586320415 3.74 × 10−29 1.41 × 10−25

2 1.4922475645 1.70 × 10−29 3.65 × 10−26

3 1.7798987776 1.45 × 10−29 1.00 × 10−25

TABLE 3 General validation of GDQM- NRIT algorithm via RKFM-ST results.

{Pr � 3, δ � 1, n � 0.5, � 0.2, Γ � 1, Bi � 5, NT � 0.2, E � 1, NB � 0.1, Sc � 1, N � 70}

First general validation when {M � 0.01,QE � 0.02, ξ∞ � 10}
RKFM-ST GDQM-NRIT

Computed Quantities Computed Quantities SREs

Cf � 0.8028876130 Cf � 0.8028876130 ΔF + ΔG � 2.16 × 10−25

H(∞) � −0.8774401157 H(∞) � −0.8774401157 ΔH � 1.38 × 10−29

Nu � 0.5631294489 Nu � 0.5631294489 ΔΘ � 1.51 × 10−24

Θ(0) � 0.8873741102 Θ(0) � 0.8873741102

C′(0) � 1.1262588978 C′(0) � 1.1262588978 ΔC � 2.38 × 10−25

C*(0) � 0.0758731236 C*(0) � 0.0758731236

Second general validation when {M � 1,QE � 0.1, ξ∞ � 5}
RKFM-ST GDQM-NRIT

Computed Quantities Computed Quantities SREs

Cf � 1.1568993204 Cf � 1.1568993204 ΔF + ΔG � 3.49 × 10−25

H(∞) � −0.4921398969 H(∞) � −0.4921398969 ΔH � 2.54 × 10−30

Nu � 0.3963842717 Nu � 0.3963842717 ΔΘ � 5.06 × 10−23

Θ(0) � 0.9207231456 Θ(0) � 0.9207231456

C′(0) � 0.7927685434 C′(0) � 0.7927685434 ΔC � 1.12 × 10−24

C*(0) � 0.1689770814 C*(0) � 0.1689770814
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nanofluidic medium can be enhanced thermally more near

the surface disk by the existence of a variable internal heat

source exhibiting an exponentially decaying trend in the

z−directions, whose potency can be controlled effectively

through the heat generation parameter QE. Consequently, a

sensitive upsurge in the temperature profile Θ(ξ) is

witnessed in Figure 7 as a response to the strengthening

in the heat generation parameter QE. Similarly, the salient

results of Figure 8 and Figure 9 prove the possibility of

accomplishing an extra improvement in the temperature

profile Θ(ξ)via the higher estimation in the magnitudes of

the thermal Biot number Bi and the thermophoresis

parameter NT. These valuable observations confirm that

the heat transfer mechanism can be ameliorated within

the nanofluidic medium either by diminishing the thermal

resistance between the hot working fluid and the surface

contact of the disk or by reinforcing the upward thermo-

migration of nanoparticles from the hot region to the

cold zone.

In the framework of the passive control approach, the

vertical nanoparticles’ mass flux becomes zero at the surface

disk due to its impermeability characteristic. In this case,

Sherwood’s number gets vanished as long as there is no mass

transfer manifestation to evaluate quantitatively for the solid

nanoparticles at the horizontal boundary. This physical

situation leads to a top-heavy configuration, in which the

solid nanoparticles will regroup more nearby the cold region

as revealed in Figures 10–14 for the nanoparticles’ molar

concentration distribution C(ξ). In the light of the present

FIGURE 3
Dynamical sway of the parameter M on the dimensionless
velocity F(ξ).

TABLE 5 Numerical estimation of thermal wall characteristics.

Parameters Values {Pr � 3, δ � 1, n � 0.5, � 0.2, Γ � 1, ξ∞ � 10, N � 70}

Nu Θ(0) ΔΘ

M 1 0.4010871118 0.9197825776 4.24 × 10−25

2 0.3265024801 0.9346995039 1.45 × 10−22

3 0.2753756861 0.9449248627 1.73 × 10−23

QE 0.1 0.4010871118 0.9197825776 4.24 × 10−25

0.2 0.3387469545 0.9322506091 3.31 × 10−25

0.3 0.2762984863 0.9447403027 1.80 × 10−25

Bi 1 0.2967085471 0.7032914528 2.45 × 10−24

2 0.3547316429 0.8226341785 1.95 × 10−23

5 0.4010871118 0.9197825776 4.24 × 10−25

NT 0.01 0.4284091396 0.9143181720 1.14 × 10−23

0.10 0.4155276538 0.9168944692 2.59 × 10−25

0.20 0.4010871118 0.9197825776 4.24 × 10−25

Sc 1 0.4010871118 0.9197825776 4.24 × 10−25

2 0.3891965649 0.9221606870 7.84 × 10−26

3 0.3818198866 0.9236360226 1.61 × 10−25

E 0.4 0.3930789236 0.9213842152 8.20 × 10−25

0.7 0.3972549866 0.9205490026 3.03 × 10−25

1.0 0.4010871118 0.9197825776 4.24 × 10−25
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FIGURE 6
Thermal influence of the parameter M on the dimensionless
temperature Θ(ξ).

FIGURE 7
Thermal influence of the parameterQE on the dimensionless
temperature Θ(ξ).

FIGURE 5
Dynamical sway of the parameter M on the dimensionless
velocity H(ξ).

FIGURE 4
Dynamical sway of the parameter M on the dimensionless
velocity G(ξ).
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FIGURE 11
Mass transportation impact of the parameter NT on the
rescaled concentration C(ξ).

FIGURE 8
Thermal influence of the parameter Bi on the dimensionless
temperature Θ(ξ).

FIGURE 9
Thermal influence of the parameter NT on the dimensionless
temperature Θ(ξ).

FIGURE 10
Mass transportation impact of the parameter Bi on the
rescaled concentration C(ξ).
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nanofluid flow model, it is confirmed in Figures 10–12 that

the superior values of the thermal Biot number Bi , the

thermophoresis parameter NT , and the activation energy

parameter E can intensify the role of the thermophoretic forces

by reinforcing the partial migration of nanoparticles from the disk

surface (i.e., the hot region) to the surrounding region of the free-

stream zone (i.e., the cold region), which leads to an important

decay in the wall nanoparticles’ molar concentration with a

thickening in the concentration boundary layer region. On the

other hand, the downward vertical motion of nanoparticles

(i.e., the reciprocal migration of solid nanoparticles) can be

accomplished within the nanofluidic medium by supporting the

mass diffusive mechanism via the advanced values of the

Brownian motion parameter NB and the Schmidt number Sc

as emphasized in Figure 13 and Figure 14. In this situation, an

important escalation in the wall nanoparticles’ molar

concentration is obtained with a shrinking in the concentration

boundary layer region. Moreover, the sways of the parameters

{Bi,NT, E,NB, Sc} on the reduced wall concentration

C*(0)ascertained graphically in Figures 10–14 are accentuated

in another way as witnessed in Figure 15.

From an engineering point of view, the behaviors of the

reduced quantities {Cf, Nu,Θ(0)} against the pertinent

parameters are elucidated numerically in Table 4 and

Table 5. It is important to mention that the surface drag

force factor Cf can be reduced practically by diminishing the

magnitude of the magnetic parameter M. However, an

enhancement in the wall heat transfer rate Nu can be

reached only via the growing values of the thermal Biot

number Bi and the activation energy parameter E.

Furthermore, it is found that the dimensionless wall

FIGURE 14
Mass transportation impact of the parameter Sc on the
rescaled concentration C(ξ).

FIGURE 12
Mass transportation impact of the parameter E on the
rescaled concentration C(ξ).

FIGURE 13
Mass transportation impact of the parameter NB on the
rescaled concentration C(ξ).
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temperature Θ(0) exhibits an elevating tendency in response

to the mounting values of the parameters {M,QE, Bi, NT, Sc},
whereas a reverse trend is observed for the activation energy

parameter E.

6 Concluding remarks

Among the main derived remarks, we can write:

• The proposed numerical algorithm shows a higher degree

of flexibility during the computational handling of the

present nanofluid flow problem, in which the GDQM-

NRIT results can be provided accurately with a low

computational cost.

• A postponing effect is seen for the magnetic parameter

towards the nanofluid motion in all directions.

• An elevation in the temperature profile can be achieved via

the greater values of the magnetic parameter, the

heat generation parameter, the thermal Biot number,

and the thermophoresis parameter.

• A significant strengthening in the thermo-migration of

nanoparticles can be obtained via the grander magnitudes

of the thermal Biot number, the thermophoresis

parameter, and the activation energy parameter.

• The downward motion of nanoparticles can be reinforced

considerably via the increasing values of the Brownian

motion parameter and the Schmidt number.

• The surface drag force factor can be reduced by weakening

the magnetic parameter.

FIGURE 15
Variation of dimensionless wall quantity C*(0) against (A) NT and NB , (B) Sc and Bi , (C) E and Bi.
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• The magnitude of the temperature gradient can be

ameliorated significantly at the wall via the growing

values of the activation energy parameter and thermal

Biot number.

• Compared to other control parameters, the activation

energy parameter E has a declining impact on the wall

temperature.
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Nomenclature

B Magnetic field strength, [kgs−2A−1]
C Rescaled molar concentration of nanoparticles, [−]
(DT,DB) Thermal and mass diffusive coefficients, [m2s−1]
EA Activation energy, [J]
(F, G,H) Dimensionless velocity components, [−]
hf Convective heat transfer coefficient, [Wm−2K−1]
KB Boltzmann constant, [JK−1]
Kχ Chemical reaction rate constant, [s−1]
n Fitted rate constant, [−]
N Number of grid points

p Pressure, [Pa]
p∞ Pressure at the free-stream region, [Pa]
Q Heat source potency, [Jm−3s−1K−1]
T Temperature distribution, [K]
Tf Temperature of the heating fluid, [K]
Tw Wall temperature, [K]
T∞ Temperature distribution at the free-stream region, [K]
(u, v, w) Velocity components, [ms−1]
(r, ϕ, z) Cylindrical coordinates, [m, rad,m]

Greek symbols

χ Molar concentration distribution of nanoparticles, [molm−3]
χw Molar concentration of nanoparticles at the wall, [molm−3]
χ∞ Molar concentration of nanoparticles at the free-stream

region, [molm−3]
δ Parameter featuring the decaying trend of the heat source, [−]
δχ Corrective factor for the molar concentration scale, [molm−3]
κ Thermal conductivity, [Wm−1K−1]
υ Kinematic viscosity, [m2s−1]
Θ Dimensionless temperature, [−]
ρ Nanofluid density, [kgm−3]
(ρCP) Nanofluid heat capacitance,[Jm−3K−1]
(ρCP)np Nanoparticles’ heat capacitance,[Jm−3K−1]
σ Nanofluid electrical conductivity,[Sm−1]
ς Reduced similarity variable, [−]
ξ Similarity variable, [−]

ξ∞ The approximate value of ξ when ξ tends to infinity, [−]
Ω Rotating velocity, [rads−1]

Abbreviations

Al2O3 Alumina nanoparticles

BCs Boundary conditions

BCsw Boundary conditions at the wall

BCs∞ Boundary conditions in the free-stream region

CMC Carboxy methyl cellulose

Cu Copper nanoparticles

ESAT Exponential series approximation technique

Fe3O4 Magnetite nanoparticles

GFET Galerkin finite element technique

GDQ Generalized differential quadrature

GDQM Generalized differential

quadrature method

H2O Water

MWCNT Multi-wall carbon nanotubes

MHD Magnetohydrodynamics

NRIT Newton-Raphson iterative technique

ODEs Ordinary differential equations

PDEs Partial differential equations

RKFM Runge-Kutta-Fehlberg method

ST Shooting technique

SREs Square residual errors

Subscripts

np Nanoparticles

w Wall condition

∞ Free-stream condition

Superscripts

9 First-order derivative w.r.t ξ or ς

99 Second-order derivative w.r.t ξ or ς

(m) mth−order derivative w.r.t ς
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