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The energy sector which includes gas and oil is concerned to explore and

develop refined oil and it’s a multitrillion business. As crude oil is a very

important source of energy, and it has a very valuable impact on a country’s

economic growth, national security, and social stability. Therefore, accurately

predicting the crude oil price volatility is a very important topic of research and

still, it is a challenge for researchers to accurately forecast crude oil prices.

Therefore, this study is conducted to address the said problem significantly. This

research presents a novel hybrid method for reconstructing EEMD IMFs that

involves two steps. Visual analysis of Average Mutual Information (AMI) graphs

were used to rebuild IMFs. EEMD IMFs were split into two components called

stochastic and deterministic. In the proposedmethod, reconstruction of IMFs of

EEMD was done at two stages to see if the stochastic components have more

variation. Later, ARIMA and FFNN models were used to test the suggested

method’s performance. For this purpose, Brent crude oil prices data was used,

and the hybrid model EEMD-S2D1D2-ARIMA/FFNN outperformed the other

existing hybridmodel withminimumMAE=0.2323, RMSE= 0.3058 andMAPE=

0.5273. A simulation study was also conducted to check the robustness of the

proposed method for N = 50, 500, 1,000, 2000, 5,000, and 7,500. The

simulation results also confirm that the unpredictability present in the

reconstructed IMFs of the hybrid models EEMD-ARIMA/FFNN and EEMD-

SD-ARIMA/FFNN has been reduced by the proposed hybrid models.
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1 Introduction

Accurately predicting the crude oil price volatility is a very

important topic of research because every country’s economy

highly depends on crude oil prices. Many factors put a significant

impact on crude oil prices such that supply and demand (Kilian,

2009), US dollar exchange rate (Lizardo and Mollick, 2010),

venture trading(Kilian and Murphy, 2014), geographically

conflicts, and natural disasters (Sahir and Qureshi, 2007) these

factors introduce a high level of noise to crude oil prices which

consists of non-linearity and uncertain characteristics, which

become difficult to forecast. Therefore, crude oil price forecasting

remains a huge challenge for all researchers. There are two types

of econometric models 1) structural and 2) time series.

The structural model includes the Error Correction Model

(ECM), Vector Error Correction Model (VECM), and Vector

Auto-Regressive (VAR) model. These models use linear

regression and are based on data such as demand and supply.

These models also include other explanatory variables in addition

to prior data on oil prices. The other technique is time series

models, which use just the previous history of oil prices to predict

future oil prices. However, these models need data to be

stationary and linear because these models cannot accurately

deal with the inner complexity of crude oil prices in addition to

econometric methodologies.

Xiang and Zhuang (2013) applied the ARIMA model of

order (1,1,1) to Brent oil prices from November 2012 to April

2013 and found that the ARIMA model had a good prediction

effect and could be used for short-term crude oil price

forecasting. Xie et al. (2006) used WTI monthly crude oil

prices (COPs) from January 1970 to December 2003 and they

applied the support vector regression (SVR) model, the

empirical finding showed that the SVR model is more

appropriate than ARIMA and Back Propagation Neural

Network (BPNN) models in predicting monthly WTI

prices. Movagharnejad et al. (2011) employed an ANN

model. Kamdem et al. (2020) employed a deep learning

model (DLM) for commodities price predictions. Their

findings showed that the coronavirus has an impact on

commodity price which results in variability. They also

utilized an ARIMA-wavelet hybrid model to predict the

spread of the coronavirus. The findings revealed a strong

link between the spread of the Coronavirus and

commodities prices. Yu et al. (2008) used EMD to

decompose WTI and Brent daily COPs for the period

20 May 1987 to 30 September 2008, and the findings

showed that the decomposition and ensemble techniques

worked well and enhanced the models’ performance. Lin

and Sun (2020) used CEEMDAN and MLGRU Neural

Network and found that the new model improved

predicting accuracy for predicting COPs. Wu et al. (2019)

also proposed a unique EEMD and LSTM-based technique.

The proposed hybrid model was applied toWTI COPs, and the

results confirmed the new technique’s superiority. AAMIR

(2018) introduced a new method for the reconstruction of

IMFs. For reconstruction, the proposed method exploited

autocorrelation for the reconstruction of EEMD IMFs. The

daily and weekly prices of Brent and WTI were used to assess

ARIMA and ANN models’ forecasting performance using

reconstructed data. In comparison to single models utilizing

ARIMA and FFNN, the proposed approach of reconstruction

of IMFs with autocorrelation was found to be the best

alternative. Moshiri and Foroutan (2006) employed the

ANN model to estimate daily crude oil futures prices

traded at the New York Mercantile Exchange (NYMEX).

Mostafa and El-Masry (2016) used gene expression

programming (GEP) and ANN to forecast the upward and

downward movement of oil prices, The least squares support

vector machine (LSSVM) approach to oil futures price

forecasting was proposed by (Yusof and Mustaffa, 2016).

Zhao et al. (2017) proposed a deep learning approach

(SDAE) for forecasting WTI crude oil spot prices. Artificial

intelligence methods, unlike econometric models, can model

complicated traits like nonlinearity and volatility. Artificial

intelligence approaches have drawbacks as well many

researchers increasingly employ hybrid approaches to

estimate crude oil prices. Hybrid methods maximize the

strengths of the models: 1) a hybrid model combining the

multilayer backpropagation neural networks and such as the

empirical mode decomposition (EMD) based neural network

ensemble learning paradigm, the hybrid model combining the

dynamic properties of multilayer backpropagation neural

networks, and the recent Harr A torus wavelet

decomposition HTW-MBPNN (Jammazi and Aloui, 2012),

a hybrid model based on EMD and including the slope-based

approach (SBM), i.e., EMD-SBM-FNN is proposed by (Xiong

et al., 2013). Hybrid model based on ensemble empirical mode

decomposition (EEMD) and extended extreme learning

machine (EELM), i.e., EEMD-EELM was used by (Yu et al.,

2016). Authors in (Yu et al., 2014) compressed sensing-based

de-noising (CSD) and some artificial intelligence (AI).

Combining AI with econometric methodologies, such as

EEMD-LSSVM-PSO-GARCH, a hybrid method that joins

EEMD, least-square support vector machine particle swarm

optimization (LSSVM-PSO), and the GARCH model. The

results of the empirical investigation show that hybrid

forecast approaches are more accurate than single methods.

In other words, the rapid advancement of complicated

network time series analysis technologies has opened up

new avenues for removing noise from raw data. Piersanti

et al. (2020) suggested an application of a new non-linear

data processing method, Fast iterative filtering (FIF), and

multiscale statistical analysis in (a standardized mean test).

They divide crude oil price data into three categories: long-

term trend, intermediate or middle behavior, and short-term

behavior. The findings revealed that the proposed method is a
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more effective tool for analyzing crude oil prices. Nademi and

Nademi (2018), employed Markov switching, AR, ARCH on

WTI on Brent and crude oil prices. This model’s forecasting

capacity is made up of various ARIMA and GARCH models

for both in-sample and out-of-sample forecasting. The results

of the estimation reveal that the semi-parametric Markov

switching models work well.

EMD, Ensemble Empirical Mode Decomposition (EEMD),

and Complementary EEMD (CEEMD) have gained attraction

and are now widely applied to world oil prices. For example,

(Zhang et al., 2008; Yu et al., 2015; Li et al., 2016). The EMD

technique, which was first proposed by (Huang et al., 1999a),

decomposes the original data series into a set of nearly

orthogonal oscillating components called intrinsic mode

functions (IMFs) and a trend function. The IMFs are

referred to as intrinsic mode functions in the literature

(Piersanti et al., 2020). They decided to rename them IMCs

to avoid confusion with the intrinsic mode functions (IMF).

Each IMC is an oscillating signal with a distinct time scale that

is extracted from the data without any functional shape being

imposed. By separating trends and oscillations at multiple

time scales the EMD method can be viewed as an empirical,

intuitive, and efficient data processing tool that is well revised

to capture various hidden patterns in complex data systems

without any prior knowledge. These characteristics explain

why EMD outperforms other common decomposition

approaches, such as wavelet and Fourier transforms, in

capturing the oscillations’ instantaneous time-frequency

structure (Huang et al., 2003); The IMC components

generated via EMD, on the other hand, can handle the

“mode mixing” problem generated in (Huang et al., 2003).

EMD approach is unstable when the signal under examination

is disturbed slightly. Various approaches, such as the

intermittence test have been proposed by experts and

researchers to discourse these challenges (Cicone and Zhou,

2021). However, EMD-based family models have several flaws,

such as the lack of a solid theoretical framework that

guarantees a priori convergence and stability.

Sun et al. (2022) used the improved complete ensemble

empirical mode decomposition with adaptive noise

(ICEEMDAN) method, and the permutation entropy (PE)

method is employed to reconstruct these sub-sequences into

FIGURE 1
A flowchart of the proposed method.
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high-frequency, low-frequency, and trend components. The

empirical results show that the approach proposed in this

study improves forecasting accuracy compared to other

benchmark models. Wu et al. (2022) also proposed a novel

modified multi-objective water cycle algorithm is proposed to

optimize the parameters of the echo state network. Finally,

deterministic and uncertainty prediction is conducted to

verify the model performance. The results reveal that the

proposed hybrid model outperforms various contract

models in deterministic and interval predictions, as well as

in daily and weekly forecasting of crude oil prices. Therefore,

the proposed hybrid model is a reliable tool for crude oil price

forecasting and serves as a reference for decision-making in

the energy economic market. He and Zou (2022) propose a

new MD VaR-based risk forecasting model, using multiple

Mode Decomposition models and the Quantile Regression

Neural Network (QRNN) model. This model takes a semi-

parametric data-driven approach to calculate VaR by

combining forecasts for both normal and transient market

risk exposure at different scales. The transient risk factor is

extracted using dynamically selected Mode Decomposition

models such as EMD and EEMD. The optimal scale is

identified and modeled using QRNN model. Our empirical

results using major crude oil data show that MD VaR based

risk forecasting model significantly improves the reliability of

VaR forecasting.

Karasu et al. (2020) the crude oil time series, including

chaotic behavior and inherent fractality. In this study, a new

forecasting model based on support vector regression (SVR)

with a wrapper-based feature selection approach using a

multi-objective optimization technique is developed to deal

with the challenge that the proposed forecasting model can

capture the nonlinear properties of crude oil time series, and

that better forecasting performance can be obtained in terms

of precision and volatility than the other current forecasting

models. Li et al. (2022) proposed crude oil prices forecasting

model based on secondary decomposition with improved

complementary ensemble empirical mode decomposition

with adaptive noise (ICEEMDAN), state space correlation

entropy (SSCE), improved variational mode decomposition

by tunicate swarm algorithm (TVMD), and improved kernel-

based extreme learning machine by artificial gorilla troops

optimizer (GTO-KELM), named ICEEMDAN-SSCE-TVMD-

GTO-KELM, is proposed. Motivated by the study of (Li et al.,

2022) a new technique of reconstruction of IMFs is proposed

which enhanced the forecasting accuracy and takes less

computational time.

In the next section, the framework of the proposed study,

methods, and material are outlined in detail.

2 Methodology

2.1 Layout of the proposed method

First of all the brent oil prices series was decomposed using

EEMD. IMFs were divided into stochastic and deterministic

components through the visual inspection of AMI graphs. All

the stochastic components of the second stage were added as a

single stochastic component then EEMD was again applied to it.

Again IMFs were divided into two components named stochastic

and deterministic by the visual inspection of AMI graphs, then

each of the stochastic and combined deterministic components

was modeled using ARIMA and FFNN models. In the last step,

accuracy measures (MAE, RMSE, andMAPE) were used to check

the performance of the proposed method. The layout of the

proposed method is presented in Figure 1 and as under.

2.1 ARIMA model

The ARIMA model is a type of stochastic process that can be

used to analyze nonstationary time series. The autoregressive

(AR), integrated (I), and moving average (MA) are the three

major components of an ARIMA model. The future variable in

an ARIMA model is meant to be a linear function of the past

FIGURE 2
The general structure of ANN.
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observations plus some random errors and p and q denote the

model order. The random errors are assumed to be independent

and distributed with a mean of zero and a standard deviation

(SD) of σ2. It is also demonstrated as follows:

yt � σ + θ1yt−1 + θ2yt−2 + . . . . . . . + θpyt−p + φ1qt−1 + φ2qt−2
+ . . . . . . . + φpqt−q

(1)

When p = 0, the model is also reduced to anMAmodel. Also,

when the q = 0 model becomes an ARmodel non-stationary time

series can be made stationary by differencing them once or twice.

The Box and Jenkins methodology was used to select the best

ARIMA model order. Model identification, parameter estimates,

and diagnostic checking are the three primary steps of this

process. The ACF and PACF of the time series are used in

the “model identification” step to determine if the time series is

stationary or non-stationary. To make non-stationary data

stationary, the differencing operator is used one or more

times to the time series. The second stage, parameter

estimation, is simple after an appropriate ARIMA model has

been selected. The model estimation error is decreased, and the

optimal parameters are generated using some methods such as

the least square estimate methodology. The Box–Jenkins model

will examine whether the model error is satisfied in the final

stage, called diagnostic checking. For this purpose, the L-Jung

Box test was used in this work.

2.2 ANN model

Neural networks are parallel computing systems that seek to

simulate the human brain on a computer. The main goal is to create

a system that can execute various computer activities faster than

traditional systems. ANN acquires a large number of units that are

interconnected in some pattern to facilitate communication between

the units. Basic parallel operating processors are often known as

nodes or neurons. Every neuron is connected to other neurons via a

connecting link. Each connection link has a weight that contains

information about the input signal. Because the weight often excites

or hinders the signal from being delivered, this is the most valuable

knowledge for solving a specific problem for neurons. Each neuron

has an internal state that is known as an activation signal. After the

input signals and the activation rule have been combined, the output

signals can be delivered to other units. The ANNs are used to model

the nonlinear component of the Brent oil price in this research.

Modeling of the nonlinear relationship between the input and

output data-set is achievable with the help of ANNs. One of the

most notable advantages of ANNs over other nonlinear modeling

techniques is that they can be utilized as universal approximators to

learn a wide number of functions accurately. The single hidden/

middle layer ANN illustrated in Figure 2 is used.

It’s a three-layer feedforward multilayer perception (MLP):

1) input, 2) hidden, and 3) output. To model the time series, this

paper uses a single-layer ANN. The following is a mathematical

description of the relationship between the inputs and the

output yt:

yt � β0 +∑s

j�1βjG
⎛⎝α0j +∑p

i�1αijyt−i ⎞⎠ + αt (2)

where p and s are the input and hidden layer node counts, where

i = 1, 2..., p; j = 1, 2..., s, are the ANN biassing and weighting

factors, respectively. G ( ) is also the ANN’s transfer function. The

type of transfer function for the hidden layer in this study is a

tangent-sigmoid function, which is defined as follows:

f(Yt) � 1
1 + e−Yt

(3)

exp () is the exponential operator, and y is the input vector. The

ANN creates a nonlinear mapping between the input and output

data as seen in Eq. 4:

yt � (yt−1, yt−2, . . . . . . .., yt−p, α, β) + αt (4)

where a and b are the biassing and weighting factors of the ANN’s

vectors. According to recent studies, increasing the number of

nodes (s) in the hidden layer of the simple ANN presented in Eq.

3 is a powerful model for learning nonlinear functions. However,

a neural network with small nodes in the hidden layer is more

powerful in out-of-sample forecasting. Indeed, as the number of

nodes in the hidden layer grows, the ANN’s ability to fit

nonlinear time series grows, but at the expense of the ANN’s

ability to generalize out of the training data. This behavior can be

interpreted as an overfitting event that occurs throughout the

ANN modeling phase. An overfitted model can fit the data used

as training data well, but it has a limited ability to generalize to

samples outside of the training data.

2.3 Average mutual information

The IMFs are split into two parts, each of which requires a

method or strategy that permits the deterministic and

stochastic parts to be altered individually. From series to

series, the cut-off points between two components of the

examined sequence, such as stochastic and deterministic,

differ. As a result, to estimate automatically, the RP

(Kamphorst and Ruelle, 1987); and the mutual information

(MI) (Shannon, 2001) these methods are commonly utilized.

MI is employed to derive the stochastic and deterministic

components in this study due to its simplicity and

nonparametric behavior. The MI requirements were

proposed by (Shannon, 2001).MI calculates shared data on

the two variables related to the theory knowledge field. This

term is explained via a simple demonstration. Because x1 does
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not have x2 knowledge (Kamphorst and Ruelle, 1987), let

X1 and X2 be their MI = 0 random variables. In Eq. 5, the MI is

shown between the two variables X1 and X2, where the joint

density function of x1 and x2 is fx1fx2(x1,x2), and their

marginal density functions are fx1 (x1) and fx2 (x2).

MI(X1,X2) � ∫∫fX1,X2
(x1,x2)log fX1,X2(X1,X2)

fx1,(x1).fx2 (X2)dx1dx2 (5)

The MI process is divided into three steps. To begin,

divide the data into discrete, fixed-width cells (bins). In the

second step, the focus is on frequencies to create a histogram

for each cell (Ahmed and Shabri, 2014). In the third phase,

the MI on each histogram is calculated. The IMF’s was

broken down into two categories: stochastic and

deterministic. The following is the equation that

represents these elements

SC(t) � ∑k

j�1IMFj(t) (6)
DC(t) � ∑n

j�k+1IMFj(t) + residue (7)

Where DC is the deterministic component, SC is the

stochastic component, k is the number of stochastic IMFs,

and n is the overall number of IMFs. The EEMD approach

guarantees that the sum of all IMFs and residues will produce the

original time series. As a result, we may restore the original series

by combining the stochastic and deterministic components.

2.4 EMD

The EMD is a technique for nonlinear signal modification that

was developed by (Huang et al., 1999a). This method is used to

TABLE 1 The order of the ARIMA models.

First stage n = 50 n = 500 n = 1,000 n = 2000 n = 5,000 n = 7,500

Original Signal (2,0,4) (4,0,8) (4,0,5) (2,0,3) (5,0,5) (4,0,3)

IMF1 (2,0,2) (3,0,5) (3,0,2) (3,0,2) (5,0,3) (4,0,2)

IMF2 (4,0,5) (4,0,5) (4,0,7) (4,0,5) (7,0,5) (5,0,7)

IMF3 (2,0,5) (2,0,5) (4,0,6) (5,0,4) (4,0,5) (4,0,9)

IMF4 (1,0,0) (4,0,5) (4,0,5) (5,0,3) (6,0,5) (4,0,6)

IMF5 (3,0,4) (5,0,1) (4,0,5) (4,0,5) (7,0,5) (3,0,7)

IMF6 (4,0,5) (2,0,5) (0,0,0) (4,0,5) (3,0,1)

IMF7 (0,2,0) (0,2,0) (0,2,0) (1,0,0) (4,0,0)

IMF8 (0,2,5) (0,2,0) (0,2,0) (5,0,5) (3,0,0)

IMF9 (0,2,5) (0,2,0) (0,2,0) (4,0,1)

IMF10 (0,2,0) (0,2,0) (0,2,0)

IMF11 (0,2,0) (0,2,0)

IMF12 (0,2,0) (0,2,5)

D1 (1,0,5) (5,0,5) (6,0,4) (3,0,5) (5,0,5) (4,0,1)

Second stage

IMF1 (3,0,1) (3,0,2) (3,0,2) (5,0,4) (5,0,2) (4,0,2)

IMF2 (4,0,4) (4,0,5) (4,0,5) (4,0,5) (5,0,8) (5,0,6)

IMF3 (2,0,3) (2,0,5) (4,0,5) (5,0,1) (4,0,5) (4,0,7)

IMF4 (2,0,5) (4,0,5) (4,0,5) (4,0,5) (6,0,6) (5,0,7)

IMF5 (4,0,7) (4,0,7) (4,0,0) (3,0,4) (3,0,5) (3,0,7)

IMF6 (0,2,0) (2,0,0) (6,0,4) (1,0,1) (5,0,6)

IMF7 (0,2,0) (0,2,0) (3,0,1) (1,0,1) (1,0,5)

IMF8 (0,2,0) (0,2,5) (0,2,0) (5,0,5) (1,0,5)

IMF9 (0,2,5) (0,2,0) (0,2,0) (1,0,5)

IMF10 (0,2,5) (0,2,0) (0,2,0)

IMF11 (0,2,0) (0,2,0)

IMF12 (0,2,0) (0,2,5)

D2 (2,0,5) (1,0,5) (1,0,1) (3,0,5) (1,0,2) (3,0,2)

Frontiers in Energy Research frontiersin.org06

Dar et al. 10.3389/fenrg.2022.991602

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.991602


transformnonlinear and nonstationary time series data into intrinsic

mode functions (IMFs) having a single intrinsic time measure

property. According to (Huang et al., 1999a), each IMF must

meet both conditions. The number of extreme and zero

crossings’ values must be identical or differ by no more than one

value, and the average value of the envelope must be zero at any site

formed by localminima andmaxima. The decomposition procedure

of a time series data is as follows:

i) Detect all local minima and maxima of the series Yt.

ii) Compute the lower envelopeYt(l) and upper envelopeYt(u)
for the series Yt.

iii) Use the lower and upper envelope to obtain the first mean

time series mt(1), i.e., mt(1) � (Yt(l) + Yt(u) )/2.
iv) To get the first IMF imft(1), find the difference between

the series Yt and the mean series mt(1).
i.e., imft(1) � Yt −mt(1). Furthermore, the two conditions

will be checked for imft(1), if it does not satisfy both

conditions, then steps (i) to (iii) of the decomposition

process will be repeated to obtain the first IMF.

v) Repeat the above steps to get all IMFs, until the final residue

residt, which is a monotonic function proposed for the

discontinuing of the decomposition process (Huang et al.,

1999b).

To get back the original time series xt from the IMFs and

residue simply add these components using this equation.

Yt � ∑n
i
imft(i) + residt, where n is the total number of IMFs.

The sifting process stops when the residual rt becomes a

monotonic function.

2.5 EEMD

Wu and Huang (2009) presented the Ensemble Empirical

Mode Decomposition (EEMD) to discuss the mode mixing

TABLE 2 L-Jung Box test p-values of ARIMA and EEMD-ARIMA models at the first stage.

First stage n = 50 n = 500 n = 1,000 n = 2000 n = 5,000 n = 7,500

Original Signal 0.3880 0.9885 0.7865 0.9051 0.9986 0.8976

IMF1 0.6270 0.9316 0.9985 0.948 0.9784 0.9983

IMF2 0.5839 0.8808 0.4449 0.8255 0.9883 0.9894

IMF3 0.3601 0.7470 0.0206 0.9270 0.9006 0.9748

IMF4 <0.0001 0.9227 0.6998 0.7518 0.9882 0.7010

IMF5 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
IMF6 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
IMF7 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
IMF8 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
IMF9 <0.0001 <0.0001 <0.0001 <0.0001
IMF10 <0.0001 <0.0001 <0.0001
IMF11 <0.0001 <0.0001
IMF12 <0.0001 <0.0001
D1 0.3438 0.4568 0.5674 0.6765 0.8658 0.9876

Second Stage

IMF1 0.9031 0.9885 0.8106 0.973 0.4166 0.9999

IMF2 0.5799 0.9300 0.6192 0.9729 0.7803 0.9843

IMF3 0.0042 0.9650 0.0335 0.9175 0.3690 0.7632

IMF4 0.2823 0.9733 0.7112 0.5958 0.9057 0.6534

IMF5 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
IMF6 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
IMF7 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
IMF8 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
IMF9 <0.0001 <0.0001 <0.0001 <0.0001
IMF10 <0.0001 <0.0001 <0.0001
IMF11 <0.0001 <0.0001
IMF12 <0.0001 <0.0001
D2 0.1541 0.3567 0.5634 0.7786 0.8965 0.8995

Note: The bold values highlighting the best forecasting model in each scenario.
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problem in EMD. As a result of mode mixing, the IMF

component takes on distinct timeframe characteristics and

evolves into a scale-dependent oscillation, losing its original

physical significance. Several white noises are added to the

original time series, and because the frequency of these white

noises is greatly dependent on EEMD, 0.20 was applied to the

daily Brent oil prices series by default (Aamir and Shabri, 2018).

The algorithm flow of EEMD is as follows:

i) Introduce several Gaussian white noises xt(i) into crude oil

price Yt, xt(i) ~ N(0, σ2).
Yt(i) � Yt + xt(i)

ii) Conduct the EMD decomposition on Yt(i) respectively and
obtaining a set of IMFs imft(ij) and a residue residt(i),
where imft(ij) is the jth IMF decomposed by EMD after

adding the Gaussian white noise for an ith time.

FIGURE 3
(A) Deterministic component (2πt) , (B) Stochastic component AR(3) (C) white noise N(0, 1) (D) The noisy time series Yt � Sin(2πt) + AR(3) +
N(0, 1).

FIGURE 4
AMI graph of the proposed method for N = 50.
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iii) Repeat the above-mentioned steps. The ensemble average of

corresponding IMFs is seen as the final decomposition result.

imft(i) � 1
N

∑N
j�1
imft(ij)

where N is the ensemble size.

The EEMD can effectively solve the mode mixing existing

problem in the traditional EMD. As a result, the decomposition

becomes more stable and physically meaningful.

2.6 EEMD-ARIMA/FFNN

All of the IMFs obtained from EEMD are used in the

EEMD-ARIMA model. This approach is also known as the

RDE model (reconstruction decomposition ensemble). All

IMFs are modeled and used for predicting in this technique.

The EEMD-ARIMA technique can be broken down into

three simple parts.

i) EEMD decomposed the original time series into n

components IMFs.

ii) For all of the extracted IMFs, the best ARIMAmodel is chosen,

and the respective series are modeled and predicted

appropriately.

iii) Finally, all IMFs’ anticipated results are added together, and

the output of the targeted time series is obtained. The goal of

decomposition is tomake forecasting easier, but the goal of the

ensemble is to reformulate the decomposed component into a

single series that can be used to forecast the original data.

FIGURE 5
AMI graph of the proposed method for N = 500.

FIGURE 6
AMI graph of the proposed method for N = 1,000.
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2.7 EEMD-SD-ARIMA/FFNN

To begin, visually evaluate AMI graphs to divide EEMD-

ARIMA model components into two parts: stochastic and

deterministic components. Individual stochastic and one

deterministic component is used in the EEMD-SD-

ARIMA/FFNN model. Finally, MAE, MAPE, and RMSE

were used to test the accuracy of this hybrid model. The

complete process of reconstruction of IMFs obtained from

EEMD is as follows:

i) Apply the EEMD technique to the original time series Yt to

gather all IMFs.

ii) Compute different characteristics of all IMFs e.g., Average

mutual information (AMI), recurrence plot, autocorrelation.

iii) Based on each IMF characteristic divide the IMFs into

components according to their nature like stochastic or

deterministic.

Reconstruction is complete and applies the different models

to the new form components.

FIGURE 7
AMI graph of the proposed method for N = 2000.

FIGURE 8
AMI graph of the proposed method for N = 5,000.
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2.8 EEMD-S2-ARIMA/FFNN

The suggested method starts by adding the stochastic IMFs of

the hybrid model EEMD-SD-ARIMA/FFNN as a single

component and then applying EEMD to it. As a result,

numerous IMFs were generated, and ARIMA/FFNN models

were fitted to each of the IMFs in the hybrid model EEMD-S2-

ARIMA/FFNN. Because stochastic IMFs do not correlate with

their previous lags, and since forecasting requires that the current

value correlates with its past value, this suggests that there is some

unneeded noise present in these stochastic IMFs, which needs to be

divided further.

2.9 EEMD-SD1D2-ARIMA/FFNN

Individual stochastic and deterministic components make up the

EEMD-SD1D2-ARIMAmodel. Finally, individual stochastic and two

deterministic components were subjected to ARIMA and FFNN

models, and the prediction accuracy of the proposed EEMD-

FIGURE 9
AMI graph of the proposed method for N = 7,500.

FIGURE 10
Accuracy measures graph of simulation study for n = 50, 500, 1,000, 2000, 5,000, and 7,500.
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SD1D2-ARIMA/FFNN hybrid model was assessed using MAE,

RMSE, and MAPE.

2.10 EEMD-S + D1+D2-ARIMA/FFNN

The hybrid model EEMD-S + D1+D2-ARIMA combines

stochastic and deterministic components. FFNN and ARIMA

models were used to test the correctness of this hybrid model. In

this model, the stochastic component and deterministic component in

the second stage, and the deterministic component in the first stage

were used to forecast the crude oil prices.

3 Analysis

3.1 Simulation study

For simulation, a time series was created using a sine

function, a third-order autoregressive model, and a normal

distribution. The sine function with an angular frequency of

2π was used to create a deterministic component, while the

AR(3) and N functions were used to create a stochastic

component using AR(3) and N (0,1). The results were

validated with various numbers of observations, including N =

50, 500, 1,000, 2000, 5,000, and 7,500. As a result, the noisy time

series was created by combining all of the components (Xu et al.,

2020; Ahmad et al., 2021).

Yt � sin(2π) + AR(3) + N(0, 1) (8)

To divide the IMFs into stochastic and deterministic

components the AMI plots are used. For various numbers

of observations i.e., N = 50, 500, 1,000, 2000, 5,000, and

7,500 the AMI plots are presented in the following figures

respectively. The order of ARIMA models are presented in

Table 1 for all IMFs of different sample sizes of simulation

study. Secondly, the LB test values are presented in Table 2.

After observing above Figure 3, the first three IMFs

were taken as stochastic and the last two components

as deterministic. Also, from Figure 4 the first four

IMFs, from Figures 5, 6 the first six IMFs, and in Figures 7-

9 the first seven IMFs were taken as stochastic, and the rest of

the IMFs were reserved as deterministic respectively.

3.2 Diagnostic checking

For diagnostic checking, the statistical test is used which may

infer a denial of the fitted model. The test to be used is the Ljung-

Box (LB), which tests the serials independence among the fitted

model residual. The first step in this test is the extraction of the

fitted model residuals. The extracted T residuals from the fitted

model are used to attain the sample autocorrelations using the

subsequent formulation:

r̂κ � ∑T
t�κ+1ϵ̂tϵ̂t−κ∑T

t�1ϵ̂2t
, κ � 1, 2, . . . (9)

The autocorrelations obtained from Eq. 9 are then tested for

serial dependence using the LB test. Eq. 10 is used for the said

purpose of testing the hypothesis of independence against the serially

dependent hypothesis. The LB test test-statistic is as follows:

~Q(r) � T(T + 2)∑n
κ�1

(T − κ)−1r2κ (10)

The Q(r) statistic is distributed asymptotically as an X ~ a(n),

where a is the significance level and n is the degrees of freedom

and number of lagged autocorrelations.

FIGURE 11
Accuracy measures of FFNN hybrid models.
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LB test was applied to check the model adequacy for n = 50,

500, 1,000, 2000, 5,000, and 7,500 for a 5% level of significance

under the null hypothesis that the series is stationary. The p-value

of 0.0001 shows that the series is not stationary and vice versa.

A simulation study was performed to check the adequacy of

the proposed method for different sample sizes. Hybrid model

EEMD-S1-ARIMA outperformed the other hybridmodels for n =

50 and 500. However, in other cases, for n = 1,000, 2000, 5,000,

TABLE 3 Accuracy measures of the proposed hybrid model using ARIMA.

No. of
Observations/
Model

ARIMA EEMD-
ARIMA

EEMD-SD-
ARIMA

EEMD-S1-
ARIMA

EEMD-S2D1D2-
ARIMA

EEMD-S +
D1+D2-
ARIMA

N = 50 MAE 1.3426 1.1814 1.1864 1.1201 1.1276 1.3396

RMSE 1.6096 1.3891 0.9505 1.2059 1.2196 1.5519

MAPE 2.2452 1.7389 1.3753 1.1298 1.1678 2.2265

N = 500 MAE 1.2761 0.6518 0.6517 0.5372 0.6237 1.1276

RMSE 1.5927 0.8000 0.7988 0.6802 0.7702 1.3868

MAPE 4.0584 5.5819 4.1394 2.8546 2.8176 3.2950

N = 1000 MAE 1.3020 0.7972 0.7982 0.7412 0.7119 1.2489

RMSE 1.6448 1.0022 1.0012 0.9343 0.8901 1.5777

MAPE 2.1190 2.1619 1.9799 1.8373 1.8287 2.1098

N = 2000 MAE 1.2473 0.5860 0.5720 0.5739 0.2342 1.2562

RMSE 1.5635 0.6772 0.6639 0.6712 0.2922 1.5705

MAPE 3.5236 1.8400 1.7840 1.7541 1.1062 3.2118

N = 5000 MAE 1.2005 1.0665 0.9633 0.7654 0.6120 1.1538

RMSE 1.5053 1.3420 1.2369 0.9848 0.7848 1.4643

MAPE 2.6573 1.6910 1.7075 1.0441 1.0341 1.8364

N = 7500 MAE 1.1845 1.5294 0.8011 0.5964 0.4952 1.2645

RMSE 1.4989 1.9098 0.9505 0.7350 0.6323 1.4526

MAPE 6.6151 4.0098 3.4487 1.1096 0.9994 2.0211

Note: The bold values highlighting the best forecasting model in each scenario.

TABLE 4 Accuracy measures of the proposed hybrid models using FFNN.

No. of
Observations/Model

FFNN EEMD-FFNN EEMD-SD FFNN EEMD-S1-FFNN EEMD-S2D1D2-FFNN EEMD-S +
D1+D2-FFNN

N = 50 MAE 1.0078 0.8099 0.8097 0.7258 1.0657 1.8976

RMSE 1.3643 0.9285 0.9281 0.8921 1.2794 2.2117

MAPE 2.2178 1.6098 1.5909 1.3976 1.4498 1.7565

N = 500 MAE 1.0078 0.2802 0.2702 0.2574 0.2674 1.2674

RMSE 1.3643 0.3595 0.3596 0.3454 0.3554 1.3754

MAPE 3.9980 1.0372 1.0372 0.7909 0.8009 0.8009

N = 1000 MAE 1.3479 0.4858 0.4858 0.3791 0.3491 2.0159

RMSE 1.6277 0.6255 0.6255 0.5187 0.4187 2.5667

MAPE 3.3574 1.1580 1.1680 1.1580 1.1480 3.9328

N = 2000 MAE 1.1859 0.5350 0.4340 0.3471 0.3221 1.4939

RMSE 1.4722 0.6645 0.5995 0.5674 0.4674 1.8245

MAPE 3.3128 1.8400 1.6440 1.4168 1.1062 4.2396

N = 5000 MAE 1.3479 1.1685 0.8764 0.5389 0.4237 1.5876

RMSE 1.6277 1.3674 0.9863 0.6745 0.5463 1.7654

MAPE 3.57490 1.7087 1.6890 1.0398 1.0341 3.6765

N = 7500 MAE 1.1604 1.5115 0.9364 0.8786 0.7785 1.1987

RMSE 1.4700 1.9098 1.0115 0.9878 0.9838 1.3998

MAPE 9.5035 2.2568 2.6968 2.4990 9.7098 8.8876
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and 7,500, the proposed hybrid model EEMD-S2D1D2-ARIMA

performed well. This shows that the sample size has a greater

impact on the performance of the proposed hybrid model

because for a small sample EEMD generated a smaller

number of IMFs and has more stochasticity present in

between them due to this reason, the proposed hybrid

model EEMD-S1-ARIMA performed well because in this

model all IMFs were modeled individually. As the sample

FIGURE 12
Daily Brent crude oil prices data.

FIGURE 13
Brent Oil prices IMFs generated by EEMD.

Frontiers in Energy Research frontiersin.org14

Dar et al. 10.3389/fenrg.2022.991602

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.991602


size increases, EEMD components have high variability present in

them that’s why the reconstruction of IMFs at the second stage was

performed to reduce the variability that is present between them. The

proposed hybrid model EEMD-S2D1D2-ARIMA has minimum

MAE, RMSE, and MAPE for N = 1,000, 2000, 5000, and 7,500.

Figures 10, 11 showing the forecasting performance of the used hybrid

models which confirms the superiority of the proposed method.

FFNN model was also applied to check the

performance of the proposed method. The hybrid

model EEMD-S1-FFNN outperformed the other hybrid

model for N = 50 and 500, which shows that this

hybrid model is good for a small sample size. On the

other hand, EEMD-S2D1D2-FFNN worked well, and it

showed minimum MAE, RMSE, and MAPE to other hybrid

models. The forecasting accuracy measures for both ARIMA

and FFNN hybrid models are presented in Tables 3, 4.

3.3 Data description

The data used in this study were daily Brent crude oil

prices. This data was divided into two sets 80% training and

20% testing (Ahmed and Shabri, 2014; Aamir et al., 2018). The

Brent oil prices was consisting of 4,933 observations and

presented in Figure 12. From the graph of the Brent crude

oil prices, it is observed that there are no trend, seasonal, or

cyclic variations but irregular variations.

To check the stationarity of a series ADF test was applied to the

training set of the data. The p-value of the ADF test was 0.04776.

FFNN was also applied to the data and the number of lags was

chosen according to the auto-regressive term of the ARIMA model

and hidden layers were chosen according to formula (2×k+1)

(AAMIR, 2018). The EEMD was presented by (Wu and Huang,

2009) to discourse on the mode mixing problem of EMD. The

consequence of mode mixing is that the IMF component will consist

of different timescale characteristics and becomes scale-dependent

oscillation and therefore losses its original physical meaning. Several

white noises are added to the original time series EEMD highly

depends on the frequency of these white noises so by default 0.20 is

used. The graphs of the decomposed series are presented in Figure 13.

The order of the selected ARIMA models for all IMFs

with their respective values of the LB test is presented in

Table 5,6.

3.4 AMI plots

The method used for comparison is based on the

reconstruction of IMFs via AMI plots. The plots of the AMI

are presented in Figure 14.

By the visual inspection of the AMI graphs, the first

7 IMFs were considered Stochastic, and the rest of the IMFs

were added and considered Deterministic components. Since all

of these 7 IMFs follow a different trend, the IMFs from 1 to 7 follow

a stochastic pattern, showing that there are no dependencies of

upcoming observations on past observations. This can also be

proven by the MAE, RMSE, and MAPE of the stochastic and

deterministic components which are (0.7879, 1.0342, and 115.3129)

and (0.0001, 0.0013, and 0.0005) respectively. So, from these

measures, it was concluded that the stochastic component has

more variation, and they should be modeled individually.

3.5 The proposed method

The stochastic components of the comparison method

were added as a single stochastic component and then

EEMD was applied to that stochastic component. The plot

TABLE 5 Order of ARIMA model of Gao et al. (2019) method.

EEMD ARIMA (p, d, q) LB test (p-values)

IMF1 (7,0,8) 0.9428

IMF2 (9,0,10) 0.9711

IMF3 (5,0,1) 0.8339

IMF4 (7,0,6) 0.8962

IMF5 (5,0,3) 0.9245

IMF6 (5,0,5) <0.0001
IMF7 (6,0,5) <0.0001
IMF8 (0,2,0) <0.0001
IMF9 (0,2,0) <0.0001
IMF10 (0,2,0) <0.0001
IMF11 (0,2,0) <0.0001
IMF12 (0,2,0) <0.0001
D1 (1,1,0) 0.7452

TABLE 6 Order of ARIMA model and LB test p-values.

EEMD ARIMA p-values

IMF1 (6,0,3) 0.9466

IMF2 (6,0,6) 0.599

IMF3 (8,0,6) 0.9107

IMF4 (4,0,6) 0.4879

IMF5 (4,0,7) <0.0001
IMF6 (4,0,5) <0.0001
IMF7 (4,0,8) <0.0001
IMF8 (0,2,0) <0.0001
IMF9 (0,2,0) <0.0001
IMF10 (0,2,0) <0.0001
IMF11 (0,2,0) <0.0001
IMF12 (0,2,0) <0.0001
D2 (2,0,5) 0.4167

S2 (4,0,4) 0.8442
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FIGURE 14
AMI graphs of Gao et al. (2019) method.

FIGURE 15
Stochastic component and IMFs of the second stage EEMD.
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of the stochastic component IMFs of the second stage of

EEMD is presented in Figure 15.

Reconstruction of IMFs was performed again by the visual

inspection of the AMI plots at the second stage and the plots are

as under:

Based on Figure 16 the IMFs were divided into

Stochastic and Deterministic components. Our focus is on

the Stochastic component because it contributes more

variation as compared to the Deterministic component. The

Stochastic component consists of the first six IMFs while

the rest of the IMFs were considered Deterministic. The

order of the ARIMA model of Stochastic component are as

follows.

The forecasting accuracy measures of all the models for Brent

crude oil prices data are presented in Table 7 and for more clearer

picture plotted in Figure 17. The values of the best forecasting

accuracy models are highlighted.

3.6 Discussion

In this study, three hybrid models were proposed and

compared with the existing method of reconstruction of IMFs.

EEMD components were reconstructed at two stages, in earlier

studies EEMD components were reconstructed at only one stage

but a novel method was proposed in which EEMD components

were reconstructed at two stages through AMI graphs. A

simulation study was performed to check the adequacy of the

proposed method for N = 50, 500, 1,000, 2000, 5,000, and 7,500.

EEMD generates a different number of IMFs for different sample

sizes. The hybridmodel EEMD-S1-ARIMAperformed well for N =

50 and 500 as compared to the existing and the other two proposed

hybrid models, similarly EEMD-S2D1D2-ARIMA/FFNN hybrid

model outperformed the other models for N = 1,000, 2000, 5,000,

and 7,500, with minimum MAE, RMSE, and MAPE.

Apart from the simulation study, Brent crude oil prices data

was also used to check the performance of the proposed hybrid

model, which also showed higher efficiency as compared to

other hybrid models that have been used in this study. Based on

forecasting accuracy measures the proposed hybrid model

EEMD-S2D1D2-ARIMA/FFNN outperformed its counterpart

FIGURE 16
AMI graphs of the proposed method.

TABLE 7 Comparison of results of the proposed model and
interpretable benchmark models.

Accuracy measures

Model MAE RMSE MAPE

ARIMA 0.7613 1.0179 1.6763

EEMD-ARIMA 1.9908 2.4901 4.0464

EEMD-SD-ARIMA 1.1446 1.5114 2.2846

EEMD-S1-ARIMA 0.3931 0.5537 0.5805

EEMD-S2D1D2-ARIMA 0.2614 0.3505 0.5806

EEMD-S + D1+D2-ARIMA 0.7778 1.0200 1.7200

FFNN model 0.7560 1.0049 1.6595

EEMD-FFNN 0.2821 0.3708 0.6443

EEMD-SD-FFNN 0.2723 0.3512 0.5442

EEMD-S1-FFNN 0.2604 0.3410 0.5837

EEMD-S2D1D2-FFNN 0.2323 0.3058 0.5273

EEMD-S + D1+D2-FFNN 0.7759 1.0193 1.7092

Note: The bold values highlighting the best forecasting model.
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models. Both models i.e., EEMD-S2D1D2-ARIMA and EEMD-

S2D1D2-ARIMA/FFNN performed well when used in the

proposed scenario. The MAPE values of EEMD-S2D1D2-

ARIMA and EEMD-S2D1D2-ARIMA/FFNN are 0.5806 and

0.5273 respectively, which is less than 1 indicating that the

proposed models fall in the range of perfect models (Aamir and

Shabri, 2018). Hence it was concluded that the proposed hybrid

model EEMD-S2D1D2-ARIMA/FFNN has a significant

capability to predict the crude oil prices as compared to the

rest of the hybrid models.

From the above discussions and analysis, some important

findings are summarized as follows:

i) To accurately forecast the crude oil prices, it is hard to attain

satisfactory results when using single models (i.e., FFNN and

ARIMA) due to the nonlinearity and nonstationary structure of

the data.

ii) The models which used all decomposed IMFs relatively

performed well than the models which used the reconstructed

IMFs only in two components i.e., deterministic, and stochastic.

iii) Based on the synthetic data the proposed method of

reconstruction of IMFs at two stages proved that the

reconstruction of IMFs through AMI is a better and

simple strategy that enhanced the performance of both

models i.e., ARIMA and FFNN.

iv) With the benefits of EEMD, reconstruction, ARIMA, and FFNN,

the proposed ensemble models EEMD-S2D1D2-ARIMA and

EEMD-S2D1D2-FFNN significantly outperform all other

models listed in this study in terms of MAPE, RMSE, andMAE.

v) The performance of the proposed models EEMD-S2D1D2-

ARIMA and EEMD-S2D1D2-FFNN are almost the same.

However, in terms of MAPE, RMSE, and MAE the model

EEMD-S2D1D2-FFNN relatively performed well compared

to EEMD-S2D1D2-ARIMA. Therefore, the suggested model

for forecasting crude oil prices is EEMD-S2D1D2-FFNN.

vi) The experimental results demonstrated that the

reconstruction of IMFs into stochastic and

deterministic components using the proposed method

was effective but modeling the IMFs being part of the

stochastic component separately was the more effective

and powerful approach for forecasting crude oil prices.

vii) As one of the most important commodities in the world, we

analyze the COPs for illustration and verification of the

proposed method. *e empirical results showed that our

proposed reconstruction of decomposition and ensemble

model-based analysis approach is vital and effective and

could be tested for more complex tasks.

4 Conclusion

The price of crude oil, known as the lifeblood of the global

industry, has an important influence on practitioners, scholars,

and politicians. Therefore, a stable, and reliable prediction of

crude oil prices are helpful for national security and economic

development, enterprise operations, and investment. However,

crude oil prices are extremely unstable, and some traditional

point forecasting methods no longer work, against the

background of the Russia-Ukraine war and COVID-19.

In this study, a new hybrid model for the forecasting of crude

oil prices is proposed. Considering the shortcomings of existing

data decomposition and reconstruction of decomposition techniques,

we propose a new reconstruction of data decomposition technique

work in two steps, which can differentiate components based on

stochastic and deterministic influences. Then, In the first step, we

distinguish and reconstruct components with their influences. In the

next step retain the deterministic and again apply EEMD on the

stochastic component. Based on AMIs split the IMFs into two

components i.e., stochastic, and deterministic. The ARIMA and

FFNN models were applied to the reconstructed components to

model the crude oil prices. After predicting the different components

separately for the final output all the results are simply added. Finally,

the point forecast based on ARIMA and FFNNmodels was obtained.

Comparisons with various benchmark models show that the

proposed reconstruction of IMFs has improved forecasting

FIGURE 17
Plot of the accuracy measures based on (A) ARIMA and (B)
FFNN models.
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performance for both ARIMA and FFNN models. Furthermore, due

to the excellent and stable prediction ability of the proposed

reconstruction of IMFs method, we believe that it is also suitable

for prediction tasks in other domains.

Although our developed system has achieved good results,

there is still room for improvement. Our future research work is

based on the following two aspects:

i) At present, many new techniques for the reconstruction of IMFs

have been proposed, such as autocorrelation, low, medium, and

high frequencies, stationarity, ARIMA model, etc. We hope to

introduce advanced techniques to further enhance the

forecasting performance and simplify the model.

ii) As the crude oil price fluctuates greatly at present, we consider

establishing an early warning system for price mutation in the

future.
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