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In this article, we propose the Holling type-II predator-prey model involving cannibalism and gestation delay in predators. We
study the existence of all possible equilibrium points of the proposed model. We give the condition for the local stability and Hopf
bifurcation analysis for the nondelayed model. Next, we also establish the local stability and Hopf bifurcation analysis for the
corresponding delayed model. Finally, we discuss how cannibalism and delay play an important role in stabilizing and
destabilizing the proposed system both theoretically and numerically.

1. Introduction

Studies of predator-prey interactions have been considered
among the most challenging problems in population ecology.
It is a study project that is relevant not just to ecologists and
biologists but also to mathematicians because it considers the
interactions of di�erent species. Its importance can be seen
through the large number of proposedmodels, which describe
the interaction between the prey and predator in di�erent
cases. Increasing interest has been noticed in modeling those
types of interactions. �e basic model for the interaction of
two species is modeled by Lotka in 1925 and Volterra in 1926.
�e predator-prey model is in�uenced by many biological
factors such as prey refuge [1], fear [2], and the Allee e�ect
[3, 4]. In such models, the predator consumes its prey is given
in the form of functional response, which is the function of its
lone prey or both predator and its prey. Also, the predator dies
out exponentially in the absence of the predator. �e other
important biological phenomenon is called cannibalism,
which refers to the act of killing and at least partially

consuming its species. �e energy from its species helps to
grow its population size. Recently, there has been much at-
tention on the study of the behavior of the prey-predator
model involving cannibalism. In Reference [5], the authors
extended the classical Lotka–Volterra model with cannibal-
ism in predators, which is of the form,

dX1

dT
� X1 r 1 −

X1

K
( ) − A1X2[ ],

dX2

dT
� X2 − D +M1 + A2X1 −

GX2

H +X2
[ ],




(1)

where X1 and X2 are the sizes of prey and predator pop-
ulation at the time T; r and K denote the growth rate and
carrying capacity of prey; A1 denotes the reduction rate of
prey;D represents the death rate of predator; A2 denotes the
conversion e�ciency of the predator; GcX2/H +X2 is the
cannibalism term, c denotes the rate of cannibalism;M1 <G,
M1 denotes the birth rate from the predator cannibalism;
and H is the positive constant.
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Lin et al. [6] studied the predator-prey model with
cannibalism in prey population, which is of the form,

dX1

dT
� X r + M1 −

rX1

K
− A1X1 −

GX1

H + X1
􏼢 􏼣,

dX2

dT
� X2 − d + A2X1􏼂 􏼃,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

where X1 and X2 are the size of prey and predator at time T.
r, k, A1, G, H, D, M1, and A2 are all positive constants.

One of the key terms for studying the predator-prey
model is the interaction term. .e most common type of
interaction between prey and predator is given by the
Holling types [7–9]. In Reference [10], the authors studied
the predator-prey model with Holling type-II functional
response, which is of the form

dX1

dT
� X1 r 1 −

X1

K
􏼒 􏼓 −

A1X2

X + B1
􏼢 􏼣,

dX2

dT
� X2 − d +

A2X1

X1 + B2
􏼢 􏼣,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(3)

where X1 and X2 are the sizes of prey and predator at time T.
B1 and B2 are the half-saturation constants for the prey and
predator. In this study, we assumed B1 � B2 and considered
as B. Model (3) has been assumed that the prey interacts with
a predator in the form of Holling type-II function, and in the
absence of prey species, the predator population dies ex-
ponentially. We, therefore, formulate the model by con-
sidering cannibalism, which is the assumption that the
predator population gets energy from its species; that is, the
predator can survive without its lone prey. Recent empirical
and theoretical work has shown that cannibalistic interac-
tions can have important consequences for species inter-
actions and the structure of whole communities and can
result in dynamics that are not predictable from unstruc-
tured systems [11]. Mathematical biologists have spent a lot
of time investigating cannibalism because of the strange
consequences it can have on population dynamics. Canni-
balism can be used as a survival mechanism in a population
on the verge of extinction through the employment of the
lifeboat mechanism [12]. Cannibalism in both prey and
predator population has been considered in Reference [13].

On the other hand, some researchers have studied the
presence of time delay in dynamic systems..e time delay in
the biological system is unavoidable. In ecology, there are
many reasons for incorporating delays, such as delay in
maturation and gestation time. .e energy attained by
consuming food will not take place immediately, and there is
a time delay during the gestation process. .e study of the
dynamical behavior of the predator-prey model with delay is
very significant. .e presence of delay in the dynamical
system can affect the stability of the system, that is, stabi-
lizing and destabilizing effects. For instance, the persistence
and extinction for delayed stochastic prey-predator system
with hunting cooperation in predators have been studied in
Reference [14]. Also, the authors derived the Lyapunov

functional to provide adequate conditions for persistence
and extinction. In order to perform the numerical simula-
tions, they used Milstein’s method. .ey found that the
smaller white noise can assist the survival of both species, but
higher the strength of noise can lead to the extinction of the
predator. .e authors in Reference [15] studied a two-prey,
one-predator food chain model with the Allee effects in each
species and two unique delays. Sufficient conditions for the
local stability of coexisting equilibrium and occurrence of
Hopf bifurcations in terms of both delays are established.
.e influence of the Allee effect and time delays in the model
raises the complexity of the model and enriches the system
dynamics. .e presence of time delay can cause complex
behavior in the predator-prey model, and other dynamical
systems have been found in the literature [16–21].

From the existing literature, the study of the Holling
type-II predator-prey model with cannibalism and gestation
delay in predators has not been considered in the existing
works. In this article, we extend the work in Reference [10]
and study the dynamics of a predator-prey model involving
cannibalism in predators, where the interaction between
prey and predator is in the form of a Holling type-II
functional response. And, to make a more realistic model,
the time delay is considered due to the delay in the gestation
process of a predator. Furthermore, under specific para-
metric conditions, we describe the positivity and bound-
edness of solutions, as well as the existence and local stability
of the equilibria. It also exhibits rich dynamics, such as the
extinction of populations and occurrence of the Hopf bi-
furcation for both nondelayed and delayed models. .e
model considered in this study is given as follows:

dX1

dT
� X1 r 1 −

X1

K
􏼒 􏼓 −

A1X2

X1 + B
􏼢 􏼣,

dX2

dT
� − D + M1( 􏼁X2 +

A2X1(T − τ)X2(T − τ)

X1(T − τ) + B
−

GX
2
2

H + X2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where X1 and X2 are the sizes of prey and predator pop-
ulations at time T, with r, K, A1, A2, B, D, M1, G, and H are
all positive constants; X1(Φ) � Θ1(Φ), X2(Φ) � Θ2(Φ),
Φ � [− τ, 0], and Θ1,2: [− τ, 0]⟶R2, see Reference [22].

.is paper is organized as follows: in Section 2, we
provide the condition for positivity and boundedness of
solutions, existence, and local stability of all positive equi-
libria, and also, Hopf bifurcation analysis is carried out near
the interior equilibrium point for the model without time
delay. .e positivity and boundedness of solutions, local
stability, and Hopf bifurcation analysis for the delayed
model are given in Section 3. In Section 4, the numerical
simulation is carried out to ensure our analytical findings
and concluded in Section 5.

2. The Nondelayed Model

In this section, we study the existence of equilibria and its
local stability for the model (4) without time delay τ � 0. By
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using the transformation x1 � (X1/K), x2 � X2, and t � rT,
the model (4) with reduced parameters takes the form

dx1

dt
� x1 1 − x1 −

a1x2

x1 + b
􏼢 􏼣,

dx2

dt
� − d + m1( 􏼁x2 +

a2x1x2

x1 + b
−

cx
2
2

δ + x2
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where a1 � (A1/rK), d � (D/r), m1 � (M1/r), a2 � (A2/r),
b � (B/K), c � (G/r), δ � H, x1 ≥ 0, and x2 ≥ 0. a1, a2, b, d,
m1, c, and δ are all positive constants. In biological point of
view, it is necessary to study in the biologically feasible
region x1 ≥ 0 and x2 ≥ 0.

2.1. Positivity and Boundedness. In this section, positivity
and boundedness of solutions of the proposed model (5)
have been investigated.

Theorem 1. All solutions of model (5) are non-negative.

Proof. Since x1(0)≥ 0 and x2(0)≥ 0 then from model (5),
we have

x1(t) � x1(0)exp 􏽚
t

0
1 − x1(s) −

a1x2(s)

x1(s) + b
􏼢 􏼣ds􏼠 􏼡≥0,

x2(t) � x2(0)exp 􏽚
t

0
− d + m1 +

a2x1(s)

x1(s) + b
−

cx2(s)

δ+ x2(s)
􏼢 􏼣ds􏼠 􏼡

≥0.

(6)

Hence, all solutions of model (5) are non-negative.

Theorem 2. Let A be the set defined by

A �
⎧⎨

⎩ x1, x2( 􏼁 ∈R2
+: 0≤x1 ≤ 1, 0≤ x1 +

a1

a2
x2 ≤ 1

+
1

4 d − m1( 􏼁

⎫⎬

⎭.

(7)

Then,

(i) Ais positive invariant.
(ii) All non-negative solutions of (5) are uniformly

bounded forward in time and eventually enter the
set A.

(iii) Model (5) is dissipative.

Proof. From the first equation of model (5), we have

dx1

dt
� x1 1 − x1 −

a1x2

x1 + b
􏼢 􏼣,

dx1

dt
≤ x1 1 − x1( 􏼁.

(8)

.en, solving above equation, it is bounded that

x1(t)≤
c

c + e
− t, (9)

where c is a constant. .en, using the concept of differential
inequality [23], as t⟶∞, we have

0≤x1(t)≤ 1. (10)

Now, we define a function

σ(t) � x1(t) +
a1

a2
x2(t). (11)

.en, differentiating the above equation with respect to
t, we have

dσ
dt

�
dx1

dt
+

a1

a2

dx2

dt

� x1 1 − x1( 􏼁 −
a1x1x2

x1 + b
+

(− d + m)1a1

a2
x2

+
a1x1x2

x1 + b
−

ca1x
2
2

a2 δ + x2( 􏼁

≤x1 1 − x1( 􏼁 −
d − m1( 􏼁a1

a2
x2

dσ
dt

+ d − m1( 􏼁σ(t)

≤x1 1 − x1( 􏼁 + d − m1( 􏼁x1 ≤ d − m1( 􏼁 +
1
4
.

(12)

Since, in A, 0≤ x1 ≤ 1 and max[0,1](x1(1 − x1)) � 1/4.
Using Lemma 2 as in [24], we get, for all t≥T≥ 0,

σ(t)≤ 1 +
1

4 d − m1( 􏼁

− 1 +
1

4 d − m1( 􏼁
− σ(T)􏼠 􏼡e

− d− m1( )(t− T)
.

(13)

.en, if T � 0,

σ(t)≤ 1 +
1

4 d − m1( 􏼁

− 1 +
1

4 d − m1( 􏼁
− x1(0) +

a1

a2
x2(0)􏼠 􏼡􏼢 􏼣e

− d− m1( )t
.

(14)

Hence, since (x1(0), x2(0)) ∈ A,

x1(t) +
a1

a2
x2(t)≤ 1 +

1
4 d − m1( 􏼁

for all t≥ 0. (15)

It follows from the above results. Since solutions of the
initial value problem dx1/dt � x1(1 − x1), x1(0)≥ 0 satisfies
limt⟶+∞supx1(t)≤ 1.

Let ε> 0 be given. .en, there exists a T1 > 0 such that
x1(t)≤ 1 + (ε/2) for all t≥T1. From () with T � T1, we get
for all t≥T1 ≥ 0.
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σ(t) � x1(t) +
a1

a2
x2(t)≤ 1 +

1
4 d − m1( 􏼁

− 1 +
1

4 d − m1( 􏼁
􏼠 􏼡 − x1 T1( 􏼁 +

a1

a2
x2 T1( 􏼁􏼠 􏼡e

d− m1( )T1􏼢 􏼣e
− d− m1( )t

. (16)

.en,

x1(t) +
a1

a2
x2(t)≤ 1 +

1
4 d − m1( 􏼁

+
ε
2

􏼠 􏼡 − 1 +
1

4 d − m1( 􏼁
+
ε
2

􏼠 􏼡 − x T1( 􏼁 +
a1

a2
x2 T1( 􏼁􏼠 􏼡e

d− m1( )T1􏼢 􏼣e
− d− m1( )t

. (17)

For all, t≥T1. Let T2 ≥T1 be such that

1 +
1

4 d − m1( 􏼁
+
ε
2

􏼠 􏼡 − x T1( 􏼁 +
a1

a2
x2 T1( 􏼁􏼠 􏼡e

d− m1( )T1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
e

− d− m1( )t ≤
ε
2
. (18)

For all, t≥T2. .en,

x1(t) +
a1

a2
x2(t)≤ 1 +

1
4 d − m1( 􏼁

+ ε for all t≥T2. (19)

Hence,

limt⟶+∞sup x1(t) +
a1

a2
x2(t)􏼠 􏼡≤ 1 +

1
4 d − m1( 􏼁

. (20)

Model (5) is then obviously dissipative in R2
+.

2.2. Existence of Equilibria. We find all the positive equi-
librium points of the model (5) by solving the following
equations:

1 − x1 −
a1x2

x1 + b
� 0, (21)

− d + m1 +
a2x1

x1 + b
−

cx2

δ + x2
� 0. (22)

.en, we have the following equilibria for the model (5).

(i) .e trivial equilibrium point E0(0, 0).
(ii) .e first axial equilibrium point E1(1, 0).
(iii) .e second axial equilibrium point E2(0, x2), where

x2 � − ((− d + m1)δ)/(− d + m1 − c).
(iv) .e interior equilibrium point E∗(x∗1 , x∗2 ), where

x∗2 � − (((x∗1 − 1)(b + x∗1 ))/(a1)) and x∗1 is the
positive root of the following equation.

α1x
∗ 3
1 + α2x

∗ 2
1 + α3x

∗
1 + α4 � 0, (23)

where

α1 � − − d + m1( 􏼁 − a2 + c,

α2 � − d + m1( 􏼁(1 − b) − b − d + m1( 􏼁 + a2(1 − b) − c(1 − b) + cb,

α3 � a1δ − d + m1( 􏼁 + b − d + m1( 􏼁 + b(1 − b) − d + m1( 􏼁 + a1a2δ + ba2 − cb − cb(1 − b),

α4 � a1δb − d + m1( 􏼁 + b
2

− d + m1( 􏼁 − cb
2
.

(24)

By using Descartes’ rule of sign change, we can say
the number of positive roots of (23). Note it is difficult to say
about all possible positive roots of the (23) analytically. Hence,
the existence of coexisting equilibrium E∗(x∗1 , x∗2 ) can be
discussed by plotting the nullclines; that is, the intersection
points of the prey and predator nullclines are the interior
equilibrium points of the model (5).

Lemma 1. For the model (5), E0(0, 0) and E1(1, 0) are al-
ways exists. E2(0, x2) is exist, if − d + m1 > 0 and − d + m1 < c.
6e number of sign changes in αi, i � 1, 2, 3, 4, determines the
positive roots of (23). Hence, if x∗1 < 1, then assume that
E∗(x∗1 , x∗2 ) be the arbitrary interior equilibrium exist for the
model (5).

In order to have a quick glance on existence of equilib-
rium points, let a1 � 0.5, b � 0.4, d � 0.2, a2 � 0.5, δ � 0.2,

m1 � 0.3>d, and c � 0.2, we have E0(0, 0), E1(1, 0), and
E2(0, 0.2), and from (23), we have

− 0.4x
∗ 3
1 + 0.28x

∗ 2
1 + 0.196x

∗
1 − 0.012 � 0. (25)

Since two sign change occurs in the above equation, we
have two positive roots, that is, x∗1 � 0.0569659< 1and
x∗1 � 1.11525> 1. Then, from Lemma 1, we have the interior
equilibrium E∗(x∗1 , x∗2 ) � (0.056965, 0.861869)for the
model (5), which is shown in Figure 1(a). Similarly, if
m1 � 0.2 � dand m1 � 0.1< d, then there is only E0, E1, and
E∗, which exist. Moreover, we can say if the death rate of
predator d is less than the birth rate due to cannibalism m1,
then the predator-only equilibrium E2 can exist. Next, we
show the equilibria of the model (5) with the effect of
cannibalism graphically. For the different m1 and c, we plot
the nullcline plots in Figures 1(a)–1(c).
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2.3. Local Stability. In order to study the local stability
properties of the equilibria, we use the following Jacobian

matrix at some arbitrary interior equilibrium E(x1, x2),
which is

J �

1 − 2x1 −
ba1x2

x1 + b( 􏼁
2 −

a1x1

x1 + b

ba2x2

x1 + b( 􏼁
2 − d + m1 +

a2x1

x1 + b
−
2cδx2 + cx

2
2

δ + x2( 􏼁
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

.e eigenvalues of the Jacobian matrices are calculated at
each equilibria, in order to say the local stability properties.
.en, we have the following results:

Theorem 3. For model (5),

(i) E0 is unstable if m1 < d and saddle if m1 >d.
(ii) E1 is stable if m1 + (a2/1 + b)<d and saddle if

m1 + (a2/1 + b)> d.
(iii) E2 is stable only if 1< (a1x2/b) and − d + m1 <

((2cδx2 + cx2
2
)/((δ + x2)

2)), otherwise unstable.

Proof. .e Jacobian matrices at E0(0, 0) and E1(1, 0) are

JE0
�

1 0

0 − d + m1

⎡⎢⎣ ⎤⎥⎦,

JE1
�

− 1 −
a1

1 + b

0 − d + m1 +
a2

1 + b

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(27)

.e eigenvalues of JE0
are λ1 � 1 and λ2 � − d + m1. .e

eigenvalues of JE1
are λ1 � − 1 and λ2 � − d + m1 + (a2/1 + b).

.e Jacobian matrix at E2(0, x2)

JE2
�

1 −
a1x2

b
0

a2x2

b
− d + m1 −

2cδx2 + cx2
2

δ + x2( 􏼁
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (28)

.e eigenvalues of JE2
are λ1 � 1 − (a1x2/b) and

λ2 � − d + m1 − ((2cδx2 + cx2
2
)/(δ + x2)

2).

Theorem 4. For model (5), if

c
∗ < c,

ba1a2x
∗
1x
∗
2

x
∗
1 + b( 􏼁

3 < − x
∗
1 +

a1x
∗
1x
∗
2

x
∗
1 + b( 􏼁

2
⎛⎝ ⎞⎠

δcx
∗
2

δ + x
∗
2( 􏼁

2
⎛⎝ ⎞⎠,

(29)

then the interior equilibrium E∗(x∗1 , x∗2 ) is locally asymp-
totically stable.
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Figure 1: Nullcline plots for different values of m1 and c, where black line represents the prey nullcline and the colored lines represent the
predator nullclines. Also, cyan dot implies E0, black dot implies E1, colored dots implies E2, and cyan boxed dots implies E∗. .e parameter
values are chosen as a1 � 0.5, b � 0.4, d � 0.2, a2 � 0.5, δ � 0.2, and m1 � 0.3>d.
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Proof. .e Jacobian matrix at E∗(x∗1 , x∗2 )

JE∗ �

− x
∗
1 +

a1x
∗
1x
∗
2

x
∗
1 + b( 􏼁

2 −
a1x
∗
1

x
∗
1 + b

ba2x
∗
2

x
∗
1 + b( 􏼁

2 −
δcx
∗
2

δ + x
∗
2( 􏼁

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

.e characteristic equation of the above matrix is

λ2 − β1λ + β2 � 0, (31)

where

β1 � − x
∗
1 +

a1x
∗
1x
∗
2

x
∗
1 + b( 􏼁

2 −
δcx
∗
2

δ + x
∗
2( 􏼁

2

� − x
∗
1 +

a1x
∗
1x
∗
2

x
∗
1 + b( 􏼁

2
⎛⎝ ⎞⎠

δ + x
∗
2( 􏼁

2

δx
∗
2

􏼠 􏼡 − c

� c
∗

− c,

β2 � − x
∗
1 +

a1x
∗
1x
∗
2

x
∗
1 + b( 􏼁

2
⎛⎝ ⎞⎠ −

δcx
∗
2

δ + x
∗
2( 􏼁

2
⎛⎝ ⎞⎠ +

ba1a2x
∗
1x
∗
2

x
∗
1 + b( 􏼁

3 .

(32)

By Routh–Hurwitz criterion, the roots of (31) has
negative real parts if β1 < 0 and β2 > 0. Hence, if (29) holds,
we achieve β1 < 0 and β2 > 0.

2.4. Hopf Bifurcation

Theorem 5. Assume that c � c∗ and

ba1a2x
∗
1x
∗
2

x
∗
1 + b( 􏼁

3 < − x
∗
1 +

a1x
∗
1x
∗
2

x
∗
1 + b( 􏼁

2
⎛⎝ ⎞⎠

δcx
∗
2

δ + x
∗
2( 􏼁

2
⎛⎝ ⎞⎠. (33)

Then, the model (5) undergoes Hopf bifurcation near
E∗(x∗1 , x∗2 ).

Proof. It is known that if (i) β1 � 0 and (ii) β2 > 0, then the
roots of (31) have a pair of imaginary roots. Since we aim to
study the effect of cannibalism, we take c as a bifurcation
parameter. When the parameter c crosses the critical value
c � cc, (i) and (ii) hold if it satisfies c � c∗ and (33), then
the roots of (31) has a pair of imaginary roots. Moreover,
the transversality condition is given by (iii) (d/dc)(β1) �

(− δx∗2 / (δ + x∗2 )2)≠ 0. .ese conditions ensure that the
model (5) undergoes Hopf bifurcation at E∗(x∗1 , x∗2 ). Note
E∗(x∗1 , x∗2 ) is in terms of c, and it is calculated at the critical
value c � cc.

3. The Delayed Model

.e time delay in the predator-prey model can cause
complex behavior in the dynamics. For example, the authors

in [3] considered gestation delay in the food chain model
with Crowley–Martin functional response..ey showed that
the presence of delay helps to stabilize the unstable near the
interior equilibrium point to stable. In Reference [25], the
authors considered the three species food chain model with
the interaction between the species in the form of Holling
type-II functional response. Moreover, they considered time
delay in the gestation process of the top predator. .ey
showed that the presence of delay exhibits chaos in the
considered model with the help of the bifurcation diagram
and maximum Lyapunov exponents. In Reference [26], the
authors considered the spatiotemporal prey-predator model
with additive Allee effect in prey growth, Holling type-II
functional response, and gestation delay in predator pop-
ulation. With the increment in time delay, the stationary
pattern gets converted into another one which eventually
turns into a chaotic pattern for the sufficiently large time
delay. Also, they showed that the transition where cold spot
pattern turns into a stationary mixture pattern, and finally,
the mixture pattern eventually settles into a chaotic pattern
through the quasiperiodic one with the increase in the
magnitude of time delay. Two interesting scenarios for the
temporal model correspond to the spatiotemporal model,
where the bistable scenario for an intermediate range of
parameter values is chosen as bifurcation parameter [27].
Based upon these two bifurcation scenarios, the authors are
interested in understanding the role of time delay on spa-
tiotemporal pattern formation. For other interesting results
on time delay, we refer the readers to [16, 19, 28]. In this
section, we consider the model (4) in presence delay τ ≠ 0
with reduced parameters, which is of the form

dx1

dt
� x1 1 − x1 −

a1x2

x1 + b
􏼢 􏼣,

dx2

dt
� − d + m1( 􏼁x2 +

a2x1(t − τ)x2(t − τ)

x1(t − τ) + b
−

cx
2
2

δ + x2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(34)

With x1(ϕ) � θ1(ϕ), x2(ϕ) � θ2(ϕ), ϕ � [− τ, 0], and
θ1,2: [− τ, 0]⟶R2, we note the equilibrium points for the
models (34) and (5) are same. Moreover, in the following, we
analyze the local stability and Hopf bifurcation near the
interior equilibrium point E∗(x∗1 , x∗2 ).

3.1. Positivity and Boundedness. One can write from the first
equation of model (34) as follows:

dx1

x1
� 1 − x1 −

a1x2

x1 + b
􏼠 􏼡. (35)

Integrating between 0 and t, we get

x1(t) � x1(0)exp 􏽚
t

0
1 − x1 −

a1x2

x1 + b
􏼢 􏼣ds􏼠 􏼡 ≥ 0. (36)

Similarly from second equation of model (34), we have
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x2(t) � x2(0)exp 􏽚
t

0
− d + m1 +

a2x1(s − τ)

x1(s − τ) + b
−

cx2(s)

δ + x2(s)
􏼢 􏼣ds􏼠 􏼡 ≥ 0. (37)

Hence, all the solutions of model (34) are non-negative.

Theorem 6. All solutions of model (34) starting in R2
+ are

confined to the region D∗ � (x1, x2) ∈R
2
+: ζ(t)≤ 1+􏼈

((a1(1 − d + m)2)/(4ca2))} as t⟶∞ for all (x1(ϕ),

x2(ϕ)) ∈R2
+, where ζ(t) � x1(t − τ) + (a1/a2)x2(t).

Proof. define a function ζ(t) � x1(t − τ) + (a1/a2)x2(t).
.en, we obtain

dζ(t)

dt
�
dx1(t − τ)

dt
+

a1

a2

dx2(t)

dt

� x1(t − τ) 1 − x1(t − τ)( 􏼁 −
a1x1(t − τ)x2(t − τ)

x1(t − tau) + b

a1

a2
− d + m1( 􏼁x2 +

a1x1(t − τ)x2(t − τ)

x1(t − τ) + b
−

a1

a2

cx
2
2(t)

δ + x2(t)

� − x1(t − τ) +
a1

a2
x2􏼠 􏼡 + 2x1(t − τ) − x

2
1(t − τ) +

a1c

a2
x2(t)

− d + m + 1
c

−
x2(t)

δ + x2(t)
􏼠 􏼡,

dζ(t)

dt
+ ζ(t) � 2x1(t − τ) − x

2
1(t − τ) +

a1c

a2
x2(t)

− d + m + 1
c

−
x2(t)

δ + x2(t)
􏼠 􏼡

≤ 1 +
a1(1 − d + m)

2

4ca2
.

(38)

Using Lemma 2 as in [24], thus all the solutions of model
(34) are bounded.

3.2. Local Stability and Hopf Bifurcation. .e delayed model
(34) after linearization using the transformation x1 � x1 −

x∗1 and x2 � x2 − x∗2 is given as follows:

_x1

_x2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

− x
∗
1 +

a1x
∗
1x
∗
2

x
∗
1 + b( 􏼁

2 −
a1x
∗
1

x
∗
1 + b

0 − d + m1 −
2cδx
∗
2 − cx

∗ 2
2

δ + x
∗
2( 􏼁

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·
x1

x2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +

0 0

ba2x
∗
2

x
∗
1 + b( 􏼁

2
a2x
∗
1

x
∗
1 + b

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1(− τ)

x2(− τ)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

�

ϑ1 ϑ2

0 ϑ3

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
x1

x2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +

0 0

ϑ4 ϑ5

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
x1(− τ)

x2(− τ)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(39)

We removed the bars for our convenience, and then, the
characteristic equation for (39) is given by

ϑ1 − λ ϑ2
ϑ4e

− λτ ϑ3 + ϑ5e
− λτ

− λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 0. (40)

.at is,

λ2 − ϑ1 + ϑ3( 􏼁λ + ϑ1ϑ3 + − ϑ5λ + ϑ1ϑ5 − ϑ2ϑ4( 􏼁e
− λτ

� 0. (41)

Substitute λ � iϕ in (41) and separate the real and
imaginary parts:

ϑ2ϑ4 − ϑ1ϑ5( 􏼁sin ϕτ − ϕϑ5 cos ϕτ � ϕ ϑ1 + ϑ3( 􏼁,

ϑ5ϕ sin ϕτ + ϑ2ϑ4 − ϑ1ϑ5( 􏼁cos ϕτ � − ϕ2 + ϑ1ϑ3.
(42)

After simplification, we get

sin ϕτ �
ϕ ϑ1 + ϑ3( 􏼁 ϑ2ϑ4 − ϑ1ϑ5( 􏼁 + ϑ5ϕ − ϕ2 + ϑ1ϑ3􏼐 􏼑

ϕ2ϑ25 + ϑ2ϑ4 − ϑ1ϑ5( 􏼁
2 ,

cos ϕτ �
− ϕ2 + ϑ1ϑ3􏼐 􏼑 ϑ2ϑ4 − ϑ1ϑ5( 􏼁 − ϑ5ϕ

2 ϑ1 + ϑ3( 􏼁

ϕ2ϑ25 + ϑ2ϑ4 − ϑ1ϑ5( 􏼁
2 .

(43)

Since sin2 ϕτ + cos2 ϕτ � 1, we have

φ1ϕ
6

+ φ2ϕ
4

+ φ3ϕ
2

+ φ4 � 0, (44)

where

φ1 � ϑ25,

φ2 � − 2ϑ1ϑ3ϑ
2
5 + ϑ2ϑ4 − ϑ1ϑ5( 􏼁

2
+ ϑ25 ϑ1 + ϑ3( 􏼁

2
− ϑ45,

φ3 � ϑ2ϑ4 − ϑ1ϑ5( 􏼁
2 ϑ1 + ϑ3( 􏼁

2
+ ϑ21ϑ

2
3ϑ

2
5

− 2 ϑ2ϑ4 − ϑ1ϑ5( 􏼁
2ϑ1ϑ3 − 2 ϑ2ϑ4 − ϑ1ϑ5( 􏼁

2ϑ25,

φ4 � ϑ21ϑ
2
3 ϑ2ϑ4 − ϑ1ϑ5( 􏼁

2
− ϑ2ϑ4 − ϑ1ϑ5( 􏼁

4
.

(45)
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Let us assume that (44) has at least one positive root,
which is ϕ∗; then, we get the critical value τn as follows:

τn �
1
ϕ∗

arc sin
ϕ∗ ϑ1 + ϑ3( 􏼁 ϑ2ϑ4 − ϑ1ϑ5( 􏼁 + ϑ5ϕ

∗
− ϕ∗2 + ϑ1ϑ3􏼐 􏼑

ϕ∗2ϑ25 + ϑ2ϑ4 − ϑ1ϑ5( 􏼁
2

⎛⎝ ⎞⎠ +
2nπ
ϕ∗

, n � 0, 1, 2, . . . . (46)

Theorem 7. 6e following transversality condition is holds:

d(R(λ(ϕ)))

dτ
􏼢 􏼣|τ�τ∗ ≠ 0. (47)

Proof. Let us substitute λ(τ) � θ(τ) + iϕ(τ) in () and dif-
ferentiate wrtτ, we get

dλ
dτ

􏼢 􏼣

− 1

�
− 2λ + ϑ1 + ϑ3( 􏼁( 􏼁e

λτ
+ ϑ5

λ ϑ5λ − ϑ1ϑ5 − ϑ2ϑ4( 􏼁( 􏼁
−
τ
λ
. (48)

.en,

R
dλ
dτ

􏼢 􏼣

− 1

􏼠 􏼡|λ�iϕ∗ �
− 2λ + ϑ1 + ϑ3( 􏼁( 􏼁e

λτ
+ ϑ5

λ ϑ5λ − ϑ1ϑ5 − ϑ2ϑ4( 􏼁( 􏼁
􏼢 􏼣|λ�iϕ

�
1

ϑ25ϕ
∗3

+ ϕ∗ ϑ2ϑ4 − ϑ1ϑ5( 􏼁
2

· − ϑ25 + ϑ1ϑ5 − ϑ2ϑ4( 􏼁 ϑ1 + ϑ3( 􏼁 − 2ϑ5ϕ
∗ 2

􏼐 􏼑sin ϕ∗τ − ϑ5ϕ
∗ ϑ1 + ϑ3( 􏼁 − 2ϕ∗ ϑ1ϑ5 − ϑ2ϑ4( 􏼁( 􏼁cos ϕ∗τ􏽨 􏽩.

(49)

Theorem 8. If (29) holds then for the model (34), we have the
following: (i) the interior equilibrium point E∗(x∗1 , x∗2 ) is
locally asymptotically stable for τ ∈ [0, τ∗) and (ii) undergoes
Hopf bifurcation near E∗(x∗1 , x∗2 ) at τ � τn, (n � 0, 1, 2, . . .).
Also, each τn satisfies (47), which is the critical points that
were the stability switches of E∗ that occurs.

4. Numerical Simulation

In this section, we perform some simulation results to show
the local stability and bifurcation behavior of both non-
delayed and delayed models.

Let us take the fixed parameter values as

a1 � 0.5,

b � 0.4,

d � 0.1,

a2 � 0.5.

(50)

Case 1. .e nondelayed model is as follows:
With the parameter values in (50), the model (5)

becomes

dx1

dt
� x1 1 − x1 −

0.5x2

x1 + 0.4
􏼢 􏼣,

dx2

dt
� − 0.1 + m1( 􏼁x2 +

0.5x1x2

x1 + 0.4
−

cx
2
2

δ + x2
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(51)

First, we showed that for m1 � 0.3>d, c � 0.2, and
δ � 0.2, then the model (51) has the equilibrium points

E0(0, 0), E1(1, 0), E2(0, 0.2), and E∗(0.056965, 0.0861869).
Further, the existence of equilibria is shown with the help of
plotting the nullcline plots in Figures 1(a)–1(c). .e pred-
ator-only equilibrium E2 is exist only if m1 >d, which is
shown in Figure 1(a). If E2 is stable, then the predator may
alone survive without prey by getting energy from its own
species m1 > d; that is, a death rate of the predator is greater
than birth due to cannibalism. If E2 is unstable, then the
trajectories near E2 either approach E0 or E∗. From.eorem
3, we have E0 is a saddle point, E1 is also a saddle point, since
m1 + (a2/1 + b) � 0.657143>d. And, a1x2/b< 1, then E2 is
unstable for the model (51). Also, the predator-only equi-
librium E2 does not exist for m1 ≤ d (see Figures 1(b) and
1(c)). .e local stability of E∗ is achieved in .eorem 4,
which ensures the long-time survival of both species. .e
model (51) at c � 0.36, d � 0.1, and m1 � 0.2 with other
parameters in (50) is locally asymptotically stable near the
interior equilibrium E∗, see Figure 2. Furthermore, if
c � c∗ � 0.34324, also, then the model (51) has interior
equilibrium E∗(x∗1 , x∗2 ) � (0.234183, 0.971336). .en, the
following conditions hold: (i) β1 � 0; (ii) β2 � 0.0868205;
(iii) (d/dc)(β1) � − 0.141591≠ 0..en, from.eorem 5, the
model (51) undergoes Hopf bifurcation at c � c∗ � 0.34324
at critical value cc � 0.34324 and is shown in Figure 3 for
c � 0.34. Further, on increasing δ � 0.8, then the model (51)
is locally asymptotically stable (see Figure 4). For clear
representation, one-parameter bifurcation diagram with
respect to c ∈ (0.2, 0.5) and δ ∈ (0, 0.8) is shown in Figures 5
and 6, correspondingly. In Figure 5, it is shown that for
c ∈ (0, 0.34324), the periodic solution arises near the E∗, and
for c ∈ (0.34324, 0.5), the E∗ is locally asymptotically stable.
Also in Figure 5, we noticed on increasing the c value, the
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size of prey population increases, and the predator pop-
ulation size declines. Figure 6 shows that E∗ is locally as-
ymptotically stable for δ ∈ (0, 0.1905), the periodic solution
arises near the E∗ for δ ∈ (0.1905, 0.593), and the E∗ is
locally asymptotically stable c ∈ (0.593, 0.8). Hence, we
notice from Figure 6, that on increasing the values of δ, both
population sizes reduce. Moreover, the existence of ex-
change of stability (unstable to stable) on varying the pa-
rameters c and δ occurs; hence, we can conclude that the
parameters c and δ has stabilizing effect in the nondelayed
model (5).

Next, to demonstrate the impact of cannibalism pa-
rameters c, δ, and m1 on the model (51), we plotted the
two-parameter bifurcation diagram with respect to the
parameters δ and c in Figure 7(a), and m1 and δ in
Figure 7(b). It is shown that less c value causes the ex-
tinction of species. Also, the stable, unstable, and ex-
tinction regions are clearly depicted. Further, we showed
that the c value should be above some threshold value in
order to ensure the survival of the species. Similarly, m1
should be less than some critical value for the existence of
species, or else the species will die out. So, cannibalism in
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Figure 2: Locally asymptotically stable. (a) Time plot; (b) phase portrait for the model (51) with m1 � 0.2, δ � 0.2, and c � 0.36.
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Figure 3: Periodic oscillations. (a) Time plot; (b) phase portrait for the model (51) with m1 � 0.2, δ � 0.2, and c � 0.34.
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the predator population can cause complex behavior in
the model (51).

Case 2. .e delayed model.

Let d � 0.1, m1 � 0.2, c � 0.4, δ � 0.4, and other pa-
rameter values in (50); then, the model (34) becomes

dx1

dt
� x1 1 − x1 −

0.5x2

x1 + 0.4
􏼢 􏼣,

dx2

dt
� − 0.1 + m1( 􏼁x2 +

0.5x1(t − τ)x2(t − τ)

x1(t − τ) + 0.4
−

cx
2
2

delta + x2
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(52)
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Figure 4: Locally asymptotically stable. (a) Time plot; (b) phase portrait for the model (51) with m1 � 0.2, δ � 0.2, and c � 0.34.
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Figure 5: .e bifurcation diagram of the model (51) with m1 � 0.2, δ � 0.2, and c ∈ (0.2, 0.5).
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.en, the model (52) has interior equilibrium point
E∗(x∗1 , x∗2 ) � (0.346151, 0.97574). Moreover, from (44), we
have

0.0538044ϕ6 + 0.00677379ϕ4
− 0.0001068487ϕ2

− 0.0000251728 � 0.
(53)

If it has a positive root ϕ∗ � 0.2374849, then we get the
critical value τ � 1.69709, where the stability switches occur
for the model (52). .e local stability and Hopf bifurcation
results are given in .eorem 8 that, for τ ∈ [0, 1.69709),
model (52) is locally asymptotically stable (see Figure 8)

and undergoes Hopf bifurcation at τ∗ � 1.69709 (see
Figure 9). For clear presentation, the bifurcation diagram
with respect to τ for the existence of Hopf bifurcation is
shown in Figure 10. Hence, the time delay in the model (34)
has a destabilizing effect. To show the effectiveness of delay
parameter τ with the cannibalism parameters c and δ, we
plotted the two-parameter bifurcation diagram with re-
spect to δ and τ in Figure 11(a), and c and τ in Figure 11(b).
.e exchange of stability regions (stable to unstable) for the
model (52) is clearly depicted. It shows that on increasing
the δ value, the interval of stability with respect to τ de-
creases. For instance, if δ � 0.2, the interior equilibrium E∗
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Figure 6: .e bifurcation diagram of the model (51) with m1 � 0.2, c � 0.34, and δ ∈ (0, 0.8).
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for the model (52) is locally asymptotically stable for
τ ∈ (0, 1.69704) and Hopf bifurcation occurs when τ
crosses the critical value τ � 1.69704, and if δ � 0.5, the
interior equilibrium E∗ for the model (52) is locally

asymptotically stable for τ ∈ (0, 0.20826) and Hopf bifur-
cation occurs when τ crosses the critical value τ � 0.20826.
Similarly, for larger values of c, the interval for local sta-
bility increases for τ.
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Figure 8: Locally asymptotically stable. (a) Time plot; (b) phase portrait for the model (52) with m1 � 0.2, c � 0.2, δ � 0.4, and τ � 1.3.
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Figure 9: Periodic oscillations. (a) Time plot; (b) phase portrait for the model (52) with m1 � 0.2, c � 0.2, δ � 0.4, and τ � 2.
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5. Conclusion

In this work, we considered the Holling type-II prey-
predator model involving predator cannibalism, and also,
the delay is considered due to the gestation process in the
predator population. We were given a description of what a
two-species predationmodel should be and how its solutions
should behave. .ere have been relatively few attempts to

suggest explicit models for cannibalism. While in the model,
we have proposed both delay and cannibalism, all the results
that we have deduced on the behavior of the model in terms
of stability and bifurcation analysis. .ere is some biological
evidence to suggest that complicated population systems
have a tendency to be more stable than simple systems. On
the other hand, the removal of one species can lead to a
collapse of population systems. It is important to know what

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

τ

Pr
ey

(a)

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4
0.7

0.8

0.9

1.0

1.1

τ

Pr
ed
at
or

(b)

Figure 10: .e bifurcation diagram of the model (52) with m1 � 0.2, c � 0.2, δ � 0.4, and τ ∈ (1.6, 2.4).
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the predator population involves cannibalism. In the case
when the model (4) has no cannibalism, then it follows the
well-known Rosenzweig–MacArthur model [10], in the
absence of its lone prey, the predator dies out exponentially.
But in the presence of cannibalism, if the death of the
predator is greater than that of the birth due to cannibalism,
then the prey-free equilibrium exists (see Figure 1(a)). Be-
sides, if the birth due to cannibalism is less than or equal to
the death rate of a predator, then predators cannot survive
alone; that is, the prey-free equilibrium E2 does not exist,
which is clearly shown in Figures 1(b) and 1(c).

In Reference [5], the authors showed that model (1)
without cannibalism has a boundary equilibrium, and it is
globally asymptotically stable. For a suitable rate of canni-
balism, the model (1) has a unique interior equilibrium, and
it is globally asymptotically stable..ey showed that the high
rate due to cannibalism causes the extinction of the prey
population. Further, predator-only equilibrium exists, and it
is globally asymptotically stable..e presence of cannibalism
has both positive and negative effects..e cannibalism in the
prey cannot stabilize the unstable interior equilibrium in the
ODE case but can destabilize the stable interior equilibrium,
leading to a stable limit cycle [29]. .e authors in Reference
[13] reported spatial patterning in two-species predator-prey
models are driven solely via the joint effect of predator and
prey cannibalism. Interestingly, higher levels of equilibrium
prey provide stability, while lower levels drive instability. In
this study, we derived the condition to undergo Hopf bi-
furcation for both cannibalism and delay parameters. .e
local stability conditions prevent both populations from
extinction risk. Also, the model may have bifurcation for
other model parameters, but we are particularly interested in
varying the cannibalism and delay parameters. We found
that model (5) in the presence of cannibalism is more stable
for high cannibalism rate and unstable for a higher value of
delay parameter in the model (34). Additionally, the pro-
posed model can be studied in discrete and stochastic forms,
which may result in richer dynamical features than the
proposed model. .is will also be our future goal.
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