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Abstract. This research is to develop and evaluate the stability of a mathematical model for 
controlling the spread of rotavirus infection. The model is analyzed using standard methods 
including the equilibrium point and the stability of the equilibrium points. The education 
campaign rate in the model, the basic reproductive number and numerical solutions are 
studied. We found that the education campaign rate is the factor affecting the model. If the 
infection’s population is educated and follows the hypothesis of this model, then the spread of 
rotavirus infection will decrease and there will be no epidemic. It concluded that when the 
value of the education campaign rate decreases, the number of infected human increases. 
Therefore, the basic reproductive number is greater than one, meaning the Rotavirus infection 
will occur in the community. On the other hand, when the value of the education campaign 
increases, the number of infected human decreases. The basic reproductive number is less 
than one, meaning that the Rotavirus infection will have died out the community. 

 
Keywords: Mathematical model, Rotavirus infection, Education Campaign 

Introduction 
Studying the mathematical models of epidemics makes it possible to know the epidemic and 
the results obtained from the model, help researchers understand the factors that can control 
the spread of the disease. Including having a correct understanding of the transmission of the 
disease. The study also identifies the strengths of a mathematical model capable of altering 
the characteristics of an epidemic. Analyzing the model, data shows the effectiveness of 
understanding the evolution of the epidemic and understanding disease control measures. 
Therefore, the results of this study are highly beneficial in reducing the risk of infection. 
Infection transmission and epidemic control. Diarrhoea is a disorder of the gastrointestinal 
tract. It would call liquid stools three times a day in each year. There are up to 1.7 billion 
diarrhoea patients worldwide. There will be distension, abdominal pain, nausea, vomiting and 
often taken. If it is longer than three weeks, diarrhoea will be called chronic. If it healed within 
three weeks, it is called acute diarrhoea, bacteria and viruses. Countries in the United 
Kingdom report 13,000 diarrhoea patients with Rotavirus a year. Australia has the number of 
infected people.It is as high as 32,000 people per year, and in Africa, the death rate of children 
are 15%. Thailand and Southeast Asia were found that 43-56% of younger children more than 
five years with diarrhoea who need to be hospitalized, are caused by a virus called Rotavirus, 
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which is a virus in RNA Group (Double-stranded RNA virus) in the family Reoviridae 7 species 
(A, B, C, D, E, F, G). When receiving the Rotavirus into the body, a short incubation period of 
fewer than 48 hours (duration from 1-7 days), When entering the digestive tract, the small 
intestine will destroy the small intestine wall, resulting in water absorption, reduced water and 
minerals and Enzyme for indigestion of carbohydrates causing diarrhoea no mucus or blood. 
Therefore, Rotavirus Is the cause of diarrhoea worldwide, resulting in approximately 527,000 
deaths per year. Diarrhoea from Rotavirus is usually found in young children under five years, 
but in the past two years, it increased in adults. It may be infected by caring for a sick child or 
infected by contamination in the environment, and the Rotavirus is the most common in the 
winter. Rotavirus diarrhoea is caused by an infection with food and water directly through the 
mouth or indirectly after exposure to contaminated faeces or toys contaminated with faeces 
[3]. Diarrhoea from Rotavirus is usually found in groups with the symptoms within 1-3 days, 
and a patient can spread the infection for more than a week after the onset. The disease 
symptoms are fever, vomiting, diarrhoea, and diarrhoea in patients with severe symptoms. 
They need to be hospitalized due to dehydration, and if the treatment is unsuitable, it may be 
dangerous. It can have recurrent infections, do many times later. Symptoms will be less. From 
the mathematical model, the spread of diarrhoea from Rotavirus is known. The model and the 
spread of disease help the researchers understand the factors that can control the spread of 
the disease and have a correct understanding of the transmission. In addition, the strengths 
of mathematical models can change the characteristics of the disease and the parameters 
related to the disease. The Mathematical study epidemics of Rotavirus, keeping in mind the 
consequences of the epidemic and helping researchers better understanding the factors that 
control the spread of the disease [2]. In addition, the strengths of the mathematical model can 
also modify the characteristics of the epidemic and various parameters associated with the 
disease [5]. So, the results of this study would be highly beneficial in reducing the risk of 
infection and Rotavirus infection control. This research aims to develop and evaluate the 
stability of mathematical modelling for controlling the spread of Rotavirus infection on the 
Education Campaign. The model is analyzed using standard methods, the equilibrium point, 
stability, and analytic solutions [6]. The effectiveness of the Education Campaign in 
mathematical modelling and numerical solutions is studied. 
 
Model Formulation 
In our model, we assume that the human population is one constant because the birth rates 
and the death rates of the human population are equal. Therefore, the total number of human 
people denote by. The human N population are divided into four classes; the susceptible 
human (S), the exposed human (E), the infected human (I) and the recovered human (R). The 
diagram of four classes of the human population and the crucial parameters are used, 
representing the Rotavirus infection dynamics model. That is shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 

Figure 1. Flow chart of the dynamical transmission of Rotavirus infection. 
The transitions between model classes can be now expressed by the following system of first 
order differential equations: 
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( )
dS

=πN- 1-ε δSI-μS
dt

    (1) 

 

( ) ( )
dE

= 1-ε δSI-E β+μ
dt

    (2) 

 

      ( )
dI

=βE-I μ+α
dt

     (3) 

 

      dR
=αI-μR

dt
      (4) 

 
with  N = S + E + I + R   

 
 
Where; 
  

S(t)  is the susceptible human populations at time t 

E(t)  is the exposed human populations at time t 

 
I(t)  is the infected human populations at time t 

 
R(t)  is the recovered human populations at time t 

 N  is the total number of human populations  

    is the birth rate of human populations  

   is the effectiveness of education campaign 

   is the probability that virus transmitted from infected human to susceptible   

human 

   is the proportional rate for people exposed to the infected human populations  

 
  is the recovery rate of infected human populations  

   is the natural death rate of human populations 

 
Model Analysis 
Since the model monitors human population, all the associated parameters and state variables 
are non-negative is t 0 . It is easy to show that the state variables of the model remain non-

negative for all non-negative initial conditions [1]. The biological feasible region 

 

4(S,E, I, R) R : N+

 
 =  → 

 

 

Lemma 1. The closed   is positively invariant and attracting. 

 Proof.  Adding (1)-(4) give the rate of change of the total population. 
 

dN dS dE dI dR
dt dt dt dt dt

= + + +  

( ) ( ) ( ) ( )
dN

N 1 SI S 1 SI E E I I R
dt

=  − −   − + −   −  + + −  + + −

dN
N S E I R

dt
=  − −  −  −  

dN
N (S E I R)

dt
=  − + + +  

dN
N N

dt
=  −  
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1
dN ( )dt

N
=  −  

1
dN ( )dt

N
=  −   

 

ln N ( ) t c= − +  

( ) t cN e − +=  
( ) t

0N(t) N e −=  c

0N e=  

 

Thus, the total human population (N) are bounded by − , so that 
dN

0
dt

=  whenever =  . 

It can be shown that ( ) t

0N(t) N e −= . In particular ( ) t

0N(t) N e −= , if ( ) t

0N e 0−  . Hence, the 

region   is positively invariant and attracts all solutions in 4R+
 

 
Basic Reproductive Number 

The basic reproductive number ( 0R ) is defined as the expected number of secondary cases 

produced by a single infection in a completely susceptible population, by using the next 
generation method and used spectral radius [8]. We have rewritten the system in matrix form  

dx
F(x) V(x)

dt
= −  

 Here F(x) gives the rate of appended of new infections in a compartment and V(x)

gives the transferring of individuals. We obtained, 

  

0

(1 ) SI
F(X)

0

0

−  
=

 
 
 
 
 

 and 

N (1 ) SI S

E E
V(X)

E I I

I R

− + −   + 

 + 
=

− +  + 

− + 

 
 
 
 
 

 

where:

 
0

1
( )

0 0 0 0

(1 ) N (1 ) N
0 0

FV E ( )( )

0 0 0 0

0 0 0 0

−
−   −  

=  +   +   + 

 
 
 
 
 
  

 and Spectral Radius from
0

1
( )FV E

− ,  

that is  
0

1
( )]

(1 ) N
[FV E

( )( )

−
=

−  


 +   + 
. We have the basic reproductive number as shown,  

R
0

(1 ) N

( )( )
=

−  

 +   + 
 

 
 
Stability Analysis 
In this section, the stability of equilibrium can be analyzed by using the Jacobian matrix of the 
model at the disease free equilibrium. Referring to the results of Vanden Driessche and 
Watmough (2002), the stability of this system as shown in the follow theorem. 
 

Theorem 1: The disease free equilibrium of the system about the equilibrium 0E , is    local 

asymptotically stable if 0R >1 and unstable if 0R <1. 
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Proof. The Jacobian matrix of the model (Eqs. 1-4) evaluated a 
0 0E (S, E, I, R) E (N, 0, 0, 0)=  is 

obtained the local stability of equilibrium point is determined from the Jacobian matrix of the 
system of ordinary differential equation. The equation (1), (2), (3) and (4)   evaluated at the 
equilibrium point. The Jacobian matrix is  
 

  

 
 
 
 
  

-μ 0 -(1-ε)δN 0

0 -(β+μ) (1-ε)δN 0
J =0 0 β -(μ+α) 0

0 0 α -μ

 

 

 

-μ-λ 0 -(1-ε)δN 0

0 -(β+μ+λ) (1-ε)δN 0
det(J - λI)=0 0 β -(μ+α+λ) 0

0 0 α -μ-λ

 

 

( )
2 2det(J - λI)= μ - λ [λ +(β+2μ+α)λ+(β+μ)(μ+α)-(1- ε)βδN]0

 

The eigenvalues of the Jacobian matrix 0J are obtained by solving 0det(J - λI)=0 , then the 

characteristic equation as follows: ( )
2 2μ - λ [λ +(β+2μ+α)λ+(β+μ)(μ+α)-(1- ε)βδN]=0  

where; λ = -μ < 01,2 and
 

2-(β+2μ+α)± (β+2μ+α) -4[(β+μ)(μ+α)-(1-ε)βδN]
λ =3,4 2

 

The two roots of 
2λ + Aλ +B=0  will be negative real part if they satisfy the Routh-Hurwitz 

criteria. 
1) A =β+2μ+α  

   2) B =(β+μ)(μ+α)-(1-ε)βδN  

   3) A>0 
   4) B>0 
 
Theorem 2: The endemic equilibrium of the system Eqs.(1)-(4) for the equilibrium

* * *πN (1- ε)δS I βE αI* * * *E (S ,E ,I ,R ) = ( , , , )1 * β+μ μ+α μ(1 - ε)δI +μ
, 

          is local asymptotically stable if 0R >1, and unstable if 0R <1. 

 
 
 
Proof. 

 
 
 
 
 
 

* *-(1 - ε)δI -μ 0 -(1 - ε)δS 0

* *(1 - ε)δI -(β+μ) (1 - ε)δS 0J =1
0 β -(μ+α) 0

0 0 α -μ
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







* *-(1 - ε)δI -μ - 0 -(1 - ε)δS 0

* *(1 - ε)δI -(β+μ+ ) (1- ε)δS 0det(J - λI)=1
0 β -(μ+α+ ) 0

0 0 α -μ -

 

 
3 2

2 2 2

* *det(J - λI)=(μ+λ)[(λ +((1- ε)δI +β+α+3μ)λ +(((1 - ε)δI +μ)(μ+β)1
* *+((1 - ε)δI +μ)(μ+α)+(μ+β)(μ+α)-(1 - ε)βδS )λ

* *+((1 - ε)δI +μ)(μ+β)(μ+α)+(1- ε) βδ S I

* *-((1 - ε)βδS )((1- ε)δI +μ)]

 

 

 The eigenvalues of the Jacobian matrix 
1

J are obtained by solving det(J - λI)=01
, we 

provided the characteristic equation as follows: 
 

2 2 2

)

I

) ( )(( ) )]

         

    

         

    

+    −  +

3 2* *( + )[(λ +((1- ) I +β+ +3 λ +(((1- ) I + )( +β)+

* *((1 - ) ( +β) (1- ) S λ

* * * *+((1 - ) I ( +β) +(1- ) I (1- ) 1- I =0

+ )( + )+ ( + )- )

( + ) S S

  

 

 The three roots of 
3 2λ +Aλ +Bλ+C=0  will be negative real part if they satisfy the 

Routh-Hurwitz criteria. 

1) A =    
*(1 - ) I +β+ +3  

 2) B I=         * *((1 - ) I + )( +β)+((1- ) + )( + )     *( +β) (1 - ) S+ ( + )-  

 3)
2 2 2

C )=      +   * *((1 - ) I ( +β) +(1- ) I( + ) S ( )(( ) )   −  +* *(1 - ) 1 - IS  

4) AB C  

 
 
Equilibrium Points 
The model will be analyzed to investigate the equilibrium points by using the standard method 
for analyzing our model. The system has two possible equilibrium points. In the case of the 
absence of the disease, that is I =0. Given, 
 

X

S

E

I

R

=

 
 
 
 
 
 

, 

0

(1 ) SI
F(X)

0

0

−  
=

 
 
 
 
 

and

  

N (1 ) SI S

E E
V(X)

E I I

I R

− + −   + 

 + 
=

− +  + 

− + 

 
 
 
 
 

 

 

From equations (1) - (4) finding the Jacobian max of F(x) and V(x) evaluated at *E (S, E, I, R) . 

We follow that, 
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 
 
 
 
  

-(1 - ε)δI -μ 0 -(1 - ε)δS 0

(1 - ε)δI -(β+μ) (1- ε)δS 0
J =

0 β -(μ+α) 0

0 0 α -μ

 

 
 The disease-free equilibrium point  
 We used the Jacobian max of F(x) and V(x) evaluated at

0 0E (S, E, I, R) E (N, 0, 0, 0)=  

We obtained 0E (N, 0, 0, 0) , then 

 
 
 
 
  

-μ 0 -(1-ε)δN 0

0 -(β+μ) (1-ε)δN 0
J =0 0 β -(μ+α) 0

0 0 α -μ

 

 

-μ-λ 0 -(1-ε)δN 0

0 -(β+μ+λ) (1-ε)δN 0
det(J - λI)=0 0 β -(μ+α+λ) 0

0 0 α -μ-λ

 

 

 
 

( )
2 2det(J - λI)= μ - λ [λ +(β+2μ+α)λ+(β+μ)(μ+α)-(1- ε)βδN]0  

where:

 

  det(J - λI)=00

 

   ( )
2 2μ - λ [λ +(β+2μ+α)λ+(β+μ)(μ+α)-(1- ε)βδN]=0  

 

where;  λ = -μ < 01,2  and

2-(β+2μ+α)± (β+2μ+α) -4[(β+μ)(μ+α)-(1-ε)βδN]
λ =3,4 2

 

 
 
 The endemic equilibrium point  

In the case of the disease in present, that is *I > 0 .  Hence,
 
 

 

1

* * * *
E (S , E , I , R ) =

N
, , )



 

* * *

*

(1-ε)δS I βE αI
( , 

(1-ε)δI +μ β+μ μ+
 

The Jacobian is defined as follows: 

 
 
 
 
 
 

* *-(1 - ε)δI -μ 0 -(1 - ε)δS 0

* *(1 - ε)δI -(β+μ) (1 - ε)δS 0J =1
0 β -(μ+α) 0

0 0 α -μ
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







* *-(1 - ε)δI -μ - 0 -(1 - ε)δS 0

* *(1 - ε)δI -(β+μ+ ) (1- ε)δS 0det(J - λI)=1
0 β -(μ+α+ ) 0

0 0 α -μ -

 

 
3 2* *det(J - λI)=(μ+λ)[(λ +((1- ε)δI +β+α+3μ)λ +(((1 - ε)δI +μ)(μ+β)1
* *+((1 - ε)δI +μ)(μ+α)+(μ+β)(μ+α)-(1 - ε)βδS )λ

* 2 2 2 *+((1 - ε)δI +μ)(μ+β)(μ+α)+(1- ε) βδ S I

* *-((1 - ε)βδS )((1- ε)δI +μ)]

 

 
 
where: det(J - λI)=01

2 2 2

)

I

) ( )(( ) )]

         

    

         

    

+    −  +

3 2* *( + )[(λ +((1- ) I +β+ +3 λ +(((1- ) I + )( +β)+

* *((1 - ) ( +β) (1- ) S λ

* * * *+((1 - ) I ( +β) +(1- ) I (1- ) 1- I =0

+ )( + )+ ( + )- )

( + ) S S

 

 

where: 
3 2

A B C 0+ +   + =  and AB C  

 1) A =    
*(1 - ) I +β+ +3  

 2) B I=         * *((1 - ) I + )( +β)+((1- ) + )( + )     *( +β) (1 - ) S+ ( + )-  

 3)
2 2 2

C )=      +   * *((1 - ) I ( +β) +(1- ) I( + ) S ( )(( ) )   −  +* *(1 - ) 1 - IS  

 
Numerical Analysis 
 In this section, we would like to present the numerical simulation of our model. The 
parameter values that we used in the numerical simulation are given in Table 1. 
 
 

Table 1. Parameters values used in numerical simulation at disease free state 
 

Description Parameters Values 

The total number of human populations N  1,500 persons 

The birth rate of human populations   22 day-1 

The probability that virus transmitted from             
infected human to susceptible human  

  1.59x 10-4 day-1 

the proportional rate for people exposed to the 
infected human populations 

  2.5 x 10-1 day-1 

The natural death rate of human populations    1.2 x 10-2 day-1 

The recovery rate of infected human 
populations  

  1.4 x 10-1 day-1 

The effectiveness of education campaign   0 – 1 
 

 



 The 2nd International Conference on  

Science Technology & Innovation-Maejo University (2nd ICSTI-MJU) 2022 

 

16 
 

By solving the system of differential equations. The numerical results showed the relationship 
between the parameters of education campaign rate and basic reproductive Number in Table 
2. 
 
Table 2. The relationship between the parameters of effectiveness of Education Campaign 

and Basic Reproductive Number 
 

Education 
campaign 

rate (  ) 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 1 

Basic 
reproductive 

Number 

 (
0

R ) 

 

1.497 1.348 1.198 1.048 0.898 0.749 0.599 0.449 0.299 0.150 0 

  
The analysis model was found that the stability of equilibrium points when the Education 

Campaign ε =0.4 , have basic reproductive number
 0R = 0.8980 , and the Education 

Campaign ε =0 , the disease endemic equilibrium 0R = 1.4970 . The Education Campaign 

rate is the factor affecting to the mathematical modeling. 
 
Stability of the endemic state 
We changed the values of Education Campaign 0.999 = , and the values of the other 

parameters are given in Table 1. We have obtained the eigenvalues, and basic reproductive 

numbers are: 
1

 =-0.01200000, 2 =-0.01200000,
3

 = -0.304000181,
4

 =-0.523999819 and 

0R = 0.002360<1. All of the eigenvalues are negative, and the basic reproductive is less than 

one, the endemic equilibrium point will be local asymptotically stable [4]. as shown in Figure 
2. 
 

 
Figure 2. Time series (S) Susceptible human, (E) Exposed human, (I) Infected human, 

(R) recovered human. The solutions approach to the disease-free equilibrium state. 
 

We changed the values of Education Campaign ε =0.4 , and kept the values of the other 

values of parameters to be those given in Table 1, we obtained the eigenvalues and basic 

reproductive numbers are: 
1

 =-0.01200000, 2 =-0.01200000,
3

 =-0.15181961,  

4
 =-0.26218039 and 0R = 0.8980 <1. Since all of eigenvalues have been negative and the 

basic reproductive has been less than one, the endemic equilibrium point will be local 
asymptotically stable. as shown in Figure 3. 
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Figure 3. Time series (S) Susceptible human, (E) Exposed human, (I) Infected human, 

(R) recovered human. The solutions approach the endemic equilibrium state to the disease-
free state. 

 
We changed the values of Education Campaign  =0.5, 0.6, 0.7, 0.8, and 0.85. Also, kept the 

values of the other values of parameters to be those given in Table 1, we have the eigenvalues 

and basic reproductive numbers are:
4 3 2

A B C D 0+ +   +  + = ,A=16.89534009, 

B=7.02090688, C=0.73721679, D=0.00786477, ABC>C2+A2D and 0R =0.898,  0.749, 0.599, 

0.449, 0.299 and 0.150  ( 0R <1). Since all of eigenvalues have been negative and the basic 

reproductive has been less than one, the endemic equilibrium point will be local asymptotically 
stable [4] as shown in Figure 4-7. 
 

 
Figure 4. Time series of Susceptible human on Education Campaign rate  =0.5, 0.6, 0.7, 

0.8 and 0.85, respectively. The values of parameters are in the text. The solutions approach 
the endemic equilibrium state to the disease-free state. 
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Figure 5. Time series of Exposed human on Education Campaign rate  =0.5, 0.6, 0.7, 0.8 

and 0.85, respectively. The values of parameters are in the text. The solutions approach the 
endemic equilibrium state to the disease-free state. 

 
Figure 6. Time series of Infected human on Education Campaign rate  =0.5, 0.6, 0.7, 0.8 

and 0.85, respectively. The values of parameters are in the text.  The solutions approach the 
endemic equilibrium state to the disease-free state. 

 



 The 2nd International Conference on  

Science Technology & Innovation-Maejo University (2nd ICSTI-MJU) 2022 

 

19 
 

 
Figure 7. Time series of Recovery human on Education Campaign rate  =0.5, 0.6, 0.7, 0.8 

and 0.85, respectively. The values of parameters are in the text. The solutions approach the 
endemic equilibrium state to the disease-free state. 

 
This study found that the Education Campaign rate is one of the factors affecting the dynamics 
of a mathematical model SEIR for controlling the spread of Rotavirus infection. It was explored 
that if the population at risk of infection with Rotavirus infection knows the prevention of 
Rotavirus infection less will contribute to the spread of the disease increases. If the most 
population at risk of infection with Rotavirus infection knows the prevention of Rotavirus 
infection, then it will contribute to the spread of the decreased disease until there is no further 
spread of Rotavirus infection. The population at risk of infection with knowledge about the 
prevention of Rotavirus infection, is not less than 40 percent of the total population, and will 
contribute to the spread of the disease until there is no further spread of infection. 
 
Discussion 
In this study, we proposed the dynamics model of Rotavirus infection by considering the 
education campaign. We analyzed the model by a standard method in which we determined 
equilibrium points and investigated the stability of the model. The basic reproductive number 
is obtained through the next generation method. The Education Campaign rate is the factor 
affecting the mathematical modelling. In epidemiology, the basic reproductive number is the 
number of secondary cases generated by a primary infectious cause for the mathematic 
model, the basic reproductive number is the threshold parameter for determining the stability 
of the model at each equilibrium point. The stability of the system is investigated using the 
Roth-Hurwitz criteria. The qualitative behaviours of this model are shown in Fig. 3. We found 
that when Education Campaign rate is 0.4, 0.5, 0.6, 0.7, 0.8 and 0.85, respectively. The 
population at risk of infection with knowledge about the prevention of Rotavirus infection is not 
less than 40 percent of the total population will contribute to the spread of the disease until 
there is no further spread of infection. 
 
Conclusion 
It concluded that when the value of the education campaign rate decreases, the number of 
infected human increase. The basic reproductive number is greater than one, meaning the 
Rotavirus infection will occur in the community. On the other hand, when the value of the 
education campaign increase, the number of infected human decrease. The basic 
reproductive number is less than one, meaning that the Rotavirus infection will have died out 
the community. 
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