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1. Introduction

Let § := K[xi,...,x,] be a polynomial algebra over a filed K. Let X be a finitely generated Z'-
graded S -module. A Stanley decomposition of X is a presentation of K-vector space X as a finite direct
sum

T : X = (P z,KIW,l,
f=1
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where z; € X is a homogeneous element and W, C {xi,...,x,} and z;K[W}] is the K-subspace of X
generated by all elements z¢b, where b is a monomial in K[W(]. The Z"-graded K-subspace z;K[W/] C
X is called a Stanley space of dimension |W|, if z;K[W¢] is a free K[W]-module. Define

sdepth(7") = min{|W,|: f =1,...,a}, and

sdepth(X) = max{sdepth(7") : 7 is a Stanley decomposition of X}.

The number sdepth(7") is called the Stanley depth of decomposition 7~ and sdepth(X) is called the
Stanley depth of X. Let R be a local noetherian ring with a unique maximal ideal m and X be a finitely
generated R-module. The common length of all maximal X-sequences in m is called the depth of
X. Stanley conjectured in [27] that for a Z"-graded module X, sdepth(X) > depth(X). Afterwards, a
number of articles have been published in which this conjecture has been discussed for different cases.
This conjecture was disproved by Duval et al. in [8]. Stanley depth gained attention when Herzog
et al. gave an algorithm in [10] for computing sdepth(X) for module of the type X = Q,/Q;, where
Q0 C O, c S are monomial ideals. Though the algorithm is useful for studying Stanley depth in some
special cases, but computing Stanley depth by using this algorithm is a hard combinatorial problem,
in general. In [24], Rinaldo gave a computer implementation for this algorithm, in the computer
algebra system CoCoA. This algorithm is useful only when the ring has small number of variables.
Therefore, it’s worth giving values and bounds for Stanley depth of some classes of modules. For
some literature related to depth and Stanley depth the readers are referred to [7, 12, 14-16, 20,22, 23].
Herzog conjectured in [11]:

Conjecture 1.1. (Herzog) Let Q C S be a monomial ideal. Then sdepth(Q) > sdepth(S/Q).

The above conjecture has been proved in some special cases; see for instance [13,17,21,23]. In this
paper we study depth and Stanley depth of the edge ideals and their residue class rings for some classes
of graphs which we call multi triangular snake graphs and multi triangular ouroboros snake graphs. We
find the exact values of depth and Stanley depth of the cyclic module associated to the triangular and
multi triangular snake graphs, when n = 1 (mod 2) and give tight bounds when n = 0 (mod 2). We
also find the exact values of depth and Stanley depth of cyclic modules associated to the triangular and
multi triangular ouraboros snake graphs. In the last section of this paper we give a lower bound for
Stanley depth of edge ideal of triangular and multi triangular snake and ouraboros snake graphs and
we prove the the Conjecture 1.1 for the edge ideal of all classes of graphs we considered. The use of
the computer algebra system CoCoA [28] is gratefully acknowledged.

2. Definitions and notation

Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). A graph is called
simple if it has no loops and no multiple edges. In this paper we consider only simple graphs. If
V(G) = {x1,x2,...,x,} and § = K[x1,x5,...,x,], then the edge ideal I(G) of the graph G is the
ideal of S generated by all monomials of the form x;x; such that {x;, x;} C E(G). Note that by abuse
of notation, x; will denote both a vertex of a graph G and the corresponding variable of the given
polynomial ring. For a given graph G, K[V(G)] will denote the polynomial ring whose variables are
the vertices of the graph G. If G is a graph on {xi, x,,..., x,} vertices, then G is called a path if
EG) = {{xi;, xi1} i =1,2,..., r— 1}. A path on r vertices is usually denoted by P,. The number
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of edges in the path P, is called the length of P,. Let G be a connected graph. If x;, x; € V(G) then
the distance between x; and x; is the length of the shortest path between x; and x;, denoted by d(x;, x;).
The maximum distance between any two vertices of a graph G is called the diameter of G and is
denoted by diam(G). A vertex in a connected graph is a cut vertex if removing it (and edges through
it) disconnects the graph.

Definition 2.1. A block of a graph G is a maximal connected subgraph of G that has no cut vertex. If
G itself is connected and has no cut vertex, then G is a block.

Definition 2.2. ( [6]) The block cut vertex graph of a connected graph G, denoted bc(G), is a graph
whose vertices are the blocks and cut vertices of G. The edges of bc(G) join cut vertices with those
blocks to which they belong.

An example of the block cut vertex graph bc(G), associated to a graph G, is given in Figure 1.

1 4 5 7 1 4 5 7
7
4 5
I
2 3 6 8 2 3 6 8

G A B C D
A B C D
. . . 4 5 7
Cut vertices of G be(G)

Figure 1. In the first row from left to right, graph G, blocks of G (A, B, C and D). In the
second row from left to right, cut vertices of G and block cut vertex graph of G.

Definition 2.3. ( [25]) A triangular snake is a connected graph in which all blocks are triangles and
the block cut point (or block cut vertex) graph is a path. If we have n blocks in a triangular snake graph
then this graph is denoted by A,,.

Definition 2.4. ( [26]) Let n > 1 and m > 2, then A, is a triangular snake with n blocks and every
block has m number of triangles with one common edge.

Let m,n > 1. We call A,,, an m-triangular snake. In particular, if m = 1, then A,; = A, is a

triangular snake, and if m > 2, then we call A,,, a multi triangular snake. Fori € {1,2,...,n}, the
vertices in the i-th block that are connected by the common edge of the m triangles in A,,,, are labeled
as y; and y;;1, while the remaining vertices in the i-th block of A, ,, are labeled by {u;1, u, . . ., Ui}, see

Figure 2 for examples and labeling of A, ,,,. Let S,,,, := K[V(A,.,,)] be the ring of polynomials whose
variables are the vertices of A, ,,. Clearly, |V(A,,,)| = nm +n + 1 and |E(A,,,)| = 2nm + n. For some
more types of snake graphs, we refer readers to [18,19].
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Figure 2. From left to right, A4, Az, and A;S.

Let us consider a super graph A; =~ of the graph A,,. For m > 2, the vertex
and edge sets of A, ~—are V(A,,) = V(A UUein Ueins - Upeymt and E(A; ) =
E(Anm) Une1 U )1 Yns1 Une1)25 - - > Ynr1 Uneyms - See€ Figure 2 for example of AZ,m

Definition 2.5. The vertices x; and x, in a graph G are said to be fused or merged or identified, if x;
and x, are replaced by a single new vertex x, such that, every edge that was adjacent to either x; or x,
or both, is adjacent to x.

If we fuse vertices y; and y,; in the A, ,, graph, we get a new graph denoted €, ,,, we call Q,,, an
m-triangular ouraboros snake. In particular, if m = 1, then we call Q,; a triangular ouroboros
snake, and if m > 2, then we call Q,,, a multi triangular ouroboros snake. For i € {1,2,...,n},
the vertices of degree two in the i-th block of Q,, ,, are labeled as {u;;, u, . . . , u;,}, while the remaining
vertices in the i-th block for i € {2,...,n — 1} are labeled by y; and y;,;. The fused vertex v in Q,,,
is labeled as y,. Clearly, |V(€,,,)| = nm + n and |E(€,,,)| = 2nm + n. Let us consider a super graph
A, of the graph A; . The vertex and edge sets of A" are V(A" ) = V(A;, ) U{q1, 92, ..., gn} and

(A** ) = E(4A,,) U Yiq1, Y1925 - - - » Y1qm}- See Figure 3 for examples of Ay, and Q-

Uil

Uz

Usl
q1 U Us) usg

Ui Uy

q> uszp

Y1 2 3 Usy Uqy

Figure 3. From left to right A}, and Q.
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Definition 2.6. Let k > 2. A k-star denoted S is a graph on k vertices, in which one vertex has degree
k — 1 and all other vertices have degree 1.

The following theorem give the values of depth and Stanley depth for the cyclic module associated to
a k-star.

Theorem 2.7. ( [1, Theorem 2.6]) Let S; be a k-star. If Q = I(S;), then depth(K[V(Sy)]/0) =
sdepth(K[V(Sp)]/0) = 1.

Now we recall two lemmas that play a key role in proofs of our main theorems.

Lemma 2.8. ( [23, Lemma 2.2]) For a short exact sequence 0 — U; — U, — U; — 0 of Z"-graded
S -modules, we have
sdepth(U;) > min{sdepth(U,), sdepth(U3)}.

Lemma 2.9. (Depth Lemma) If 0 — U; — U, — Uz — 0 is a short exact sequence of modules over a
local ring S, or a Noetherian graded ring with S local, then

(1) depth(U,) > min{depth(U,), depth(U3)}.

(2) depth(U;) > min{depth(U,), depth(U3) + 1}.

(3) depth(U3) > min{depth(U;) — 1, depth(U,)}.

We have the following intresting result of Biro et. al. for the graded maximal ideal of S.

Theorem 2.10. ( [2, Theorem 2.2]) Let m = (xy, x,. .., Xx,) be the graded maximal ideal of S. Then
sdepth(m) = [51, where [7], with 7 € Q, denotes the smallest integer which is not less than z.

The following corollaries and lemmas are frequently used in this paper.

Corollary 2.11. ( [3, Corollary 1.3]) Let Q be a monomial ideal of S. Then sdepth(S/Q) <
sdepth(S/(Q : ¢)) for all monomials g ¢ Q.
Corollary 2.12. ( [23, Corollary 1.3]) Let Q be a monomial ideal of S. Then depth(S/Q) <

depth(S/(Q : ¢)) for all monomials g ¢ Q.

Lemma 2.13. ( [10, Lemma 3.6]) Let Q; € Q, be a monomial ideals of S and S' = S[x,4]
be the polynomial ring in variable x,,; over S. Then depth(Q,S 1OS) = depth(Q,/Q;) + 1 and

sdepth(Q;S'/01S") = sdepth(Q2/ Q) + 1.

Lemma 2.14. ([13, Lemma 4.1]) Let A; and A, be two non-empty subsets of {x;, x,,...,x,} and A} N
A, = 0. If O c K[A] and Q, C K[A,] are square free monomial ideals such that sdepthK[Al](Ql) >
sdepth(K[A]/ Q). Then

sdepthys,4,1(Q1 + O2) > sdepth(K[A]/Q1) + sdepthy, 1(Q2).
Fouli et al. gave the following lower bound for depth and Stanley depth of S/1(G).

Theorem 2.15. ( [9, Theorems 3.1 and 4.18]) Let G be a connected graph. If 0 = I(G) c S and
§ = diam(G), then depth(S/Q). sdepth(S /Q) > [2£].
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We end this section with the following elementary lemma for the Stanley depth of 1(Sy).
Lemma 2.16. Let k > 2. If Q = I(Sy), then sdepthy s, (Q) = 1+ 51

PrOOf Since Q = I(Sk) = ('xyl’xy27‘-"xyk—l)7 then Q = XQ, and Q, = (I : X) = ()’1,)’2,‘--,)%—1)-
By Lemma 2.13 and Theorem 2.10, we have sdepthys,,(Q) = sdepthyys,,(Q) = sdepth,(Q) + 1,
where T = K[y, y2,...,Yk-1]. Now using [4, Theorem 1.1], we get sdepthK[V(Sk)](Q) = [’%1] +1. O

3. Depth and Stanley depth of cyclic modules associated to the triangular snake and multi
triangular snake graphs

In this section we find the value of depth and Stanley depth of the cyclic module S, ,,,/I(A,,,,) when
n = 1(mod 2), and give tight bounds when n = 0 (mod 2). For this purpose, we first find depth and
Stanley depth of the cyclic module S, ,,/I(A; ). We will use these results in our main proofs.

*
n,m

Lemma 3.1. Let n,m > 1. Then depth(S ,,/I(A%,)) = sdepth(S?,, /I(A%,,) = [L].

Proof. Let us consider two sets, A, 1= {Vus Un1s Un2s -+ s Upms Una 11> Uns1)25 - - - > Unae1ym) and A;z,m =
{11, Us1y2s - - > U+ m). We have the following short exact sequence:

Yn+1 «

0 — 8§,/ 2 Yue) = S, W/ 1A, ) — S5l (A, ), Yaer) — 0.

If n 1, then (I(AT,m) : y2) = (A, and Sf,m/(I(A’f’m) : y2) = K[y.], so depth(S’f’m/(I(A*l‘,m) :
y)) = 1 Since (I(A],).) = ((Spe1).y2) and S;, /UA],).32) = KIV(Sud)/I(Sue)Ay,].
thus by Theorem 2.7 and Lemma 2.13, we get depth(S ’f’m/(I(A”l"m),yg)) = 1 + m. Hence by Depth
Lemma depth(S T,m/I(A’im)) = 1, as required. If n = 2, then (I(A;m) 2 y3) = (I(Sns1)sAzm)
and S;’m/(I(A;’m) :y3) = K[V(S,:)1/1(Su1)lys], again by Lemma 2.13 and Theorem 2.7
depth(S;m/(I(,A;m) :y3)) = 1+1 = 2. Also we have, (1(A} ), y3) = (I(A] ). y3) and S /(I(A3 ), y3) =
ST,m/I(AT,m)[AZ,m]’ thus by case n = 1 and Lemma 2.13, depth(S;m/(I(A;m),yg) = 1 + m. Hence
by Depth Lemma, depth(S ;m/I(A;m)) = 2, this proves the result for n = 2. Let n > 3. We have

DG, t Yar)) = Dy, An) and (NG, Yue1) = TG D) Veet), thus S5, /(AL & V) =
S :—Z,m/I(AZ—Z,m)[y”+1] and S, /(I(A}, ), Yne1) = S ;’;_Lm /I(A;_l’m)[A;,’m]. Now by induction on n and
Lemma 2.13 we get depth(S?,,/(I(A%,) : yur1)) = [%51]+ 1 = [%1] and depth(S;,,/(I(A} ) Yus)) =
[51+m= [%]. Hence by Depth Lemma depth(S;, . /I(A;, ) = [%'l.

Applying Lemma 2.8 instead of Depth Lemma on the above short exact sequence and proceeding
on the same lines we get, sdepth(S; . /(I(A;,)) = [%]. Now we prove that this lower bound is
an upper bound as well. Since y,.1 ¢ I(A;,), by Corollary 2.11, we get sdepth(S},, /I(A;,)) <
sdepth(S ,,,,/(I(A;, ) : Yns1)). Using the same arguments as we used in the case of depth,
sdepth(S7,,/(I(A7,) : y2)) = 1 and sdepth(S;,/(I(A3,) : y3)) = 2. This implies that
sdepth(S; . /1(A;,)) < [%'I, for n = 1,2. Let n > 3. Then sdepth(S;,/I(A;,)) <

n,m =

sdepth(S ,, ,,/(I(A;, ) : yns1)) = sdepth(S, _,  /I(A;_, )[Va.+1]). The proof follows by applying induction

n,m n-2,m n-2,m
on n. O

Theorem 3.2. Let n,m > 1. Then [5] < depth(S , n/I(Anm)), sdepth(S .,/ 1(Ay)) < [%].

Proof. Let B,,, = {Yn, Un1,Un2,--., Uy} be a set of variables. Consider the following short exact
sequence:
Yn+1

O -— Sn,m/(I(An,m) : yn+l) — Sn,m/I(An,m) — Sn,m/(I(An,m)a yn+l) — O
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If n = 1, then (I(Ar,) : y2) = (Biw) and Sy,,/(I(A1y) @ y2) = K[y2], so depth(S 1,/ (I(A1) :
y2)) = 1. Also (I(A1n),y2) = (I(Sps1),y2), that is, S1,/(U(A1m),y2) = K[V(Sui)]/I(Sps1), $0
by Theorem 2.7 depth(S ,,/(I(A1,,),y2)) = 1. Hence by Depth Lemma depth(S{,,/I(A1,,)) = 1. If
n = 29 then (I(AZm) : }’3) = (I(Sm+1)» BZ,m)» and S2,m/(1(A2,m) : y3) = K[V(Sm+1)]/I(Sm+1)[y3]- By
Lemma 2.13 and Theorem 2.7 depth(S,,,,/(I(Az,m) @ y3)) = 2. We have (I(Ay,,),y3) = (I(A?m),y3)
and S, /(I(Axm),y3) = S T,m/I(AT,m)’ thus by case n = 1, depth(S,,,/(I(A2.m),y3)) = 1. Applying
Depth Lemma, we get depth(S,,,/I(A,,,)) = 1. Since y; ¢ I(A,,,), by Corollary 2.12, we get
depth(S2,,/1(A2,n)) < depth(So,,/(I(Azm) : y3)). This shows that depth(S,,,/1(Az,,)) < 2, which
proves the result for n = 2. Let n > 3. We have (I(A,,n) © Yor1) = (I(A:_z’m)aBn,m)’ that is,
Sn,m/(I(An,m) : yn+l) = (S;_Q’m/(](AZ_z,m)))[yn+l]~ Also we have that (I(An,m)ayiﬁl) = (I(AZ_Lm), yn+1)
and S, /I(Anm)s Yne1) = S;_l,m/(I(AZ_Lm). By Lemmas 3.1 and 2.13 we have depth(S,,,,,/(I(A,) :
V1)) = [211, depth(S,/(I(Aup), ya)) = 21 and by Depth Lemma, depth(S,,/I(An))
[51. For the upper bound since y,.1 ¢ I(A,,) by Corollary 2.12, we get depth(S ./ I(Anm))
depth(Sn,m/(I(An,m) : yn+l)) = r%-l

Proof for Stanley depth is similar we use Lemma 2.8 instead of Depth Lemma and Corollary 2.11
instead of Corollary 2.12.

>
<

O
Corollary 3.3. If n = 1 (mod 2), then depth(S ,, .,/ I(A,,)) = sdepth(S ./ I1(Anm)) = [%].

Remark 34. If n > 2 and m > 1, then our Theorem 3.2 says that
depth(S .../ I(Ay.m)), sdepth(S .../ I(A, ) € {I'g], [%]}. Whereas, one of the existing known bound
for theses modules is given in Theorem 2.15, that is, depth(S, ./I(A,m)), sdepth(S .,/ I(Anm)) =
[diam(gﬂ] = [%]. This means that this bound is far away form the actual value for large values of n.

4. Depth and Stanley depth of cyclic modules associated to the triangular ouroboros snake and
multi triangular ouroboros snake graphs

In this section we find out the exact value of depth and Stanley depth of the cyclic module
Ty m/1(€2y,). For this purpose we first find depth and Stanley depth of the cyclic module S, /1(A}},)
associated to the super graph A" of A, . These results will be used in our main proofs.

n,

Lemma4.1. Letn,m > 1. Then

[221], n = 0(mod?2);
depth(S ., /I(A;},)) = sdepth(S,’,/I(A;,)) =
[ +m, n=1(mod2).

Proof. Let A,,, and A, the sets as defined in Theorem 3.1. Consider the following short exact
sequence:

Yn+1

0 — S,/ 2 yue)) = S 0 [ 1A, — S (A, Yar) — 0.

n,m

If n = 1, then (I(A7,) : y2) = (A and (I(AT),y2) = I(Sams1),y2)-  We have
STj‘m/(I(ATfm) 2 y2) = K[y, 91,92, - ,gm], and depth(STj‘m/(I(A}“fm) : y2)) = m+ 1. Also we have

ST/ UTAT), y2) = K[V(Sz,nﬂ)]/I(Sz,nH)[A'l’m], so by using Theorem 2.7 and Lemma 2.13 we get
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depth(S Tfm/(l(A** ),¥2)) = 1 + m. Hence by Depth Lemma depth(S$ }‘j‘m/l(ATj“m)) =1l+mlIfn =2,

1,m

then (I(AT,) @ y3) = (I(Sams1)s As) and (I(AT),y3) = (I(AT),y3), we have that S5, /(I(AT,) :

m 2,m
¥3) = KIV(S2men))/I(Sae)lys). and 3, /U(AS,).y3) = ST, /I(A}, A}, ]. Thus by Lemma 2.13
and Theorem 2.7, depth(S;‘m/(I(AZjn) :y3)) =1+ 1 =2.ByLemma 2.13 and case n = 1, we have
depth(S ;*m iel (A;fm), v3)) =m+ 1 +m=2m+ 1. Hence by Depth Lemma depth(S o /1 (A;j‘m)) =2. Let

n > 3. We have (I(A}") : Yui1) = (AT, ), Apm) and (I(A)S ), Yue1) = (L(ATT ), Yae1) 1t 1S €aSY tO see

,m n—-2,m ,m n—1,m
that S7, /(A7) 2 yue1) = (S0, /A, IDDnet] and S35 JUT(AL), ) = 8075 AL DIA, -
Thus by Lemma 2.13 we have

depth(S ..,/ (I(A,,) © yae1)) = depth(S;7, , /(I(A,25,,))) + 1

and
depth(S ., /(I(A,,), yur1)) = depth(S, 7, | /(A2 ) + m.

Case 1. If n = O(mod2). Since n —2 = O0(mod2) and n — 1 = 1(mod?2) thus by induction on
n, depth(S;5, /(A% * yae) = [B52] + 1 = [22], and depth(S}, /U(A), yur) = [H] + m.

Applying Dépth Lemma we get depth(S ;" /I(A7,)) = [%2]. ’
Case 2. If n = 1(mod2). Since n —2 = 1 (mod2) and n — 1 = 0(mod 2) thus by induction on n,
depth(S %, /(I(A;%) = yur)) = ["5H] + 1+ m =[] + m and depth(S ), /(I(AL), us1)) = [52] + m.

,m 2 n,m

Again by Depth Lemma depth(S ;. /I(A;")) = [”T“] + m.

m

If n = 1, then proof for Stanley depth is similar to the proof for depth. If n = 2, then we
use Lemma 2.8 on the short exact sequence and get sdepth(S ;?‘m/(I(AZj‘m))) > 2. Now by using
Corollary 2.11 we have sdepth(S ;:"m/ (I(AY ) < sdepth(S ;j‘m/ (I(AY ) : y3)). Using Lemma 2.13 and

2.m 2.m

Theorem 2.7, we have sdepth(S;*,/(I(A)",) : y3)) = sdepth(K[V(S2u+ 1)1/ I(Soms)y3]) = 1+ 1 = 2,

n, ,m

this completes the proof for case n = 2. Let n > 3.

sdepth(S,",/(I(A,) : Yur1)) = sdepth(S 7, /1A, ,)) + 1
and
sdepth(S ., /(I(A,), Yne1)) = sdepth(S, 7, /I(A}7, ) + m.

nm m n—1,m

Case 1. If n = O(mod?2). Since n —2 = O0(mod2) and n — 1 = 1 (mod 2) thus by induction on n,
sdepth(S %, /(I(A5,) + yue1)) = [B52] + 1 = [%2], and sdepth(S 7,/ (I(A},), yus1)) = [*5%] + m. By
Lemma 2.8 we get sdepth(S ", /I(A;7) = [%] and by Corollary 2.11 we have sdepth(S ", /1(A}},)) <
22,

Case 2. If n = 1 (mod2). Since n —2 = 1(mod2) and n — 1 = 0(mod?2) thus by induction on
n, sdepth(S;, /(1AL ¢+ ) = [5H]+ 1+ m =[]+ m and sdepth(S}’,/(I(A%). Yuet)) =

n,

[%] + m. By Lemma 2.8 we have sdepth(S " /I(A)) > [%] + m and by Corollary 2.11 we have

n,m ,m

sdepth(S;=, /I(A%,) <[]+ m. O

n, ,m

Theorem 4.2. Letn >3 and m > 1. Then

[51, n = 0(mod?2);
depth(Tnm/I(Qnm)) = Sdepth(Tnm/I(Qnm)) =
[ +m, n=1(mod2).
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Proof. Consider the short exact sequence
0 — Tn,m/(I(Qn,m) : yl) A Tn,m/I(Qn,m) — Tn,m/(I(Qn,m)’ }’1) — 0

Let n = 3. Clearly, T5,,/(I(C3,,) : y1) = Kly1, ua1, un, . . ., tzp], and T3,/ (1(€23,0), y1) = ST, JI(AT,).
We have depth(7T5,,/(I(€23,,) : y1)) = m + 1 and by Lemma 4.1, depth(73,,/(I(Q3,,),y1)) = m + 1.
Hence by Depth Lemma depth(75,/1(Q23,,)) = m+1 = m + [3;1]. If n = 4, then T4,,/(I(Q4,,) :

y) = (KIV(Sum DI/ 1(Same1)) 1] and Ty /UT(Qu ), y1) = S50 /1(AY,), by Lemmas 2.13, 4.1
and Theorem 2.7 depth(74,,/(I(Q4,,) : y1)) = 1+ 1 = 2 and depth(Ty,,/(I(Q4,,),y1)) = 2.
By Depth Lemma depth(74,,/1(Q4,,)) = 2 = [%'I. If n > 5, then T,,,,/(I(Q) : Y1) =
(S g/ LA D] and T, /(T ), y1) = S35, /1A, ) By Lemma 2.13, depth(T ),/ (1(Qy.)
1) = depth(S ", /((A;,,))) + 1 and similarly depth(T,,,/(H(Q,n), y1)) = depth(S ", , /1AL, ).
Case 1. If n = O(mod2). Since n — 4 = 0(mod2) and n — 2 = 0(mod?2) thus by Lemma 4.1,
depth(7,,,/I1( ) : y1) = [%] + 1 =[51and depth(T,,,/1(€2,,m), y1) = [5]. Using Depth Lemma we
get depth(T,,, /1(Q,) = [21.

Case 2. If n = 1(mod2). Sincen —4 = 1(mod2) and n — 2 1 (mod 2) thus by Lemma 4.1,
depth(7,,n/1(Qy ) V1) = I'%'I + m and depth(7,,,,,/1(.n), V1) = I'%'I + m. Again by Depth Lemma
we get depth(7,,,,/1(€2,,n)) = [”z;l'l + m.

When n = 3, applying Lemma 2.8 instead of Depth Lemma and Lemma 4.1 and conclude that
sdepth(73,,/(1(3,,))) = m + 1. For the upper bound since y; ¢ 1(€23,,) by Corollary 2.11, we get
sdepth(73,,/1(€23,,)) < sdepth(T3,,/(1(23,,) : y1)). This implies that sdepth(7%,,/1(€23,,)) < m + 1 and
the result follows. When n = 4, using Lemma 2.8, Corollary 2.11, Theorem 2.7, Lemmas 2.13 and 4.1
and proceeding with the same manner, we conclude that sdepth(7y,,,/1(Q4,,)) = 2 = [‘5‘]. If n > 5, then

sdepth(T'm/(I(Qum) : y1)) = sdepth(S, -, ,,/(I(A,4,)) + 1.

and
sdepth(T,n/(I(Cm), y1)) = sdepth(S, ", . /I(A75 ).

Proof for Stanley depth is similar we use Corollary 2.11 and Lemma 2.8 instead of Depth Lemma.
]

Remark 4.3. In Theorem 4.2 we have exact values for depth and Stanley depth of T, ,,/1(€2,,,). By
Theorem 2.15, we have depth(T,,,,./1(€,,,)), sdepth(T,,,/1(Q,,,)) > [T22)7 Since diam(€,,,) = 2]
so we have depth(T,,,,/1(Q,,,)), sdepth(T,,,,/ 1(Q,,,,)) > I'”%Z'I. This shows that the bound given in
Theorem 2.15 is too weak in this case.

5. Stanley depth of edge ideals associated to the triangular and multi triangular snake and
triangular and multi triangular ouroboros snake graphs

In this section, we find sharp lower bounds for the edge ideal of triangular and multi triangular snake
and ouroboros snake graphs. These lower bounds are good enough to show that the Conjecture 1.1
holds in all cases.

Lemma S.1. Let n,m > 1. Then sdepth(I(4;, ) > sdepth(S;, . /I(A;, )+ 1 +m = |'”2L1'| +1+m.
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Proof. Let us define a set, A, = {Yn, Un1s Un2s - -+ s Upms Uns 1)1 Uns2)25 + - - > Uni Dym b AS Y1 & 1(A}, ), we
have

IA,,) = 1) O S @D yun (A, 23S 0 Where S, = S5,/ Gue).

Letn = 1. We have I(A;,) N S 1 = ((Spe1))S 1w and (I(A],) : y2)S,, = (A1)S],,- Therefore

1,m 1,m

sdepth(/(A7,,)) = min { sdepth(/(S,,+ S 1, sdepth(A4;,,)S L)

By using Lemma 2.13 and Theorem 2.10, sdepth((Al,m)S’{’m) = [@] + 1 = m+ 2. Also by
Lemmas 2.16 and 2.13, we get
m

sdepth((1(Sy1))S 1.n) = sdepth((/(Sue YKLV (Se))) +m = L+ [ ] +m.

Thus sdepth(I(A’[’m)) > m+ 2 = [%-‘ + 1 + m Let n = 2. We get

IS 2D, )82 and (I(A3,) : ¥3)S3, = (I(Spi1)sAzn)Saulysl. This implies sdepth(I(A3,)) >
min{sdepth(/ (A’{’m))S 2.m> $Aepth(I(S,41), A2.m)S 2.m[y3]}. Now Lemma 2.13 and by [3, Theorem 1.3],

sdepth ((I(S,.11), Az,m)gz,m [y3]) = min { sdepth ((/(S,+1)K[V(S,n1)])+2m+1, sdepth((A,,,) K[Az,,])+
sdepth(KV/(S,us))/ IS + 1.

Now using Lemma 2.16, Theorems 2.10 and 2.7, we have

2m+3-|}+1:[2m+5-|.

sdepth((I(Sy+1), A2,n)S 2,[y3]) > min {[sz-l- 4.|’ [

2 2
Also by the case n = 1 and Lemma 2.13, we get
sdepth((l(Aj"m))Ez,m) = sdepth((/(A],))S,,) +m > 2m + 2.
Thus 2 5 2 2+3 2+1
) m+57 r2m+2+37 2+
sdepth((A3,)) = [ == = [=F——] = [F=] + 1 +m.

Let n > 3. We have I(A;,) N Sy = A )DSum and (A, = yu)S;, =
(¢ (A;_z’m),An,m)gmm[ynﬂ]). Thus by induction on n, Lemmas 2.14 and 2.13, we have
sdepth((/(A;_, ), Anm)S nmlyne1]) = sdepth((S7_, . /I(A:_, )N)S7_, )+ sdepth((A,m)K[A,u]) + 1. Now
by Theorem 2.10, and Proposition 3.1, we have sdepth((/(4;,_, ), Ann)S pmVns1]) = [%] +[2”12+ 1+1 =

[24] 4+ (22417 = (27 4 m + 1. Moreover, by induction on n and Lemma 2.13, we get

n—1,m

_ 1
sdepth(I(A%_, ,)Swm) = sdepth((I(AL_ S5, ,) +m > [g] tl+mtm> [%] +1+m.

Thus |
+
sdepth(I(A,)) > [”T] +1+m.

O
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Theorem 5.2. Ifn = 1 and m > 1, then sdepth(I(A;,,)) > sdepth(S 1,,/I(A1,,) + 21 = 1 +[2]. And if
n>2and m > 1, then sdepth(I(A,,,,)) > ["1] + [22] > sdepth(S ,m/I(Anm) + [Z1.

Proof. Let By, ,, = {Vn, Un1, Un2s - -« Upm}. AS Ypi1 & 1(A,n), thus we have

1) = 1) O 8  E Yt ((Ann) : Y011)S s Where S, = S/ Giui)-

Case 1. Letn = 1. We have I(A;,,) N S'l’m = I(Sm+1)S'Lm and (I(A1m) @ Y2)S1m = (Bim)S 1m)-
Thus sdepth(/(A;,,)) > min{sdepth((S,+1))S ’ sdepth((B;,,)S 1,»,)}. By Lemma 2.13, we have

= 1,m?

sdepth((B1)S 1) = [%1] + 1 = [%2]. Now by Lemma 2.16, we have sdepth((/(A],)S 1) =

sdepth((/(S,+ DK[V(Spms)]) = 1 + [%-I Hence, sdepth(/(A;,,)) > 1+ [%1
Case 2. Let n = 2. We get I(Ay,) NS, = (I(A], S5, and (I(Aym) = y3)Som
((I(Sm+1), Bow)S /z’m[)73]). Thus

sdepth(I(A,,,)) > min{sdepth(I(A},))S ., sdepth(I(Sys1)s Bam)S . [y3])}-
By Lemma 2.13 and [3, Theorem 1.3],
sdepth((I(Sy+1): Bown)S 5 ,[y3]) 2 min { sdepth((1(S,,s1))KIV(S,1)]) + m + 1, sdepth
((Bom)K[Bam]) + sdepth(K[V(S,41)1/1(Sp1))K [V(Sm+l)])} + 1

Now by Theorems 2.10 and 2.7, we get

3m+4 rm+3 m+5
2 ]’[ 2 -I} +1= [ 2 -‘
Now by Lemma 5.1, we have sdepth((/ (Af’m))S ’Z,m) = sdepth((/ (AT,m))S * y>m+ 2. Hence

1,m

sdepth(((Syye1). Bon)S 5, [y31) = min {[

sdepth(I(8,) > [22] <[220, 2t L)

2 2 2
Finally, consider n > 3. We have I(A,,) N S,,, = (A, )S,,, and (I(Awm) : YueD)Sum =
((I(A;—Z,m)’ B,m)S ;,’m[ynﬂ]). By Lemma 5.1, Lemmas 2.14 and 2.13, we have

sdepth((1(A,_5,,)> Brm)S ;l,m[ynﬂ]) > sdepth((S,_, .,/ 1(A, 5, _2,») + sdepth((B,, ) K[B,]) + 1.

Now by Theorem 2.10 and Lemma 3.1, we obtain

sdepth((1(A;_ ,)s Bu)S yulVus1]) > [n; 1] + [m; 11 +1= [n; 1] " [m; 1]'

Also by Lemma 5.1, we get

SAepth(1(A;,,))S ,,,) = SAepth((I(A;,, S, = [5]+ T+ m = [ SNK it 3l

To sum up

n+1-|+|-m+1-|'

sdepth(/(A,...)) = | 2 2

O
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Lemma5.3. Letn = 1 andm > 1, then sdepth(1(AT’)) = 2m+1. Letn > 2andm > 1. Ifn = 0 (mod 2),
then sdepth(I(A;,)) = sdepth(S,, /I(A,) + 1 +m = [%1 + 1+ m. And if n = 1(mod?2), then
sdepth(I(A:7,)) > sdepth(S, /I(AL)) +2m =[]+ 1 + 2m.

i

Proof. Let Ay = {Yn, Unts Un2s -+ + s Upims Uini 1)1 Uns 1925 - - > Uni ym b AS Vi1 € 1(A}7,), therefore we have

1A = 1) 08 @D v (KA £ y0)S ), Where S, = S5 /(i)

Case 1. Letn = 1. Wehave I(A}" )NS'| ,, = I(Soms1)S |, and (I(A}") : y2)S 7%, = (A1n)S 7", Therefore,
sdepth(l(Afm)) > min{sdepth(/(S,,,+1)S I’m), sdepth((Ay,,)S 1m)}- By Lemma 2.13 and Theorem 2.10
we have

2m+ 1

sdepth(A,,)S 15, = sdepth((A1,)K[A L) +m+1 = | |+m+1=2m+2.

Now by Lemmas 2.16 and 2.13, we get
” 2
sdepth(I(Spn+1)S | ,,) = sdepth(/(Sas DK[V(Some)]) +m =1+ [Tm] +m=2m+ 1.

As a result sdepth(I(A’{fm)) >2m+ 1.
Case 2. Now we will prove this result by induction on n. Let n = 2. I(A7,) NS zm =
UIA}))SS,, and (A3, y3)S 3, = ((Sams1, Azw)S s, [y3]). Consequently

»m ,m

sdepth(I(A3’,)) > min{sdepth((I(A}"))S 5,,), sdepth(/(Sams1, A2m)S 5, [y3 1)}

S >

By Lemma 2.13 and [3, Theorem 1.3],

sdepth(/(Sz+1, Az m)S 2m [y3]) > min { sdepth((/(S2mn+ ) K[V(S2ms+1)]) + 2m + 1, sdepth
((A2)K[A2]) + Sdepth((K[V(82m+l)]/1(82m+1)K[V(82m+1)])} + 1.

Now by Lemma 2.16, Theorems 2.10 and 2.7, we have
2m + 1

sdepth(I(Sams1, A2 m)S 5,,[y3]) = minfm + 1 +2m + 1, [ T+1l=m+2}+1=m+3.

Now by the Case 1 and Lemma 2.13, we get sdepth((/ (A’[j‘m))S 2m) = sdepth((/ (A’[fm))S Tfm)+m > 3m+1.
To sum up, sdepth(/ (A;j‘m)) > m + 3. In general, for n > 3. We have

IAZINS, = A NS, and (LAL)  yu)S i = (AL, An)S ynsi -

By induction on n, Lemmas 2.14 and 2.13,

sdepth((/(A,%5,,)> Anm)S ;:,m[y,m]) > sdepth((S %, /1(A 5,08 55, + sdepth(A,, , K[A,,]) + 1.

Case 2(a). If n = O(mod2), thenn — 1 = 1 (mod2) and n — 2 = 0(mod?2). By Theorem 2.10 and
Lemma 4.1, we have sdepth((/(A** ),An,m)S;;m[ynH]) 2[31+m+1+1= r%] + m + 1. Also by

n—2,m
induction on n and Lemma 2.13, we get

” +2 +2
sdepth((1(A;", ,)S ) = sdepth(I(AL" | NS, ) +m = [” |+3m> [”T] +m+ .
Thus sdepth(I(A},)) > [%2]+ 1 +m.
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Case 2(b). If n = 1 (mod2), thenn — 1 = 0(mod?2) and n — 2 = 1 (mod?2). By Theorem 2.10 and
Lemma 4.1, we have sdepth((I(A%*, ), Awm)S , plynei]D) 2 15 1+ m+m+1+1=[51]+2m+ 1. Also

by induction on n and Lemma 2.13, we get

" +1
sdepth((I(Aj‘lil’m))S nm) = sdepth((I(A;jil,m))S f['il,m) +m > [n

-|+1+2m.

Thus sdepth(Z(A;")) = ["2] + 1 + 2m. o

Theorem 5.4. Let n = 3 and m > 1. Then sdepth(1(Q3,,)) > sdepth(73,,/1(Q3,,)) + m = 2m + 1. Let
n>4andm > 1.

[31+1+m, n=0(mod?2);
sdepth(1(€2,,,,)) > sdepth(T,,,/I(2y ) + 1 + m =
[%'l +2m, n=1(mod?2).

Proof. Let Cp, = {2, Yns Ut1, U1ds « « « s Uy Un1s Upds - -« s Uy} Since yy € 1(€2,,,,), sO we have
Q) = 1) O T D 311 Q) : )T Where T, = T/ ().
Let n = 3. It can be seen that 1(Q3,,) N T;’m = (I(A”[j‘m))T;’m and 1(Qs,,) : y1)T3m = (C3,,)T3,,- Hence
sdepth(1(Q;,,)) > min{sdepth((I(A}",))T5,,), sdepth((C3,,)T3,m)}-

By Lemma 2.13 and by Theorem 2.10, sdepth((C3,,,)T3,,) = sdepth((C3, )K[C3,,]) + m + 1 =2m + 1.
Also by Lemma 5.3, sdepth((/(A} ))T;’m) = sdepth((/(A7* ))S L) 2 2m + 1. Thus sdepth(/(Q3,,)) >

,m 1,m
2m + 1. Let n = 4. we get I(Qu) N T, = (AN, and Q) : yDTam =
((I(Soms1)> Ca) T, [y1]). Thus

sdepth(/(Qy,)) > min{sdepth((I(A3,))T;,,), sdepth((I(Sans1), Ca) Ty ly1 D}
By Lemma 2.13 and [3, Theorem 1.3],
sdepth (1(Sams1), o) T, 1) = min { sdepth(((Sams DKV (Sams)]) + 2m +2,
sdepth((Cy4,m)K[Cyn]) + sdepth((K[V(S2+ 1)1/ I1(S2ms 1 DKV (Soms1 )])} + L.
And by Lemma 2.16, Theorems 2.10 and 2.7, we have
sdepth((/(S2n+1)» C4,m)T"Lm[y1]) >min{3m+3,m+1+1}+1=m+ 3.

Now by Lemma 5.3, we get sdepth((/ (A;j‘m))T ;,m) =~ sdepth((/ (A3 D)S5,,) = m + 3. Thus
sdepth(1(€24,,)) = m + 3. In general, for n > 5. It is clear that

[(Q,,)NT,, = AN NT,,, and (1 Q) 1 YD Twm) = (LA 4,), Com) T [1])-

By Lemmas 5.3, 2.14 and 2.13, we have

sdepth((/(A;" 4 ), Co) Ty 1] = sdepth((S}7 /1A 4 NS iy ) + sdepth((Cpp)K[Co]) + 1.

n,m
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Case 1. if n = O(mod2), thenn —2 = 0(mod2) and n — 4 = 0(mod2). By Theorem 2.10 and
Lemma 4.1 sdepth((I(A;” ), Con)Tyuli]) 2 [52] +m + 1+ 1 = [4] + m + 1. Also by Lemma 5.3,

n—4,m

sdepth((I(A;", NTy,,) = sdepth((I(A}", IS, ) = [4] + 1+ m. Thus sdepth(I(Q,,.)) = [41+ 1 +m.
Case 2. If n = 1(mod2), then n — 2 = 1(mod2) and n — 4 = 1(mod2). By Theorem 2.10
and Lemma 4.1 sdepth((/(A**, ), Cn,m)T,'l’m[yl]) > [%] +m+m+1+1 = I"‘zil'l + 2m. Also by

n—4,m

Lemma 5.3, sdepth((/(A}*, )T,,,) = sdepth((I(AY, NTi,,) 2 [55H] + 1+ 2m =[] + 2m. Thus
sdepth(1(2,,,,)) > [%] + 2m. |

6. Conclusions

In this paper we consider the residue class rings of the edge ideals associated to the triangular and
multi triangular snake and ouroboros snake graphs. In most of the cases, we give precise values for
depth and Stanley depth of these residue class rings. We also prove that Stanley depth of the edge ideal
of any graph considered in this paper is an upper bounds for the Stanley depth of its residue class ring.
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