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REVIEW

Molecular and pharmacological aspects 
of piperine as a potential molecule for disease 
prevention and management: evidence 
from clinical trials
Amit Kumar Tripathi1,2† , Anup Kumar Ray3,4†  and Sunil Kumar Mishra3*  

Abstract 

Background: Piperine is a type of amide alkaloid that exhibits pleiotropic properties like antioxidant, anticancer, anti-
inflammatory, antihypertensive, hepatoprotective, neuroprotective and enhancing bioavailability and fertility-related 
activities. Piperine has the ability to alter gastrointestinal disorders, drug-metabolizing enzymes, and bioavailability of 
several drugs. The present review explores the available clinical and preclinical data, nanoformulations, extraction pro-
cess, structure–activity relationships, molecular docking, bioavailability enhancement of phytochemicals and drugs, 
and brain penetration properties of piperine in the prevention, management, and treatment of various diseases and 
disorders.

Main body: Piperine provides therapeutic benefits in patients suffering from diabetes, obesity, arthritis, oral cancer, 
breast cancer, multiple myeloma, metabolic syndrome, hypertension, Parkinson’s disease, Alzheimer’s disease, cerebral 
stroke, cardiovascular diseases, kidney diseases, inflammatory diseases, and rhinopharyngitis. The molecular basis 
for the pleiotropic activities of piperine is based on its ability to regulate multiple signaling molecules such as cell 
cycle proteins, anti-apoptotic proteins, P-glycoprotein, cytochrome P450 3A4, multidrug resistance protein 1, breast 
cancer resistance protein, transient receptor potential vanilloid 1 proinflammatory cytokine, nuclear factor-κB, c-Fos, 
cAMP response element-binding protein, activation transcription factor-2, peroxisome proliferator-activated receptor-
gamma, Human G-quadruplex DNA, Cyclooxygenase-2, Nitric oxide synthases-2, MicroRNA, and coronaviruses. Piper-
ine also regulates multiple signaling pathways such as Akt/mTOR/MMP-9, 5′-AMP-activated protein kinase-activated 
NLR family pyrin domain containing-3 inflammasome, voltage-gated K+ current, PKCα/ERK1/2, NF-κB/AP-1/MMP-9, 
Wnt/β-catenin, JNK/P38 MAPK, and gut microbiota.

Short conclusion: Based on the current evidence, piperine can be the potential molecule for treatment of disease, 
and its significance of this molecule in the clinic is discussed.
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1  Background
Piperine (1-[5-[1,3-benzodioxol-5-yl]-1-oxo-2,4-pen-
tadienyl]piperidine) is a nitrogen-containing alkaloid 
molecule, first isolated in the form of yellow crystalline 
solid (MW 285.33 g.mol−1, mp = 128–130 °C) by Danish 
chemist Hans Christian Orstedt in 1820 from the dried 
fruit extract of pepper [1]. Chemically, piperine mol-
ecules consist of conjugated aliphatic chains, which act 
as a connecting structure between piperidine and 5-(3, 
4-methylenedioxyphenyl) moiety. Piperine occurs natu-
rally in black, green, and white pepper (Table  1) [2–4]. 
Other alkaloids are also present in black pepper extracts 
such as piperanine, piperettine, piperylin A, piperolein 
B, and pipericine [5]. During the last two decades, piper-
ine has received considerable attention for its beneficial 
health effects [6–8].

Naturally, piperine exists in four isomeric forms (Fig. 1) 
[9, 10]. However, only piperine isomers have pungency 
and biological activity compared to the other three. 
Other studies showed cis and trans-isomer of piperine 
possess significant anti-hepatotoxic as well as antioxi-
dant effects [1]. Light-induced isomerization of piperine 
increases with light intensity and its exposure time [11]. 
Chemical synthesis of piperine was done by Ladenburg 
and Scholtz in 1894, by reaction of the piperic acid chlo-
ride with piperidine. The multiple biological activities of 
piperine have been demonstrated in both preclinical and 
clinical studies. The clinical trials completed are 11 and 
in addition that are currently ongoing are 5; a total of 

1002 articles have been published on piperine in the last 
10 years (Table 2 and Fig. 2) [12–15]. However, some of 
the clinical trial data is published but not registered.

Exploring the broad-spectrum bioactivities of pip-
erine has been demonstrated over a decade that can be 
harnessed in agriculture as pesticide and medicinal use. 
The insecticidal properties of piperine have been first 
observed in 1924 [16]. The  LD50 for piperine is 330 and 
200  mg/kg for single intra-gastric and subcutaneous 
injections, respectively [16]. Piperine is also reported to 
inhibit enzymes (cytochrome P450, UDP-glucoronyl-
transferase) that catalyze the biotransformation of nutri-
ents and drugs, thereby enhancing their bioavailability 
and in vivo efficacies [11].

Graphical abstract

Table 1 Members of Piperaceae family containing piperine [9]

Name of plant Part of plant Piperine content (%)

Piper nigrum Fruit 1.7–7.4

Piper longum Spike and root 5–9

Fruit 0.03

Piper chaba Fruit 0.95–1.32

Piper guineense Fruit 0.23–1.1

Piper sarmentosum Root 0.20

Stem 1.59

Leaf 0.104

Fruit 2.75
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Clinical trials have looked into the protective and 
therapeutic effect of piperine against many diseases and 
disorders including hypertension, diabetes, cancer, neu-
rological, cardiovascular, and reproductive as well as 
against microbial infections such as viral, bacterial, and 
fungal infections. Both clinical and preclinical data have 
shown that piperine has many targets (Figs. 3 and 4) and 
that it can modulate the various signaling molecules such 
as Wnt, NF-κB, cAMP response element-binding protein, 
activation transcription factor-2, peroxisome prolifer-
ator-activated receptor-gamma, human G-quadruplex 
DNA, cyclooxygenase-2, nitric 5.

oxide synthases-2, MicroRNA, SARS CoV-2, Akt/
mTOR/MMP-9, AMPK-activated NLRP3 inflammasome, 
IK, ERK1/2, nuclear factor erythroid 2 like 2 (Nrf2) and r 
(CGG) exp RNA. The pleiotropic mechanistic action of 
piperine is therefore attributed to its ability to interact 
with a broad spectrum of molecular targets that include 
kinases, transcription factors, cell cycle proteins, inflam-
matory cytokines, receptors, and signaling molecules.

2  Main text
2.1  Chemical modification, structure–activity 

relationships, and synthetic analogs of piperine
Chemically, piperine is an alkaloid and the structure is 
composed of three subunits: An amide function consti-
tuted by a piperidine ring with α-β-unsaturated carbonyl 
moiety, a 1,3-benzodioxole group, also called piperonal 
nucleus and a butadiene chain (Fig. 1A). All four isomers 
of piperine showed inhibitory activity against Leishmania 
donovani pteridine reductase 1 (LdPTR1), while the maxi-
mum inhibitory effect was demonstrated by isochavicine. 
It was reported that piperine, isopiperine, isochavicine, 
activated both TRPV1 and TRPA1. Many studies have 
reported different types of derivatives and analogues of 
piperine (Table 3) along with their structure–activity rela-
tionship (SAR) and biological activities. The efficiency of 
piperine derivatives increases by replacing the piperidine 
moiety with N,N-dipropyl, N,N-diisopropyl, N,N-dibutyl, 
p-methyl piperidine, or N,N bis(trifluoromethyl) groups. 
Potency enhancers exchange the piperidine moiety with 

Fig. 1 A Structure; B–E Isomers of piperine [5]



Page 4 of 24Tripathi et al. Beni-Suef Univ J Basic Appl Sci           (2022) 11:16 

N,N-dibutyl, N,N-diisobutyl, or N,N-bis trifluoromethyl 
groups [17]. The most active piper amides are the N-isobu-
tyl-substituted ones that resemble pesticidal activity. For 
the activity of piper amides, the lipophilic chain must con-
tain at least four carbons and a conjugated bond adjacent to 
amide carbonyl with a bulky amine is necessary for binding, 
which makes piperine a model compound for the bioactive 
amides. Activity among the piperidine amides increases 
with increasing substitution on the piperidine ring carbons, 
with ethyl substituted being more active than the methyl 
analogues. Saturation of the side chain in piperine resulted 
in enhanced inhibition of Cytochrome P450 (CYP450), 
while modifications in the phenyl and basic moieties in the 

analogues produced maximal selectivity in inhibiting either 
constitutive or inducible CYP450 [18]. Several piperine 
derivatives with modifications at the piperidine moiety and 
the aliphatic chain have been reported to inhibit survivin 
protein, a small target in the inhibitor of apoptosis (IAP) 
family and regulator of cell division in cancer [19]. Few 
modified analogues of piperine showed promising activity 
on the TRPV1 and GABAA receptors [17, 20–24].

2.2  Extraction methods of piperine from black and white 
pepper

Piperine content varies in plants from the Piperaceae 
family from 2 to 7.4% in both black and white pepper [1]. 

Table 2 Clinical trials on piperine*

*  Referenced from:—US National Library of Medicine: https:// www. clini caltr ials. gov/ ct2/ resul ts? cond= & term= piper ine& cntry= & state= & city= & dist = ; University 
hospital Medical Information Network-Clinical Trials Registry (UMIN-CTR): https:// www. umin. ac. jp/ ctr/ index. htm & Iranian Registry of Clinical Trials: https:// www. irct. ir/

Condition & (number 
of patients)

Phases I, II, III or IV & 
(Status)

Dose, duration Principal Investigator 
affiliation

Duration (months) References

KOA
(60)

I
(Completed)

7.5 mg/day, 4 wks Motahar Heidari-Beni, 
IUMS

Jan 2018–May 2018
(5)

Heidari-Beni et al. [154]

TCS
12)

I
(Completed)

20 mg/day,10 days S. K. Bedada, UCPSKU 2016–2016
–

Bedada et al. [155, 156]

MS
(12)

I
(Completed)

20 mg/day, 2 days HMO & A. Hoffman and 
A. Domb, DRBCPHU

Aug 2013–Jan 2015
(17)

Cherniakov et al. [157]

AIDS
(08)

I
(Completed)

20 mg/day,7 days Ravisekhar Kasibhatta, 
BCRPL, Hyderabad

2007–2008
–

Kasibhatta and Naidu 
[158]

NAFLD
(79)

III
(Completed)

5 mg/day, 8 weeks Dr. Abasalt Borji, NUMS Jan 2017–Nov 2017
(10)

Mirhafez et al. [159]

T2DM
(100)

III
(Ongoing)

5 mg/day, 12weeks Jun 2015–Present
(12)

*

NAFLD
(70)

II
(Ongoing)

5 mg/day, 12weeks Jan 2018–Present
–

HIVS
(60)

I
(Completed)

– Philip C Smith, School of 
Pharmacy, UNC Chapel 
Hill

Sep 2003–Mar 2006
(30)

MN, Pain, BS, Urinary 
Urgency
(09)

I
(Active, not recruiting)

– Aminah Jatoi, Mayo 
Clinic, Rochester, Min-
nesota, United States

Mar 2016–Mar 2021
(60)

CKD
 (30)

NA
(Recruiting)

500 mg of curcumin 
and piperine, 3 cap-
sules/day, 12 weeks

Denise Mafra, Federal 
University Fluminense, 
Rio de Janeiro, Brazil

Oct 2020–Oct 2021
(12)

Hair Thinning
(70)

NA
Recruiting)

95% piperine extract in 
formulation, 4 capsules/ 
day, 180 days

Glynis Ablon, ABSIRC, 
Manhattan Beach, Cali-
fornia, United States

Jun 2019–Jan 2021
(18)

Epilepsy
(10)

I
(Completed)

20 mg/day, 2 days Smita Pattanaik, NOD-
PGIMER, Chandigarh, 
India

2017–2017
–

Pattanaik et al. [160]

OD
(40)

I&II
(Completed)

Group1 = 150 μM
Group 2 = 1 mM

Laia Rofes, GPLRU, Hos-
pital de Mataro´, Spain

Jun 2011–Feb 2012
(9)

Rofes et al. [161]

MS
(12)

I
(Completed)

20 mg/day, 10 days S K Bedada, UCPSKU 2016–2016
–

Bedada and Boga [162]

OA
(53)

III
(Completed)

15 mg/day, 6 weeks Dr. Yunes Panahi, CIRC-
BUC, CRDU-BH, BUMS, 
Iran

Jan 2011–Jan 2012
(12)

Panahi et al. [163–165]

Vitiligo
(63)

II&III
(Completed)

1% Topical solution, 
12weeks

Anoosh Shafiee, SRC-
SBUM, Iran

Jun 2016–Sep 2016
(3)

Shafiee et al. [15]

https://www.clinicaltrials.gov/ct2/results?cond=&term=piperine&cntry=&state=&city=&dist
https://www.umin.ac.jp/ctr/index.htm
https://www.irct.ir/
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Different methods are used to extract piperine (Table 4); 
these methods often suffer demerits such as inadequate 
extraction efficiency, photodegradation, tedious and 
expensive isolation methodology. It is therefore needed 
in the first place to determine the best factors and con-
ditions to optimize these shortcomings [25]. Increasing 
the surface area of the pepper improved the efficiency 
of extraction by 109.02% [26]. The nonpolar solvents like 
petroleum ether brought the highest extraction efficiency 
of 94% with a purity of 85% [1]. The double bypasses 
Soxhlet apparatus (DBSA) for the extraction of piperine 
was found to be more efficient than conventional Sox-
hlet apparatus (SA) based on extraction time, which is 
12 ± 1 h for DBSA and 22 ± 1 h for SA [27]. In the hydro-
tropic extraction of piperine, hydrotropes are adsorbed 
on the cell wall to destroy it and then the extractant gets 
penetrated the cell membrane, which later helps to dis-
organize the amphiphilic lipid bilayer and enable easy 
release of piperine. Extraction temperature is increased 
causing more lysis of the cell, and as a result, the per-
meability of the cell wall is enhanced for the hydrotrope 
solution to act on it [1]. It demonstrated selective and 
rapid extraction of piperine from black pepper and the 
recovered piperine was approximately 90% pure [28]. The 
enzymolysis facilitates the breakage of the Piper nigrum 

L cells. This accelerates the extraction, while the addi-
tion of the surfactant promotes enzymatic hydrolysis by 
affecting the process of adsorption and desorption of 
enzymes from the substrate. This could reduce the ineffi-
cient adsorption of the enzyme, leading to its inactivation 
due to which an increase in the yield of piperine from 
0.14 to 4.42% through HPLC is observed in surfactant-
assisted enzymatic extraction of piperine [29]. In micro-
wave-assisted extraction (MAE), the microwave power 
and extraction temperature are two important factors to 
be considered seriously as the extraction yield increases 
proportionally to the power increase until the increase 
becomes insignificant or the yield declines. Through 
MAE, an 85% pure piperine with a yield of 45% in 4 h was 
observed [1, 30].

2.3  Pharmacokinetics and brain uptake distribution 
of piperine

Piperine (30 mg/kg, p.o.) showed a high degree of brain 
exposure with a Kp, brain of 0.95 and Kp, uu, brain of 
1.10 it also showed high-BBB penetration potential with 
no interaction with efflux transporter and suggested that 
efficient brain uptake of piperine is due to its very limited 
liver metabolism evidenced by its much lower intrinsic 
clearance in the liver. The maximum brain concentration 

Fig. 2 Total number of publications of piperine in previous ten years.  Source: https:// pubmed. ncbi. nlm. nih. gov/? term= PIPER INE& filter= dates 
earch.y_ 10& timel ine= expan ded

https://pubmed.ncbi.nlm.nih.gov/?term=PIPERINE&filter=datesearch.y_10&timeline=expanded
https://pubmed.ncbi.nlm.nih.gov/?term=PIPERINE&filter=datesearch.y_10&timeline=expanded
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of piperine (20 mg/kg, i.p.) was found to be 51 ± 9 ng/g 
after 3 h, which could later be increased to 121 ± 7 ng/g 
after formulating piperine (18 mg/kg, i.p.) into solid lipid 
particles [31, 32]. Half-life  (t1/2) of piperine in humans 
is about 13.2–15.8 h, suggesting that it has a long elimi-
nation time in the human body [31, 32]. To extrapolate 
the molecular mechanism of piperine, researchers are 
trying to explore the pharmacokinetics profile and brain 
uptake of piperine as a single drug and in combination 
with other (Table  5) [33]. Tables  6 and 7 list pharma-
cokinetic parameters of piperine in the human body and 
rodents. It was demonstrated that piperine (20  mg/kg, 
p.o.), when administered in conscious rats, gets absorbed 
rapidly through the g.i.t and could be detected in plasma 
within 15 min after administration. However, its metabo-
lites were not excreted in the biliary excretion, which will 
be the topic of future research. In another study, it was 
found that Cmax in plasma assay of piperine in Wistar 
rats at a dose of 10 mg/kg to be about 59 ng/mL and t1/2 
to be about 6  h [34]. Piperine demonstrated an unex-
plored effect on the oral bioavailability and intestinal 

permeability of cyclosporine A by modulating the P-gp 
(T. [31, 32]. Piperine also induces acidity by stimulating 
the histamine  H2 receptors [35]. Piperine can enhance 
cannabinoid absorption even in chronic consumption 
[36]. The plasma concentration of sodium valproate 
(SVP) was enhanced to 14.8-fold when SVP was admin-
istered with piperine, and a 4.6-fold increase in the AUC 
of SVP + piperine was also seen [37]. Piperine combined 
with oxyresveratrol led to an 1.5-fold increase in the 
Cmax & AUC, with a shorter Tmax from 2.08 to 1.30 h; it is 
excreted in an unchanged form through the urinary route 
[38].

2.4  Enhancement of bioavailability by nanoformulations 
of piperine

Pure piperine, despite multiple biological actions, has poor 
water solubility and low bioavailability; thus, a modified 
drug-delivery system is utilized to deliver piperine in inap-
propriate amounts. Despite this, there are few possible 
explanations for the bio-enhancing property of piperine 
(Fig.  5). The relative bioavailability of piperine-SR-pellets 

Fig. 3 Targets of Piperine
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is 2.70-fold higher than that of the pure piperine and a 
1.62-fold compared with that of piperine solid dispersion 
and a 3.65-fold higher oral bioavailability as a nanosuspen-
sion than its coarse suspension [39],Y. [40, 41]. The studies 
provide evidence that piperine enhances the bioavailabil-
ity of many compounds; the serum response of β-carotene 
is increased by 60% when supplemented with piperine 
through the oral route [42]. Piperine also increased the 
bioavailability of silybin by 146–181% and contributed 
to enhance the therapeutic effect in  CCl4-induced acute 
liver-injury rat model [43]. For raloxifene in pro-nano lipo-
spheric form with piperine, it provides a twofold increase 
in the oral bioavailability [44].

Piperine in combination with curcumin loaded in the 
emulosome is reported to achieve a sixfold increase in 
caspase-3 activity and is found to be most effective in 
the inhibition of cell proliferation [45]. A new mecha-
nism has been introduced by which piperine enhances 
the bioavailability of curcumin by selectively reducing 

the expression of uridine diphosphate glucuronosyltrans-
ferase (UGT) and sulfotransferase (SULT) [46].

Supplementation of iron (Fe) with piperine orally ben-
efitted the absorption of Fe and could be potentially 
helpful in the treatment of anemia, but an investigation 
is needed in this regard [47]. (−)-Epigallocatechin-3-gal-
late (EG) obtained from Camellia sinensis (green tea) 
is reported for its chemopreventive activity in animal 
models of carcinogenesis, piperine was also reported to 
enhance its bioavailability by 1.3-fold as compared to 
EG alone [48]. The combination of paclitaxel and piper-
ine was found to improve the bioavailability of paclitaxel 
for triple-negative breast cancer by targeting epidermal 
growth factor receptor (EGFR) [49].

2.5  Molecular targets of piperine in human
Piperine being a bioavailability enhancer increases 
plasma concentration of various drugs. It inhibits the 
drug-metabolizing enzymes by acting on P-gp substrate 

Fig. 4 Proposed scheme for signaling molecular target of piperine
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[50]. Although piperine has demonstrated its health 
benefits in human, its underlying mechanism remains 
unknown; information corroborated from the clinical tri-
als often suffers the limitation of small-sized racial varia-
tions, typical considerations and geographical variations, 
which compromise to explore the molecular mechanism. 

However, cell-cycle proteins, P-gp, Rv1258c, PRPV1, 
Akt/mTOR signaling, AMPK-mediated activation of 
NLRP3 inflammasome, voltage-gated  K+ current, IL 10, 
miR21, and PKCα/ERK1/2 and NF-κB/AP-1-dependent 
MMP-9 expression are the main targets altered by piper-
ine (Figs. 3, 4 and 5).

Table 3 Analogues and derivatives of piperine with their biological activity and mechanism of action
Analogue and derivatives of piperine Biological 

activity reported 

after 

modification of 

piperine to

analogue

Mechanism of 

action of the 

analogue

References

(2E,4E)-5-(benzo[d][1,3]dioxol-5-yl)-1-(6,7-dimethoxy-

3,4-dihydroisoquinolin-2(1H)-yl)penta-2,4-dien-1-one 

(Pip 1)

Anticancer 

activity

Inhibition of P-

glycoprotein 

function

Syed et al. 

[50]

5-(benzo[d][1,3]dioxol-5-yl)pentanoic acid (Piperinic 

acid) 

(2E,4Z)-5-(benzo[d][1,3]dioxol-5-yl)-1-(piperidin-1-

yl)penta-2,4-dien-1-one (8c)

Leishmanicidal 

activity

Reduction of 

triglyceride,

diacylglycerol, 

and 

monoacylglycerol 

contents

Ferreira et 

al. [94],

Sahi et al. 

[95]

(2E,4E)-5-(benzo[d][1,3]dioxol-5-yl)-1-morpholinopenta-

2,4-dien-1-one (morpholynil amide) 

and (THP) Faas et al. [168]

Compound 5b (R=R’= Ethyl)

Compound 5c (R=H; R’= Isopropyl)

Insecticidal 

activity

– Paula et al. 

[97]

(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dipropyl-2,4-

pentadienamide

(Compound 23)

Neurological 

activity

Induction of 

strong anxiolysis 

by TRPV1 

(transient receptor

potential vanilloid 

type 1 receptor) 

activation and 

modulation of  γ-

aminobutyric acid 

type A (GABAA) 

receptors

Schöffmann 

et al. [17]
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The preclinical studies suggested piperine acting on 
various cell cycle proteins (Cyclin D, Cyclin T, CDK2 and 
CDK4) became a future point of intense investigation. 
The molecular docking analysis confirmed that piper-
ine binds cell cycle proteins via hydrogen bonding and 
impaired the cell cycle progression [51]. Piperine exhib-
ited an antitumor effect by inhibiting the S-phase by 

forming a hydrogen bond with Ser5 at the ATP-binding 
site on CDK2 protein. It interacts with the Lys8 residue 
in cyclin A and inhibits apoptosis by interacting with the 
hydrophobic groove of the Bcl-xL protein [52]. Piperine 
accelerates the bioavailability of phenytoin and rifampin 
by inhibiting the drug transporter P-gp and CYP3A4 
[53]. In addition to this, ABC transporter genes are also 

Table 3 (continued)

Butyl 4-(4-nitrobenzoate)-piperinoate (DE-07)

Antitumor effect Oxidative stress 

induced cell death

Ferreira et 

al. [166]

2-(4-chlorobenzo[d]oxazol-6-yl)-N-(2-oxo-2-(piperidin-1 

yl)ethyl)acetamide (HJ22)

Activity in 

Alzheimer’s 

disease 

Inhibition of 

Kelch-like ECH-

associated protein 

(Keap1)-nuclear 

factor erythroid-

2-related factor 2 

(Nrf2) protein–

protein

interaction

Yang et al. 

[167]

(E)-6-((E)-3-(4-hydroxy-3-methoxyphenyl)

allylidene)cyclohex-2-en-1-one (9m)

Cytotoxic activity Inhibits TrxR that

induces ROS and 

autophagy, 

activates p38 

signaling and 

suppresses 

Akt/mTOR

signaling

Zhu et al. 

[40, 41]

5- (3,4-methylenedioxypheny l)-pentano yl piperidine 

(THP)

5- (3,4-methy le nedioxy pheny l)-2,4-pentano yl cy 

clohexylamine (rCHP)

Activity against 

depigmenting 

disease (Vitiligo  

treatment)

Darker 

pigmentation of 

skin in treated 

areas corresponds 

with an increase 

in the number of 

DOPA+ 

melanocytes

Faas et al. 

[168]

2-((4-nitrophenyl)amino)-2-oxoethyl (2E,4E)-5-

(benzo[d][1,3]dioxol-5-yl)penta-2,4-dienoate (HE-02)

Antitumor effect Th1-Biased 

immuno-

modulation by 

increase of Th1 

helper T 

lymphocytes 

cytokine profile 

levels (IL-1β, 

TNF-α, IL-12) 

and a decrease of 

Th2 cytokine

profile (IL-4, IL-

10)

Santos et al. 

[169]
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Table 3 (continued)

(E)-1-(2-hydroxycyclohexa-1,3-dien-1-yl)-3-(3,4,5-

trimethoxyphenyl)prop-2-en-1-one b (10)

R=H= (E)-3-(benzo[d][1,3]dioxol-5-yl)-1-phenylprop-2-

en-1-one (3a); R=NH2= (E)-1-(3-aminophenyl)-3-

(benzo[d][1,3]dioxol-5-yl)prop-2-en-1-one (3c)

R=H= 5-(benzo[d][1,3]dioxol-5-yl)-3-phenyl-4,5-dihydro-

1H-pyrazole-1-carbothioamide (4a); R=NH2= 3-(3-

aminophenyl)-5-(benzo[d][1,3]dioxol-5-yl)-4,5-dihydro-

1H-pyrazole-1-carbothioamide (4c)

Anti-

inflammatory, 

anti-carcinogenic 

activity

Inhibition of the 

IL-1β and NF-κB 

pathway

Zazeri et al. 

[170]

Compound 6c (R= 6- Cl)

Anti-diabetic Enhancing the 

PPAR- gene 

expression

Kharbanda 

et al. [171]

Compound 6d (R=6- Br)

13 analogues of Ethyl 3’,4’,5’-trimethoxycinnamate and 

piperine, from the combined hexane and chloroform 

extracts of Piper longum

Anti-

inflammatory and 

anticancer

Inhibition of 

TNF-α-induced 

expression of cell 

adhesion 

molecules like 

ICAM-1, VCAM-

1, and E-selectin,

Kumar et al. 

[172]

(2E,4E)-4-(benzo[d][1,3]dioxol-5-ylmethylene)-1-

(piperidin-1-yl)hex-2-en-1-one (SK-20)

(2E,4E)-5-(benzo[d][1,3]dioxol-5-yl)-4-methyl-1-(piperidin-

1-yl)penta-2,4-dien-1-one (SK-29)

(E)-4-((E)-3,4-dimethoxybenzylidene)-1-(piperidin-1-

yl)hept-2-en-1-one (SK-56)

Anti-bacterial 

activity

Inhibition of Nor-

A efflux pump

Kumar et al. 

[173]

(2E,4E)-5-(2-methoxyphenyl)-1-(piperidin-1-yl)penta-2,4-

dien-1-one (3b)

Neuroprotective 

action in the 

treatment of 

Parkinson’s 

disease

Activation of 

Nrf2/keap1 

pathway

Wang et al. 

[174]
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inhibited by piperine, which pumps out several chemo-
therapeutic agents [54–56].

The natural product analogue Pip1 (Table  3) is found 
superior to piperine as for its inhibition of the P-gp func-
tion and resistance reversal in a cancer cell [50]. Rv1258c 
is a transporter protein that confers resistance to anti-
tubercular agents like isoniazid, rifampicin, ethambutol, 

pyrazinamide, and p-aminosalicylic acid, approved by 
in silico studies. However, piperine in combination with 
these agents increases bioavailability by inhibiting the 
Rv1258c pump. Non-selective cation channel TRPV1 
gets mildly activated by piperine, thereby inhibiting the 
seizure and obesity. Studies corroborated that piperine 
downregulated the PI3K/Akt/mTOR signaling pathway 

Table 5 Pharmacokinetics effect of piperine on different drugs

* Serum concentration

Drug Dose (Piperine + Drug, 
duration)

 ROA Methods of detection Plasma level References

Propranolol 20 mg + 40 mg, 7 days oral Spectrofluorimetric method 1000–1200 ng  mL−1 h Bano et al. [184]

Theophylline 20 mg + 150 mg, 7 days Oral EMIT *80–90 μg  mL−1 h Bano et al. [184]

Diclofenac 20 mg + 100 mg, 10 days Oral NCAM, Phoenix WinNonlin 6.2 
software

7.09–11.81 μg  mL−1 h Satish Kumar Bedada 
et al. [155, 156]

CBZ 20 mg + 200 mg, 10 days Oral NCAM, Phoenix®, WinNonlin 6.4® 
software

40–70 μg  mL−1 h Bedada et al. [155, 156]

Emodin 20 mg/kg + 20 mg/kg, 1 day Oral LC–MS/MS 1913–2555 ng  mL−1 h Di et al. [185]

Linarin 20 mg/kg + 50 mg/kg, 1 day Oral NCAM, DAS 2.1.1
Software, ANOVA

240–934 ng  mL−1 h Feng et al. [186]

Curcumin In rats-20 mg/kg + 2 g/kg, 1 day
In humans- 5 mg + 500 mg, 
1 day

Oral MIM, PHARMKIT computer pro-
gramme with SIMPLEX algorithm

3.33–3.95 μg  mL−1 h
0.07–0.09 μg  mL−1 h

Shoba et al. [187]

Cannabidiol 10 mg/kg + 15 mg/kg, 10 days Oral NCAM, WinNonlin® (version 5.2,
Pharsight, Mountain View, CA)

Acute- 576–610
Ng  mL−1 h
Chronic- 722–896
ng  mL−1 h

Izgelov et al. [36]

Fexofenadin 10 mg/kg + 10 mg/kg
10 mg/kg + 5 mg/kg, 1 day

Oral
oral + IV

NCAM, WinNonlin® (version 5.2, 
Pharsight, Mountain View, CA)

687–1353 ng  mL−1 h
5670–9830 ng  mL−1 h

Jin and Han [188]

Sodium valproate 5 mg/kg + 150 mg/kg, 1 day Oral NCAM, trapezoidalmethod 1024 μg  mL−1.h Parveen et al. [37]

OXR 10 mg/kg + 100 mg/kg
1 mg/kg + 10 mg/kg, 1 day

Oral
IV

NCAM, PK Solution 2.0 software 
(Summit Research Service)

9375.27 ± 1974.32 μg h/L
1471.00 ± 1945.62 μg h/L

Junsaeng et al. [38]

Table 6 Pharmacokinetic parameters of piperine in human body

Route of 
administration

Dose
(mg)

Cmax
(ng/mL)

Tmax
(h)

AUC 0−∞
(μg h/mL)

t1/2
(h)

References

Oral 24 3.77 ± 1.63 2.15 ± 1.21 58.41 ± 23.50 8.74 ± 8.95 Itharat et al. [189]

Oral 20 290.00 ± 42.47
595.4 ± 108.6

–
–

59.32 ± 10.82
15.79 ± 50.50

13.26 ± 1.91
15.82 ± 4.95

Wen-xing [190]

Oral 20 290 ± 40 3.50 ± 1.78 5.93 ± 1.08 13.3 ± 1.9 Ren and Zuo [191]

Table 7 Pharmacokinetic parameters of piperine in rodents

Route of administration Dose
(mg/kg)

Cmax
(μg/mL)

Tmax
(h)

t1/2
(h)

AUC 0-∞ (μg h/mL) References

Oral 20 1.10 2.00 1.27 7.20 Ren and Zuo [191]

Oral 54.4 4.29 ± 0.97 2.45 ± 2.12 4.10 ± 0.94 23.1 ± 0.1

Intravenous 10 2.90 – 8 15.6

Intravenous 3.5 5.90 ± 1.76 – 1.68 ± 0.40 3.80 ± 0.84

Intra-peritoneal 20 0.051 ± 0.009 3.00 ± 0.17 - 1.22
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[57]. However, it reduces the MMP-9 expression in 
DU-145 cells. The AMPK signaling pathway plays a key 
role in regulating the immunological disease progression 
[58].

The increasing dose-dependent concentration of pip-
erine effectively downregulates the increased NLRP3 
inflammasome; however, pro-IL-18 and serum levels of 
IL-18 were excluded in the study [59]. Piperine induces 
G1 cell-cycle arrest and induces apoptosis in androgen-
sensitive LNCaP and androgen-insensitive PC-3 cells by 
inhibiting the  IK [60]. Piperine in combination with cur-
cumin and taurine decreases the plasma level of IL-10 
and miR-21; however, the exact molecular mechanism of 
interaction needs to be investigated [61, 62].

MMP-9 is expressed abundantly in malignant tumors 
and contributes to cancer invasion and metastasis [63]. 
PKCα/ERK1/2 and NF-κB/AP-1 pathways are among the 
major signaling pathway that regulates tumor cell inva-
sion. Piperine downregulated the MMP-9 expression by 
inhibiting PKCα/ERK1/2 and NF-κB/AP-1 pathway in 
PMA-induced in vitro tumor model [64]. It also inhibits 
the invasion and migration of HT-1080 cells.

PPARγ is an adipogenic transcription factor and is 
associated with several diseases [65]. Piperine inhib-
its adipocyte differentiation via an antagonistic effect 
on PPARɣ [66]. GM-CSF, TNF-α, MMP- 2, MMP-9, 
and proinflammatory cytokines like IL-1β and IL-6 are 
involved in cancer progression mediated by NF-κB and 
AP-1. Piperine inhibited the translocation of NF-κB 
subunits like p50, p65, and c-Rel as well as CREB, ATF-
2, and c-Fos [67]. MiR-127 up-regulation is correlated 
with worsening of LPS-induced inflammation [31, 32]. 
Piperine has been showing anti-inflammatory action 
in the LPS-induced in  vitro model of osteoarthritis by 
down-regulating miR-127 and MyD88 expression [68]. 
The wnt/β-catenin signaling is a molecular target for 
colorectal cancer, ovarian cancer, and HCC [69–71]. 
Piperine inhibits the wnt/β-catenin signaling by impair-
ing the TCF binding to the DNA and alters the cell-cycle 
progression. It also decreases the metastasis in intestinal 
tumor cells [72]. Altered pathways are involved in many 
tumor developments. Piperine increases the JNK and p38 
MAPK phosphorylation, thereby activating the JNK/P38 
MAPK pathway and inducing apoptosis in ovarian cancer 
cells [73]. The anti-tumor effect of piperine is associated 

Fig. 5 Mechanistic effect of piperine for bioavailability enhancement of various drugs with pleiotropic mechanism
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with stabilizing the G-quadruplex structure formed at 
the c-myc promoter region, which alters the transcrip-
tion mechanism [74]. Piperine improves CIRI-induced 
injury of the ischemic penumbra region by downregulat-
ing the COX-2, NOS-2, and NF-κB [75, 76].

Piperine interacts with the r(CGG) exp RNA with high 
selectivity to the G-rich RNA motif whose expansion 
in 5’ UTR of FMR1 gene causes the Fragile X-associ-
ated tremor/ataxia syndrome. The transcripts of these 
expanded repeats r(CGG)exp either form RNA foci or 
undergo the RAN translation, which in turn produces 
toxic proteins in the neuronal cells. Piperine is found to 
improve the r(CGG)exp-related splicing defects and RAN 
translation in the FXTAS cell model system [77].

2.6  Different biological activities reported on piperine
2.6.1  Anticancer activity
Piperine alone and in combination with other natural 
or synthetic drugs has shown potential for anti-cancer 
activity [78]. In an in vitro model, piperine showed syn-
ergistic antiproliferative effects in MCF7 cell line, and 
it synergizes tamoxifen in combination with hesperi-
din and bee venom in MCF7 and T47D cell lines [79]. It 
lowered the LC50 value of paclitaxel (from 50 to 25 μM) 
and decreased the lag phase mostly during the paclitaxel 
action-time in an in vitro MDA MB-231 cell-line model. 
It also increased the cytotoxic and anti-proliferative 
effect of paclitaxel and doxorubicin when used in com-
bination (Kanthaiah Original Research et al. [80]). In an 
in vivo model (EMT6/P cells were inoculated in Balb/C 
mice), piperine along with thymoquinone inhibited angi-
ogenesis, induced apoptosis, and shifted the immune 
response toward T helper1, and further study is needed 
in this context [81]. In vitro stem cell model for breast 
cancer was utilized to evaluate the cancer-preventive 
effects of piperine and curcumin in combination therapy 
and the inhibition of mammosphere formation, serial 
passaging, aldehyde dehydrogenase (ALDH +) breast 
stem cells in both normal and malignant breast cells, and 
inhibition of Wnt signaling was observed [82]. Prolifera-
tion and induced apoptosis through caspase-3 activa-
tion and PARP (Poly (ADP-ribose) polymerase) cleavage 
were strongly inhibited by piperine, thereby inhibiting 
the HER2 gene expression at the transcriptional level. 
Pretreatment with piperine also accelerated sensitization 
to paclitaxel killing in HER2-overexpressing breast can-
cer cells [83]. Piperine causes G1 phase cell cycle arrest 
and apoptosis in SK-MEL 28 and B16-F0 cell lines via the 
activation of checkpoint kinase 1 followed by downregu-
lation of XIAP, full-length Bid (FL-Bid), and cleavage of 
Caspase-3 and PARP [84]. Multidrug-resistant cancers 
were targeted and treated by curcumin–piperine dual 
drug-loaded nanoparticles [85]. Guar gum microvehicle 

loaded with thymoquinone and piperine exhibited low 
median lethal dose (LD50) value against human hepato-
cellular carcinoma cell lines [86]. Piperine-free extract 
of Piper nigrum exhibited anticancer effects on cholan-
giocarcinoma cell lines [87]. Piperine exhibited cyto-
protective. The proliferation of prostate cancer cell lines 
was inhibited by piperine by reducing the expression of 
phosphorylated STAT-3 and nuclear factor-kB (NF-kB) 
transcription factors [88]. Piperine-loaded core–shell 
nanoparticles caused a substantial change in cytotoxic-
ity compared to free drugs, with a rise in G2/M-phase 
and pre-GI-phase population, CDK2a inhibition, and 
apoptotic/necrotic rates in human brain cancer cell line 
(Hs683) [89]. Piperine inhibited cell-cycle progression in 
rectal cancer cells by causing ROS-mediated apoptosis 
[90].

2.6.2  Antimicrobial activity
Piperine exhibited potential inhibitory activity against 
Ebola and Dengue viruses by suppressing the targeted 
enzymes such as Methyltransferase of Dengue and VP35 
interferon inhibitory domain of the Ebola virus [91]. It 
also showed more affinity toward viral proteins in com-
parison with Ribavirin. Piperine (12.5 and 25  μg/ml) 
showed a twofold reduction in the MIC of ciprofloxa-
cin (0.25–0.12 μg/ml) for Staphylococcus aureus (ATCC 
29213), the underlying mechanism for which is stated as 
that piperine inhibits the ciprofloxacin efflux from bac-
terial cells by inhibiting the P-glycoprotein [92]. Twenty-
five analogues of piperine were also found to inhibit the 
Staphylococcus aureus NorA efflux pump [93]. Piper-
ine, along with its derivatives and analogues, exhibited 
Leishmanicidal activity against Leishmania amazonensis 
and Leishmania donovani [94, 95]. Piperine (15  μg/ml) 
was found to inhibit the planktonic growth and shows a 
stage-dependent activity against biofilm growth of Can-
dida albicans (ATCC10231) by affecting its membrane 
integrity [96]. Amide derivatives of piperine have also 
emerged as potential insecticides, among which the com-
pounds 5b and 5d are the most toxic against Brazilian 
insect Ascia monuste orseis with a mortality percentage 
of 97.5% and 95%, respectively [97].

2.6.3  Action on metabolic diseases
The use of piperine for reversing metabolic disease 
usually involves a bioavailability enhancer. Greater 
consumption of energy leads to adiposity and fat 
cell enlargement producing the pathology of obesity, 
which is the most significant medical problem [98, 99]. 
Increased fat mass is associated with risk conditions 
such as stroke, coronary heart disease, and type 2 dia-
betes mellitus known as excessive fat-related metabolic 
disorders (EFRMD) [99, 100]. Melanocortin-4(MC-4), 
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a hypothalamic neuropeptide, regulates obesity by con-
trolling the feeding mechanism via binding to the MC-4 
receptor [101–103]. Increased MC-4 receptor activity 
leads to a decrease in appetite, increased energy expend-
iture, and insulin sensitivity. Studies reported that pip-
erine (40  mg/kg) can be used as an MC-4 agonist and 
has potential use in improving the lipid profile [104]. In 
addition, piperine (50 mg/kg bw) improves insulin sign-
aling in HFD-induced hepatic steatosis by reversing the 
plasma adiponectin, insulin, and glucose concentration 
[105]. Another study suggested that supplementation 
of piperine (30  mg/kg) is helpful for normalizing the 
blood pressure, plasma parameters of oxidative stress, 
and inflammation [106]. However, in a randomized con-
trolled trial to improve the bioavailability, the curcumi-
noids were administered with piperine (Bioperine®) 
in the ratio of 100:1, an efficacious adjunct therapy for 
patients with metabolic diseases [14].

2.6.4  Action on neurological diseases
The most common neurological disorders where piper-
ine has shown experimental neuroprotective potential 
are Alzheimer’s disease (AD), Parkinson’s disease (PD), 
and cognitive impairment [107–109]. Various signaling 
molecular pathways such as oxidative stress, ER stress, 
inflammation, MicroRNA, mitochondrial damage, and 
gut microbiota have been implicated in these diseases 
[107–113]. Piperine with 50 mg oral dose given to human 
volunteers shows plasma concentration of 5  ng/mL 
[10]. Therefore, piperine is likely to cross the BBB [114], 
and the development of its potential analogue explores 
the application in treating neurological disorders. Pip-
erine analogue interacts with potential CNS target like 
GABAA, TRPV1 and adenosine A2A receptors and 
MAO-B involved in neurodegenerative disease. Other 
studies have shown that combinational treatment of pip-
erine with other phytochemicals like curcumin improves 
cognitive impairment by decreasing oxidative stress [111, 
112]. Piperines play a pivotal role in neuroprotection by 
reducing the inflammatory cytokine, oxidative stress, and 
mitochondrial impairment.

Cerebral stroke is the leading cause of death and physi-
cal disability worldwide; still, only one FDA-approved 
drug recombinant tissue plasminogen activator (r-tPA) 
is working with a low therapeutic window [115]. Co-
administration of r-tPA and curcumin with piperine 
(20 mg) can be used to increase the therapeutic window 
of treatment by boosting the bioavailability of curcumin 
by 2000% [116]. An elevated level of proinflammatory 
cytokine IL-1β, IL-6, and TNF-α manifests in inflamma-
tion. Piperine is able to reduce neuronal cell death in the 
ischemic penumbral zone by anti-inflammatory effect 
[76]. Piperine is a natural bioenhancer to increase the 

bioavailability of phytochemicals including curcumin and 
resveratrol [38].

Piperine neuroprotective efficacy on neurological and 
cognitive disorders has been examined in the rodent 
model of Alzheimer, Parkinson, and epilepsy diseases 
[108, 109, 114, 117]. Piperine (2–5–10  mg/day body 
weight) may also exert neuroprotective potential by 
examining the locomotor activity, cognitive performance, 
and biochemical and neurochemical manifestation of the 
hippocampus [108, 118]. The oral treatment of piperine 
(10  mg/day bwt) enhanced the cognitive learning abil-
ity in MPTP- and 6-OHDA-induced Parkinson’s mouse 
model [109, 114]. The antioxidant property of piperine 
is demonstrated by its anti-apoptotic and anti-inflam-
matory mechanism of the 6-OHDA-induced PD model 
[114]. Piperine exerted in  vitro neuroprotective effects 
against corticosterone-induced neurotoxicity in PC12 
cells via antioxidant and mRNA expression of BDNF 
[119, 120]. Therefore, these results suggested that piper-
ine crosses the BBB [121]. However, these results of pre-
clinical studies remain to be validated for translational 
effect on human subjects.

2.6.5  Action on cardiovascular disease
Piperine exhibited the cardioprotective effect by regu-
lating lipid metabolism, inflammation, and oxidative 
stress. Piperdardine and piperine in equal amounts lower 
hypotension and heart rate [122]. Intravenous admin-
istration of piperine (1.5, 2.5, and 5.0  mg/kg) decreased 
the increased blood pressure in rats [123]. The Sahat-
satara (a herbal formulation) contains piperine (1.29% 
w/w) caused relaxation in the thoracic aorta and showed 
potential for vasculoprotective effect in hypertensive and 
nitric oxide-impaired condition in rats [124]. Piperine 
(20  mg/kg) exhibited significant cardioprotective ability 
in combination with curcumin (50 mg/kg) [125]. Piperine 
exhibited a vasomodulatory and blood pressure-lowering 
effect that could be mediated via the Ca2 + channel [126]. 
Piperine upregulates the ABCA1 and aids in promoting 
the cholesterol efflux in THP-1-derived macrophages, 
which later inhibits calpain activity, which indicates that 
piperine is a good candidate for further exploration in 
atherosclerosis and cardiovascular diseases [127].

2.6.6  Anti‑inflammatory action
Piperine has been employed in various animal models 
like carrageenan-induced rat paw edema, cotton pellet 
granuloma, croton oil-induced granuloma pouch, forma-
lin-induced arthritis, high fat diet-induced inflammation 
in subcutaneous adipose tissue, and another model like 
IL-1β induced expression of inflammatory mediators and 
ultraviolet B (UV-B)-induced inflammatory responses 
in the human skin for anti-inflammatory activities 
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[128–133]. The suppression of activated phosphorylated 
p38, JNK, and AP-1 as well as the levels of COX- 2/PGE2 
and iNOS synthesis was seen after pretreating the HaCaT 
keratinocyte cells with piperine prior to UV-B treatment 
[129]. A recent study showed that bioperine improved 
the bioaccessibility and in  vivo anti-inflammatory activ-
ity of carrageenan-complexed piperine in Wistar rats 
by revealing a better bioaccessibility (Cmax = 0.34  μg/ml; 
Tmax at 30  min) of the carrageenan-complexed piperine 
than that of the isolated piperine (Cmax = 0.12 μg/ml, Tmax 
at 60 min) [132]. The percentage inhibition of inflamma-
tion was considerable at 56% for the carrageenan-induced 
paw edema model and 40% for the formalin-induced 
arthritis model; however, in the cotton pellet-induced 
granuloma model, it was only 10% [131]. Piperine in 
combination with curcumin at nutritional doses was able 
to reduce the expression of the inflammatory cytokine 
in the adipose tissue, indicating that it could be utilized 
in the treatment of inflammatory conditions in meta-
bolic disorders related to obesity [130]. It has promising 
activity in the reversal of hepatotoxicity in combination 
with Aegle marmelos leaf extract; it potentiates the anti-
oxidant and anti-inflammatory properties of A. marmelos 
[134]. It effectively abrogated the IL-1β-induced over-
expression of inflammatory mediators by inhibiting the 
production of PGE2 and nitric oxide induced by IL-1β; in 
addition, it decreased the IL-1β-stimulated gene expres-
sion and production of MMP-3, MMP-13, iNOS, and 
COX-2 in human osteoarthritis chondrocytes; it also 
inhibited the IL-1β-mediated activation of NF-κB by sup-
pressing the IκBα degradation in the cytoplasm [133]. 
Apart from its own anti-inflammatory activity, it is also 
found to enhance the anti-inflammatory activities of Thy-
moquinone [135]. Piperine is in combination with res-
veratrol decreases morbidity to some extent with little or 
no effect on mortality associated with lupus in Systemic 
Lupus Erythematosus (SLE) [136].

2.6.7  Action on reproductive organs
Piperine showed inhibitory action in the inflammation of 
inner lining of uterus mainly caused by Staphylococcus 
aureus [137]. Through the ERK1/2 and AKT pathways, 
piperine mediates the stimulation of pubertal Leydig cel-
lular development; however, it inhibits spermatogenesis 
in rodents [138]. However, at a dose of 10  mg/kg, the 
serum gonadotropin concentration increases, whereas 
testosterone concentration decreases [139]. It impaired 
reproductive function via altered oxidative stress by 
increased expression of Caspase-3 and Fas protein in 
testicular germ cells [140]. It is reported to decrease the 
antioxidant activity of enzymes and sialic acid levels in 
the epididymis, and thus, reactive oxygen species (ROS) 
level increases that could potentially harm the epididymal 

environment and sperm function [141]. Piperine could 
be a lead molecule to develop reversible oral male con-
traceptive; however, further evidences are needed to be 
investigated.

2.6.8  Role of piperine on gut microbiota
Microbiota and host form complex super organism in 
which a symbiotic relationship confers the benefits of 
the host in many key aspects of life. Understanding the 
healthy microbiome (totality of microbes) in the human 
microbiome project has the major challenge and needs 
to decipher after the oral administration of certain phy-
tochemicals such as piperine, lycopene, and curcumin. 
Piperine was tested against various culture media like 
Prevotella bryantii (B14), Acetoanaerobium sticklandii 
(SR), Bacteroides fragilis (ATCC 25285), Clostridioides 
difficile (ATCC 9689) among which piperine showed 
inhibitory action against only B. fragilis at concentra-
tions ≥ 0.10  mg   mL−1 (105 cells  mL−1) [142]. Piperine 
with curcumin displayed an average of 69% increase in 
the species detected in gut microbiota [143]. There is an 
unmet need to explore the potential interaction of pip-
erine with another nutrient by using LC–MS/MS [144]. 
LC–MS/MS is a technique available for simultaneous 
detection of degraded microbial metabolites of piperine. 
It was revealed by HPLC analysis that tetrahydro cur-
cumin (235 ± 78  ng/ 100  mg tissue) was present in the 
adipose tissue after supplementing Curcuma-P® (extract 
rich in curcumin and associated with white pepper) for 
4 weeks [130].

2.7  Toxicological effect of piperine
Spices and herbs have been consumed for centuries 
either as food or remedial necessity. The potential 
health benefits of the phytochemicals from these herbs 
could become toxic depending on the dose of expo-
sure and may exhibit toxic effects [145]. Piperine, when 
administered IV, is more toxic as compared to IG, SC, 
and IM. The less toxicity of piperine through the IG 
route is suggested as for its insolubility or chemical 
instability in the stomach. Thereby, piperine induces 
hemorrhagic ulceration in the stomach and mild-to-
moderate enteritis in the SI and histopathologic lesions 
in the g.i.t., suggesting that piperine has a local and 
direct effect on the gastrointestinal lumen. The LD50 
values in adult male mice for a single dose of piper-
ine through i.v., i.p., s.c., i.g., and i.m. administration 
are about 15.1, 43, 200, 330, and 400  mg/kg body wt, 
respectively [146]. Piperine’s toxicity affects mainly the 
reproductive system [147]. Piperine (10  mg/kg, p.o.) 
induced an increase in serum gonadotropins and a 
decrease in intratesticular testosterone in male albino 
rats; reports were also there that piperine interferes 
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with crucial reproductive events in a Swiss albino-
mammalian model [148].

2.8  Piperine as a repurposing molecule for reversing 
the COVID-19 pandemic

Healthy gut microbiota helps to increase the immune 
system of COVID-19 patients. There is unmet need to 
identify the different microbial metabolites present after 
the degradation of piperine and other plant-derived 
molecules by using LC–MS/MS. Microbial metabolites 
have an ability to cross the BBB and provide pleiotropic 
effects on the brain and other organs by altering the 
gene expression. Healthy gut microbiome identification 
in stool samples of COVID-19 patients may be a better 
approach for precision medicine by utilizing Fecal Micro-
biota Transplantation (FMT) technologies for COVID-19 
patients. Black pepper consumption, besides its immu-
nomodulatory functions, may also aid in combating 
SARS-CoV-2 directly through possible antiviral effects 
[149]. It has recently been reported that piperine has 
demonstrated binding interactions toward the spike gly-
coprotein and ACE2 cellular receptor for SARS-CoV-2. 
The interactions of hydrogen bonds with Gly399, His401, 
Glu402, Arg514, Arg518 were found significant by form-
ing one predictable hydrogen bond with each amino 
acid residue [150]. Piperine interacts with the main pro-
tease at the docking score of -90.95 and binding energy 
score of -78.10  kcal   mol−1, forming one hydrogen bond 
with His41; other stabilizing interactions include π -sul-
fur, π–σ, π–π T-shaped, and alkyl interactions. Piperine 
with a binding affinity of −6.4 kcal  mol−1 forms hydrogen 
bond interaction with GLY164 and GLY170; its binding 
process is also governed by van der Waals interactions 
with ARG71, TYR121 (TYR453), TYR163 (TYR495), 
and ASN169 (ASN501) of SARS-CoV-2 receptor-binding 
domain spike protein (RBD Spro). The major stabiliz-
ing interactions of piperine with SARS-CoV-2 RBD Spro 
were by covalent hydrogen bonding, π–π T-shaped, and 
van der Waals force of interactions [151]. Piperine acts 
on the Nsp15 viral protein and inhibits SARS-CoV-2 
replication [152, 153]. Furthermore, binding chemistry 
of piperine and curcumin via π–π intermolecular inter-
actions enhances curcumin’s bioavailability, which facili-
tates curcumin to bind RBD Spro and ACE-2 receptors of 
host cell, thereby inhibiting the entry of virus inside the 
host [152, 153].

3  Conclusion
Since its identification in 1820, piperine pleiotropic 
activities have been reported in many studies. How-
ever, most of the discussions are based on preclini-
cal as well as in  vitro model systems. As summarized 

in this review, piperine exhibits significant preclinical 
activities against a number of human diseases includ-
ing cancer and inflammatory disorders. A few potential 
molecular targets were explored in the context of dif-
ferent diseases. However, some targets remain unex-
plored for the DAB-2 gene in the TGF-β pathway in 
chronic kidney disease. The underlying mechanism of 
its efficacy against different ailments and chronic ill-
nesses seems to be due to its ability to modulate many 
different signaling pathways. Bioavailability enhance-
ment by retarding the glucuronidation reactions, affect-
ing certain proteins and enzymes, and increasing the 
nutrient uptake from the gut is among the few explana-
tory findings in the scope of its bioenhancer properties. 
Future research is needed to explore the different meta-
bolic products produced from the gut microbiota after 
the microbial degradation of piperine and its related 
isomers. These microbe-mediated products may play a 
contributing factor for the toxicity of different organs.

Among all the clinical trials done on piperine, it was 
used either alone or in combination with other drugs, 
and the safe dose reported for action was 5 mg/day. A 
threshold of toxicity of 50  mg/kg bw/day is proposed 
for piperine. It is also used as a repurposed medicine to 
explore the inhibitory action on new molecular targets 
in the context of COVID-19, and only a few computa-
tional studies have been able to produce satisfactory 
results; however, in vivo models should be designed to 
provide thorough evidence. Further studies are needed 
to explore the role of other isomers isolated from black 
and white pepper against different targets of COVID-19 
pathophysiology.

Since piperine has been consumed for centuries; the 
immunomodulatory action and lipid-lowering effect on 
metabolic diseases including cardiovascular diseases 
were discussed in this review. In Langendorrf ’s rabbit 
heart preparation, piperine caused partial inhibition 
and verapamil caused complete inhibition of ventricu-
lar contractions and coronary flow.

Piperine stimulates the digestive capacity by activat-
ing the release of digestive enzymes from the pancreas. 
However, the effect of piperine on the gut microbiota 
has been explored on a very limited scope, and there-
fore, it is suggested that rigorous exploration is needed 
in this context. The effects of piperine on kidney-
related diseases need to be studied since it has a very 
little published establishment in this scope. The syn-
ergistic effects, as well as the combinatorial combina-
tion of piperine and other phytochemicals, should be 
explored for other diseases.

Piperine treatment has also been evidenced to 
decrease lipid peroxidation and beneficially influence the 



Page 18 of 24Tripathi et al. Beni-Suef Univ J Basic Appl Sci           (2022) 11:16 

cellular thiol status, antioxidant molecule, and antioxi-
dant enzymes. Work has been done on a computational 
scope for a nanoformulation incorporated in combina-
tion with piperine for human neuroblastoma SH-SY5Y 
cells; the conclusive results were satisfactory to have an 
augmented antioxidant effect on an Alzheimer’s model 
in  vitro; however, animal-based models are needed to 
provide further evidence.

Regardless of all these reports, it is not yet prescribed 
for human use as for its limited number of clinical trials. 
In combination, piperine alters the metabolism and bioa-
vailability of co-administered drugs. The number of pub-
lications on this molecule continues to increase with few 
clinical trials that are still ongoing. As we gather more 
information on the health benefits of piperine, it is more 
likely that the medicinal utility will be widely accepted.
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ABSTRACT
Background: Black pepper  (Piper nigrum L.) is widely used as a 
traditional medicine, including usage for pain relief, fevers, as well 
as an anticancer agent. Previously, we reported that piperine‑free 
P. nigrum extract  (PFPE) inhibited breast cancer in  vitro and in  vivo. 
Objective: In this present study, we explored the anticancer effects of PFPE 
on cholangiocarcinoma  (CCA). Materials and Methods: 3‑(4,5‑dimethyl 
thiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay was performed to 
analyze cytotoxic potential of PFPE whereas deoxyribonucleic acid (DNA) 
fragmentation followed by Western blot analysis were used. Results: PFPE 
composed of alkaloid, flavonoid, amide, lignans, opioid, and steroid. This 
crude extract represented cytotoxic effect against CCA cells which stronger 
than dichloromethane P. nigrum crude extract and piperine, especially 
on KKU‑M213 (median inhibition concentration  [IC50] at 13.70 µg/ml) and 
TFK‑1 (IC50 at 15.30 µg/ml). Interestingly, PFPE showed lower cytotoxicity 
against normal human cholangiocyte MMNK‑1  cells  (IC50 at 19.65  µg/
ml) than KKU‑M213 and TFK‑1 cells. Then, the molecular mechanisms of 
PFPE were firstly evaluated by DNA fragmentation followed by Western 
blot analysis. The degradation of DNA was observed on KKU‑M213 and 
TFK‑1 cells after treatment with PFPE at day 2. Then, proliferation proteins 
including topoisomerase II, AKT8 virus oncogene cellular homolog, 
avian myelocytomatosis virus oncogene cellular homolog, cyclin D1, 
signal transducer and activator of transcription 3, cyclooxygenase‑2, and 
nuclear factor kappa‑light‑chain‑enhancer of activated B cells (NF‑kB) were 
decreased and p21 was increased. Furthermore, apoptotic proteins, such 
as tumor protein p53, Bcl‑2‑associated X protein, and p53 upregulated 
modulator of apoptosis were upregulated. Meanwhile, antiapoptotic 
protein B‑cell lymphoma 2 was down‑regulated. Conclusion: These results 
indicated that PFPE inhibited CCA through the down‑regulation of cell 
proliferation and induction of apoptosis pathway.
Key words: Anticancer, apoptosis, cell proliferation, cholangiocarcinoma, 
Piper nigrum

SUMMARY
•  piperine free Piper nigrum extract (PFPE) inhibited cholangiocarcinoma (CCA) 

cell lines
•  PFPE induces CCA cells to undergo apoptosis and cell cycle arrest via the 

inhibition of topoisomerase II
•  PFPE inhibit cell growth through the inhibition of nuclear factor 

kappa‑light‑chain‑enhancer of activated B cells.

Abbreviations used: PFPE: Piperine free Piper nigrum extract; CCA: 
Cholangiocarcinoma; DPCE: dichloromethane P. nigrum crude extract; 
NMU: N‑nitrosomethylurea; ER: Estrogen receptor; MMP‑9: Matrix 
metalloproteinase‑9; MMP‑2: Matrix metalloproteinase‑2; VEGF: 
Vascular endothelial growth factor; GC‑MS: Gas chromatograph‑mass 
spectrometer; MTT: 3‑(4,5‑dimethyl thiazol‑2‑yl)‑2,5‑diphenyltetrazolium 
bromide; DMSO: Dimethylsulfoxide; IC50: Median inhibition concentration; 
MCLE: Methanol crude extract of Curcuma longa; DNA: Deoxyribonucleic 
acid; STAT‑3: Signal transducer and activator of transcription 3; COX‑2: 
Cyclooxygenase‑2; NF‑kB: Nuclear factor kappa‑light‑chain‑enhancer of 
activated B cells; c‑Myc: Avian myelocytomatosis virus oncogene cellular 
homolog; Akt: AKT8 virus oncogene cellular homolog; Bcl‑2: B‑cell 
lymphoma 2; p53: Tumor protein p53; Bax: Bcl‑
2‑associated X protein; PUMA: p53 upregulated 
modulator of apoptosis.
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INTRODUCTION
Cholangiocarcinoma  (CCA) is an epithelial cancer originating from 
the bile ducts with features of cholangiocyte differentiation.[1] There 
are 2 types of CCA  (based on its location) including intrahepatic 
and extrahepatic.[2] For over the past four decades, incidence of 
CCA has been increased in United States of America,[3] Australia, 
England,[4] and Northeastern Thailand.[5] There are several risk 
factors for CCA, including primary sclerosing cholangitis, liver fluke 
infections (Clonorchis sinensis and Opisthorchis viverrini), choledochal 
cysts, Caroli’s disease, hepatitis B and C infection, obesity, cirrhosis 
and hepatolithiasis.[5,6] The therapeutic for CCA are limited and no 

current effective treatment because the majority of patients present with 
advanced stage disease.[7] Even treatments with advances in surgical 
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techniques, chemotherapy and radiotherapy, the 5‑year survival rate 
of patients after diagnosis still remain about 10%.[8] Although surgical 
resection has improved in the survival of most patients, the recurrent 
disease was found within 2 years after tumor resection.[9] Chemotherapy 
and radiation therapy are ineffective and show various side effects such 
as harmful to normal cells and bone marrow suppression.[10] Therefore, 
effective therapeutic and alternative treatments with no serious side 
effect for CCA are urgently needed.
P. nigrum L. belongs to family Piperaceae and can be used as 
antiapoptotic, antibacterial, anticolon toxin, antidepressant, antifungal, 
antidiarrhoeal, antiinflammatory, antimutagenic, antimetastatic, 
antioxidative, antipyretic, antispasmodic, antispermatogenic, antitumor, 
antithyroid, ciprofloxacin potentiator, cold extremities, gastric ailments, 
hepatoprotective, insecticidal, intermittent fever, and larvicidal 
activities.[11] The chemical constituents of P. nigrum are aromatic essential 
oils, alkaloids, amides, prophenylphenols, lignans, terpenes, flavones, 
and steroids.[12] Ethanolic crude extract of P. nigrum consists of high 
total phenol content shows antioxidant and anti‑inflammation as well 
as cytotoxic property against colorectal carcinoma cell lines.[13] Using 
ethanol and high pressure  (200 bar), P. nigrum crude extracts exhibits 
cytotoxicity against MCF‑7 with median inhibition concentration (IC50) 
of 14.40 ± 3.30 µg/ml and represents tumor inhibitory effect in mammary 
adenocarcinoma mouse.[14] Previously, we reported that piperine‑free 
P. nigrum extract  (PFPE) strongly inhibited breast cancer MCF‑7 cells 
with IC50 value of 7.45 µg/ml. Moreover, PFPE inhibited tumor growth 
in N‑nitrosomethylurea‑induced mammary tumorigenesis rats without 
liver and kidney toxicity.[15] Interestingly, PFPE upregulated tumor 
protein p53  (p53) and downregulated estrogen receptor, E‑cadherin, 
matrix metalloproteinase‑9 (MMP‑9), MMP‑2, avian myelocytomatosis 
virus oncogene cellular homolog  (c‑Myc) and vascular endothelial 
growth factor (VEGF) in vitro and in vivo.[16] In this present research, we 
further explored the phytochemical component, investigated cytotoxicity 
and molecular mechanisms of PFPE on CCA cell lines.

MATERIALS AND METHODS
Preparation of piperine free Piper nigrum extract
Seeds of P. nigrum L. were collected from Songkhla province in Thailand. 
The plant specimen  (voucher specimen number SKP 146161401) was 
identified by Asst. Prof. Dr.  Supreeya Yuenyongsawad and deposited 
in the herbarium at the Southern Centre of Thai Traditional Medicine, 
Department of Pharmacognosy and Pharmaceutical Botany, Prince 
of Songkla University, Thailand. PFPE was prepared as previously 
described. Briefly, grounded 250 g of dried seeds of P. nigrum L. were 
soaked in 300 mL of dichloromethane and incubated at 35°C for 3 h in 
a shaking incubator. After filtration with Whatman filter paper No. 1 
and concentration using rotary evaporator, the dark brown oil residue of 
extracts was obtained and then recrystallized with cold diethyl ether in 
an ice bath to get rich of yellow crystals (piperine) and obtain brown oil 
residue (PFPE).[15] PFPE was kept in a desiccator until used.

Phytochemical analysis and identification of 
bioactive constituents by gas chromatograph-mass 
spectrometer
The analysis of the phytochemical screening and composition of 
PFPE extracts were carried out using a Gas Chromatography‑Agilent 
7890B combination with an Agilent 5977A triple quadrupole mass 
spectrometer (Agilent Technologies Inc, USA). Gas chromatograph‑mass 
spectrometer (GC‑MS) analysis is a common confirmation test, which 
used to make an effective chemical analysis. The PFPE samples were 
evaluated phytochemicals such as a flavonoids, tannins, alkaloids, 

steroids, phenols, glycosides, lignans, and terpenoids. An inlet 
temperature of 280°C with the split ratio 7:1 was employed and the 
helium was used as the carried gas at the constant flow rate of 7 ml/min. 
The oven temperature was initially maintained at 60°C for 5  min and 
increase at a rate of 5°C/min to 315°C for 15 min. For MS detection, an 
electron ionization mode was used with an ionization energy of 70 eV, 
ion source temperature of 230°C, and scan mass range m/z 35–500. 
The components were identified based on a correlation of the recorded 
fragmentation patterns of mass spectra that provided in the GC‑MS 
system software version Wiley10 and NIST14. All procedures were 
performed at Scientific Equipment Center, Prince of Songkla University, 
Songkhla, Thailand.

Measuring total phenolic, tannin, flavonoid content 
and radical scavenging activity
The total phenolic content was determined based on Folin–ciocalteu 
method. Gallic acid was used as the standard and total phenolics were 
expressed as mg gallic acid equivalent/mg extract (mg GAE/mg extract). 
Total condensed tannin was measured based on HCL‑vanillin method 
and catechin was used as the standard. The total tannin was reported 
as mg catechin equivalent/mg extract  (mg CE/mg extract). The total 
flavonoid content was determined by aluminum chloride solution (AlCl3) 
colorimetric method. Quercetin was employed as the standard and 
expressed the total flavonoids as mg quercetin equivalent/mg extract (mg 
QE/mg extract). 2,2‑diphenyl‑1‑picryl‑hydrazyl‑hydrate (DPPH) 
radical scavenging activity was performed according to the DPPH 
trolox assay and reported as mg trolox equivalent antioxidant capacity/
mg extract  (mg TEAC/mg extract). All procedures were performed at 
Center of Excellence in Natural Products Innovation, Mae Fah Luang 
University, Chiang Rai, Thailand.

Cell lines and culture conditions
Three CCA  (KKU‑100, KKU‑M213 and KKU‑M055) and one 
cholangiocyte  (MMNK‑1) cells were kindly donated by Dr.  Mutita 
Junking (Faculty of Medicine, Mahidol University, Bangkok, Thailand). 
TFK‑1  cells were obtained from RIKEN BioResource Center and 
HuCC‑T1 cells were obtained from the Japanese Collection of Research 
Bioresources Cell Bank. Mouse fibroblast, L‑929  cells, were kindly 
donated by Associate Professor Dr. Jasadee Kaewsichan (Department of 
Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince 
of Songkla University, Songkhla, Thailand).
KKU‑100, KKU‑M213, KKU‑M055, MMNK‑1 and L‑929  cells were 
grown in DMEM medium  (Invitrogen), which contained 10% of fetal 
bovine serum (Invitrogen), 2 mmol/L of L‑glutamine (Invitrogen), and 
an antibiotic mixture of 100 units/mL of penicillin and 100 µg/mL of 
streptomycin  (Invitrogen). TFK‑1 and HuCC‑T1  cells were grown 
in RPMI 1640  (Invitrogen) supplemented with the same supplement 
as for DMEM. All cells were maintained by incubating in a 5% CO2 
atmosphere, at 37°C and 96% relative humidity.

In vitro cytotoxicity
The cytotoxicity assay was performed in 96‑well plate. KKU‑100, 
KKU‑M055, and MMNK‑1  cells were seeded at a density of 
5  ×  103  cells/well. KKU‑M213, TFK‑1, and HuCC‑T1  cells were 
seeded at a density of 7.5 × 103 cells/well and L‑929 cells were seeded 
at a density of 8  ×  103  cells/well. After incubation for 24  h, cells were 
treated with PFPE at various concentration for 48  h. The cells were 
then washed with 1X PBS and incubated in 100 µl of 0.5  mg/ml of 
3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide  (MTT) 
solution at 37°C for 30 min. Under light protection, the purple crystals 
of formazan or MTT metabolites were dissolved with 100 µl of dimethyl 

[Downloaded free from http://www.phcog.com on Thursday, July 30, 2020, IP: 202.29.50.155]



AMAN TEDASEN, et al.: Effect of Piper nigrum on Cholangiocarcinoma

S30 Pharmacognosy Magazine, Volume 16, Issue 68, January-March 2020 (Supplement 1)

sulfoxide and incubate at 37°C for 30 min. The absorbance was measured 
at 570 and 650 nm using a microplate reader spectrophotometer (Spectra 
Max M5, Molecular Devices), and the IC50 values were calculated.[17] 
According to US NCI plant screening program, a crude extract is generally 
considered to have in vitro cytotoxic activity with IC50 value ≤20 µg/ml.[18]

Deoxyribonucleic acid fragmentation analysis
KKU‑M213 and TFK‑1  cells in their exponential growth phase were 
seeded into 6  cm culture plate at a density of 2.5  ×  105  cells/plate for 
24 h and then treated with PFPE at 3 folds of IC50 values. After treatment 
for 96 h, cells were harvested by trypsinization. Cell pellets were lysed 
using the extraction buffer  (containing 0.7 M NaCl, 17 mM SDS, 
10 mM Tris‑HCl (pH 8.0) and 2 mM EDTA (pH 8.0)) and fragmented 
deoxyribonucleic acid (DNA) in the supernatant was extracted once with 
an equal volume of phenol: chloroform: isoamyl alcohol  (25:24:1) and 
once with chloroform: isoamyl alcohol (24:1). The DNA was precipitated 
with a two‑thirds volume of cold isopropanol followed by centrifugation 
at 8,000 ×g and washed once in 70% ethanol. Finally, DNA pellet was 
resuspended in deionized water and analyzed by 1.5% agarose gel 
electrophoresis.[19]

Western blot analysis
KKU‑M213 and TFK‑1  cells were seeded into 6  cm culture plate at a 
density of 2.5 × 105 cells/plate for 24 h and then treated with PFPE at IC50 
values. After treatment, cells were harvested every day for 4 days. Then, 
cell pellets were lysed using the RIPA buffer (containing 150 mM NaCl, 
50 mM Tris, pH 7.4, 1% (v/v) NP‑40, 0.25% (w/v) sodium deoxycholate 
and 1 mM EDTA). Total protein samples (150 mg) were loaded on 12% of 
SDS‑polyacrylamide gel electrophoresis and transferred onto a 0.45 mm 
nitrocellulose membrane (Bio‑Rad, 162‑0115). Membrane was blocked 
at room temperature for 1 h with 5% non‑fat milk in 1X TBS‑T and then 
washed with 1% non‑fat milk in 1X TBS‑T. Membrane was incubated 
with primary antibodies against topoisomerase II, Bcl‑2‑associated X 
protein (Bax), B‑cell lymphoma 2 (Bcl‑2), p53 upregulated modulator of 
apoptosis (PUMA), p21, AKT8 virus oncogene cellular homolog (Akt), 
cyclooxygenase‑2 (COX‑2), Nuclear factor kappa‑light‑chain‑enhancer 
of activated B cells  (NF‑kB), signal transducer and activator of 
transcription 3  (STAT‑3), cyclin D1 and p53 proteins. The membrane 
was then incubated with secondary horseradish peroxidase‑conjugated 
antibodies. Bound antibodies were developed by a chemiluminescence 
detection kit using the SuperSignalTM West Dura Extended Duration 
Substrate  (Thermo Scientific) and detected using a Fusion FX vilber 
lourmat, CCD camera  (Fisher Biotechnology). GAPDH was used to 
normalize protein loading. Protein levels were expressed as a relative 
ratio to GPADH.

Statistical analysis
The median inhibition concentration  (IC50) data was acquired 
by SoftMax  1 Pro 5 program  (MDS Analytical Technologies Inc., 
California, USA). Student’s t‑test was used to analyze intergroup 
differences. A P < 0.05 was considered to be statistically significant. All 
results were represented as the mean  ±  standard deviation  (SD). The 
values were obtained from at least three independent experiments.

RESULTS
Total phenolic, tannin, and flavonoid contents
Phenolics, flavonoids, and tannins are one class of secondary plant 
metabolites which represented anticancer activity of plant. As present 
in Table  1, PFPE contained phenolic, tannin and flavonoid lower 
than methanol crude extract of Curcuma longa  (MCLE). However, 
the cytotoxicity of PFPE against breast cancer MCF‑7 cells  (IC50 value 

at 7.45 ± 0.6 µg/ml) not significantly lower than MCLE  (IC50 value at 
5.74 ± 1.48 µg/ml). Therefore, we performed GC‑MS in next experiment 
to identify the chemical compounds in PFPE.

Phytochemical screening
In this study, the phytochemical analysis using GC‑MS was carried out. The 
chromatogram and predicted constituents are shown in Figure 1 and Table 2.
Results showed that PFPE contained five chemical groups including 
alkaloids, terpenes, amides, lignans, opioid and steroid with 17, 13, 7, 
3, 1, and 1 compounds, respectively. The highest percentage of peak 
area of each group were pipercitine  (21.66%, alkaloid), caryophyllene 
(13.28%, terpene), acrivastine  (2.34%, amide), kusunokinin  (1.28%, 
lignan), methyldihydromorphine  (1.18%, opioid), and 
beta‑stigmasterol (1.74%, steroid) which showed the anticancer activity.

Effect of piperine free Piper nigrum extract on the 
viability of cholangiocarcinoma, cholangiocyte and 
normal fibroblast cell lines
The cell viability of CCA and normal cell lines was measured using the MTT 
assay. All cell lines were incubated with extracts for 48 h. The IC50 values 
represented the mean ± SD of three different experiments. Among these cell 
lines, PFPE showed the highest cytotoxicity against KKU‑M213 cells with 
IC50 value of 13.70 ± 1.14 µg/ml. Moreover, PFPE demonstrated cytotoxic 
effect stronger than dichloromethane P. nigrum crude extract (DPCE) (IC50 
at 22.22 ± 0.26 µg/ml) and piperine (IC50 at 27.01 ± 0.36 µg/ml). The positive 
reference drug  (doxorubicin) showed a very strong cytotoxic activity on 
normal and almost cancer cells. Surprisingly, doxorubicin showed same 
cytotoxic activity with PFPE against TFK‑1 cells [Table 3].

Piperine free Piper nigrum extract induces 
deoxyribonucleic acid fragmentation on KKU-M213 
and TFK-1 cells
A DNA fragmentation assay was used to determine whether the action of 
PFPE was associated with apoptosis or not. Apoptosis can be visualized 
as a ladder pattern of 180‑200 base pairs due to DNA cleavage by the 
activation of a nuclear endonuclease enzyme. Since, PFPE demonstrated 
a strong cytotoxic effective on KKU‑M213 and TFK‑1 cells, both cell lines 
were used to determined DNA fragmentation. As shown in Figure 2, the 
DNA ladder pattern was observed at day 2 after exposure with 3 folds of 
IC50 concentration of PFPE.

Piperine free Piper nigrum extract inhibited proteins 
associated with inflammation that induces bile duct 
cancer
In this experiment, we determined proteins associated with inflammation 
that induced bile duct cancer including STAT‑3, COX‑2 and NF‑kB using 
Western blot analysis. KKU‑M213 cells were treated with 13.69 µg/ml of 

Table 1: Total phenolic, tannin and flavonoid contents in piperine free Piper 
nigrum crude extract

Crude Phenolics (mg 
GAE/g extract)a

Flavonoids (mg 
QE/mg extract)b

Tannins (mg 
CE/mg extract)c

PFPE 402.46±7.49 40.69±5.99 201.82±17.78
MCLE 2090.63±15.81 148.94±33.64 2373.75±92.77

aMg of gallic acid equivalence by mg of extract; bMg of quercetin equivalence 
by mg of extract; cMg of catechin equivalence by mg of extract; P. nigrum: Piper 
nigrum; PFPE: Piperine free P. nigrum extract; C. longa: Curcuma longa; MCLE: 
Metanolic C. longa extract; GAE: Gallic acid equivalent; QE: Quercetin equivalent; 
CE: Catechin equivalent

[Downloaded free from http://www.phcog.com on Thursday, July 30, 2020, IP: 202.29.50.155]



AMAN TEDASEN, et al.: Effect of Piper nigrum on Cholangiocarcinoma

Pharmacognosy Magazine, Volume 16, Issue 68, January-March 2020 (Supplement 1) S31

PFPE and incubated for 96 h. The results showed that the STAT‑3, COX‑2 
and NF‑kB protein levels were reduced in a time dependent manner 
and significantly decreased at 48‑96 h [Figure 3a and c]. Furthermore, 
TFK‑1 cells were treated with 15.29 µg/ml of PFPE and incubated for 
96  h cells. The STAT‑3 and COX‑2 protein levels were significantly 
reduced at 72‑96 h in a time‑dependent manner. The NF‑kB protein was 
decreased significantly at 24 and 72 h [Figure 3b and d].

Piperine free Piper nigrum extract inhibited proteins 
involved in the cell proliferation and growth
Proteins related to cell proliferation and growth of bile duct cancer 
cells, including topoisomerase II, Akt, c‑Myc, cyclin D1, and p21 were 
examined after treatment with PFPE using IC50 concentration of each 
cells. The result showed that topoisomerase II was significantly decreased 
at 24 h and p21 was increased at 96 h in KKU‑M213 cells [Figure 4a and c]. 
Meanwhile, PFPE treated TFK‑1 cells showed a significant decreased in 
topoisomerase II at 72 h and p21 was increased at 24 h [Figure 4b and d]. 
Then, Akt protein was decreased at 48 and 72  h in KKU‑M213 and 
TFK‑1  cells, respectively. Moreover, c‑Myc and cyclin D1, a protein 
that worked after those proteins, were found significantly decreased at 
48‑96 h in both cell lines [Figure 4].

Piperine free Piper nigrum extract inhibited proteins 
associated with apoptosis
In this study, proteins associated with apoptosis pathway including 
antiapoptosis  (Bcl‑2) and apoptosis  (p53, bax, and PUMA) were 

evaluated. After giving PFPE at IC50 concentration for 48 h, death cells 
were observed and Bcl‑2 was decreased in both cells, KKU‑M213 and 
TFK‑1 [Figure 5]. In addition, the levels of p53 and Bax proteins were 
significantly increased at 96 h and PUMA protein was increased from 
24 to 48 h in KKU‑M213 cells [Figure 5a and c]. Moreover, p53, Bax and 
PUMA were increased significantly at 24 h TFK‑1 cells [Figure 5b and d].

DISCUSSION
The incidence of bile duct cancer or CCA has increased in Thailand 
and chemotherapy is not sufficient to treat the aggressive type of this 
cancer.[5] Therefore, medicinal plants could be an alternative treatment 
for bile duct cancer. There are many medicinal plants that cause cell cycle 
arrest and apoptosis in CCA such as Tripterygium wilfordii, Atractylodes 
lancea  (Thunb) DC., Zingiber officinale Roscoe, Phyllanthus emblica, 
Terminalia chebula Retz., Moringa oleifera, and Curcuma longa Linn.[20,21] 
Piper species is one of medicinal plant that also shows anticancer effect, 
such as Piper sarmentosum,[22] Piper longum,[23] Piper chaba[24] and 
P. nigrum.[17] In previous study, we reported that PFPE showed anticancer 
activity against breast cancer in in vitro and in vivo.[15,16] Here, we further 
explored the biological activity of PFPE on bile duct cancer and found 
that PFPE exhibited anticancer activity against CCA cell lines, especially 
TFK‑1 and KKU‑M213, a moderate differentiation with p53 mutation 
and well differentiation CCA cells, respectively. Using GC‑MS technique, 
many active phytochemicals were founded in PFPE including alkaloids, 
terpenes, amides, lignans, opioid and steroids. Pipercitine, guineensine, 
and pipersintenamide, (an alkaloid compounds) represented percentage 
of peak area at 21.66, 10.17, and 5.65%, respectively. Pipercitine shows 
toxicity against larvae of Aedes aegypti,[25] and guineensine has an 
anticancer property against the mouse lymphoma cell line L5178Y 
with IC50 values of 17.0 µM.[26] Pipersintenamide, isolated from Piper 
sintenense Hatus, shows anticancer activity against leukamia P‑388 and 
promyelocytic leukemia HL‑60 cell lines with IC50 values of 3.78 and 
3.80 µg/ml.[27,28] Moreover, caryophyllene  (13.28% in PFPE), a bicyclic 
natural sesquiterpene, exhibits antiproliferative effects against colorectal 
cancer cells (IC50 19 µM) though clonogenicity, migration, invasion and 
spheroid formation.[29] A beta‑stigmasterol  (1.74% in PFPE), a steroid 
compound, demonstrates inhibitory effects with IC50 values of 11.14 and 
18.28 µM against human myeloid leukemia K562 and prostate cancer 
PC3 cell lines, respectively.[30] In this recent study, we found a very 
potent compounds in the PFPE including piperlonguminine  (4.77%), 
kusunokinin (1.28%), and cubebin (0.28%), which have been reported 
as anticancer agents.(‑)‑Kusunokinin and piperlonguminine, a 
natural lignan and alkaloid compounds, inhibited breast cancer 
cells (MCF‑7 and MDA‑MB‑468) and colorectal cells (SW‑620) through 
down‑regulation of topoisomerase II and up‑regulation of of p53, p21 
protein levels.[31] (‑)‑Cubebin, a lignan compound, represents anticancer 
effect against myeloid leukemia, lung and nasopharyngeal cancer.[32] 
Interestingly, we found that PFPE showed stronger cytotoxicity against 
CCA cells than DPCE and piperine  [Table  3]. However, piperine, the 
major alkaloid compound in P. nigrum, still remained in the PFPE 

Figure 1: Gas chromatograph-mass spectrometer chromatogram of piperine free Piper nigrum extract

Figure  2: Analysis of Deoxyribonucleic acid fragmentation induced 
by piperine free Piper nigrum extract in KKU-M213 and TFK-1 cell lines. 
Cells were treated with piperine free Piper nigrum extract for 4 days and 
Deoxyribonucleic acid fragmentation was assessed by 1.5% agarose 
gel electrophoresis and ethidium bromide staining. KKU-M213  (a) and 
TFK-1 (b) cells were treated with 41.10 and 45.90 µg/ml of piperine free 
Piper nigrum extract, respectively. The data are representative of three 
independent experiments carried out under the same conditions

ba
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at 5.09%  [Table  2]. Similarly, CP2  (PFPE) exhibited IC50 values of 
7.45  ±  1.59 µg/ml in MCF‑7 cell lines, which was better than DPCE 
(IC50 at 23.46  ±  1.10 µg/ml).[17] These results indicate that PFPE, less 
piperine, was a potential crude extract in anticancer.
O. viverrini excretory/secretory products and O. viverrini antigen 
induce the expression of TLR4, IL‑6, IL‑8, TLR2, NF‑κB, iNOS 
and COX‑2 causing damage to biliary epithelium.[68] In this current 
study, PFPE showed down regulation of NF‑kB, STAT‑3 and COX‑2 
proteins  [Figure  2]. In cancer cells, NF‑kB and STAT‑3 are major 
transcription factors that regulate proliferation, inflammatory, 
angiogenesis, invasive and apoptosis resistance by induction of several 
proteins, such as cyclin D, cyclin E1, CDK2, CDK4, CDK6, c‑myc, 
tumor necrosis factor alpha, interleukin‑1 (IL‑1), IL‑6, IL‑8, VEGF and 
MMP‑9.[69] NF‑kB and STAT‑3 proteins are induced by IL‑6 to stimulate 
COX‑2 expression in the inflammation process and cell cycle,[70,71] which 
associate to CCA progression. Therefore, suppression of NF‑kB, STAT‑3 
and COX‑2 proteins cause cancer growth inhibition. Piperlongumine, 

an alkaloid from P. longum reduces NF‑kB and c‑Myc protein levels and 
inhibits binding of NF‑kB with DNA at promoters in lymphoma cancer 
cells.[72] Moreover, piperlongumine also reduced the phosphorylation 
of JAK‑1, JAK‑2 and STAT‑3 in gastric cancer cells.[73] Matrine, an 
alkaloid from Sophora flavescens Ait., significantly inhibits the viability 
by reduction the phosphorylation levels of JAK‑2 and STAT3 proteins in 
CCA cells.[74] Curcumin, a natural extracted polyphenol from C. longa, 
also suppresses proliferation in human biliary cancer cells through 
inhibition of NF‑kB, STAT‑3 and JAK1 proteins.[75]

There are many evidences on genes and proteins which relate to bile 
duct cancer growth and progression, such as p53 mutation, inactivation 
of p21 and activation of Ras and MAPKs proteins.[76] Here, we found 
that PFPE could inhibit CCA cancer proliferation by decreasing of 
topoisomerase II, Akt, c‑Myc, cyclin D1, and increasing of p21 protein 
levels [Figure 4]. Topoisomerase II is an enzyme involved in the DNA 
replication process that controls cell cycle with peaking at G2/M 
phase.[77] Therefore, down regulation of topoisomerase II by PFPE 
could induced DNA damage, interrupted cell growth and caused cell 
death on KKU‑M213 and TFK‑1  cells. Most of the clinically active 
agents, including etoposide  (lignan) and doxorubicin  (alkaloid) are 
topoisomerase inhibitors.[78] Previously andrographolide analogue 3A.1 
from Andrographis paniculata, a diterpenoid lactone, induces cell cycle 
arrest by down‑regulation of CDK6 and cyclin D1 in KKU‑M213 cell 
lines.[79] Surprisingly, PFPE also exerted a significant reduction of Akt 
protein leading to decreasing of c‑Myc and cyclin D1 and increasing 
of p21 levels  [Figure  6]. Akt and cyclin D1 stimulate the cell cycle 
progression from G1/S phase to G2/M phase.[80] β‑caryophyllene 
oxide, a terpene compound from P. nigrum, shows down‑regulation of 
downstream of AKT pathway, including cyclin D1, COX‑2 and VEGF 
and also up‑regulation of p53 and p21 proteins in human prostate and 
breast cancer cells.[81]

In this study, we founded that the PFPE induced cell death by causing 
DNA fragmentation, increasing apoptotic proteins  (p53, Bax and 
PUMA) and decreasing Bcl‑2 protein levels  [Figure 5]. p53, a tumor 
suppressor and transcription factor, is initially induced when DNA 

Table 3: Cytotoxicity of piperine free Piper nigrum extract against 
cholangiocarcinoma, cholangiocyte and normal mouse fibroblast cell lines

Cell lines IC50 value±SD (µg/ml)

DPCE Piperine PFPE Doxorubicin
CCA

KKU‑100 22.88±0.43 46.53±0.09 17.79±0.88 0.78±0.03
KKU‑M213 22.22±0.26 27.01±0.36 13.70±1.14 1.75±0.02
KKU‑M055 46.66±0.48 55.32±0.22 16.74±0.61 0.69±0.09
TFK‑1 23.25±0.45 29.38±0.07 15.30±0.18 15.19±0.12
HuCC‑T1 37.17±0.03 35.02±0.12 20.72±0.75 2.53±0.04

Normal cholangiocyte
MMNK‑1 33.25±0.28 60.68±0.72 19.65±0.26 0.62±0.05

Normal fibroblast
L‑929 No effect No effect 45.53±0.50 0.20±0.01

P. nigrum: Piper nigrum; DPCE: Dichloromethane P. nigrum crude extract; 
PFPE: Piperine free P. nigrum extract; CCA: Cholangiocarcinoma; SD: Standard 
deviation

Figure 3: Expression of inflammation-related proteins in KKU-M213 (a and c) and TFK-1 (b and d) cells treated with piperine free Piper nigrum extract at 
24, 48, 72 and 96 h. The levels of signal transducer and activator of transcription 3, cyclooxygenase-2 and Nuclear factor kappa-light-chain-enhancer of 
activated B cells and GAPDH proteins were measured using the Western blot analysis. Densitometric analysis normalized to GAPDH. Data were represented 
as mean ± standard deviation and three independent experiments were done. *P < 0.05 compared with control group (0 h)
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damage and takes responsibility to activate several apoptotic genes, 
such as Bax, PUMA and NOXA.[82‑84] Similarly, ethanolic extract of 
P. nigrum has antiproliferative effect on MCF‑7 cells, antitumor effect 
in vivo and triggering apoptosis via p53 and Bax and decreasing of Bcl‑2 
proteins.[55] Curcumin effectively induces apoptosis in CCA (CCLP‑1 
and SG‑231) cells by stimulation of Notch1, Hes‑1 and survivin 
apoptotic proteins.[85] Andrographolide analog 3A.1 has cytotoxicity 

with IC50 of 8.0 µM on KKU‑M213 cells at 24 h after treatment and 
induces apoptosis via induction of cleaved PARP‑1, Bax, caspase‑3, and 
p53.[79] Matrine stimulates apoptosis in CCA cells through induction of 
cytochrome c releasing from mitochondria and reduction of caspase‑3 
and‑9 activity.[74] Taken together, PFPE can be a potential candidate for 
CCA treatment in future. However, study in CCA in vivo and clinical 
trial need to be carried out.

Figure 4: Effect of piperine free Piper nigrum extract on cell growth and cell cycle arrest. KKU-M213 (a and c) and TFK-1 (b and d) cells were treated with 
Median inhibition concentration concentration of piperine free Piper nigrum extract for 24, 48, 72 and 96 h. Then, the levels of topoisomerase II, AKT8 virus 
oncogene cellular homolog, avian myelocytomatosis virus oncogene cellular homolog, cyclin D1 and p21 proteins were investigated using Western blot 
analysis. Fold change of each protein was measured by densitometry quantitation using ImageJ software and normalized with GAPDH. P < 0.05 of three 
independent experiments was considered to indicate a statistically significant differences compared to control group (0 h)

dc

ba

Figure  5: Effect of piperine free Piper nigrum extract on apoptosis. KKU-M213  (a and c) and TFK-1  (b and d) cells were treated with Median inhibition 
concentration concentration of piperine free Piper nigrum extract for 24, 48, 72 and 96 h. Then, the levels of tumor protein p53, B-cell lymphoma 2, Bcl-
2-associated X protein and PUMA proteins were investigated using Western blot analysis. Fold change of each protein was measured by densitometry 
quantitation using ImageJ software and normalized with GAPDH. P < 0.05 of three independent experiments was considered to indicate a statistically 
significant difference compared to control group (0 h)
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CONCLUSION
PFPE showed strong cytotoxicity against KKU‑M213 and TFK‑1 cell 
lines with IC50 values of 13.70 ± 1.14 and 15.30 ± 0.18 µg/ml, respectively. 
PFPE suppressed inflammation through down‑regulation of NF‑kB, 
STAT‑3 and COX‑2. Moreover, PFPE inhibited CCA cells growth and 
proliferation by down‑regulation of topoisomerase II, Akt, c‑Myc 
and cyclin D and up‑regulation of p21. Furthermore, PFPE triggered 
apoptosis through inhibition of Bcl‑2 and induction of p53, Bax and 
PUMA levels as summarized in the Figure 5. In summary, PFPE can be 
served as a promising crude extract for CCA treatment.
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