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1. Introduction

The application of special functions in Geometric function Theory is a current and
interesting topic of research. It is often used in areas such as mathematics, physics, and
engineering. As a result of De Branges’ study [1], the classic Bieberbach problem is suc-
cessfully solved by applying a generalized hypergeometric function. Several types of
special functions, including generalized hypergeometric Gaussian functions (see [2–4]) and
Gegenbauer polynomials, (see [5]) have been studied extensively.

In combinatorics, the Bell numbers Bk (k ∈ N∪ {0}) count the number of ways a set
with k elements can be partitioned into disjoint and nonempty subsets. These numbers go
back to medieval Japan, but they are named after Eric Temple Bell, who wrote about them
in the 1930s [6]. Since then, these numbers have been investigated by mathematicians. The
numbers Bk can be generated by

eet−1 =
∞

∑
k=0

Bk
tk

k!
= 1 + t + t2 +

5
6

t3 +
5
8

t4 +
13
30

t5 +
203
720

t6 + · · · .

For various applications of the Bell polynomials in soliton theory, including links
with bilinear and trilinear forms of nonlinear differential equations which possess soliton
solutions, we can refer to [7–13] and closely related references therein. Hence, applications
of the Bell polynomials to integrable nonlinear equations are considerably expected and
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any amendment on multilinear forms of soliton equations, even on exact solutions, would
be favorable for interested researchers.

The Touchard polynomials are also named the exponential polynomials, and comprise
a polynomial sequence of binomial type [14]. This is a new algorithm for solving linear and
nonlinear integral equations. These polynomials were studied by Jacques Touchard and
he generalized the Bell polynomials in order to examine various problems of enumeration
of the permutations when the cycles possess certain properties. Moreover, he introduced
and studied a class of related polynomials. An exponential generating function, recurrence
relations and connections related to the other known polynomials were also examined. For
some special cases, relations with the Stifling number of the first and second kind, as well as
with other numbers recently examined, are derived. Finally, a combinatorial interpretation
is discussed. Afterwards, various algebraic, combinatorial and probabilistic properties of
these polynomials were examined by Chrysaphinou [14], Nazir et al. [15], Paris [16] and
Touchard [17].

In general, the integral equations are difficult to be solved analytically,
therefore in many equations we need to obtain the approximate solutions, and for this
case, the “Touchard Polynomials method” for the solution of the linear “Volterra integro-
differential equation” is implemented. The Touchard polynomials method has been applied
to solve linear and nonlinear Volterra (Fredholm) integral equations. In a recent study,
Abdullah et al. [18] presented two numerical methods based on Touchard and Laguerre
polynomials to solve Abel integral equations. Touchard and Laguerre matrices are utilized
to transform Abel integral equations into an algebraic system of linear equations. Further,
Abdullah and Ali [19] provide some efficient numerical methods to solve linear Volterra
integral equations and Volterra Integro differential equations of the first and second types,
with exponential, singular, regular and convolution kernels. These methods are based on
Touchard and Laguerre polynomials that convert these equations into a system of linear
algebraic equations. On the other hand, there have been various papers on interesting
applications of the Touchard polynomials in nonlinear Fredholm–Volterra integral equa-
tions [20] and soliton theory [8–10], comprising relations between bilinear and trilinear
forms of nonlinear differential equations which hold soliton solutions.

Touchard polynomials, also known as an exponential generating polynomials created
by Jacques Touchard [17] (see [21–23]) or polynomial sequences of Bell type (see [24,25]), are
polynomial sequences of binomial type that represent a random variable X via a Poisson
distribution with an expected value h̄. Then, its nth moment is E(X$) = J($, h̄), resulting
in the type:

J($, h̄) = e$
∞

∑
`=0

$``h̄

`!
w`, w ∈ U. (1)

The result of the second force is presented using the coefficients of Touchard polynomials

φh̄
$(w) = w +

∞

∑
`=2

(`− 1)h̄$`−1

(`− 1)!
e−$w`, w ∈ U, (2)

where h̄ ≥ 0, $ > 0 and by analyzing ratio tests, we find that the radius of convergence of
the above series is infinity.

On the other hand, special functions, such as Hermite polynomial and Laguerre
polynomial, have been studied in quantum optics. The special function operator can be
found by converting the function variable into a light-field operator. This is relevant since
the occurrence of nonconventional polynomials in describing the properties of light is in
the kernel of quantum optics. In recent years, the operations of light-field operators have
been generalized to that of a special function’s operator. For instance, quite recently, they
have been linked to the squeezed states of light. See references [26,27].
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Consider H the family of analytic functions in the unit disk U = {w : |w| < 1}. We
will define A as a class of functions ϑ ∈ H of the type

ϑ(w) = w +
∞

∑
`=2

a`w`, w ∈ U. (3)

Let S be the subfamily of A that consists of functions that are normalised, ϑ(0) = 0 =
ϑ′(0) = 1, and univalent in U. A’s subclass, which consists of functions of the type

ϑ(w) = w +
∞

∑
`=2

a`w`, a` ≥ 0. (4)

T signifies the subfamily of S that consists of mapping of the type

ϑ(w) = w−
∞

∑
`=2

a`w`, a` ≥ 0 and w ∈ U (5)

studied extensively by Silverman [28].

For ϑ ∈ A given by (4) and g(w) = w+
∞
∑
`=2

b`w`, their convolution indicated by (ϑ ∗ g)

is written by

(ϑ ∗ g)(w) = w +
∞

∑
`=2

a`b`w` = (g ∗ ϑ)(w), w ∈ U.

The linear operator is now understood

Kh̄
c : A→ A

and as a consequence of convolution

Kh̄
c ϑ(w) = φh̄

$(w) ∗ ϑ(w) = w +
∞

∑
`=2

Λh̄
` a`w`, (6)

where φh̄
$(w) is the series given by (2) and

Λh̄
` =

(`− 1)h̄c`−1

(`− 1)!
e−c.

Now, we establish the class Rτ
h̄,,ρ,c(ℵ,℘) of analytic functions by using the operator Kh̄

c .

Definition 1. A function ϑ(w) of the type (4) belongs to the class Rτ
h̄,,ρ,c(ℵ,℘) if it fulfills∣∣∣∣∣∣∣

ρ
(

Kh̄
c ϑ(w)

)′
+ w

(
Kh̄

c ϑ(w)
)′′
− ρ

τ(ℵ − ℘)− ℘
(
ρKh̄

c ϑ(w)
)′
+ w

(
Kh̄

c ϑ(w)
)′′ − ρ

∣∣∣∣∣∣∣ < 1,

where 0 ≤  < 1, 0 ≤ ρ < 1, τ ∈ C \ {0}, h̄ > 0, c > 0 and −1 ≤ ℘ < ℵ ≤ 1.

The goal of this research is to look at the geometric and symmetric characteristics of
this class, such as coefficient inequalities, distortion properties, extreme points, radii of
starlikeness and convexity, partial sums, neighbourhoods, and integral means’ inequality.
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2. Coefficient Inequality

Theorem 1. The function ϑ(w) expressed by (4) belongs to the class Rτ
h̄,,ρ,c(ℵ,℘)⇔

∞

∑
`=2

(1 + ℘)`{ρ + (`− 1)}Λh̄
` a` ≤ |τ(ℵ − ℘)|. (7)

The outcome is sharp for the function

ϑ(w) = w +
|τ(ℵ − ℘)|

2(1 + ℘)(ρ + )Λh̄
2

w2. (8)

Proof. From the definition, for |w| = 1, we obtain

|ρ{Kh̄
c ϑ(w)}′ + w{Kh̄

c ϑ(w)}′′ − ρ|

−
∣∣∣τ(ℵ − ℘)− ℘[ρ{Kh̄

c ϑ(w)}′ + w{Kh̄
c ϑ(w)}′′ − ρ]

∣∣∣
=

∣∣∣∣∣ρ
[

1 +
∞

∑
`=2

`Λh̄
` a`w`−1

]
+ w

[
∞

∑
`=2

Λh̄
``(`− 1)a`w`−2

]
− ρ

∣∣∣∣∣
−
∣∣∣∣∣τ(ℵ − ℘)− ℘

[
ρ

{
1 +

∞

∑
`=2

`Λh̄
` a`w`−1

}
+ w

∞

∑
`=2

`(`− 1)Λh̄
` a`w`−2 − ρ

]∣∣∣∣∣
≤ ρ

∞

∑
`=2

Λh̄
``a` + 

∞

∑
`=2

Λh̄
``(`− 1)a` − |τ(ℵ − ℘)|

+ ℘

∣∣∣∣∣ρ ∞

∑
`=2

`Λh̄
` a`w`−1 + w

∞

∑
`=2

`(`− 1)Λh̄
` a`w`−2

∣∣∣∣∣
≤ ρ

∞

∑
`=2

`Λh̄
` a` + 

∞

∑
`=2

`(`− 1)Λh̄
` a` − |τ(ℵ − ℘)|

+ ℘ρ
∞

∑
`=2

`Λh̄
` a` + ℘

∞

∑
`=2

`(`− 1)Λh̄
` a`

≤ (1 + ℘)ρ
∞

∑
`=2

`Λh̄
` a` + (1 + ℘)

∞

∑
`=2

`(`− 1)Λh̄
` a` − |τ(ℵ − ℘)|

≤ 0.

Thus, we conclude from the maximum modulus theorem that ϑ ∈ Rτ
h̄,,ρ,c(ℵ,℘).

On the contrary, assume∣∣∣∣∣ ρ{Kh̄
c ϑ(w)}′ + w{Kh̄

c ϑ(w)}′′ − ρ

τ(ℵ − ℘)− ℘ρ{Kh̄
c ϑ(w)}′ + w{Kh̄

c ϑ(w)}′′ − ρ

∣∣∣∣∣ < 1

that is, ∣∣∣∣∣∣∣∣
ρ

∞
∑
`=2

`Λh̄
` a`w`−1 + 

∞
∑
`=2

`(`− 1)Λh̄
` a`w`−1

τ(ℵ − ℘)− ℘

{
ρ

∞
∑
`=2

`Λh̄
` a`w`−1 + 

∞
∑
`=2

`(`− 1)Λh̄
` a`w`−1

}
∣∣∣∣∣∣∣∣ < 1.

Since |<(w)| < |w|, we find

<


∞
∑
`=2

`{ρ + (`− 1)}Λh̄
` a`w`−1

|τ(ℵ − ℘)| − ℘
∞
∑
`=2

`{ρ + (`− 1)}Λh̄
` a`w`−1

 < 1.
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By the selection value of w on the real axis so that Kh̄
c ϑ(w) is real.

If w→ 1−,

∞

∑
`=2

`{ρ + (`− 1)}Λh̄
` a` ≤ |τ(ℵ − ℘)| − ℘

∞

∑
`=2

`{ρ + (`− 1)}Λh̄
` a`

≤ |τ(ℵ − ℘)|.

Corollary 1. Let ϑ(w) ∈ Rτ
h̄,,ρ,c(ℵ,℘). Then

a` ≤
|τ(ℵ − ℘)|

(1 + ℘)`{ρ + (`− 1)}Λh̄
`

, ` ≥ 2.

3. Distortion Theorem

Saigo’s fractional calculus operator Iα,ς,η
0,w ϑ of ϑ ∈ A is marked with Srivastava et al. [29]

(also [30]):

Definition 2. For real numbers α > 0, ς and η, the fractional integral operator Iα,ς,η
0,w is expressed by

Iα,ς,η
0,w ϑ(w) =

w−α−ς

Γ(α)

∫ w

0
(w− ζ)α−1

2F1

[
α + ς,−η; α; 1− ζ

w

]
ϑ(ζ)dζ,

where ϑ(w) is an analytic function in a simply connected region of the w-plane containing the
origin with the order

ϑ(w) = O(|w|ε), (w→ 0, ε > max{{0, ς− η} − 1})

and the multiplicity of (w− ζ)α−1 is removed by requiring log(w− ζ) to be real when w− ζ > 0.
The mentioned lemma from Srivastava et al. [29] is expected to establish the imbalances using
Saigo’s fractional operators.

Lemma 1. Assume α > 0, ς and η are real. If ` > max{0, ς− η} − 1, we obtain

Iα,ς,η
0,w w` =

Γ(`+ 1)Γ(`− ς + η + 1)
Γ(`− ς + 1)Γ(`+ α + η + 1)

w`−ς. (9)

Theorem 2. Let ϑ ∈ Rτ
h̄,,ρ,c(ℵ,℘). Then

|Iα,ς,η
0,w ϑ(w)| ≤ Γ(2− ς + η)|w|1−ς

Γ(2− ς)Γ(2 + α + η)

[
1 +

(2− ς + η)|τ(ℵ − ℘)||w|
(2− ς)(2 + α + η)(1 + ℘)(ρ + )Λh̄

2

]
(10)

and

|Iα,ς,η
0,w ϑ(w)| ≥ Γ(2− ς + η)|w|1−ς

Γ(2− ς)Γ(2 + α + η)

[
1− (2− ς + η)|τ(ℵ − ℘)||w|

(2− ς)(2 + α + η)(1 + ℘)(ρ + )Λh̄
2

]
. (11)

These equalities are achieved for the function ϑ(w) given by (8).

Proof. Let ϑ ∈ Rτ
h̄,,ρ,c(ℵ,℘).

The generalized Saigo [30] fractional integration of ϑ ∈ A for real numbers α > 0, ς
and η is expressed by

Iα,ς,η
0,w ϑ(w) =

∞

∑
`=1

Γ(`+ 1)Γ(`− ς + η + 1)
Γ(`− ς + 1)Γ(`+ α + η + 1)

a`w`−ς, (a1 = 1)
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⇒ Γ(2− ς)Γ(2 + α + η)

Γ(2− ς + η)
wς Iα,ς,η

0,w ϑ(w) = w +
∞

∑
`=2

℘α,ς,η(`)a`w`,

where

℘α,ς,η(`) =
Γ(`+ 1)Γ(`− ς + η + 1)Γ(2− ς)Γ(2 + α + η)

Γ(`− ς + 1)Γ(`+ α + η + 1)Γ(2− ς + η)
.

Therefore,

℘α,ς,η(`)

℘α,ς,η(`+ 1)
=

(`− ς + 1)(`+ α + η + 1)
(`+ 1)(`− ς + η + 1)

=
1 +

(
α+η
`+1

)
1 +

(
η

`−ς+1

) .

Now, (α + η) > η and 1
`+1 > 1

`−ς+1 for ς < 0. Theorefore,

α + η

`+ 1
>

η

`− ς + 1

and
℘α,ς,η(`) > ℘α,ς,η(`+ 1).

Thus, we find that ℘α,ς,η(`), ς < 0 is decreasing for `. Then

℘α,ς,η(`) ≤ ℘α,ς,η(2) =
2(2− ς + η)

(2− ς)(2 + α + η)
.

By using Theorem 1, we have

∞

∑
`=2

a` ≤
|τ(ℵ − ℘)|

2(1 + ℘)(ρ + )Λh̄
2

, ` ≥ 2.

Thus ∣∣∣∣Γ(2− ς)Γ(2 + α + η)

Γ(2− ς + η)
wς Iα,ς,η

0,w ϑ(w)

∣∣∣∣ ≤ |w|+ ℘α,ς,η(2)|w|2
∞

∑
`=2

a`

∣∣∣Iα,ς,η
0,w ϑ(w)

∣∣∣ ≤ Γ(2− ς + η)|w|1−ς

Γ(2− ς)(2 + α + η)

[
1 +

(2− ς + η)|τ(ℵ − ℘)||w|
(2− ς)(2 + α + η)(1 + ℘)(ρ + )Λh̄

2

]
.

We discover this by repeating the preceding procedures

∣∣∣Iα,ς,η
0,w ϑ(w)

∣∣∣ ≥ Γ(2− ς + η)|w|1−ς

Γ(2− ς)Γ(2 + α + η)

[
1− (2− ς + η)|τ(ℵ − ℘)||w|

(2− ς)(2 + α + η)(1 + ℘)(ρ + )Λh̄
2

]
.

4. Extreme Point

Theorem 3. Let ϑ1(w) = w and ϑ`(w) = w+ |τ(ℵ−℘)|
`(1+℘){ρ+(`−1)}Λh̄

`

w`. Then ϑ ∈ Rτ
h̄,,ρ,c(ℵ,℘)⇔

ϑ(w) can be described in the following way

ϑ(w) = λ1ϑ1(w) +
∞

∑
`=2

λ`ϑ`(w), (12)

where

λ1 +
∞

∑
`=2

λ` = 1, (λ1 ≥ 0, λ` ≥ 0).
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Proof. Let ϑ(w) be given by (7). Then

ϑ(w) = λ1w +
∞

∑
`=2

λ`w` +
|τ(ℵ − ℘)|

`(1 + ℘){ρ + (`− 1)}Λh̄
`

λ`w`

= w +
∞

∑
`=2

t`w`,

where t` =
|τ(ℵ−℘)|λ`

`(1+℘){ρ+(`−1)}Λh̄
`

. Now,

∞

∑
`=2

`(1 + ℘){ρ + (`− 1)}Λh̄
`

|τ(ℵ − ℘)| t` =
∞

∑
`=2

λ`

=1− λ1 < 1.

Therefore, ϑ ∈ Rτ
h̄,,ρ,c(ℵ,℘).

Conversely, assume ϑ ∈ Rτ
h̄,,ρ,c(ℵ,℘). Then by (7)

a` <
|τ(ℵ − ℘)|

`(1 + ℘){ρ + (`− 1)}Λh̄
`

, ` ≥ 2.

So, if we set

λ` =
`(1 + ℘){ρ + (`− 1)}Λh̄

` a`
|τ(ℵ − ℘)| < 1, ` ≥ 2

and λ1 = 1−
∞
∑
`=2

λ`, then,

ϑ(w) = w +
∞

∑
`=2

a`w` = w +
∞

∑
`=2

|τ(ℵ − ℘)|
`(1 + ℘){ρ + (`− 1)}Λh̄

`

w`,

ϑ(w) = λ1ϑ1(w) +
∞

∑
`=2

λ`ϑ`(w),

which leads to (12).

5. Radii of Starlikeness and Convexity

Theorem 4. Assume ϑ ∈ Rτ
h̄,,ρ,c(ℵ,℘). Then ϑ(w) is starlike of order α (0 ≤ α < 1) in |w| < r1,

where

r1 = inf
`

[
(1− α)`(1 + ℘){ρ + (`− 1)}Λh̄

`

(`− α)|τ(ℵ − ℘)|

] 1
`−1

.

Proof. For 0 ≤ α < 1, we have to show that∣∣∣∣wϑ′(w)

ϑ(w)
− 1
∣∣∣∣ < 1− α.
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That is, for ϑ(w) = w +
∞
∑
`=2

a`w`,

∞
∑
`=2

a`(`− 1)|w|`−1

1−
∞
∑
`=2

a`|w|`−1
< 1− α

or, alternatively
∞
∑
`=2

a`
(
`−α
1−α

)
|w|`−1 < 1, which holds if

|w|`−1 <

[
(1− α)`(1 + ℘)ρ + (`− 1)Λh̄

`

(`− α)|τ(ℵ − ℘)|

]
,

r1 = inf
`

[
(1− α)`(1 + ℘)ρ + (`− 1)Λh̄

`

(`− α)|τ(ℵ − ℘)|

] 1
`−1

.

Noting the fact that ϑ(w) is convex⇔ wϑ′(w) is starlike, we arrive at Theorem 5.

Theorem 5. Let ϑ ∈ Rτ
h̄,,ρ,c(ℵ,℘). Then, ϑ is convex of order α (0 ≤ α < 1) in |w| < r2, where

r2 = inf
`

[
(1− α)(1 + ℘){ρ + (`− 1)}Λh̄

`

(`− α)|τ(ℵ − ℘)|

] 1
`−1

.

6. Partial Sums

Inspired by the work of Silverman [31] and Silvia [32], we explore partial sums of
functions in Rh̄, , ρ, cτ(ℵ,℘) and derive sharp lower limits on the ratios of real component
of ϑ(w) to ϑq(w) and ϑ′(w) to ϑ′q(w).

Theorem 6. Assume ϑ(w) ∈ Rτ
h̄,,ρ,c(ℵ,℘) is given by (4). Consider the partial sums ϑ1(w) and

ϑq(w) by

ϑ1(w) = w and ϑq(w) = w +
q

∑
`=2

a`w`, (q ∈ N \ {1}).

Assume
∞
∑
`=2

d`|a`| ≤ 1, where

d` =
(1 + ℘)`{ρ + (`− 1)}Λh̄

`

|τ(ℵ − ℘)| . (13)

Then, ϑ ∈ Rτ
h̄,,ρ,c(ℵ,℘). Furthermore,

<
[

ϑ(w)

ϑq(w)

]
> 1− 1

dq+1
, w ∈ U, q ∈ N (14)

and

<
[

ϑq(w)

ϑ(w)

]
>

dq+1

1 + dq+1
. (15)
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Proof. For the above coefficients d`, ensure that d`+1 > d` > 1. As a consequence, by
employing the assertion (13), we find

q

∑
`=2
|a`|+ dq+1

∞

∑
`=q+1

|a`| ≤
∞

∑
`=2

d`|a`| ≤ 1. (16)

By setting

g1(w) = dq+1

[
ϑ(w)

ϑq(w)
−
(

1− 1
dq+1

)]

= 1 +

dq+1
∞
∑

`=q+1
a`w`−1

1 +
q
∑
`=2

a`w`−1

and applying (16), we find that

∣∣∣∣ g1(w)− 1
g1(w) + 1

∣∣∣∣ ≤
dq+1

∞
∑

`=q+1
|a`|

2− 2
q
∑
`=2
|a`| − dq+1

∞
∑

`=q+1
|a`|
≤ 1,

which yields the assertion (14).
In order to see that

ϑ(w) = w +
wq+1

dq+1
(17)

gives sharp outcome, we recognise for w = re
iπ
q that

ϑ(w)

ϑq(w)
= 1 +

wq

dq+1
→ 1− 1

dq+1
as w→ 1−.

Similarly, if we take

g2(w) = (1 + dq+1)

(
ϑq(w)

ϑ(w)
−

dq+1

1 + dq+1

)

= 1−
(1 + d`+1)

∞
∑

`=q+1
a`w`−1

1 +
∞
∑
`=2

a`w`−1

and making use of (16), we conclude that

∣∣∣∣ g2(w)− 1
g2(w) + 1

∣∣∣∣ ≤
(1 + dq+1)

∞
∑

`=q+1
|a`|

2− 2
q
∑
`=2
|a`| − (1− dq+1)

∞
∑

`=q+1
|a`|
≤ 1,

which leads to the assertion (15).
The bound in (15) is sharp for each q ∈ N with the external function ϑ(w) given

by (17).
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Theorem 7. If ϑ(w) of the form (4) fulfills the condition (7), then

<
[

ϑ′(w)

ϑ′q(w)

]
≥ 1− q + 1

dq+1
.

Proof. By setting

g3(w) = dq+1

[
ϑ′(w)

ϑ′q(w)

]
−
(

1− q + 1
dq+1

)

=

1 +
dq+1
q+1

∞
∑

`=q+1
`a`w`−1 +

∞
∑
`=2

`a`w`−1

1 +
∞
∑
`=2

`a`w`−1

= 1 +

dq+1
q+1

∞
∑

`=q+1
`a`w`−1

1 +
∞
∑
`=2

`a`w`−1

=⇒
∣∣∣ g3(w)−1

g3(w)+1

∣∣∣ ≤
dq+1
q+1

∞
∑

`=q+1
`|a` |

2−2
q
∑
`=2

`|a` |−
dq+1
q+1

∞
∑

`=q+1
`|a` |

.

Now,
∣∣∣ g3(w)−1

g3(w)+1

∣∣∣ ≤ 1, if

q

∑
`=2

`|a`|+
dq+1

q + 1

∞

∑
`=q+1

`|a`| ≤ 1. (18)

Since the L.H.S of (18) is bounded above by
q
∑
`=2

d`|a`| if

q
∑
`=2

(d` − `)|a`| −
dq+1
q+1

∞
∑

`=q+1
`|a`| ≥ 0 (19)

and the proof is complete.

The outcome is sharp for the extremal function ϑ(w) = w + wq+1

dq+1
.

Theorem 8. If ϑ(w) of the type (4) fulfills the condition (7), then

<
[

ϑ′q(w)

ϑ′(w)

]
≥

dq+1

q + 1 + dq+1
.

Proof. By setting

g4(w) = [q + 1 + dq+1]

[
ϑ′q(w)

ϑ′(w)
−

dq+1

q + 1 + dq+1

]

= 1−

(
1 +

dq+1
q+1

) ∞
∑

`=q+1
`a`w`−1

1 +
q
∑
`=2

`a`w`−1
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and making use of (19), we conclude that

∣∣∣∣ g4(w)− 1
g4(w) + 1

∣∣∣∣ ≤
(

1 +
dq+1
q+1

) ∞
∑

`=q+1
`|a`|

2− 2
q
∑
`=2

`|a`| −
(

1 +
dq+1
q+1

) ∞
∑

`=q+1
`|a`|

≤ 1,

which proves Theorem 8.

7. Neighborhood Result

Rucscheweyh [33] developed and investigated the concept of analytic function neigh-
borhood, which is stated clearly.

Definition 3. For ϑ ∈ A of the type (4) and µ ≥ 0, we establish a (n, µ)-neighborhood of a
mapping ϑ by

Nn,µ(ϑ) =

{
g : g ∈ A, g(w) = w +

∞

∑
`=n+1

b`w` and
∞

∑
`=n+1

`|a` − b`| ≤ µ

}
. (20)

Particularly, for the identity function e(w) = w, we arrive

Nn,µ(e) =

{
g : g ∈ A, g(w) = w +

∞

∑
`=n+1

b`w` and
∞

∑
`=n+1

`|b`| ≤ µ

}
, (21)

where n ∈ N \ {1}.

Theorem 9. Let ϑ ∈ Rτ
h̄,,ρ,c(ℵ,℘). If

µ =
|τ(ℵ − ℘)|

(1 + ℘)(ρ + n)Λh̄
n+1

,

then
Rτ

h̄,,ρ,c(ℵ,℘) ⊂ Nn,µ(e).

Proof. For a function ϑ ∈ Rτ
h̄,,ρ,c(ℵ,℘) of the type (4), Theorem 1 immediately yields

∞

∑
`=n+1

(1 + ℘)`{ρ + (`− 1)}Λh̄
` a` ≤ |τ(ℵ − ℘)|, where, n ∈ N \ {1}

(1 + ℘)(ρ + n)Λh̄
n+1

∞

∑
`=n+1

`a` ≤ |τ(ℵ − ℘)|

∞

∑
`=n+1

`a` ≤
|τ(ℵ − ℘)|

(1 + ℘)(ρ + n)Λh̄
n+1

= µ.

A mapping ϑ ∈ A belongs to the class Rτ,α
h̄,,ρ,c(ℵ,℘), if there exists a mapping g ∈

Rτ
h̄,,ρ,c(ℵ,℘) such that ∣∣∣∣ϑ(w)

g(w)
− 1
∣∣∣∣ < 1− α, (w ∈ U, 0 < α < 1). (22)

Now, we determine the neighborhood for the class Rτ,α
h̄,,ρ,c(ℵ,℘).
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Theorem 10. If g ∈ Rτ
h̄,,ρ,c(ℵ,℘) and

α = 1−
µ(1 + ℘)(ρ + n)Λh̄

n+1

n(1 + ℘)(ρ + n)Λh̄
n+1 − |τ(ℵ − ℘)|

, (23)

then
Nn,µ(g) ⊂ Rτ,α

h̄,,ρ,c(ℵ,℘).

Proof. Assume ϑ ∈ Nn,µ(g). From the Definition 3, we arrive at

∞

∑
`=n+1

`|a` − b`| ≤ µ,

which implies
∞

∑
`=n+1

|a` − b`| ≤
µ

n + 1
, n ∈ N.

Next, since g ∈ Rτ
h̄,,ρ,c(ℵ,℘), we have

∞

∑
`=n+1

b` ≤
|τ(ℵ − ℘)|

(n + 1)(1 + ℘)(ρ + n)Λh̄
n+1

.

Now,

∣∣∣∣ϑ(w)

g(w)
− 1
∣∣∣∣ ≤

∞
∑

`=n+1
|a` − b`|

1−
∞
∑

`=n+1
b`

≤ µ

(n + 1)
[

1− |τ(ℵ−℘)|
(n+1)(1+℘)(ρ+n)Λh̄

n+1

]
≤

µ(1 + ℘)(ρ + n)Λh̄
n+1

(n + 1)(1 + ℘)(ρ + n)Λh̄
n+1 − |τ(ℵ − ℘)|

≤ 1− α,

provided that α is given precisely by (23).
Thus, ϑ ∈ Rτ,α

h̄,,ρ,c(ℵ,℘) for α given by (23).

8. Integral Means’ Inequality

Silverman [28] (see, e.g., [34]) obtained that the mapping ϑ2(w) = w − w2

2 is often
external over the family T and used this mapping to resolve the integral means’ inequality,
estimated in [35], ∫ 2π

0
|ϑ(reiθ)|ηdθ ≤

∫ 2π

0
|ϑ2(reiθ)|ηdθ, (24)

for all ϑ ∈ T, η > 0 and 0 < r < 1. Afterwards, he displayed the proposition for the
subfamilies S∗(α) and K(α) of T.

Lemma 2 ([36]). If ϑ, g are analytic in U with ϑ(w) ≺ g(w), then∫ 2π

0
|ϑ(reiθ)|ηdθ ≤

∫ 2π

0
|g(reiθ)|ηdθ, (25)

where η ≥ 0, w = reiθ and 0 < r < 1.
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Application of Lemma 2 to the mapping of ϑ in Rτ
h̄,,ρ,c(ℵ,℘), yields the next outcome.

Theorem 11. Assume η > o. If ϑ ∈ Rτ
h̄,,ρ,c(ℵ,℘) is given by (4) and ϑ2(w) is defined by

ϑ2(w) = w +
|τ(ℵ − ℘)|

2(1 + ℘)(ρ + )Λh̄
2

w2 (26)

= w +
1

φℵ℘(2, h̄, , ρ, c, τ)
w2,

where φℵ℘(2, h̄, , ρ, c, τ) =
2(1+℘)(ρ+)Λh̄

2
|τ(ℵ−℘)| , then

∫ 2π

0
|ϑ(w)|ηdθ ≤

∫ 2π

0
|ϑ2(w)|ηdθ, for w = reiθ , 0 < r < 1. (27)

Proof. Mapping ϑ of the type (4) is equivalent to proving that

∫ 2π

0

∣∣∣∣∣1 + ∞

∑
`=2

a`w`−1

∣∣∣∣∣
η

dθ ≤
∫ 2π

0

∣∣∣∣∣1 + 1
φℵ℘(2, h̄, , ρ, c, τ)

w

∣∣∣∣∣
η

dθ.

By Lemma 2, it is enough to show that

1 +
∞

∑
`=2

a`w`−1 ≺ 1 +
1

φℵ℘(2, h̄, , ρ, c, τ)
w.

Setting

1 +
∞

∑
`=2

a`w`−1 = 1 +
1

φℵ℘(2, h̄, , ρ, c, τ)
w(w)

and from Theorem 7, we obtain

|w(w)| ≤
∣∣∣∣∣ ∞

∑
`=2

φℵ℘(2, h̄, , ρ, c, τ)a`w`−1

∣∣∣∣∣ ≤ |w| ∞

∑
`=2

φℵ℘(2, h̄, , ρ, c, τ)a` ≤ |w|

which completes the proof.

9. Conclusions

The Touchard polynomials draw the attention of many researchers. They have many
applications in the theory of geometric function. In particular, the Touchard polynomial
Tn(h̄) is the nth moment of a random variable X which has Poisson distribution and
expected value h̄. Hence, we analyze and give some essential information on the properties
of the Touchard polynomials in Geometric Function Theory. Firstly, we establish of a new
subfamily of analytic functions including Touchard polynomials. Afterwards, we obtain
coefficient inequalities, distortion properties, extreme points, radii of starlikeness and
convexity, partial sums and neighbourhood outcomes. Finally, integral means’ inequality
related to Touchard polynomials are obtained.

The theory of Touchard polynomials is analyzed in the framework of operational
techniques. The interest in such polynomials is pointed out, taking into account their
explicit relations, integral representations, and summation formulae. This research can be
continued by using the other special families of polynomials and extended to find new
relations for generalized polynomials.
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