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Abstract: Pythagorean neutrosophic set is an extension of a neutrosophic set which represents
incomplete, uncertain and imprecise details. Pythagorean neutrosophic graphs (PNG) are more flexible
than fuzzy, intuitionistic, and neutrosophic models. PNG are similar in structure to fuzzy graphs but the
fuzziness is more resilient when compared with other fuzzy models. In this article, regular Pythagorean
neutrosophic graphs are studied, where for each element the membership (M), and non-membership
(NM) are dependent and indeterminacy (I) is independently assigned. The new ideas of regular, full
edge regular, edge regular, and partially edge regular Pythagorean Neutrosophic graphs are introduced
and their properties are investigated. A new MCDM method has been introduced using the Pythagorean
neutrosophic graphs and an illustrative example is given by applying the proposed MCDM method.
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PNS Pythagorean Neutrosophic Set
PNG Pythagorean Neutrosophic Graph
PFS Pythagorean Fuzzy Set
PFG Pythagorean Fuzzy Graph
PFR Pythagorean Fuzzy Relation
RPNG Regular Pythagorean Neutrosophic Graph
IFS Intuitionistic Fuzzy Set
IFG Intuitionistic Fuzzy Graph
MCDM Multi Criteria Decision Making
SVNS Single Valued Neutrosophic Set
SVNG Single Valued Neutrosophic Graph
M, I, NM Membership, Indeterminacy, Non-Membership
m, id, nm membership, indeterminacy, non-Membership
ED Edge degree
TED Total edge degree
Cs Constant
CF Constant function
ER Edge Regular
TER Totally Edge Regular
RCG Regular crisp graph
PR Partially regular
PER Partially edge regular
FER Full edge regular
FRPNG Full regular Pythagorean Neutrosophic Graph
ERPNG Edge regular Pythagorean Neutrosophic Graph
FERPNG Full edge regular Pythagorean Neutrosophic Graph
PERPNG Partially edge regular Pythagorean Neutrosophic Graph
SRPNG Strongly regular Pythagorean Neutrosophic Graph
ERPNG Edge Regular Pythagorean Neutrosophic Graph
TERPNG Totally Edge Regular Pythagorean Neutrosophic Graph
CN Common neighborhood
CBPNG Complete bipartite Pythagorean Neutrosophic Graph

1. Introduction

Atanassov established the idea of an Intuitionistic set [1] by introducing a generalization of fuzzy
set [2]. Each element in the set is assigned a membership and non-membership degree with the
constraint that the addition of these values lies between 0 to 1. Researchers have studied Intuitionistic
fuzzy sets (IFS) and have been implemented in various fields, including decision making [3,4], cluster
analysis [5], pattern recognition [6], market prediction [7], medical diagnosis [8]. Smarandache
[9] initiated the neutrosophic set theory in which each element is independently assigned a truth,
indeterminacy, and falsity membership degree in the non-standard interval ]0−, 1+[.

Wang et al. [10] presented the concept of a single valued neutrosophic set (SVNS) as a special
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case of a neutrosophic set. These sets have been widely used in a various of fields, including
image processing [11], medical diagnosis [12], decision making [13], information fusion [14], control
theory [15], and graph theory [16, 17] among others.

To deal with complex imprecision and uncertainty Pythagorean fuzzy sets PFS was pioneered by
Yager [18–20] such that the addition of the squares ofM andNM degrees lies in 0 and 1. Consequently,
in comparison to IFSs, PFSs account for a greater amount of uncertainty. Smarandache introduced and
developed the degree of dependence among components of fuzzy sets and neutrosophic sets. One
special case with independent indeterminacy and dependent truth and falsity is chosen out of three
membership functions of neutrosophic sets with the constraint addition of squares of M, I, and NM
lies between 0 and 2, and it is known as the Pythagorean Neutrosophic set (PNS) [21].

To deal with structural information, graph representations are widely used in domains
such as networks, economics, systems analysis, image interpretation, operations research, and
pattern recognition. Based on the fuzzy relations Kauffman [22] presented the Fuzzy graphs.
Rosenfeld [23] established the structure of fuzzy graphs to derive numerous basic theoretical concepts.
Bhattacharya [24] introduced various concepts on fuzzy graphs and Radha and Kumaravel investigated
edge regular fuzzy graphs in [25]. Atanassov [26] introduced intuitionistic fuzzy graphs (IFG) with
IFS as edge sets and vertex sets, which were later developed by Akram [27].

The idea of edge regular IFGs was defined by Karunambigai et al. [28, 29]. Borzooei et al. [30]
recently developed the notion of fuzzy graph regularity to vague graph regularity. Interval-valued IFGs
were first pioneered by Mishra and Pal [31]. Kandasamy et al. [32] proposed the notion of neutrosophic
graphs in which the edge weights are neutrosophic numbers. Broumi et al. [33, 34] also proved the
existence of some of the properties of SVNGs and their extensions.

In [35], the fuzzy graph was extended to Pythagorean fuzzy graphs. By combining concepts of
PNSs and fuzzy graphs, the new Pythagorean neutrosophic graph (PNG) [36] was developed. The
PNGs are a graphical representation that is the same as the structure of the graphs but the sum of the
membership grades of the vertices is less than 2 and the same goes for the edges of the graph.

Decision-making problems are complex to deal with and examining them using a single criterion
to take optimum decisions can lead to an unrealistic decision. Simultaneous consideration of all
the factors to the problem is a mere good approach. Multicriteria Decision Making (MCDM) is an
advancement of operation research which is for the development of decision methodologies to make the
decision problems simple involving multiple criteria, goals of conflicting nature [37,38]. Problems with
a finite set of alternatives and evaluated to rank them and to select the most appropriate one are called
discrete MCDM problems while problems with an infinite set of alternatives are continuous MCDM
problems. Discrete MCDM problems are addressed through the multiattribute decision making
(MADM) [39–41] methods while continuous MCDM problems are addressed through multiobjective
decision making (MODM) [42–45] methods. Fuzzy MCDM methods are used to assess the alternatives
through a single or a committee of decision-makers, where the values of alternatives, weights of criteria
can be evaluated using linguistic values which can be represented by fuzzy numbers [46–48]. Several
approaches have been developed to solve the fuzzy MCDM problems. A review and comparison of
various of these methods are presented in [49–51] and [52]. A brief review of the category in fuzzy
MCDM and some of its recent applications is presented in [53–56].

The proposed method is dealt with using Pythagorean Neutrosophic graphs which is a recently
developed fuzzy set having the advantage of holding a bit more fuzziness when compared with the
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previously developed fuzzy sets. Although the constrain is restricted to two, this provides independence
to two membership values. With all these additional advantages our proposed method is more useful
in developing models or methods for real-life problems. The proposed method using Pythagorean
Neutrosophic graphs for the decision model is more compatible and at the same time, holds little
restrictions to select the suitable criterion. Thus the proposed method, is an advantage in the decision-
making field, because of its usage and recent developments.

This paper is arranged as follows: Section 2 discusses the preliminary concepts which are necessary
for the work presented in the manuscript. Section 3 proposes the ideas of edge regular, regular, partially
edge regular, strongly regular, full edge regular, and bi-regular PNGs, and examines their properties.
In Section 4, an illustrative example is given for the newly proposed MCDM method using PNGs and
finally, we conclude Section 5. In this article, V denotes a crisp universe of generic elements, G stands
for the crisp graph,G is the PN. The membership, non-membership, and indeterminacy are represented
byM,NM,I.

2. Preliminaries

Fuzzy set theory is an effective mathematical concept that is used to deal with uncertain and vague
values. The basic definition of the fuzzy subset and its extended fuzzy sets were given for the basic
reference. In addition, a few more definitions of the fuzzy graphs were given for the base understanding
of the paper. The section holds basic definitions and terminologies for the paper:

Definition 2.1. [2] On a universe U, A = {〈s, µA(s)〉 |s ∈ U} is a fuzzy set (FS) where µA : U → [0, 1]
symbolizes theM grade of s ∈ U.

Definition 2.2. [22] A fuzzy graph is a duo G = (A,B) on U with a FS (A) and FR (B) on U such that
µB(yh) ≤ µA(y) ∧ µA(h) ∀ y, h ∈ U, where A : U→ [0, 1] and B : U × U to [0, 1].

Definition 2.3. [1] An IFS on a universeW is I = {〈a, µI(a), ϑI(a)〉|a ∈ W}, where µI : W→ [0, 1] and
ϑI : W→ [0, 1] signify theM and NM grades of I, and µI, ϑI satisfy 0 ≤ µI(a) + ϑI(a) ≤ 1 ∀ a ∈ W.

Definition 2.4. [26] An IFG is G = (A,B) with a IFS (A) and an IFR (B) on W such that µB(ou) ≤
µA(o) ∧ µA(u), ϑB(ou) ≥ ϑA(o) ∨ ϑA(u) and 0 ≤ µB(ou) + ϑB(ou) ≤ 1 ∀ o, u ∈ W where µB : W ×W→
[0, 1] and ϑB : W ×W→ [0, 1] symbolize theM and NM grades of B, correspondingly.

Definition 2.5. [10] A SVNS A in U is defined as an element with a truth-membership µA, an
indeterminacy-membership βA and a falsity-membership γA where µ, β, γ ∈ [0, 1] with the constraint
0 ≤ µA(x) + βA(x) + γA(x) ≤ 3.

Definition 2.6. [57] A neutrosophic fuzzy graph is G = (V,E), where V = {v1, v2, ..., vn} such that
µ1, β1, γ1 are from V to [0, 1] with 0 ≤ µ1(vi) + β1(vi) + γ1(vi) ≤ 3 ∀vi ∈ V indicates the M, I and
NM functions and µ2, β2, γ2 are from V × V to [0, 1] such that µ2(viv j) ≤ µ1(vi) ∧ µ1(v j),β2(viv j) ≤
β1(vi) ∧ β1(v j) and γ2(viv j) ≤ γ1(vi) ∨ γ1(v j) with 0 ≤ µ2(viv j) + β2(viv j) + γ2(viv j) ≤ 3 ∀viv j ∈ V ×V.

Definition 2.7. [18] A PFS on a universe W is A = {〈s, µA(s), ϑA(s)〉|s ∈ W}, where µA : W → [0, 1]
and ϑA : W → [0, 1] signify the M and NM grades of A, and µA, ϑA satisfy 0 ≤ µ2

A
(s) + ϑ2

A
(s) ≤ 1 ∀

s ∈ W.
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Definition 2.8. [35] A PFG is G = (A,B) with A and B, a PFS and PFR on W such that µB(wz) ≤
µA(w)∧µA(z), ϑB(wz) ≥ ϑA(w)∨ϑA(z) and 0 ≤ µ2

B
(wz) +ϑ2

B
(wz) ≤ 1 ∀ w, z ∈ W. where µB : W×W→

[0, 1] and ϑB : W ×W→ [0, 1] symbolize theM and NM grades of B, correspondingly.

Definition 2.9. [36] Pythagorean Neutrosophic Graph (PNG) is G = (V,E), where V = {v1, v2, ..., vn}

such that µ1, β1, σ1 are from V to [0, 1] with 0 ≤ µ1(vi)2 + β1(vi)2 + σ1(vi)2 ≤ 2 ∀vi ∈ V and indicate
theM, I and NM functions and µ2, β2, σ2 are from V ×V to [0, 1] such that µ2(viv j) ≤ µ1(vi) ∧ µ1(v j),
β2(viv j) ≤ β1(vi) ∧ β1(v j) and σ2(viv j) ≤ σ1(vi) ∨ σ1(v j) with 0 ≤ µ2(viv j)2 + β2(viv j)2 + σ2(viv j)2 ≤

2 ∀viv j ∈ V ×V.

3. Regularity of Pythagorean neutrosophic graphs

In this section, we describe the regularity ideas of PNGs. The concept of degree, total degree,
regular, and totally regular were discussed in detail with their characterizations and properties.

Definition 3.1. A regular PNG (RPNG) G = (σ, µ) over G is a PNG in which each vertex has the
same degree. A PNG is named < k1, k2, k3 >-regular if every vertex has < k1, k2, k3 > as degree, i.e.,
dG(vi) =< k1, k2, k3 > ∀ vi ∈ V degree.

Example 3.2. Let G = (σ, µ) be a PNG defined on G = (V,E), where V = {a, b, c, d} and E =

{ab, bc, cd, de} . The PNG is defined by

σ =

〈
a

(.4, .3, .2)
,

b
(.7, .2, .4)

,
c

(.5, .4, .3)
,

d
(.6, .2, .4)

〉
µ =

〈
ab

(.6, .1, .3)
,

bc
(.4, .2, .2)

,
cd

(.6, .1, .3)
,

da
(.4, .2, .2)

〉
The PNG in Figure 1 has dG(a) = dG(b) = dG(c) = dG(d)=< 1, .3, .5 > . Thus, G is < 1, .3, .5 >-

RPNG.

Figure 1. < 1, .3, .5 >- regular PNG.

Definition 3.3. The degree (D) of an edge hih j ∈ E of G = (σ, µ) is
dG(hih j) =

〈
dM(hih j), dI(hih j), dNM(hih j)

〉
, where

dM(hih j) =
∑

hihk∈E, k, j

µ1(hihk) +
∑

h jhk∈E, k,i

µ1(h jhk),
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dI(hih j) =
∑

hihk∈E, k, j

µ2(hihk) +
∑

h jhk∈E, k,i

µ2(h jhk),

dNM(hih j) =
∑

hihk∈E, k, j

µ3(hihk) +
∑

h jhk∈E, k,i

µ3(h jhk).

Definition 3.4.

1) S E(G) = 〈SM(G), S I(G), S NM(G)〉 is the minimum edge degree (ED) of G, where
SM(G) = min

{
dM(hih j)/hih j ∈ E

}
,

S I(G) = min
{
dI(hih j)/hih j ∈ E

}
,

S NM(G) = max
{
dNM(hih j)/hih j ∈ E

}
.

2) ∆E(G) = (∆M(G),∆I(G),∆NM(G)) is the maximum ED of G, where
∆M(G) = max

{
dM(hih j)/hih j ∈ E

}
,

∆I(G) = max
{
dI(hih j)/hih j ∈ E

}
,

∆NM(G) = min
{
dNM(hih j)/hih j ∈ E

}
.

Definition 3.5. Total edge degree (TED) of hih j ∈ E in G = (σ, µ) is
tdG(hih j) =

〈
tdM(hih j), tdI(hih j), tdNM(hih j)

〉
where

tdM(hih j) = dM(hi) + dM(h j) + µ1(hih j)
tdI(hih j) = dI(hi) + dI(h j) + µ2(hih j)
tdNM(hih j) = dNM(hi) + dNM(h j) + µ3(hih j).

Example 3.6. The graph G = (V,E), with V = {a, b, c, d} and E = {ab, ac, ad, bc, cd} . PNG G = (σ, µ)
is defined as

σ =

〈
a

(.7, .3, .2)
,

b
(.6, .4, .2)

,
c

(.5, .3, .4)
,

d
(.8, .2, .3)

〉
µ =

〈
ab

(.5, .3, .2)
,

ac
(.5, .3, .4)

,
ad

(.6, .2, .3)
,

bc
(.4, .3, .3)

,
cd

(.5, .2, .4)

〉
In Figure 2 dG(ab) = (1.5, .8, 1), tdG(ab) = (2, 1.1, 1.2) are theD and TD of ab. Similarly theD and

TD of other edges of the graph can be calculated.

Figure 2. Pythagorean Neutrosophic Graph G = (σ, µ).
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Definition 3.7. A PNG G having same degree for every edge is named as the edge regular PNG
(ERPNG). G is called < g1, g2, g3 > ER, when each edge has degree < g1, g2, g3 >, i.e., dG(hih j) =<

g1, g2, g3 > ∀ hih j ∈ E.

Definition 3.8. A PNG G is termed as totally edge regular PNG (TERPNG) when each edge has the
same TD.

Theorem 3.9. G = (σ, µ) is a PNG on a cycle G. Then
∑
hi∈V

dG(hi) =
∑
hih j∈E

dG(hih j).

Proof. Let h1, h2, h3...hn be the vertices of PNG G on a cycle G. Then
n∑

i=1

dG(hihi+1) = 〈

n∑
i=1

dM(hihi+1),
n∑

i=1

dI(hihi+1),
n∑

i=1

dNM(hihi+1)〉.

Consider,
n∑

i=1

dM(hihi+1) = dM(h1h2) + dM(h2h3) + .... + dM(hnh1), where hn+1 = h1

= dM(h1) + dM(h2) − 2µ1(h1h2) + dM(h2) + dM(h3) − 2µ1(h2h3) + .... + dM(hn) + dM(h1) − 2µ1(hnh1)

= 2dM(h1) + 2dM(h2) + 2dM(h3) + ... + 2dM(hn) − 2[µ1(h1h2) + µ1(h2h3) + ... + µ1(hnh1)]

= 2
n∑

i=1

dM(hi) − 2
n∑

i=1

µ1(hihi+1)

= 2
∑
hi∈V

dM(hi) − 2
n∑

i=1

µ1(hihi+1)

=
∑
hi∈V

dM(hi) +
∑
hi∈V

dM(hi) − 2
n∑

i=1

µ1(hihi+1)

=
∑
hi∈V

dM(hi) + 2
n∑

i=1

µ1(hihi+1) − 2
n∑

i=1

µ1(hihi+1) =
∑
hi∈V

dM(hi) (3.1)

In a similar way,
n∑

i=1

dI(hihi+1) =
∑
hi∈V

dI(hi) (3.2)

and
n∑

i=1

dNM(hihi+1) =
∑
hi∈V

dNM(hi) (3.3)

By using the values in (3.1), (3.2) and (3.3), we get∑
hi∈V

dG(hih j) =

〈∑
hi∈V

dM(hi),
∑
hi∈V

dI(hi),
∑
hi∈V

dNM(hi)
〉

=
∑
hi∈V

dG(hi).

Theorem 3.10. Let G = (σ, µ) be a PNG on a RCG G. Then∑
hih j∈E

dG(hih j) = 〈
∑
hih j∈E

dG(hih j)µ1(hih j),
∑
hih j∈E

dG(hih j)µ2(hih j),
∑
hih j∈E

dG(hih j)µ3(hih j)〉

where dG(hih j) = dG(hi) + dG(h j) − 2 ∀ hih j ∈ E.

Proof. Consider the PNG G on RCG G. dG(hih j) = 〈dM(hih j), dI(hih j), dNM(hih j)〉, where
dM(hih j), dI(hih j), dNM(hih j) are the total ofM,I andNM values of the adjacent edges, correspondingly.
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Every edge in
∑
hih j∈E

dM(hih j) hasM value exactly of the edge in it’s respective crisp graph times.

Thus,
∑
hih j∈E

dM(hih j) =
∑
hih j∈E

dG(hih j)µ1(hih j)∑
hih j∈E

dI(hih j) =
∑
hih j∈E

dG(hih j)µ2(hih j)∑
hih j∈E

dNM(hih j) =
∑
hih j∈E

dG(hih j)µ3(hih j)

Hence
∑
hih j∈E

dG(hih j) = 〈
∑
hih j∈E

dG(hih j)µ1(hih j),
∑
hih j∈E

dG(hih j)µ2(hih j),
∑
hih j∈E

dG(hih j)µ3(hih j)〉.

Proposition 3.11. G = (σ, µ) be a PNG on a k-RCG G. Then∑
hih j∈E

dG(hih j) = 〈(k − 1)
∑
hi∈V

dM(hi), (k − 1)
∑
hi∈V

dI(hi), (k − 1)
∑
hi∈V

dNM(hi)〉.

Proof. Let G be a PNG on k-RCG G. Then by theorem 3.10,∑
hih j∈E

dG(hih j) = 〈
∑
hih j∈E

dG(hih j)µ1(hih j),
∑
hih j∈E

dG(hih j)µ2(hih j),
∑
hih j∈E

dG(hih j)µ3(hih j)〉

= 〈
∑
hih j∈E

(dG(hi) + dG(h j)− 2)µ1(hih j),
∑
hih j∈E

(dG(hi) + dG(h j)− 2)µ2(hih j),
∑
hih j∈E

(dG(hi) + dG(h j)− 2)µ3(hih j)〉

Since G is k-RCG, dG(hi) = k where hi ∈ V,∀ i we have∑
hih j∈E

dG(hih j) = 〈(k + k − 2)
∑
hih j∈E

µ1(hih j), (k + k − 2)
∑
hih j∈E

µ2(hih j), (k + k − 2)
∑
hih j∈E

µ3(hih j)〉

= 〈2(k − 1)
∑
hih j∈E

µ1(hih j), 2(k − 1)
∑
hih j∈E

µ2(hih j), 2(k − 1)
∑
hih j∈E

µ3(hih j)〉

= 〈(k − 1) 2
∑
hih j∈E

µ1(hih j), (k − 1) 2
∑
hih j∈E

µ2(hih j), (k − 1) 2
∑
hih j∈E

µ3(hih j)〉

= 〈(k − 1)
∑
hi∈V

dM(hi), (k − 1)
∑
hi∈V

dI(hi), (k − 1)
∑
hi∈V

dNM(hi)〉.

Proposition 3.12. G = (σ, µ) be a PNG on a RCG G.

Then
∑
hih j∈E

tdG(hih j) = 〈
∑
hih j∈E

dG(hih j)µ1(hih j) +
∑
hih j∈E

µ1(hih j),∑
hih j∈E

dG(hih j)µ2(hih j) +
∑
hih j∈E

µ2(hih j),∑
hih j∈E

dG(hih j)µ3(hih j) +
∑
hih j∈E

µ3(hih j)〉.

Theorem 3.13. Let G = (σ, µ) be a PNG. Then (µ1, µ2, µ3) is a CF iff the following statements hold:

1) G is an ERPNG.
2) G is a TERPNG.

Proof. Let us consider a CF, (µ1, µ2, µ3), then µ1(hih j) = y1, µ2(hih j) = y2, µ3(hih j) = y3 ∀ hih j ∈ E,

y1, y2, y3 are Cs.
To prove: (1)⇒ (2)
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Let G be the < f1, f2, f3 >-ERPNG. Then dG(hih j) =< f1, f2, f3 > ∀ hih j ∈ E.

tdG(hih j) = 〈dM(hih j) + µ1(hih j), dI(hih j) + µ2(hih j), dNM(hih j)+ µ3(hih j)〉
= 〈 f1 + y1, f2 + y2, f3 + y3〉 ∀ hih j ∈ E.

Thus G is a TERPNG.
To prove: (2)⇒ (1)
Let G be a < f1, f2, f3 >-TERPNG.
Then tdG(hih j) = 〈dM(hih j) + µ1(hih j), dI(hih j) + µ2(hih j), dNM(hih j) + µ3(hih j)〉
=< t1, t2, t3 > ∀ hih j ∈ E.

Now,
〈
dM(hih j), dI(hih j), dNM(hih j)

〉
=
〈
t1 − µ1(hih j), t2 − µ2(hih j), t1 − µ3(hih j)

〉
dG(hih j) =< t1 − y1, t2 − y2, t3 − y3 > . Thus G is a < t1 − y1, t2 − y2, t3 − y3 >-ERPNG.
Conversely, consider that (1) & (2) are equivalent. We claim that (µ1, µ2, µ3) is a CF.
Let us assume (µ1, µ2, µ3) to be not a CF. Then µ1(hih j) , µ1(hqhr), µ2(hih j) , µ2(hqhr),
µ3(hih j) , µ3(hqhr) for at least one duo of (hih j), (hqhr) ∈ E. Consider G is a < f1, f2, f3 >-
ERPNG. Then dG(hih j) = dG(hqhr) =< f1, f2, f3 > . Thus
tdG(hih j) = 〈dM(hih j) + µ1(hih j), dI(hih j) + µ2(hih j), dNM(hih j) + µ3(hih j)〉
=
〈

f1 + µ1(hih j), f2 + µ2(hih j), f3 + µ3(hih j)
〉

tdG(hqhr) = 〈dM(hqhr) + µ1(hqhr), dI(hqhr) + µ2(hqhr), dNM(hqhr) + µ3(hqhr)〉
=
〈

f1 + µ1(hqhr), f2 + µ2(hqhr), f3 + µ3(hqhr)
〉

As µ1(hih j) , µ1(hqhr), µ2(hih j) , µ2(hqhr), µ3(hih j) , µ3(hqhr), so tdG(hih j) , tdG(hqhr).
We get G is not a TER which is a contradiction, thus (µ1, µ2, µ3) is a CF.
Likewise, we can prove (µ1, µ2, µ3) is a CF, if G is a TERPNG.

Theorem 3.14. If a PNG G is both ER and TER, then (µ1, µ2, µ3) is a CF.

Theorem 3.15. Let G = (σ, µ) be a PNG on a k-RCG G. (µ1, µ2, µ3) is a CF iff G is both RPNG and
TERPNG.

Proof. G be a PNG on a k-RCG G. Consider (µ1, µ2, µ3) is a CF, that is, µ1(hih j) = y1, µ2(hih j) = y2

and µ3(hih j) = y3 ∀ hih j ∈ E, where y1, y2 and y3 are Cs. From the definition of vertex degree, we have
dG(hi) = 〈dM(hi), dI(hi), dNM(hi)〉

=

〈∑
hih j∈E

µ1(hih j),
∑
hih j∈E

µ2(hih j),
∑
hih j∈E

µ3(hih j)
〉

=

〈∑
hih j∈E

y1,
∑
hih j∈E

y2,
∑
hih j∈E

y3

〉
= 〈ky1, ky2, ky3〉 ∀ hi ∈ V.

Therefore, G is RPNG. Now tdG(hih j) =
〈
tdM(hih j), tdI(hih j), tdNM(hih j)

〉
, where

tdM(hih j) =
∑

hihk∈E, k, j

µ1(hihk) +
∑

h jhk∈E, k,i

µ1(h jhk) + µ1(hih j)

=
∑

hihk∈E, k, j

y1 +
∑

hihk∈E, k,i

y1 + y1 = y1(k − 1) + y1(k − 1) + y1 = y1(2k − 1) ∀ hih j ∈ E.

Likewise, tdI(hih j)= y2(2k − 1) and tdNM = y3(2k − 1) ∀ hih j ∈ E can also be expressed.
Thus G is a TERPNG.
Conversely, consider G is both RPNG and TERPNG. We have to prove that < µ1, µ2, µ3 > is a CF.
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Since PNG G is RPNG, tdG(hih j) =< t1, t2, t3 > ∀ hih j ∈ E. By definition of TED, we have
tdG(hih j) =

〈
tdM(hih j), tdI(hih j), tdNM(hih j)

〉
, where, tdM(hih j) = dM(hi) + dM(h j) − µ1(hih j)

t1 = g1 + g1 − µ1(hih j)
tdM(hih j) = 2g1 − t1 ∀ hih j ∈ E.

In the same way, we can illustrate that µ2(hih j) = 2g2 − t2 and µ3(hih j) = 2g3 − t3 ∀ hih j ∈ E.

Therefore < µ1, µ2, µ3 > is a CF.

Theorem 3.16. Let G = (σ, µ) be a PNG on a crisp graph G. If (µ1, µ2, µ3) is a CF, then G is an
ERPNG iff G is ER.

Proof. Consider < µ1, µ2, µ3 > is a CF, i.e., µ1(hih j) = y1, µ2(hih j) = y2 and µ3(hih j) = y3 ∀ hih j ∈ E,

where y1, y2 and y3 are Cs. Assume that G is an ERPNG. We claim that G is an ER. On the other hand
assume G is not an ER. i.e., dG(hih j) , dG(hlhm) for at least one duo of hih j, hlhm ∈ E. By the definition
of ED of PNG, dG(hih j) =

〈
dM(hih j), dI(hih j), dNM(hih j)

〉
, where

dM(hih j) =
∑

hihk∈E, k, j

µ1(hihk)+
∑

h jhk∈E, k,i

µ1(h jhk) =
∑

hihk∈E, k, j

y1+
∑

h jhk∈E, k,i

y1 = y1(dG(hi)−1)+y1(dG(h j)−1)

= y1(dG(hi) + dG(h j) − 2) = y1dG(hih j) ∀ hih j ∈ E.

Likewise, we can illustrate that dI(hih j) = y2dG(hih j) and dNM(hih j) = y3dG(hih j) ∀ hih j ∈ E. Therefore
dG(hih j) =

〈
y1dG(hih j), y2dG(hih j), y3dG(hih j)

〉
, dG(hlhm) = 〈y1dG(hlhm), y2dG(hlhm), y3dG(hlhm)〉 ,

dG(hih j) , dG(hlhm). so dG(hih j) , dG(hlhm). Therefore G is not ER, a contradiction. Thus G is ER.
Conversely, assume G is an ER graph. We claim G is an ERPNG.
Consider G is not an ERPNG. i.e., dG(hih j) , dG(hphq) for at least one duo of hih j, hphq ∈ E,〈
dM(hih j), dI(hih j), dNM(hih j)

〉
,
〈
dM(hphq), dI(hphq), dNM(hphq)

〉
. Now dM(hih j) , dM(hphq) implies∑

hihk∈E, k, j

µ1(hihk) +
∑

h jhk∈E, k,i

µ1(h jhk) ,
∑

hphs∈E, s,q

µ1(hphs) +
∑

hshq∈E, s,p

µ1(hshq),

since µ1 is a CF, so dG(hih j) , dG(hphq), a contradiction. Therefore G is an ERPNG.

Theorem 3.17. Let G = (σ, µ) be a RPNG. Then G is an ERPNG iff (µ1, µ2, µ3) is a CF.

Proof. G be a < g1, g2, g3 >-regular PNG, (ie) dG(hi) =< g1, g2, g3 > ∀ hi ∈ V. Consider
that < µ1, µ2, µ3 > is a CF. Then µ1(hih j) = y1, µ2(hih j) = y2, and µ3(hih j) = y3 ∀ hih j ∈ E,

where y1, y2 and y3 are Cs.
By the definition of ED of a PNG, dG(hih j) =

〈
dM(hih j), dI(hih j), dNM(hih j)

〉
,

where dM(hih j) = dM(hi) + dM(h j) − 2µ1(hih j) = g1 + g1 − 2y1 = 2(g1 − y1) ∀ hih j ∈ E.

In the same way, dI(hih j) = 2(g2 − y2) and dNM(hih j) = 2(g2 − y3) ∀ hih j ∈ E.

Therefore G is an ERPNG.
Conversely, presume that G is an ERPNG, i.e., dG(hih j) =< f1, f2, f3 > ∀ hih j ∈ E.

We claim that < µ1, µ2, µ3 > is a CF. Since dG(hih j) =
〈
dM(hih j), dI(hih j), dNM(hih j)

〉
,

where dM(hih j) = dM(hi) + dM(h j) − 2µ1(hih j)
f1 = g1 + g1 − 2µ1(hih j)

µ1(hih j) =
2g1− f1

2 ∀ (hih j) ∈ E.

In the same way, µ2(hih j) =
2g2− f2

2 and µ3(hih j) =
2g3− f3

2 ∀ (hih j) ∈ E.
Hence < µ1, µ2, µ3 > is a CF.
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Definition 3.18. A PNG G is said to be a

1) partially regular (PR), if G is regular.
2) full regular (FR), if G is both regular and PR.
3) partially ER (PER), if G is an ER.
4) full edge regular (FER), if G is both ER and PER.

Theorem 3.19. Let G = (σ, µ) be a PNG on G such that (µ1, µ2, µ3) is a CF. If G is a FRPNG, then G
is a FERPNG.

Proof. Suppose that < µ1, µ2, µ3 > is a CF. Then µ1(hih j) = y1, µ2(hih j) = y2 and µ3(hih j) = y3∀

hih j ∈ E,

where y1, y2 and y3 are Cs. G be a FRPNG, then dG(hi) = k and dG(hi) =< g1, g2, g3 > ∀ hi ∈ V,

where k, g1, g2, g3 are Cs. dG(hih j) = dG(hi) + dG(h j) − 2 = 2k − 2 = C.
Therefore G is an ER graph. Then, dG(hih j) =

〈
dM(hih j), dI(hih j), dNM(hih j)

〉
∀ hih j ∈ E,

where dM(hih j) = dM(hi) + dM(h j) − 2µ1(hih j) = g1 + g2 − 2y1 = 2g1 − 2y1 = a constant.
Similarly, dI(hih j) = 2g2 − 2y2= constant and dNM(hih j) = 2g3 − 2y2 = a constant ∀ hih j ∈ E.

Therefore G is an ERPNG. Thus G is a FERPNG.

Theorem 3.20. Let G = (σ, µ) be a t-TER and t
′

-PERPNG. Then S (G) = rt
1+t′

, where r = |E|.

Proof. The size of G is S (G) = 〈
∑
hih j∈E

µ1(hih j),
∑
hih j∈E

µ2(hih j),
∑
hih j∈E

µ3(hih j)〉.

Meanwhile G is t-TER and t
′

-PERPNG, i.e., tdG(hih j) = t and dG(hih j) = t
′

, correspondingly.

Therefore,
∑
hih j∈E

tdG(hih j) = 〈
∑
hih j∈E

dG(hih j)µ1(hih j) +
∑
hih j∈E

µ1(hih j),∑
hih j∈E

dG(hih j)µ2(hih j) +
∑
hih j∈E

µ2(hih j),∑
hih j∈E

dG(hih j)µ3(hih j) +
∑
hih j∈E

µ3(hih j)〉.

= 〈
∑
hih j∈E

dG(hih j)µ1(hih j),
∑
hih j∈E

dG(hih j)µ2(hih j),
∑
hih j∈E

dG(hih j)µ3(hih j)〉 + S (G)

rt = t
′

S (G) + S (G).

Definition 3.21. A g =< g1, g2, g3 > RPNG G on n vertices is said to be strongly regular PNG
(SRPNG), if it holds the following characteristics:

1) Total of M, I, and NM values in the same neighbourhood of any 2 adjacent vertices of G have
λ =< λ1, λ2, λ3 > weight.

2) Total of M, I, and NM values in the same neighbourhood of any 2 non-adjacent vertices of G
have χ =< χ1, χ2, χ3 > weight.

A SRPNG G is represented by G = (σ, µ, λ, χ).

Theorem 3.22. Let G = (σ, µ) be a complete PNG with (σ1, σ2, σ3) and (µ1, µ2, µ3) as CF. Then G is
a SRPNG.
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Proof. Assume G = (σ, µ) is a complete PNG over n vertices. Since < µ1, µ2, µ3 > and < σ1, σ2, σ3 >

are CF, so σ1(hi) = y
′

1, σ2(hi) = y
′

2 and σ3(hi) = y
′

3 ∀ hi ∈ V, µ1(hih j) = y1, µ2(hih j) = y2 and
µ3(hih j) = y3 ∀ hih j ∈ E, where y

′

1, y
′

2, y
′

3, y1, y2 and y3 are Cs. To verify G is a SRPNG, we intend to
illustrate G is g =< σ1, σ2, σ3 >-RPNG and the adjacent and non-adjacent vertices have the same CN
λ =< λ1, λ2, λ3 > and χ =< χ1, χ2, χ3 > correspondingly. Since G is complete PNG

dG(hi) = 〈dM(hi), dI(hi), dNM(hi)〉 = 〈
∑

hi,h j,hi∈V

µ1(hih j),
∑

hi,h j,hi∈V

µ2(hih j),
∑

hi,h j,hi∈V

µ3(hih j)〉

= 〈(n − 1)y1, (n − 1)y2, (n − 1)y3〉

Hence G is a 〈(n − 1)y1, (n − 1)y2, (n − 1)y3〉-RPNG.
The sum ofM, I, and NM values of CN vertices of any two adjacent vertices.
λ =
〈
(n − 1)y

′

1, (n − 1)y
′

2, (n − 1)y
′

3

〉
are the same and the total ofM, I and NM values of CN vertices

of any two non-adjacent vertices χ =< 0, 0, 0 > are the same.

Definition 3.23. A PNG G = (σ, µ) is bipartite if the vertex set V can be separated into two non-empty
sets V1 & V2 such that µ1(hih j) = 0, µ2(hih j) = 0 and µ3(hih j) = 0 if hih j ∈ V1 or hih j ∈ V2. Further
if µ1(hih j) = min

{
σ1(hi), σ1(h j)

}
, µ2(hih j) = min

{
σ2(hi), σ2(h j)

}
and µ3(hih j) = min{σ3(hi), σ3(h j)} ∀

hi ∈ V1 and h j ∈ V2, then G is said to be a complete bipartite PNG (CBPNG).

Definition 3.24. A bipartite PNGG is biregular PNG (BRPNG) if each vertex inV1 has similar degree
ϕ =< ϕ1, ϕ2, ϕ3 > and all the vertex in V2 has similar degree ψ =< ψ1, ψ2, ψ3 > where ϕ and ψ are all
Cs.

4. MCDM method based on the Pythagorean neutrosophic graphs

PN sets have become an interesting topic in research due to their powerful dealing with incomplete,
inconsistent information. PNG can illustrate the uncertainty in a real-life context, thus we propose
the use of PNG in solving MCDM problems. This newly proposed model is named the PNG-based
MCDM method.

At first to frame the algorithm or method, we describe the decision making problem. Consider
that P = {p1, p2, p3, ...pm} is a collection of alternatives and B = {α1, α2, α3, ...αn} is a set of criteria,

with weight vector w = (w1,w2,w3, ...wn)T fulfilling w j ∈ [0, 1],
n∑

j=1

w j = 1. If the decision maker

provides a PN value for the alternative pk (k = 1, 2, 3, ....,m) under the attribute α j ( j = 1, 2, .., n)
and can be characterized by a PN number (PNN) dk j = mk j, idk j, nmk j (where m, id, nm represents the
membership, indeterminacy and non-membership value) j = 1, 2, .., n; k = 1, 2, 3...,m. Imagine that
D = [dk j]m×n is the decision matrix, where dk j is given by PNN. If the decision maker provides a PN
value for the alternative pk(k = 1, 2, ...m) under the criteria α j( j = 1, 2...n), these values are illustrated
as ek j = (mk j, idk j, nmk j), ( j = 1, 2, ...n, k = 1, 2...m). If there exists a relation between two criteria
αi = (mi, idi, nmi) and α j = (m j, id j, nm j), we represent the PN relation as βi j = (mi j, idi j, nmi j),with the
properties: mi j ≤ min(mi,m j), idi j ≤ min(idi, id j), nmi j ≤ max(nmi, nm j) ∀ (i, j = 1, 2, ...m); otherwise
βi j =< 0, 0, 1 >. Based on the established PNG structure, we suggest a technique for decision-maker
to choose the best alternative with PN information.

The technique has been illustrated in the steps following:
Step 1: Compute the influence co-efficient between the criteria αi and α j (i, j = 1, 2, ...n) in decision
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process by,

χi j =
mi j + (1 − idi j)(1 − nmi j)

2
(4.1)

where βi j = (mi j, idi j, nmi j) is the PN edge between the verices αi and α j (i, j = 1, 2, ...n). we have
χi j = 1 and χi j = χ ji for i = j.
Step 2: Obtain the complete criterion value of the alternative pk(k = 1, 2, ...m) by

p̃k =

n∑
j=1

w j

 n∑
i=1

χkidi j

 (4.2)

where eki = (mki, idki, nmki) is a PNN.

Step 3: Compute the score value of the alternative pk(k = 1, 2, ...m) which is expressed by:

S (̃pk) =
1 +m − id − nm

2

Step 4: Rank all the alternatives pk(k = 1, 2, ...m) and choose the top one in concordance with S (̃pk).

4.1. An illustrative example

In this subsection, an illustration of PNG based MCDM problem with PN information is applied to
show the application and efficiency of the suggested decision-making method.

An investing company wants to invest a sum of money in the best option. There is a panel of
attributes with YouTube channels in which to invest the money: (1) p1 is a movie review channel, (2)
p2 is an educational content channel, (3) p3 is a food related channel (food review, cooking guidance)
(4) p4 is a technical content channel. The investment company must take a decision according to the
criteria (1) α1 is the subscribers (2) α2 is the content worth (3) α3 is the growth of the criteria is given
by w = (.34, .33, .33). The four possible alternatives are to be calculated under these three criteria
shown in the form of PN information by decision-maker. The information evaluation is consistent to
α j( j = 1, 2, 3) on the alternative pk(k = 1, 2, 3, 4) under the factors α j( j = 1, 2, 3) and the resultant PN
decision matrix is represented as D :

D =


(.8, .7, .6) (.7, .5, .4) (.6, .7, .4)
(.9, .6, .5) (.6, .7, .4) (.7, .4, .2)
(.7, .4, .3) (.8, .4, .3) (.9, .4, .1)
(.8, .5, .4) (.9, .3, .5) (.6, .5, .3)


The relation among factors α j is given by the complete graph G = (V,E) where V = {α1, α2, α3}

and E = {α1α2, α1α3, α2α3}. We can get the influence coefficients to quantify the relationships among
the criteria. Suppose that PN edges denoting the connection among the criteria are described in
Figure 3 as: l12 = (.4, .5, .5), l13 = (.5, .6, .2), l23 = (.5, .3, .2). G = (V,E) describes the PNG according
to relationship among criteria for each alternative. The steps given below are followed to achieve the
best alternative.

AIMS Mathematics Volume 7, Issue 5, 9424–9442.



9437

Figure 3. Relation between criteria.

Step 1: The influence coefficients between criteria were computed by using (4.1) and the values are
χ12 = .325, χ13 = .41, χ23 = .53

Step 2: The overall criterion value of the alternatives pi, i = 1, 2, 3, 4 are obtained by using (4.2) are as
follows:

p̃1 = w1 × (χ11d11 + χ12d21 + χ13d31)+ w2 × (χ11d12 + χ12d22 + χ13d32)+ w3 × (χ11d13 + χ12d23 + χ13d33)

= .34((.8, .7, .6)+(.7, .5, .4)×.325+(.6, .7, .4)×.41)+ .33((.8, .7, .6)×.325+(.7, .5, .4)+(.6, .7, .4)×.53)+
.33 ((.8, .7, .6) × .41 + (.7, .5, .4) × .53 + (.6, .7, .4))

= .34((.8, .7, .6) + (.2275, .1625, .13) + (.246, .287, .164)) + .33((.26, .2275, .195) + (.7, .5, .4) +

(.318, .371, .212)) + .33((.328, .287, .246) + (.371, .265, .212) + (.6, .7, .4))
= .34(1.2735, 1.1495, .894) + .33(1.278, 1.0985, .807) + .33(1.299, 1.252, .858)
= (.43299, .39083, .30396) + (.42174, .362505, .26631) + (.42867, .41316, .28314)
p̃1 = (1.2834, 1.166495, .85341)

Similarly for p̃2 = (1.344545, 1.03803, .666295)
p̃3 = (1.47995, .7369, .423815)
p̃4 = (1.40648, .798045, .73401)

Step 3: Calculating the score value of the alternatives pk(k = 1, 2, 3, 4),
we get S(̃p1) = .1317475,

S(̃p2) = .32011,
S(̃p3) = .6596175,
S(̃p4) = .4372125.

Step 4: Since S(̃p3) > S(̃p4) > S(̃p2) > S(̃p1), the ranking of four alternatives is

p3 > p4 > p2 > p1

Thus, the alternative p3 is chosen among the alternatives.
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4.2. Comparative analysis

A comparison with neutrosophic graph based decision-making approach in [58] is made to check the
effectiveness of the presented decision making-method based on the illustrative example. Applying the
technique of [58] and our proposed method, we compute and compare the decision results individually.
They are shown in Table 1. The decision outcomes of the method in [58] are consistent with the findings
of our suggested method, as shown in Table 1. The results are the same as the ranking order results
in [58] and the best alternative is p3. Although the ranking principle is different, the two methods derive
the same best and worst alternative with the same ranking order for the alternatives.

Table 1. Comparison analysis.

Method Score Values of Alternatives Ranking Order
R. Sahin [40] p1 = −0.4515 p3 > p4 > p2 > p1

p2 = 0.007223
p3 = 0.2911675
p4 = 0.03819

Our proposed method p1 = 0.1317475 p3 > p4 > p2 > p1

p2 = 0.32011
p3 = 0.6596175
p4 = 0.4372125

5. Conclusions

PNS is an extension of fuzzy set to symbolize incomplete, uncertainty and imprecise data that
exists in real situations. PN models are more flexible and practical than fuzzy, Intuitionistic fuzzy, and
neutrosophic fuzzy models. In this work, we have proposed the ideas of partially edge regular, edge
regular, regular, strongly regular graphs, and full edge regular under PN environment and studied their
properties. A PNG based MCDM method has been presented and an illustrative example is given using
the PN information. In further work, this work is to be extended to the concepts of irregularity, planar
PNGs, and their applications, in decision making.
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