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Abstract

The problem of synchronization with extended dissipativity for Markovian Jump Recurrent Neural
Networks (MJRNNs) is investigated. For MJRNNs, a new memory sampled - data extended dis-
sipative control approach is suggested here. Some sufficient conditions in terms of Linear Matrix
Inequalities (LMIs) are acquired by suitably establishing a relevant Lyapunov - Krasovskii functional
(LKF), wherein the master and the slave system of MJRNNs are quadratically stable. At last, a nu-
merical section is provided, along with one of the applications in circuit theory that clearly illustrates
the efficacy of the proposed method’s performance.
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1. Introduction

In the last few decades, Neural Networks (NNs), primarily Recurrent NNs [25], Cellular NNs [20]
and Hopfield NNs [1, 4, 5] have been skillfully utilized in signal processing, image analysis, cognition,
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fault detection, inferencing, and optimization techniques [15, 7, 32]. Interpretation of the stabilisation
of the equilibrium point of NNs is required in all of these research works. NNs may exert network
mode switching (jumping); i.e, a NN may have discrete modes that toggle between them at distinct
intervals. It is demonstrated that a Markovian chain can anticipate such type of jumping. Numerous
notable results on the processing and analysis of Markovian jump systems [13, 23, 39, 40] and also
the results of dynamical analyses on Markovian Jump Recurrent Neural Networks (MJRNNs) can
indeed be found in the literature [2]. It really is important to note that the references cited earlier in
this section assume that all data about transition probabilities in the jumping technique is correct.

Because time delays are a common origin of the system’s instability and poor conduct in NNs [8],
a popular area of study is stability analysis for NNs with time delays. Furthermore, the time delay
in NNs is caused by the low efficiency of processing information as well as the time it would take
neurons to interact [10, 12]. It was recently demonstrated that when the time delay as well as network
conditions are properly chosen, NNs could also exert advanced and unforeseen dynamic behavior [21].
The synchronization problem in many coupled systems and networks has been studied, with notable
results. Synchronization in coupled delayed NNs had been established to be a vital step across
both core science and technical implementation, such as neurosciences, encrypted communications,
and harmonic oscillation production [22, 9]. There has been a surge in interest in investigating the
dynamical features of NNs due to its universal implementations in many areas in recent times [17].

In recent years, sampled - data control, which has the important and practical advantages of
high reliability, high accuracy, and more stable operation, has become a hot - spot for high - speed
development of computer technology. By building a fuzzy sampled-data controller with various
system has been investigated in [3, 6, 19]. In [28, 34], the researchers investigated the synchronization
problem for NNs in non - fragile sampled - data sense with time delays on continuous and discrete
time under sampling variable dependent of the input delay approach. Indeed, the investigation into
the synchronization problem for Recurrent NNs with multiple time - delays using sampling control
for finding a few less conservative conditions to attain the master system in sync with the slave
system, which really stands as the principal motivation behind this paper, is valid and fascinating.

In complex systems, the concept of dissipativity [11] is more general and it generalises the concept
of a Lyapunov stability function. Furthermore, it has widespread applications in a variety of fields,
including stability theory and robust control theory. For this purpose, researchers have recently
focused on the extended dissipativity concept [6, 26], which unifies passivity, (Q̄−S−R) dissipativity,
H∞ performance and perfomance of L2 − L∞ by fixing the weighting matrices.

The following is an outline of the structure of the paper: Section II contains a brief model
description of MJRNNs as well as preliminary results. Section III provides some key results and
appropriate conditions for determining controller gains. Section IV includes numerical findings to
showcase the applicability of the model designed.

1.1. Notations:

The Euclidean space is denoted as Rn, which is n-dimensional. N stands for natural numbers
and Z denotes the integers, Rm×n is the m× n real matrix and superscript (T) stands for transpose
of any matrix. The Euclidean norm in Rn is given as ∥.∥. Moreover, sym(·) denotes the symmetric
matrix.

2. Problem statement and preliminaries

Let ℑ = {1, 2, · · · , s} be a finite set with {et, t ≥ 0}, which is a right continuous Markov process
on probability space defined on ℑ. The transition probability matrix Λ = Λij is given by:
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P (et+∆ = j|et = i) =

{
Λij∆+ o(∆), i ̸= j;
1 + Λij∆+ o(∆), i = j;

where ∆ > 0, lim
∆→0

o(∆)
∆

= 0. Λij ≥ 0 is the transition rate from i to j if i ̸= j and

Λij = −
m∑

j=1,j ̸=i

Λij.

Consider the uncertain MJRNNs:

ṙ(t) = −R̃(et)r(t) + S̃(et)g(r(t)) +
n∑

m=1

T̃m(et)g(r(t− τm(t))) + V(t), (2.1)

where r(t) = [r1(t), · · · , rn(t)]T ∈ Rn represents the neuron state vector and g(.) = [g1(.), · · · , gn(.)]T ∈
Rn indicates activation functions, n represents number of neurons, τm(t) = [τm1(t), · · · , τm(t)]T , τjk(t) ≥
0,m = 1, 2, · · · , n, k = 1, 2, · · ·N signifies time-varying delays. The external input is V(t) =
[V1(t), · · · ,Vn(t)]; R̃(et) = R(et) + ∆R(et), S̃(et) = S(et) + ∆S(et), T̃m(et) = Tm(et) + ∆Tm(et) for
m = 1, 2, · · · , n; R(et), S(et) and Tm(et)(m = 1, · · · , n) are constant matrices and ∆R(et),∆S(et)
and ∆Tm(et) are time varying parameter uncertainties with suitable dimensions and they are assumed
to satisfy

[∆R(et),∆S(et),∆T1(et), · · · ,∆Tn(et)] =M(et)C(et)(t)[Na(et), Nb(et), Nc1(et), · · · , Ncn(et)],

where M(et), Na(et), Nb(et), Nc1(et), · · · , Ncn(et) are known constant matrices for all et ∈ ℑ; un-
known matrix function C(et)(t) satisfies C

T (et)(t)C(et)(t) ≤ I for all et ∈ ℑ. Time - varying delays
are bounded as given here:

0 ≤ τm(t) ≤ τm, for m = 1, 2, · · · , n (2.2)

and τ̇m(t) ≤ σm, where τm and σm refer to constants.
The neuron activation functions gi(·) satisfies the following condition:

a−i ≤ gi(s1)− gi(s2)

s1 − s2
≤ a+i . (2.3)

Here, a−i and a+i denote constants, s1, s2 ∈ R, s1 ̸= s2 and gi(0) = 0.

The master system is now referred to as (2.1). Then, the corresponding slave system is given as
follows:

v̇(t) = −R̃(et)v(t) + S̃(et)g(v(t)) +
n∑

m=1

T̃m(et)g(v(t− τm(t))) + V(t) + u(t) +B(et)ω̄(t), (2.4)

where u(t) denotes control input and external disturbance is given as ω̄(t). Consider the model
c(t) = v(t) − r(t) is taken to be the error system. Then, the synchronization error system is given
by:

ċ(t) = −R̃(et)c(t) + S̃(et)ℏ(c(t)) +
n∑

m=1

T̃m(et)ℏ(c(t− τm(t))) + u(t) +B(et)ω̄(t), (2.5)
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where ℏ(c(t)) = g(v(t)) − g(r(t)). Now, the neuron activation functions ℏi(.) satisfies the following
condition:

a−i ≤ ℏi(ri)
ri

≤ a+i , (2.6)

for all ri ̸= 0 and gi(0) = 0.

The memory sampled-data control is used to synchronize uncertain MJRNNs and it is constructed
as shown below:

u(t) ≡ K(et)c(tk − θ), t ∈ [tk, tk+1) , (2.7)

where θ denotes the signal transmission delay and the sampling instants tk+1 − tk > 0. If we denote
tk+1 − tk by hk, then we obtain hk ≤ h holds, given h > 0 signifies the largest sampling interval.
Substituting (2.7) in (2.5), it follows that

ċ(t) =− R̃(et)c(t) + S̃(et)ℏ(c(t)) +
n∑

m=1

T̃m(et)ℏ(c(t− τm(t))) +K(et)c(tk − θ) +B(et)ω̄(t), (2.8)

f(t) =c(t) + c(t− τn(t)), (2.9)

where f(t) indicates the output error system.

Assumption 2.1. The following are the conditions satisfied by matrices ε1, ε2, ε3 and ε4:
1. ε1 = εT1 ≤ 0, ε3 = εT3 > 0, ε4 = εT4 ≥ 0,
2. (||ε1||+ ||ε2||) .||ε4|| = 0.

The following required definitions and lemmas will use in our main results.

Definition 2.1. [33] Let ε1, ε2, ε3 and ε4 be the matrices which satisfy Assumption (2.1). Then, the
NN (2.8) with (2.9) is extended dissipative, if there is σ > 0 so that, for every tl ≥ 0, the subsequent
condition holds ∫ tl

0

H(t)dt ≥ sup fT (t)ε4f(t) + σ, 0 ≤ t ≤ tl, (2.10)

where H(t) = fT (t)ε1f(t) + 2fT (t)ε2ω̄(t) + ω̄T (t)ε3ω̄(t).

Definition 2.2. [33] The system (2.8) with ω̄(t) = 0 is known to be quadratically stable, if ϖ > 0
exists such that LV (c(t)) ≤ −ϖ|c(t)|2 holds.

Lemma 2.3. [24] Given scalars γ ∈ (0, 1), matrix Z ∈ Rn×n > 0, two matrices P1 and P2 ∈ Rn×m.
Define, for η ∈ Rm, then, the condition is true:

ϖ(γ, Z) =
1

γ
ξTP T

1 ZP1ξ +
1

1− γ
ξTP T

2 ZP2ξ. (2.11)

Then, if there is a matrix E ∈ Rn×n such that

[
Z E
⋆ Z

]
> 0, then

minγ∈(0,1)ϖ(γ, Z) ≥
[
P1ξ
P2ξ

]T [
Z E
⋆ Z

] [
P1ξ
P2ξ

]
.
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Lemma 2.4. [18] Given c : [a1, a2] → Rn a differentiable function. For M ∈ Rn > 0, G1, G2 ∈
R3n×n, the inequality holds:

−
∫ a2

a1

ċT (r)M ċ(r)dr ≤ εT (a1, a2)ψ(a1, a2)ε(a1, a2), (2.12)

where ε(a1, a2) = [cT (a2), c
T (a1),

∫ a2
a1

cT (r)dr]T , ψ(a1, a2) = (a2−a1)(G1M
−1GT

1+
(a2 − a1)

2

3
G2M

−1GT
2 )

− sym[G2, G2, 0]) + sym([G1,−G1, 2G2]).

Lemma 2.5. [19] Let A = AT ,U, V and R = RT > 0 be the given matrix with suitable dimensions.
Then,

A+ UW(t)V + V TWT (t)UT < 0,

for all W(t) satisfying WT (t)W(t) ≤ I iff there exists a scalar β > 0 such that

A+ βUUT + β−1V TV < 0.

Lemma 2.6. [27] Let the differentiable function be c : [c, d] → Rn, integer l ∈ N, k ∈ Z≥0, a matrix
W > 0 ∈ Rn×n, ξ ∈ Rkn, and matricesMi ∈ Rkn×n, the succeeding condition holds (i = 1, · · · ,m+1):

−
∫ d

c

ċT (r)W ċ(r) ≤
m+1∑
i=1

d− c

2i− 1
ξTMiW

−1Mi + sym(Miψi−1(c, d))ξ, (2.13)

ψi(c, d) =


c(d)− c(c), i = 0;

c(d)− (−1)ic(c)−
i∑

j=1

li
j!

(d− c)j
σ(j−1)(c, d), i ∈ N.

σk(c, d) =

∫ d

ro

∫ d

r1

· · ·
∫ d

rk

c(rm+1)drm+1 · · · dr1, ro = c; lij = (−1)j+i

(
i
j

)(
i+ j
j

)
.

The following remark is derived from above Lemma (2.6) on substituting k = 1.

Remark 2.7. Let c : [c, d] → Rn be a differentiable function. For integers k ∈ N, 0 < W ∈ Rn×n,
any vector ξ ∈ Rkn, and for any matrices Mr,Ms ∈ Rkn×n, the succeeding condition holds:

−
∫ d

c

ċT (s)W ċ(s) ≤ ξT [(d− c)(MrW
−1MT

r +
1

3
MsW

−1MT
s ) + sym(MrO1 +MsO2)]ξ, (2.14)

where O1ξ = c(d)− c(c),O2ξ = c(d) + c(c)− 2

d− c

∫ d

c

c(r)dr.

Remark 2.8. To achieve the extended dissipativity condition, the following conditions are the values
assigned to the weighting matrices, which helps in getting a general solution.
(1) When ε1 = ε2 = σ = 0, ε3 = γ̃2I and ε4 = I, (2.10) reduces to L2 − L∞ performance.
(2) When ε1 = −I, ε2 = ε4 = σ = 0 and ε3 = γ̃2I (2.10) becomes H∞ performance.
(3) When ε1 = ε4 = σ = 0, ε2 = I and ε3 = γ̃, (2.10) executes passivity performance.
(4) When ε1 = ε4 = σ = 0, ε2 = I and ε3 = γ̃ (2.10) becomes Mixed H∞ and Passivity performance.
(5)When ε1 = Q̄, ε2 = S, ε3 = R− α̃I and ε4 = 0, (2.10) degenerates to (Q̄ − S −R) Dissipativity
performance.
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3. Main results

In this section, the memory sampled-data control is constructed in the following theorems, and
few stability conditions are shown to verify whether the error system (2.5) of MJRNNs is synchro-
nized and extended dissipative. The following are some notations used:
ei = [0r×(i−1)r Ir 0r×(8+3J−i)r]

T , i = 1, 2, · · · , 7 + 3J ,

θ1(t) = [cT (t), cT (tk),

∫ t

tk

cT (r)dr]T , θ2(t) = [cT (tk), ċ
T (t), cT (tk − θ)]T , θ3(t) = c(t)− c(tk − θ),

θ4(t) = [ċT (t), 0, cT (t)]T , θ5(t) = [cT (tk), 0, c
T (tk − θ)]T , θ6(t) = c(t)− c(t− θ)

We assume that ∆R = ∆S = ∆T1 = ∆T2 = ... = ∆Tn = ∆K = 0.

Theorem 3.1. For given scalars h > 0, θ > 0, τm > 0, σm < 1 and given control gain matrix
K(et), the error system attains quadratically stability and extended dissipativity synchronization,
if there exist symmetric matrices Z > 0, Z̄22 > 0, Yi(i = 1, · · · , 6), Qi(et)(i = 1, 2, 3), G1, G2 ∈

R(8+3J)n×n,Mrm > 0, Nrm > 0,Msm > 0, Nsm > 0, Z̄ =

 Z̄11 Z̄12 Z̄13

⋆ Z̄22 Z̄23

⋆ ⋆ Z̄33

 > 0, and diagonal

matrices A > 0, A1 > 0, · · · , An > 0 so that the subsequent LMIs hold:[
Y3 E
⋆ Y3

]
> 0, (3.1)

Γ =

[
Γ11 Γ12

⋆ Γ22

]
> 0, (3.2)

Ξ =



Υ F12 F13 F14 F15 hG1 h2G2

⋆ F22 0 0 0 0 0
⋆ ⋆ F33 0 0 0 0
⋆ ⋆ ⋆ F44 0 0 0
⋆ ⋆ ⋆ ⋆ F55 0 0
⋆ ⋆ ⋆ ⋆ ⋆ −hZ̄22 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −3hZ̄22


< 0, (3.3)

where

Υ =Υ1 +Υ2a +Υ2b +Υ3a +Υ3b +Υ4 +Υ5 +Υc +Υe,
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Υ1 =− 2eT1X(et)e4 + 2eT5+JLe4 + eT5+J

n∑
m=1

Lme5+J − (1− σ1)e
T
6+JL1e6+J − · · · − (1− σn)e

T
5+2JLne5+2J

+ eT1

n∑
m=1

Hme1 − (1− σ1)e
T
5H1e5 − · · · − (1− σn)e

T
4+JHne4+J +

n∑
m=1

eT4 τmBme4 +
∑
j∈ℑ

Λije
T
1X(et)e1

− ℵ1 + ℵ2 + sym(χT
1 χ2),

Υ2a =2h

 e1
e2
e3

T

Z

 e4
0
e1

+ h

 e2
e4

e7+2J

T

Z̄

 e2
e4

e7+2J

−

 e1
e2
e3

T

Z

 e1
e2
e3

−

 e2
0

e7+2J

T

× Z̄

 e2
e0

e7+2J

 ,
Υ2b =(e1 − e2)

T Z̄T
12e2 − (e1 − e2)

T Z̄23e6+2J ,

Υ3a =eT1 (Y1 + Y2)e1 − (1− σ1)e
T
5 Y1e5 − · · · − (1− σm)e

T
4+JY1e4+J − eT6+2JY2e6+2J − · · ·

− eT5+3JY2e5+3J − eT6+2JY2e6+2J + eT4 (
n∑

m=1

τ 2mY3)e4,

Υ3b =−
4+J∑
s=5

5+3J∑
d=6+2J

[
e1 − es
es − ed

]T [
Y3 E
⋆ Y3

] [
e1 − es
es − ed

]
− (e1 − e2)

TZ23e7+2J ,

Υ4 =eT1 Y4e1 − eT7+3JY4e7+3J + eT4 θ
2e4 − [e1 − e7+3J ]

TY5[e1 − e7+3J ],

Υ5 =h
2eT4 Y6e4 −

π2

4
(e1 − e6+3J)

TY6(e1 − e6+3J),

Υc =− 2[ε1e1 − e5+J ]
TA[e5+J − ε2e1]− 2[ε1e5 − e6+J ]

TA1[e6+J − ε2e5]− · · · − 2[ε1e4+J − e5+2J ]
T

An[e5+2J − ε2e4+J ],

Υe =[e1 e4+J ]
T ε1[e1 e4+J ] + 2[e1 e4+J ]ε2ω̄

T + ω̄T ε3ω̄,

Γ11 =αP− ε4, Γ12 = [Γ1
12,Γ

2
12, · · · ,Γn

12], Γl
12 = −ε4, Γ22 = [Γ1

22, · · · ,Γn
22], Γl

22 = (1− α)P− ε4,

F12 =
n∑

m=1

τ̃cMrm, F13 =
1

3

n∑
m=1

τ̃cMsm, F14 =
n∑

m=1

τmNrm; F15 =
1

3

n∑
m=1

τmNsm,

F22 =−
n∑

m=1

τ̃cBm; F33 = −1

3

n∑
m=1

τ̃cBm, F44 = −
n∑

m=1

τmBm; F55 = −1

3

n∑
m=1

τmBm,

ℵ1 =sym[G2, G2, 0, 0, · · · , 0], ℵ2 = sym[G1,−G1, 2G2, 0, · · · , 0],
χ1 =[Q1(et), Q2(et), 0, Q3(et), 0, · · · , 0],
χ2 =[R(et), 0, 0,−I, T1(et), · · · , Tn(et), S(et), 0, · · · , 0, K(et), B(et), 0], τ̃c = τm − τm(t).

Proof . Consider the following LKF:

V ((et, c(t)) =
5∑

k=1

Vk(et, c(t)), t ∈ [tk, tk+1) , (3.4)
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V1((et, c(t)) =cT (t)X(et)c(t) + 2
N∑
k=1

lk

∫ ck(t)

0

hm(r)dr +
n∑

m=1

∫ t

t−τm(t)

(
(ℏT (c(r))Lmℏ(c(r)) + (cT (r))

×Hm(c(r)))

)
dr +

n∑
m=1

∫ 0

−τm

∫ t

t+s

ċT (r)Bmċ(r)drds,

V2((et, c(t)) =(tk+1 − t)θT1 Zθ1(t) + (tk+1 − t)

∫ t

tk

θT2 (r)Z̄θ2(r)dr,

V3((et, c(t)) =
n∑

m=1

∫ t

t−τm(t)

cT (r)Y1c(r)dr +
n∑

m=1

∫ t

t−τm

cT (r)Y2c(r)dr +
n∑

m=1

τm

∫ 0

−τm

∫ t

t+s

ċT (r)Y3ċ(r)drds,

V4((et, c(t)) =

∫ t

t−θ

cT (r)Y4c(r)dr + θ

∫ 0

−θ

∫ t

t+s

ċT (r)Y5ċ(r)drds,

V5((et, c(t)) =h
2

∫ t

tk−θ

ċT (r)Y6ċ(r)dr −
π2

4

∫ t−θ

tk−θ

θT3 (r)Y6θ3(r)dr,

where Z =


ZT

1 + Z1 − ZT
2 − Z2

2
Z2 Z3

∗ −ZT
1 − Z1 − ZT

2 − Z2

2
Z4

∗ ∗ ZT
5 + Z5

.
The time-derivative of Vk(et, c(t)) (k = 1, · · · , 5) for the system:

LV1(et, c(t)) ≤− 2cT (t)X(et)ċ(t) +
∑
j∈ℑ

Λijc
T (t)X(et)c(t) + 2ℏT (c(t))Lċ(t) +

n∑
m=1

(
ℏT (c(t))× Lmℏ(c(t))

− (1− σm)ℏT (c(t− τm(t)))Lmℏ(c(t− τm(t)))

)
+

n∑
m=1

(
cT (t)Hmc(t)− (1− σm)c

T (t

− τm(t))Hmc(t− τm(t))

)
+

n∑
m=1

τmċ
T (t)Bmċ(t)−

n∑
m=1

∫ t

t−τm

ċT (r)Bmċ(r)dr.

The last integral term in the previous inequality, by using Remark (2.7) will result as follows:

−
n∑

m=1

∫ t

t−τm

ċT (r)Bmċ(r)dr =
n∑

m=1

[
−
∫ t−τm(t)

t−τm

ċT (r)Bmċ(r)dr −
∫ t

t−τm(t)

ċT (r)Bmċ(r)dr

]

≤ξT (t)

[
n∑

m=1

(τm − τm(t))

(
MrmB

−1
m MT

rm +
1

3
MsmB

−1
m MT

sm

)

+ sym(MrmO
m
1 +MsmO

m
2 ) +

n∑
m=1

τm(t)

(
NrmB

−1
m NT

rm

+
1

3
NsmB

−1
m NT

sm

)
+ sym(NrmO

m
3 +NsmO

m
4 )

]
ξ(t),
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where

Om
1 ξ =c(t− τm(t))− c(t− τm)),

Om
2 ξ =c(t− τm(t)) + c(t− τm)−

2

τm − τm(t)

∫ t−τm(t)

t−τm

c(r)dr,

Om
3 ξ =c(t)− c(t− τm(t))and

Om
4 ξ =c(t) + c(t− τm(t))−

2

τm(t)

∫ t

t−τm(t)

c(r)dr, for m = 1, 2, · · · , n.

Thus, we have

LV1(et, c(t)) ≤ξT (t)

(
Υ1 +

n∑
m=1

(τm − τm(t))

(
MrmB

−1
m MT

rm +
1

3
MsmB

−1
m MT

sm

)
(3.5)

+
n∑

m=1

τm(t)

(
NrmB

−1
m NT

rm +
1

3
NsmB

−1
m NT

sm

))
ξ(t),

LV2(et, c(t)) =2(tk+1 − t)θT1 (t)Zθ4(t)− θT1 (t)Zθ1(t) + (tk+1 − t)θT2 (t)Z̄θ2(t)

− (t− tk)θ
T
5 (t)Z̄θ5(t)− (c(t)− c(tk))

T Z̄T
12c(tk)− (c(t)− c(tk))

T

× Z̄23c(tk − θ)−
∫ t

tk

ċT (r)Z̄22ċ(r)dr. (3.6)

Using Lemma (2.4) and also due to the reason that Z̄22 > 0, the succeeding inequality shown
below has been obtained.

−
∫ t

tk

ċ(r)Z̄22ċ(r)dr ≤ξT (t)ℵξ(t), (3.7)

where ℵ = (t− tk)

(
G1Z̄

−1
22 G

T
1 +

h2

3
G2Z̄

−1
22 − ℵ1

)
+ ℵ2.

Thus, we get

LV2(et, c(t)) ≤ξT (r)(Υ2a +Υ2b + ℵ)ξ(t), (3.8)

LV3(et, c(t)) ≤cT (t)(Y1 + Y2)c(t)−
n∑

m=1

(1− σm)c
T (t− τm(t))Y1c(t− τm(t))

−
n∑

m=1

cT (t− τm)Y2c(t− τm) + ċT (t)τ 2mY3ċ(t)−
n∑

m=1

τm

∫ t

t−τm

ċT (r)Y3ċ(r)dr. (3.9)

Using Lemma (2.3), for m = 1, 2, · · · , n, we get

−τm
∫ t

t−τm

ċT (r)Y3ċ(r)dr =− τm

∫ t

t−τm(t)

ċT (r)Y3ċ(r)dr − τm

∫ t−τm(t)

t−τm

ċT (r)Y3ċ(r)dr,

≤−


∫ t

t−τm(t)

ċ(r)dr∫ t−τm(t)

t−τm

ċ(r)dr


T [

Y3 E
⋆ Y3

]
∫ t

t−τm(t)

ċ(r)dr∫ t−τm(t)

t−τm

ċ(r)dr

 ,
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where E is any matrix with suitable dimension and satisfies

[
Y3 E
⋆ Y3

]
> 0.

LV3(et, c(t)) ≤ξT (t)(Υ3a +Υ3b)ξ(t), (3.10)

LV4(et, c(t)) ≤cT (t)Y4c(t)− cT (t− θ)Y4c(t− θ) + ċT (t)θ2Y5ċ(t)− θT6 (t)Y5θ6(t), (3.11)

≤ξT (t)Υ4ξ(t),

LV5(et, c(t)) =h2cT (t)Y6ċ(t)−
π2

4
θT3 (t− θ)Y6θ3(t− θ), (3.12)

≤ξT (t)Υ5ξ(t).

For any matrices Q1(et), Q2(et) and Q3(et), we get the equation as follows:

0 =2[Q1(et)c
T (t) +Q2(et)c

T (tk) +Q3(et)ċ
T (t)][R(et)c(t) + S(et)ℏ(c(t)) +

n∑
m=1

Tm(et)ℏ(c(t− τm(t)))

+K(et)c(tk − θ) +B(et)ω̄(t)− ċ(t)]. (3.13)

Now, the above equation can be rewritten as follows:

0 =2[ξT (t)χT
1 χ2ξ(t)].

From (2.3), it is possible to deduce diagonal matrices A ≥ 0 and Am ≥ 0(m = 1, · · · , n) in a manner
that the following holds:

2 [ε1c(t)− ℏ(c(t))]T A [ℏ(c(t))− ε2c(t)] ≥ 0, (3.14)

2
n∑

m=1

[ε1c(t− τm(t))− ℏ(c(t− τm(t)))]
T Am [ℏ(c(t− τm(t)))− ε2c(t− τm(t))] ≥ 0. (3.15)

LV (et, c(t))− H(et)(t) < ξT (t)℧ξ(t) +
n∑

m=1

(τm − τm(t))

(
MrmB

−1
m MT

rm +
1

3
MsmB

−1
m MT

sm

)

+
n∑

m=1

τm(t)

(
NrmB

−1
m NT

rm +
1

3
NsmB

−1
m NT

sm

)
+ sym(χT

1 χ2),

LV (et, c(t)) < 0, (3.16)

where

℧ =Υ+ Ῡ,

Υ =Υ1 +Υ2 +Υ3a +Υ3b +Υ4 +Υ5 +Υc,

Ῡ =G1Z̄
−1
22 G

T
1 + 3hG2Z̄

−1
22 G

T
2 − hℵ1 + hℵ2 + sym(χT

1 χ2) and

ξ(t) = [cT (t), cT (tk),

∫ t

tk

cT (r)dr, ċT (t), cT (t− τ1(t)), · · · , cT (t− τm(t)), ℏT (c(t)), ℏT (c(t− τ1(t))), · · · ,

ℏT (c(t− τn(t))), c
T (tk − θ), cT (t− θ), ω̄(t)].

If ℧ < 0, ϖ > 0 occurs, so that ℧ < −ϖI, then

LV (et, c(t))− H(et)(t) ≤ −ϖ|ξ(t)|2 ≤ −ϖ|c(t)|2,
LV (et, c(t)) ≤ H(et)(t)−ϖ|c(t)|2.
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Take ω̄(t) = 0. Thus, we attain

H(et)(t) = fT (t)ε1f(t).

Since ε1 ≤ 0 under Assumption (2.1), it yields LV (et, c(t)) ≤ −ϖ|c(t)|2. Hence, the system (2.5) is
quadratically stable. Then, we have

LV (et, c(t))− H(t) ≤ ξT (t)[℧+Υe]ξ(t),

LV (et, c(t))− H(t) ≤ 0. (3.17)

Integrate (3.17), we obtain∫ t

0

H(r)dr ≥ V (et, c(t))− V (et, c(0)) ≥ cT (t)Pc(t) + σ, (3.18)

where σ is taken as σ = −V (et, c(0)) − ||P|| sup−τm≤r≤0 |Γ(r)|2. Two cases ∥ε4∥ = 0 and ∥ε4∥ ≠ 0
are needed for proving that (2.10) is valid. If we consider ∥ε4∥ = 0, then for any tl ≥ 0,∫ tl

0

H(t)dt ≥ cT (tl)Pc(tl) + σ ≥ σ. (3.19)

Hence, Theorem (3.1) holds. If ∥ε4∥ ≠ 0, as in Assumption (2.1), it can therefore be concluded that
ε1 = 0, ε2 = 0 and ε3 > 0. If tl ≥ t ≥ 0, we get∫ tl

0

H(t)dt ≥
∫ t

0

H(s)ds ≥ cT (t)Pc(t) + σ. (3.20)

Also, we have 0 < t− τn(t) ≤ tl.
Thus, ∫ tl

0

H(t)dt ≥ cT (t− τn(t))Pc(t− τn(t)) + σ. (3.21)

If t ≤ τn(t), we get −τn ≤ t− τn(t) ≤ 0, then

σ + cT (t− τn(t))Pc(t− τn(t)) ≤σ + ∥P∥|c(t− τn(t))|2,
≤σ + ∥P∥ sup

−τm≤s≤0
|Γ(s)|2,

=− V (et, c(0)) ≤
∫ tl

0

H(et)(t)dt.

Thus, (3.21) holds for any tl ≥ t ≥ 0. From (3.20) and (3.21), there exists 0 < α < 1 that satisfies∫ tl

0

H(t)dt ≥ σ + αcT (t)Pc(t) + (1− α)cT (t− τn(t))Pc(t− τn(t)). (3.22)

fT (t)ε4f(t) = −
[

c(t)
c(t− τn(t))

]T
Γ

[
c(t)

c(t− τn(t))

]
+ αcT (t)Pc(t) + (1− α)cT (t− τn(t))Pr(t− τn(t)),
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for Γ > 0, then

fT (t)ε4f(t) ≤ αcT (t)Pc(t) + (1− α)cT (t− τn(t))Pc(t− τn(t)).

So, for t ≥ 0, tl ≥ 0, which satisfies tl ≥ t,∫ tl

0

H(et)(t)dt ≥ fT (t)ε4f(t) + σ.

Therefore, (2.10) holds for any tl ≥ 0. For ∥ε4∥ = 0 and ∥ε4∥ ≠ 0, the system (2.5) under concern is
extended dissipative. Hence the proof. □

Theorem 3.2. For given h > 0, β > 0, θ > 0, τm > 0 and σm < 1, the error system attains
quadratically stability and extended dissipativity synchronization, if subsequent symmetric matri-

ces Ẑ > 0, ˆ̄Z22 > 0, Ŷi(i = 1, · · · , 6), Q̂i(et)(i = 1, 2, 3), Ĝ1, Ĝ2 ∈ R(8+3J)n×n,Mrm > 0,Msm >

0, Nrm > 0, Nsm > 0, symmetric matrix ˆ̄Z =

 ˆ̄Z11
ˆ̄Z12

ˆ̄Z13

⋆ ˆ̄Z22
ˆ̄Z23

⋆ ⋆ ˆ̄Z33

 and diagonal matrices A > 0, A1 >

0, · · · , An > 0 exist such that the following LMIs hold:[
Ŷ3 Ê

⋆ Ŷ3

]
> 0 (3.23)

Γ̂ =

[
Γ̂11 Γ̂12

⋆ Γ̂22

]
> 0, (3.24)



Υ̂ F̃12 F̃13 F̃14 F̃15 hĜ1 h2Ĝ2 βΩT
1 (et) ΩT

2 (et)

⋆ F̃22 0 0 0 0 0 0 0

⋆ ⋆ F̃33 0 0 0 0 0 0

⋆ ⋆ ⋆ F̃44 0 0 0 0 0

⋆ ⋆ ⋆ ⋆ F̃55 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −h ˆ̄Z22 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −3h ˆ̄Z22 0 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −βI 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −βI


< 0, (3.25)

where

Υ̂ =Υ̂1 + Υ̂2a + Υ̂2b + Υ̂3a + Υ̂3b + Υ̂4 + Υ̂5 + Υ̂c + Υ̂e,

Υ̂1 =− 2eT1 X̂(et)e4 + 2eT5+J L̂e4 + eT5+J

n∑
m=1

L̂me5+J − (1− σ1)e
T
6+J L̂1e6+J − · · · − (1− σn)e

T
5+2J L̂ne5+2J

+ eT1

n∑
m=1

Ĥme1 − (1− σ1)e
T
5 Ĥ1e5 − · · · − (1− σn)e

T
4+JĤne4+J +

n∑
m=1

eT4 τmB̂me4 +
∑
j∈ℑ

Λije
T
1 X̂(et)e1

− ℵ̂1 + ℵ̂2 + sym(χ̂T
1 χ̂2),

Υ̂2a =2h

 e1
e2
e3

T

Ẑ

 e4
0
e1

+ h

 e2
e4

e7+2J

T

ˆ̄Z

 e2
e4

e7+2J

−

 e1
e2
e3

T

Ẑ

 e1
e2
e3

−

 e2
0

e7+2J

T

ˆ̄Z

 e2
e0

e7+2J

 ,
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Υ̂2b =(e1 − e2)
T ˆ̄ZT

12e2 − (e1 − e2)
T ˆ̄Z23e6+2J ,

Υ̂3a =eT1 (Ŷ1 + Ŷ2)e1 − (1− σ1)e
T
5 Ŷ1e5 − · · · − (1− σm)e

T
4+J Ŷ1e4+J − eT6+2J Ŷ2e6+2J − · · · − eT5+3J Ŷ2e5+3J

− eT6+2J Ŷ2e6+2J + eT4 (
n∑

m=1

τ 2mŶ3)e4,

Υ̂3b =−
4+J∑
s=5

5+3J∑
d=6+2J

[
e1 − es
es − ed

]T [
Ŷ3 Ê

⋆ Ŷ3

] [
e1 − es
es − ed

]
− (e1 − e2)

T Ẑ23e7+2J ,

Υ̂4 =eT1 Ŷ4e1 − eT7+3J Ŷ4e7+3J + eT4 θ
2e4 − [e1 − e7+3J ]

T Ŷ5[e1 − e7+3J ],

Υ̂5 =h
2eT4 Ŷ6e4 −

π2

4
(e1 − e6+3J)

T Ŷ6(e1 − e6+3J),

Υ̂c =− 2[ε1e1 − e5+J ]
TA[e5+J − ε2e1]− 2[ε1e5 − e6+J ]

TA1[e6+J − ε2e5]− · · · − 2[ε1e4+J − e5+2J ]
T

An[e5+2J − ε2e4+J ],

Υ̂e =[e1 e4+J ]
T ε1[e1 e4+J ] + 2[e1 e4+J ]ε2ω̄

T + ω̄T ε3ω̄,

Γ̂11 =αP− ε4, Γ̂12 = [Γ̂1
12, Γ̂

2
12, · · · , Γ̂n

12], Γ̂l
12 = −ε4, Γ̂22 = [Γ̂1

22, · · · , Γ̂n
22], Γ̂l

22 = (1− α)P− ε4,

F̃12 =
n∑

m=1

τ̃cMrm, F̃13 =
1

3

n∑
m=1

τ̃cMsm, F̃14 =
n∑

m=1

τmNrm, ; F̃15 =
1

3

n∑
m=1

τmNsm,

F̃22 =−
n∑

m=1

τ̃cB̂m; F̃33 = −1

3

n∑
m=1

τ̃cB̂m, F̃44 = −
n∑

m=1

τmB̂m; F̃55 = −1

3

n∑
m=1

τmB̂m,

ℵ̂1 =sym[Ĝ2, Ĝ2, 0, 0, · · · , 0], ℵ̂2 = sym[Ĝ1,−Ĝ1, 2Ĝ2, 0, · · · , 0]
χ̂1(et) =[M(et), ϵ1M(et), 0, ϵ2M(et), 0, · · · , 0], , τ̃c = τm − τm(t)

χ̂2(et) =[R(et)Q̄−1(et), 0, 0,−Q̄−1(et), T1(et)Q̄−1(et), · · · , Tn(et)Q̄−1(et), S(et)Q̄−1(et), 0, · · · , 0,
K̄(et), B(et)Q̄−1(et), 0],

V (et) =[Na(et), 0, 0, 0, Nc1(et), · · · , , Ncn(et), Nb(et), 0, · · · , 0, N(et), 0, 0].

Furthermore, K(et) = Q̄−1(et)K̄(et) are the control gain matrices.

Proof . The controller to be built takes the form as follows:

u(t) = (K(et) + ∆K(et))c(tk − θ), (3.26)

where K(et) is the control gain matrix which has to be found and ∆K(t) takes the form ∆K(t) =
M(et)C(et)(t)N(et). A real - valued matrix to represent the controller gain fluctuation is ∆K(et). We
set Q2(et) = ϵ1Q1(et), Q3(et) = ϵ2Q1(et), Q1(et) = Q̄(et). Replacing R̃(et), S̃(et), T̃1(et), ..., T̃n(et) by
R(et)+M(et)C(et)(t))Na(et), S(et)+M(et)C(et)(t))Nb(et), T1(et)+M(et)C(et)(t))Nc1(et), · · · , Tn(et)+
M(et)C(et)(t))Ncn(et) respectively and proceeding as in Theorem (3.1), we get

Ξ + χ̂1(et)C(et)(t)V (et) + V T (et)C
T (et)(t)χ̂

T
1 (et) < 0. (3.27)

where Ξ is defined in (3.3). By Lemma (2.5), there exist β > 0 such that

Ξ + βΩ1(et)Ω
T
1 (et) + β−1ΩT

2 (et)Ω2(et) < 0. (3.28)
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Ω1(et) =[MT (et)Q̄−T (et), ϵ1M
T (et)Q̄−T (et), 0, ϵ2M

T (et)Q̄−T (et), 0, · · · , 0]T ,
Ω2(et) =[Na(et)Q̄−1(et), 0, 0, 0, Nc1(et)Q̄−1(et), · · · , , Ncn(et)Q̄−1(et), Nb(et)Q̄−1(et), 0, · · · , 0,

N(et)Q̄−1(et), 0, 0].

Pre and post multiplying (3.1, 3.2) by diag{Q̄−1(et), Q̄−1(et)}, they get converted into (3.23, 3.24)

respectively. We define ˆ̄Z = diag{Q̄−1(et), Q̄−1(et), Q̄−1(et)}Z̄diag{Q̄−1(et), Q̄−1(et), Q̄−1(et)}, ˆ̄Z22 =
Q̄−1(et)Z̄22Q̄−1(et), Ŷi = Q̄−1(et)YiQ̄−1(et), (i = 1, · · · , 6); L̂ = Q−1(et)LQ−1(et), X̂(et) = Q−1(et)X(et)
×Q−1(et); L̂m = Q̄−1(et)LmQ̄−1(et), (m = 1 · · ·n).

Set Π1 = diag{
8+3J︷ ︸︸ ︷

Q−1(et) · · · Q−1(et)},Π2 = diag{Π1, I, I, I, I,Q−1(et),Q−1(et), I, I}. Then, Ĝi =
Π1GiQ̄−1(et), (i = 1, 2). Pre and post multiply (3.28) by Π2 and also applying Schur complement to
the obtained result, we get (3.25).

Hence the proof. □

Corollary 3.3. Consider the error system (2.8) with m = 1. When there are no uncertainties,
external disturbance and u(t) = 0, the system (2.8) gets transformed into following:

ċ(t) =−Rc(t) + Sℏ(c(t)) + T1ℏ(c(t− τ1(t))). (3.29)

Proof . The proof follows from Theorem (3.1) and hence it is omitted. □

4. Numerical examples

We provide numerical simulations in this to illustrate the appropriateness of suggested approach
and benefits of our research methods in view of the conditions obtained in the prior section.

Example 4.1. The MJRNNs with multiple time-varying delays into consideration:

ċ(t) = −R̃(et)c(t) + S̃(et)ℏ(c(t)) +
2∑

m=1

T̃m(et)ℏ(c(t− τm(t))) + u(t) +B(et)ω̄(t), (4.1)

where

R1 =

[
3 0

0 2

]
, S1 =

[
1 0.3

−1 0.2

]
, T11 =

[
0.4 0.6

0.5 0.3

]
,

T21 =

[
0.4 0.3

0.2 0.8

]
, B1 =

[
0.3 −0.3

−0.2 0.5

]
,

R1 =

[
3.2 0

0 2.3

]
, S1 =

[
1.2 0.3

−1 0.24

]
, T12 =

[
0.5 0.3

0.6 0.3

]
,

T22 =

[
0.5 0.2

0.5 0.5

]
, B2 =

[
0.4 −0.7

−0.4 0.2

]
,

Na(et) = Nb(et) = Nc1(et) = · · · , Ncn(et) = diag{0.1, 0.1},

Let the activation function satisfy a−1 = −0.1, a+1 = 0.1, a−2 = −0.2, a+2 = 0.2. We take h = 0.2 and
further time - delays are of the form τ1(t) = 0.3sin(t)+0.2, τ2(t) = 0.1sin(t)+0.5, τ1 = 0.5, τ2 = 0.6.
MATLAB LMI Toolbox has been used in solving the obtained results in Theorem (3.2). We assign



Extended dissipativity synchronization for MJRNNs 2815

values using weighting matrices ε1, ε2, ε3, and ε4 and the extended dissipativity analysis of the system
(4.1) is done.
L2−L∞ performance: ε1 = 0, ε2 = 0, ε3 = γ̃2I, ε4 = I, and σ = 0. We calculate the following control
gain matrix by solving the feasibility problem for LMI in Theorem (3.2).

K1 =

[
0.3455 0.0034

0.0321 0.0342

]
, K2 =

[
0.1232 0.0032

0.0121 0.0452

]
.

Thus, Figure 4.1 shows that the system converges to zero with our parameter values and shows
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Figure 4.1: State trajectories showing L2 − L∞ performance.

L2−L∞ performance, indicating that the designed controller is efficient. The results of the simulation
clearly explain that the proposed methodology is effective.

H∞ performance: On assigning the values ε1 = −I, ε2 = 0, ε3 = γ̃2I, ε4 = 0, and σ = 0, we get

K1 =

[
0.1245 0.0044

0.0128 0.1254

]
, K2 =

[
0.1452 0.0032

0.0453 0.4213

]
,

which is the desired control gain matrix. Hence from Figure 4.2, it is evident that the system operates
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Figure 4.2: State trajectories depicting H∞ performance.
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well.
Passivity performance: ε1 = 0, ε2 = I, ε3 = γ̃, ε4 = 0, and σ = 0. With these parameter inputs, we
get

K1 =

[
0.6577 0.0254

0.0254 0.0547

]
, K2 =

[
0.2345 0.3242

0.0312 0.5634

]
.

The generated state responses in the presence of disturbance ω̄(t) under randomly initialized condi-

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t/sec

-10

-8

-6

-4

-2

0

2

4

6

8

10

St
at

e 
re

sp
on

se
s

Figure 4.3: Passivity performance : State trajectories.

tions are depicted in Figure 4.3. All of these researches indicate that the controller is well-designed.
Mixed H∞ and Passivity performance: The weighting matrices take the values ε1 = 0, ε2 = I, ε3 =
γ̃, ε4 = 0, and σ = 0.

K1 =

[
0.1248 0.1567

0.6745 0.4578

]
, K2 =

[
0.1032 0.0451

0.0021 0.1096

]
Thus, it is evident from Figure 4.4 that system is simplified to Mixed H∞ and Passivity performance.
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Figure 4.4: Mixed H∞ and passivity performance : State trajectories.

(Q̄ − S −R) Dissipativity: ε1 = Q̄, ε2 = S, ε3 = R− α̃I, and ε4 = 0 with

Q̄ =

[
−1 0
0 −1

]
, S =

[
0.3 0
0.4 0.25

]
, R =

[
0.3 0
0 0.3

]
.
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The following is the resultant matrix obtained:

K1 =

[
5.5477 0.1521

0.0412 3.5461

]
, K2 =

[
1.0212 0.4021

0.0544 2.2321

]

and dissipativity performance is α = 0.0072. The initial condition [−5, 5]T is to probe the numerical
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Figure 4.5: State responses showing the performance of (Q̄ − S −R) dissipativity.

results of u(t). The state response of the dynamical system (4.1) which reduces to (Q̄ − S − R)
dissipativity performance is seen in Figure 4.5. The simulation results allow us to reach a conclusion
that the state trajectories very well converge to zero. Eventually, Figures. 4.1 - 4.5 not just justify
the system’s (4.1) control performance, but it also show the huge benefits of our newly constructed
control.

Example 4.2. The differential equations shown below describe continuous time MJRNNs with N
units [14]:

ċi(t) =
ci(t)

RiCi
+

N∑
j=1

S̃j(et)(t) + ui(t), (4.2)

xi(t) =ℏi(ci(t)).

As it is shown in Figure 4.6, the system (4.2) could be enabled with the aid of an analog resistance-
capacitance network circuit with reference to the results obtained in [14]. Here, the input voltage of
the ith amplifier is ci and the output voltage of the ith amplifier is Vi = ℏi(ci(t)). Every operational
amplifier possess two output terminals Vi and −Vi. Ri and Wij are described as given below:

1

Ri

=
1

ρi
+

N∑
j=1

1

Rij

,

Wij =


+

1

Rij

,when Rij connected to Vj;

− 1

Rij

,when Rij connected to −Vj.

Thus, the system (4.2) takes the subsequent form:



2818 Anbuvithya, Dheepika Sri, Vadivel, Hammachukiattikul, Park, Gunasekaran

Figure 4.6: RNN Analog circuit representation for ith neuron.

ċ(t) = −Rc(t) + Sℏ(c(t)) + Tu, (4.3)

where R =

 1

R1C1
0

0
1

R2C2

 , S =


S̃11

C1
S̃12

C1
S̃21

C2
1

S̃21/C2

 , T =

 1

C1
0

0
1

C2

 .
RiCi = ρi, for i = 1, 2, ..., N represent the time constants and it signifies the convergence of ci . If
ρi = ρ for each neuron, we should consider the values for ρi in such a manner that it adjust for
these differences and maintains Ri the same manner for each neuron. Due to the high gain of the
frequency response, the output Vi could converge faster. As a result, even if ci is already a long
way from reaching its equilibrium, Vi could appear because in a minor fraction of ρi, the circuit has
converged. Here, with the aforementioned range of parameters, we have the MJRNNs defined by
(4.2).

Ri =Ci, i = 1, 2

S =

[
1 1.5

−1.5 −1

]
, ℏ1(t) = tanh(t).

Making use of MATLAB LMI toolbox, the LMI obtained using Corollary (3.3) are solved which yields
a range of feasible solutions. In Figure 4.7, the state response of (4.3) is depicted.
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Figure 4.7: State responses for Example 4.2.
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5. Conclusion

The extended dissipativity and asymptotic stability of uncertain MJRNNs with multiple time-
varying delays are discussed and the results which use memory sampled-data control and one of its
applications to circuit theory have been discussed. Using a suitable Lyapunov functional, the results
were obtained. Eventually, the neural networks were synchronised with a memory sampled-data
controller. By providing appropriate simulation results, the behaviour of such control design process
has been evidenced. Future work subjects may include implementing the findings of this study to
various fractional-order systems with various stability analysis and control techniques [29, 31, 35, 36,
37, 38].
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