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Topology is studying the objects which are considered to be equal if they may also be continually deformed through other shapes
as bending and twisting without tearing or glueing them. Topology is similar in geometrical structures and quantitatively
equivalent. Nanotopology is the study of set. The main goal of this article is to propose the idea of generalized closed sets in
Pythagorean nanotopological spaces. In addition, the concept of semigeneralized closed sets is also defined, and their
properties are investigated. An application to MADM using Pythagorean nanotopology has been proposed and illustrated
using a numerical example.

1. Introduction

Topology is a discipline of mathematics in which two objects
are regarded equal if they may be continously deformed into
one another through motions in space such as bending,
twisting, stretching, and shrinking without preventing tear-
ing apart or glueing together sections. The qualities that stay
constant by such continuous deformations are the core
issues of interest in topology. While topology is similar to
geometry, it varies in that geometrically equal things gener-
ally share numerically measured properties such as lengths
or angles, whereas topologically analogous objects are quali-
tatively equivalent. General topology is the branch of topol-
ogy that deals with the fundamental set-theoretic notions
and constructs used in topology in mathematics. Most other
fields of topology, such as differential topology, geometric
topology, and algebraic topology, are built on it. Continuity,
compactness, and connectedness are the three fundamental
principles in point-set topology. Intuitively, continuous

functions transport nearby points to nearby points. Compact
sets can be covered by an infinite number of small sets. Con-
nected sets are those that cannot be separated into two sep-
arate pieces.

Fuzzy set theory [1] plays a vital role in dealing with
incomplete data and vagueness, and it is applied in a wide
range of disciplines. Fuzzy set is an extension of the usual
set holding elements with its membership grade in the inter-
val [0,1]. Along with some conditions, there has been an
advancement in fuzzy set (intuitionistic fuzzy set (IFS)) in
the view of other human thinking options [2]. To each ele-
ment in the IFS, it has membership and nonmembership
grades which satisfy the condition that the sum of both the
grades is lesser than or equal to 1. The Pythagorean fuzzy
subset (PFS), an advancement of the fuzzy subset with vari-
ous applications, was presented by Yager [3, 4]. PFS can be
used in any situation where IFS is not appropriate.

Fuzziness was improved from intuitionistic and further
extended to neutrosophic sets. Smarandache [5] presented
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neutrosophic sets, a crucial mathematical concept for deal-
ing with indeterminate, and inconsistent data. The set that
assigns truth, indeterminacy, and false membership grades
for elements that assume values within the interval �−0, 1+½
characterizes a neutrosophic set (NS). Wang et al. instituted
the generalization of intuitionistic sets and a sub of NS,
single-valued NS in [6] which has elements with three mem-
bership grades holding the values in interval [0,1].

Chang defined fuzzy topology in [7] as a collection of
fuzzy sets that satisfy the axioms of topological spaces. In
topology, the fuzzy set theoretical concepts were applied
and various notions of topological space were introduced
as convergence and compactness [8–10]. Following this,
intuitionistic topological spaces were developed into ideas
as separation axioms, connectedness, and categorical prop-
erty [11–15].

Using an equivalence relation in a subset of universe in
terms of boundary region and approximations, nanotopolo-
gical space was introduced. Subsequently, functions on
nanotopological spaces, namely, nanocontinuous functions
and their characterizations in forms of nanoclosed sets, clo-
sure and interior were derived [16]. Weak forms of open sets
as nanoaplha open, semiopen, and preopen sets with various
form of nano-α-open and semiopen sets corresponding to
various case of approximations were derived in [17]. In
[18, 19], the concept of nanocompactness and connected-
ness, generalized closed sets were developed with their prop-
erties. The nanosemipreneighbourhoods, semipreinterior,
semiprefrontier, semipreexterior, nanogeneralized preregu-
lar closed sets were defined, and relations between the exist-
ing sets have been examined in [7, 8].

The notion of intuitionistic fuzzy nanotopological space
was introduced, and the weak forms of intuitionistic fuzzy
nanoopen sets and properties of intuitionistic fuzzy nano-
continuous functions are investigated in [20]. Intuitionistic
fuzzy nanogeneralized continuous mappings and closed sets
were defined, and their properties were examined in [21, 22].
Thivagar et al. presented the idea of nanotopology neutro-
sophic units in [23]. [24] introduced the Pythagorean fuzzy
topological space by following Chang. By making a fusion
of the concepts Pythagorean topological space and nanoto-
pological space, Pythagorean nanotopological spaces
(PNTSs) were developed in [25–28].

Multicriteria decision-making is a branch of operation
research. Decision-making often involves vagueness which
can be effectively handled by fuzzy sets and fuzzy decision-
making techniques. In recent years, a great deal of research
has been carried out on the theoretical and application
aspects of MCDM and fuzzy MCDM. The algorithms of
the popular MCDM processes are AHP and TOPSIS. Subse-
quently, fuzzy MCDM techniques are introduced, and their
applications in different disciplines are more effective nowa-
days. MDCM in general is as follows: problem formulation,
identification of the requirements, goal setting, identification
of various alternatives, development of criteria, and identifi-
cation and application of decision-making technique. Vari-
ous mathematical techniques can be used for this process,
and the choice of techniques is made based on the nature
of the problem and the level of complexity assigned to the

decision-making process. All methods have their own pros
and cons. According to a recent literature review by [29],
there were more than hundreds of research articles pub-
lished in the last two decades showing the application of
MCDM. The development of the fuzzy decision-making
and its tremendous growth is discussed in detail in the
review by Mardani et al. [30]. As the fuzzy set has been
developed into many fuzzy sets, the MCDM has also been
evolved around those sets and transformed into a usable tool
in the application for different disciplines. Recently, the
MCDM has been developed and used in applications as in
[31–35]. Our motivation for the work is that this is still a
developing area in fuzzy mathematics, and we want to pro-
duce more theoretical concepts and show the application
of the work in some real-life situations by combining it with
wide-area decision-making. There are many existing models
which are still developing in this particular area but when we
deal with more fuzzified data, this method is more useful
without reducing the constraint when compared to the other
concepts. The proposed concepts and model have the more
fuzzified values as information but still hold the same condi-
tion as the other models, which has a great advantage in
dealing with the more vague details of the problem.

The following is how the article is organized: In Section
2, we define generalized closed sets of PNTS along with its
characterizations. Sections 3 discusses the generalized semi-
closed sets of PNTS. In Section 4, we present an MADM
algorithm by using Pythagorean nanotopology, illustrate
with the help of numerical example, and conclude in Section
5.

2. Pythagorean Nanogeneralized Closed Sets

PNTS has been defined in [28], the weak forms of open
sets of PNTS have been defined, and their properties were
investigated in [26, 28]. In this section, as an extension of
these ideas of PNTS, the generalized closed sets have been
developed and various characterizations of these sets have
been examined. Throughout this paper, Pythagorean nano
is denoted by PN.

Definition 1 (see [36]). Let the Universe be U and equiva-
lence relation on U be R, and if τRðYÞ = f∅,U,PNLRðYÞ,
PNURðYÞ,PNBRðYÞg where Y ⊆U, τRðYÞ holds the fol-
lowing axioms:

(1) ∅,U ∈ τRðYÞ
(2) If Tk ∈ τRðYÞ for k = 1, 2,⋯, then

S∞
k=1Tk ∈ τRðYÞ

(3) If Tk ∈ τRðYÞ for k = 1, 2,⋯, n, then Tn
k=1Tk ∈ τRð

YÞ
Then, τRðYÞ is termed as PN topology (PNT) on U

w.r.t Y whereas ∅ = fw, 0, 1j∀w ∈Ug,U = fw, 1, 0j∀w ∈U
g,PNLRðYÞ = fhw, θLYðwÞ, ωLYðwÞjz ∈ ½w�R,w ∈Uig, PN

URðYÞ = fw, θRYðwÞ, ωRYðwÞjz ∈ ½w�R,w ∈Ug, and PNBR

ðYÞ =PNURðYÞ −PNLRðYÞ where θLYðwÞ = ∧k∈½w�RθYðkÞ
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, ωLYðwÞ = ∨y∈½w�RωLYðkÞ and θRYðwÞ = ∨k∈½w�RθYðkÞ, ωRYðw
Þ = ∧k∈½w�RωYðkÞ:

We call ðU, τRðYÞÞ as Pythagorean nanotopological
spaces (PNTS). The elements of τRðYÞ are called PN

open (PNO) sets.

Definition 2. A subset T of PNTSðU, τRðYÞÞ is PN gen-
eralized closed (PNgC) if PNclðTÞ ⊆G whenever T ⊆G,
G is PNO in U:

Theorem 3. T is PNgC in a PNTU iff PNclðTÞ −T has
no nonvoid PNC set.

Proof. Let T be a PNgC and F be PNC subset of PNclð
TÞ −T: Then, T ⊆Fc, and Fc is PNO. Since T is PNgC,
PNclðTÞ ⊆Fc: Therefore, F⊆ ½PNclðTÞ�c and F⊆PNcl

ðTÞ ∩ ½PNclðTÞ�c =∅. That is, F=∅; thus, PNclðTÞ −T

cannot have any nonempty PNC set.
Conversely, let PNclðTÞ −T has no nonvoid PNC set.

G be a PNO such that T ⊆G. Then, PNclðTÞ ∩Gc is a
PNC subset of PNclðTÞ −T, since PNclðTÞ ∩Gc ≤PNc

lðTÞ ∩Tc, as T ⊆G: Therefore, PNclðTÞ ∩Gc =∅: Since
PNclðTÞ −T does not have any nonempty PNC set.
Hence, PNclðTÞ ⊆G: Therefore, T is PNgC in U:☐

Theorem 4. Every PNC set is PNgC.

Proof. IfT isPNC, thenPNclðTÞ =T: Therefore, for every
PNO set G such that T ⊆G,PNclðTÞ ⊆G and hence T is
PNgC.☐

Theorem 5. A PNgC set H is PNC in U if and only if P
NclðHÞ −H is PNC.

Proof. If H is PNC in U, then PNclðHÞ =H and hence
PNclðHÞ −H =∅ which is PNC. Conversely, PNclðHÞ
−H is PNC, and PNclðHÞ −H =∅: Therefore, PNclðH
Þ =H, and hence, H is PNC.☐

Theorem 6. If H and T are PNgC, then H
S

T is PNgC.

Proof. Let G be PNO in U such that H
S

T ⊆G: Then, H
and T ⊆G, since H is PNgC and G is a PNO set having
PNclðHÞ ⊆G:

Similarly, PNclðTÞ ⊆G:
PNclðHS

TÞ =PNclðHÞSPNclðTÞ ⊆G:H
S

T is PN

gC.☐

Theorem 7. Let H be a PNgC subset of U and T ⊆H be a
PNgC set to H: Then, T is PNgC to U:

Proof. Let G be a PNO set in U such that T ⊆G: Then,
T ⊆H ∩G:H ∩G is a PNO to H containing T: Since T

is PNgC to H,PNclH ðTÞ =H ∩G, where PNclHðTÞ is
the PN closure of T in H: Then, PNclðTÞ ⊆H ∩G and
H ⊆G

S ½PNclðTÞ�c: Also, G
S ½PNclðTÞ�c is PNO.

Since H is PNgC in U,PNclðHÞ ⊆G
S ½PNclðTÞ�c:

Therefore, PNclðTÞ ⊆PNclðHÞ ⊆G
S ½PNclðTÞ�c, since

T ⊆H: Therefore, PNclðTÞ ⊆G: Thus, for every PNO

set G in U containing T, PNclðTÞ ⊆G: Therefore, T is P
NgC in U:☐

Now, we prove the intersection of a PNgC and a PNC

is PNgC.

Corollary 8. If H is PNgC and F is PNC in U, then H ∩F

is PNgC.

Proof. Since H ∩F is PNC to H, it is PNgC to H: Since
H ∩F⊆H where H is PNgC in U and H ∩F is PNgC

to H, H ∩F is PNgC in U by the above theorem.☐

Theorem 9. IfH isPNgC andH ⊆T ⊆PNclðHÞ, then T is
PNgC.

Proof. Since H is PNgC, PNclðHÞ −H has no nonempty
PNC subset. Since PNclðTÞ −T ⊆ PNclðHÞ −H, PNclð
TÞ −T also does not have any nonempty PNC set. There-
fore, T is PNgC.☐

Theorem 10. Let U and V be two PNT spaces and H ⊆V

⊆U and H be PNgC in U: Then, H is PNgC in V:

Proof. Let G1 be PNO in V such that H ⊆G1: Then, G1
=V ∩G where G is PNO in U and H =V ∩G: Therefore,
H ⊆G: That is, G is PNO containing H: Since H is PNgC

in U,PNclðHÞ ⊆G: Therefore, V ∩PNclðHÞ ⊆V ∩G:
That is, PNclðHÞ ⊆G1, for every PNOG1 in V such that
G1 ⊇H: Therefore, H is PNgC in V:☐

Theorem 11. Every subset of PNTU is PNgC iff PNURð
UÞ =U:

Proof. Let PNURðUÞ =U and H ⊆U: Let G be PNO in U

such that H ⊆G: Then, PNclðHÞ ⊆PNclðGÞ ⊆G, since U,
∅, PNLRðUÞ, and PNBRðUÞ are the only sets which are
PNO as well as PNC in U, when PNURðUÞ =U: Thus,
PNclðHÞ ⊆G whenever G is PNO and H ⊆G:H is PNg

C, if PNURðUÞ =U:☐

Conversely, assume that every subset of U is PNgC. Let
G ∈ τRðUÞ: Then, G is PNgC. Since G is PNO and G ⊆G,
PNclðGÞ ⊆G; hence, G is PNC. Thus, whenever G is P
NO in U, PNclðGÞ ⊆G and PNclðGÞ is PNO in U:
The PN closure of each PNO set in U is PNO. U is extre-
mally disconnected, and hence, PNURðUÞ =U:

Definition 12. A set H in a PNTSU is PN generalized
open (PNgO) if Hc is PNgC.

Theorem 13. Every PNO set is PNgO.

Proof. We know that every PNC is PNgC. Thus, if we take
complement, we get everyPNO isPNgO. But the converse
need not to be true. That is, everyPNgO need not bePNO

.☐
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Theorem 14. H is PNgO iff F⊆PNint ðHÞ whenever F is
PNC and F⊆H:

Proof. Let H be a PNgO in U: Then, Hc is PNgC. There-
fore, PNclðHcÞ ⊆G whenever G is PNO and Hc ⊆G: Let
F be PNC and F⊆H: Then, Hc ⊆Fc, and Fc is PNO.
Therefore, PNclðHcÞ ⊆Fc: That is, U −PNintðHÞ ⊆U −
F: Hence, F⊆PNintðHÞ:

Conversely, let F⊆PNint ðHÞ for every PNC set such
that F⊆H, and let G be PNO such that Hc ⊆G: Then,
Gc ⊆H where Gc is PNC. Therefore, Gc ⊆PNintðHÞ:
Therefore, U −PNint ðHÞ ⊆G: Therefore, PNclðU −HÞ
⊆G: That is, PNclðHcÞ ⊆G: Therefore, Hc is PNgC, and
hence, H is PNgO in U:☐

Definition 15. If H and T are subset of PNTSU, then H

and T are said to be PN separated (PNS), if H
T

PNclð
TÞ =∅ and T

T
PNclðHÞ =∅:

Theorem 16. If H and T are PNS and PNgO, then HS
T is PNgO.

Proof. Let F be PNC in U such that F⊆H
S

T: Since H

and T are PNS, PNclðHÞTT =∅: Therefore, no ele-
ment of PNclðHÞ belongs to T: Thus, no element of F

T

PNclðHÞ belongs to T: Hence, every element of F
T

PNc

lðHÞ belongs to H, since F⊆H
S

T: That is, F
T

PNclð
HÞ ⊆H: Thus, F

T
PNclðHÞ is PNC subset of H: Since

H is PNgO, F
T

PNclðHÞ ⊆PNintðHÞ:
Similarly, F

T
PNclðTÞ ⊆PNintðTÞ: Since F⊆H

S

H,F=F
T ðHS

TÞ = ðFT
HÞS ðFT

TÞ ⊆ ðFT
PNclð

HÞÞS ðFT
PNclðTÞ ⊆PNintðHÞSPNintðTÞ ⊆PNin

tðHS
TÞ. Thus, F⊆PNintðHS

TÞ, whenever F is PNC

and F⊆H
S

T:☐

Therefore, H
S

T is PNgO.

Theorem 17. If H and T are PNgO in U, then H
T

T is
PNgO.

Proof.Hc and Tc arePNgC and henceHc STc = ðHT
TÞc

is PNgC and hence ðHT
TÞ is PNgO.☐

Theorem 18. If H and T are PNgC sets such that Hc and
Tc are PNS, then H

T
T is PNgC.

Proof. Hc and Tc are PNS and PNgO, and hence, Hc S

Tc is PNgO. Therefore, H
T

T is PNgC.☐

Theorem 19. H is PNgO iff G =U where G is PNO and
PNintðHÞ.

[
Hc ⊆G: ð1Þ

Proof. Let H be PNgO. Let G be PNO such that PNint

ðHÞSHc ⊆G: Then, Gc ⊆H
T

PNclðHcÞ ⊆PNclðHcÞ −
Hc: Since Hc is PNgC, PNclðHcÞ −Hc cannot have any

nonempty PNC set. But Gc is PNC subset of PNclðHcÞ
−Hc: Therefore, Gc ⊆∅: That is, G =U:

Conversely, assume that whenever G is PNO and PN

intðHÞSHc ⊆G, then G ⊆U. Let F be PNC such that F
⊆H. Then, PNintðHÞSHc ⊆PNintðHÞSFc which is
PNO. Therefore, PNintðHÞSHc =U: That is, F⊆PNi

ntðHÞ, since every x ∈F, belongs to PNintðHÞ. Thus, F
⊆PNintðHÞ whenever F is PNC and F⊆H: Therefore,
H is PNgO.☐

Theorem 20. If PNintðHÞ ⊆T ⊆H and if H is PNgO,
then T is also PNgO.

Proof. Hc ⊆Tc ⊆PNclðHcÞ where Hc is PNgC, and hence,
Tc is PNgC. Therefore, T is PNgO.☐

Theorem 21. H is PNgC if and only if PNclðHÞ −H is
PNgO.

Proof. Let H be PNgC. Let F be a PNC such that F ⊆P

NclðHÞ −H: Then, F=∅, sincePNclðHÞ −H cannot have
any nonempty closed set. Therefore, F⊆PNint ðPNclðH
Þ −HÞ, and hence, PNclðHÞ −H is PNgO.

Conversely, if PNclðHÞ −H is PNgO and G is PNO

such that H ⊆G, then PNclðHÞTGc ⊆PNclðHÞTHc =
PNclðHÞ −H where PNclðHÞTGc is PNC. Since PNc

lðHÞ −H is PNgO, PNclðHÞTGc ⊆PNint½PNclðHÞ
−H� =∅: Therefore, PNclðHÞTGc =∅, and hence, PN

clðHÞ ⊆G: Thus, whenever G is PNO and H ⊆G, PNclð
HÞ ⊆G:H is PNgC.☐

Theorem 22. In a PNTS (U, τRðXÞ, if PNLRðXÞ =PN

URðXÞ, then any set H such that HUPNLRðXÞ is the only
PNgC set in U:

Proof. When PNLRðXÞ =U, U and ∅ are the only PNO

sets and hence for any subset H of U, U is the only PNO

set holding it. Therefore, PNclðHÞ ⊆G for every PNO

set G having H: Thus, every subset H of U is PNg-C, if P
NLRðXÞ =PNURðXÞ =U. When PNLRðXÞ ≠U, the PN

O sets in U are U, ∅, and PNLRðXÞ. If H ⊆PNLRðXÞ,
then PNO sets having H are PNLRðXÞ and U. Also, PN

LRðXÞ ≠U: And PNclðHÞUPNLRðXÞ. Therefore, H is
not PNgC. If HUPNLRðXÞ, then U is the only PNO set
holding H and hence PNclðHÞ ⊆G for every PNO set G
⊇H. Therefore, H is PNgC. Thus, only those sets H such
that HUPNLRðXÞ are PNgC, if PNLRðXÞ =PNURðXÞ
.☐

Theorem 23. If PNLRðXÞ =∅ and PNURðXÞ ≠U in a P

NTS, then those sets H for which HUPNURðXÞ are the
only PNgC sets.

Proof. τRðXÞ = f∅, U, PNURðXÞg: If H ⊆PNURðXÞ,
then U and PNURðXÞ are the PNO set containing H. P
NclðHÞ =U; hence, PNclðHÞUPNURðXÞ. Thus, PNclð
HÞUG when G =PNURðXÞ. Therefore, H is not PNgC.
But, if HUPNURðXÞ, then U is the only PNO set that
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contains H and hence PNclðAÞ ⊆G whenever G is PNO

andG ⊇H: Therefore,H isPNgC. Thus, only those subsets
H of U such that HUPNURðXÞ are PNgC in U, if PN

LRðXÞ =∅ and PNURðXÞ ≠U:☐

Theorem 24. If PNLRðXÞ ≠∅ and PNURðXÞ =U, then
every subset H of U is PNgC.

Theorem 25. IfPNLRðXÞ ≠PNURðXÞ andPNLRðXÞ ≠∅
, PNURðXÞ ≠U, and only those subsets H of U such that
HUPNURðXÞ are PNgC in U:

Proof. τRðXÞ = f∅,U, PNLRðXÞ,PNURðXÞ,PNBRðXÞg.
If H ⊆PNLRðXÞ, then PNO sets containing H are PN

LRðXÞ, PNURðXÞ, and U. But PNclðHÞ = ½PNBRðXÞ�c
=PNLRðXÞS ½PNURðXÞ�cUPNLRðXÞ, since
½PNURðXÞ�c ≠∅. Therefore, H is not PNgC. If H ⊆PN

BRðXÞ, then PNBRðXÞ, PNURðXÞ, and U are the PNO

sets containing H and PNclðHÞ = ½PNLRðXÞ�c =PNBRð
XÞS ½PNURðXÞ�cUPNBRðXÞ: Therefore, H is not PNg

C. If H ⊆PNURðXÞ, neither a subset of PNLRðXÞ is a P

NO set containing H for which PNclðHÞUPNURðXÞ.
Therefore, H is not PNgC. If HUPNURðXÞ, then U is
the only PNO set containing H and hence PNclðHÞ ⊆G

for every PNOG ⊇H. Therefore, H is PNgC. Thus, only
thoseH ⊆U for whichHUPNURðXÞ arePNgC in U.☐

3. Pythagorean Nanosemigeneralized
Closed Sets

As we have defined in the last section, we have extended the
concept of PN generalized closed sets to PN semigenera-
lized closed sets and investigated their properties.

Definition 26. A subset H of PNTSU is said to be PN

semigeneralized closed (PNsgC), if PNsclðHÞ ⊆G when-
ever G is PNSO and H ⊆G: The set H is named as PN

semigeneralized open (PNsgO) if Hc is PNsgC.

Definition 27. If H ⊆U, then the PN semigeneralized clo-
sure represented by PNsgclðHÞ is defined as the smallest
PNsgC set having H:

The PN semigeneralized interior of A, symbolized by
PNsgintðHÞ, is defined as the largest PNsgO set in H:

Remark 28. For subsets H and T of a PNTSðu, τRðXÞÞ,

(1) U −PNsgintðHÞ =PNsgclðU −HÞ
(2) U −PNsgclðHÞ =PNsgintðU −HÞ

Theorem 29. Every PNSC set is PNsgC.

Theorem 30. A setH isPNsgC inU iffPNsclðHÞ −H has
no nonempty, PNSC set.

Proof. Let H be a PNsgC and F be a PNSC subset of P
NsclðHÞ −H: Then, ðPNsclðHÞ −HÞc ⊆Fc, and Fc is P

NSO. That is, ðPNsclðHÞTHcÞc ⊆Fc. Therefore, H
S

ðPNsintðHÞÞc ⊆Fc. Thus,Fc isPNSO, andH ⊆Fc: Since
H is PNsgC, PNsclðHÞ ⊆Fc. That is, F⊆ ðPNsclðHÞÞc.
Thus, F⊆ ðPNsclðH:ÞT ðPNsclðHÞÞc =∅: Therefore, F
=∅:

Conversely, let PNsclðHÞ −H have no nonempty, P
NSC set. Let G be PNSO in U such that H ⊆G. If PN

sclðHÞUG, then PNsclðHÞTGc ≠∅. And PNsclðHÞT
Gc ⊆PNsclðHÞ −H, since H ⊆G. Thus, PNsclðHÞTGc

is a nonvoid PNSC subset of PNsclðHÞ −H, which is
contradiction. Therefore, PNsclðHÞ ⊆G whenever G is P
NSO and H ⊆G. That is, H is PNsgC in U:☐

Theorem 31. Let H be PNsgC. Then, H is PNSC iff P

NsclðHÞ −H is PNSC.

Proof. Let H be PNsgC. If H if PNSC, PNsclðHÞ =H

and hence PNsclðHÞ −H =∅ which is PNSC. Con-
versely, let PNsclðHÞ −H be PNSC. Then, PNsclðHÞ
−H is PNsgC. Then, PNsclðHÞ −H does not contain
any nonempty, PNSC set. Therefore, PNsclðHÞ −H =∅
. That is, PNsclðHÞ =H. Therefore, H is PNSC.

Now, we derive the forms of PN semigeneralized closed
sets for various cases of approximations.☐

Theorem 32. If PNLRðXÞ =PNURðXÞ in a PNTSU,
then any H ⊆ ½PNLRðXÞ�c and ½PNLRðXÞ�c ST where T

⊆PNLRðXÞ are the only PNsgC sets in U:

Proof. When PNLRðXÞ =PNURðXÞ, τRðXÞ = f∅, U, PN

LRðXÞg: Also, ∅ and any H ⊆PNLRðXÞ are the only PN

SO sets in U: If H ⊆PNLRðXÞ, then PNsclðHÞ =U and
the PNSO sets containing H are those sets T for which
PNLRðXÞ ⊆T. Thus, PNsclðHÞ ⊆ G, not for every PNS

OG such that H ⊆G.
Therefore, H is not PNsgC. If H ⊆ ½PNLRðXÞ�c, then

PNsclðHÞ −H, since any subset of ½PNLRðXÞ�c is PNS

C in U: Thus, PNsclðHÞ =H ⊆G whenever G is PNSO

and H ⊆G: Therefore, H is PNsgC. If PNLRðXÞ ⊆G

and H ≠U,PNsclðHÞ =U and the PNSO sets containing
H are H and U. Therefore, PNsclðHÞUH. Therefore, any
H ⊇PNLRðXÞ and H ≠U are not PNsgC. If
½PNLRðXÞ�c ⊆H, then PNsclðHÞ ⊆G whenever G is PN

SO and G ⊆H, since U is the only PNSO set containing
H. Therefore, if ½PNLRðXÞ�c ⊆H, thenH isPNsgC. When
H has at least one element ofPNLRðXÞ and exactly one ele-
ment of ½PNLRðXÞ�c wherePNLRðXÞ is not a singleton set,
PNsclðHÞ =U: But union of that element andPNLRðXÞ is
a PNSO set containing H and PNsclðHÞ =UUPNLRð
XÞ union with that element. Therefore, H is not PNsgC.
Thus, the only PNsgC sets in U are subsets of
½PNLRðXÞ�c and any H ⊃ ½PNLRðXÞ�c:☐

Theorem 33. If PNLRðXÞ =∅ and PNURðXÞ ≠U, then
the only PNsgC sets in U are subsets of ½PNURðXÞ�c and
any H ⊃ ½PNURðXÞ�c:
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Proof. If PNLRðXÞ =∅ and PNURðXÞ =U, then τRðXÞ =
f∅, U, PNURðXÞg. Also, ∅ and those sets H for which
H ⊇PNURðXÞ are the only PNSO sets in U: Therefore,
the sets H for which H ⊆ ½PNURðXÞ�c are the only PNS

C sets in U: If H ⊆PNURðXÞ, then PNsclðHÞ =U: But
PNURðXÞ is a PNSO set containing H, for which PNsc

lðHÞUG: Therefore, H is not PNsgC. If PNURðXÞ ⊆H

and H ≠U, then PNsclðHÞ =U: But, for G =H, which is
PNSO set containing itself, PNsclðHÞUG: Therefore, H
is not PNsgC. If H ⊆ ½PNURðXÞ�c, then PNsclðHÞ =H

and hence for every PNSO set G such that H ⊆G, PNsc

lðHÞ ⊆G: Therefore, H is PNsgC. If ½PNURðXÞ�c ⊆H,
then U is the only PNSO set holding H and hence PNs

clðHÞ ⊆G whenever G is PNSO and H ⊆G: Therefore,
H is PNsgC. If H has one element of PNURðXÞ and at
least one element of ðPNURðXÞÞc, then PNsclðHÞ =U:
Since any set having PNURðXÞ is PNSO in U,

H
S ðPNURðXÞÞ and any set having H

S ðPNURðXÞÞ
are PNSO sets containing H: But, PNsclðHÞ =UUH

S

ðPNURðXÞÞ: Therefore, H is not PNsgC in U: Thus, only
subsets of ðPNURðXÞÞc and any H ⊃ ½PNURðXÞ�c are P

NsgC in U when PNLRðXÞ =∅ and PNURðXÞ ≠U:☐

Theorem 34. If PNURðXÞ =U and PNLRðXÞ ≠∅ in a P

NTSU, then every subset of U is PNsgC.

Proof. ∅, U, PNLRðXÞ, and PNBRðXÞ are the only sets in
U which are PNO, PNSO, and PNSC in U: If H ⊆P

NLRðXÞ, then PNLRðXÞ and U are the only PNSO sets
containing H and PNsclðHÞ =PNLRðXÞ: Therefore, PN

sclðHÞ ⊆G whenever G is PNSO and H ⊆G: Thus, H is
PNsgC. If H ⊆PNBRðXÞ, then PNBRðXÞ and U are the
only PNSO sets containing H and PNsclðHÞ =PNBRð
XÞ: Therefore, H is PNsg-C. If PNLRðXÞ ⊂H or PNBRð
XÞ ⊂H, then U is the only PNSO set containing H and
hence H is PNsgC. If H contains atleast one element of
PNLRðXÞ and at least one element of PNBRðXÞ, then U

is the only PNSO set containing H: Therefore, H is PN

sgC. Thus, every subset of U is PNsgC, if PNURðXÞ =U

and PNLRðXÞ ≠∅:☐

Definition 35. Let ðU, τRðXÞÞ and ðV, τR′ðYÞÞ be two PNTSs.
Then, a function f : U⟶V is named as

(1) PN generalized continuous (PNgCN), if the
inverse image of every PNC set in V is PNgC in
U

(2) PN semigeneralized continuous (PNsgCN), if the
inverse image of every PNC set in V is PNsgC in
U

(3) PN semigeneralized closed (PNsgC) if the image
of every PNC set in U is PNsgC in V

(4) PN semigeneralized open (PNsgO) if the image of
every PNO set in U is PNsgO in V

Theorem 36. Every PN continuous (PNCN) function is
PNsgCN.

Proof. If f : U⟶V isPNCN onU and ifG isPNO inV,
then f −1ðGÞ is PNO in U: Therefore, f −1ðGÞ is PNsgO,
since any PNO set is PNSO and any PNSO is PNSgO.
Therefore, f is PNsgCN.☐

4. Pythagorean Nanotopology in Multiple
Attribute Decision-Making

MADM is a method for selecting the best solution with the
highest level of satisfaction from a set of alternatives. Multi-
ple attributes are used to represent these types of MADM
problems, which occur in most real-time situations. When
it comes to dealing with real-life problems, collecting vague
details is done with the help of attributes for the particular
object and the decision-making technique is applied for the
list of objects considered. Many models already exist for
the decision-making problems, but the proposed algorithm
deals with membership and nonmembership which has
more advantage in fuzziness than intuitionistic fuzzy set
and fuzzy set theory. Many types of models exist for the dif-
ferent developments of topological spaces, but for the differ-
ent category of topological spaces, this method is proposed.
The proposed algorithm describes how PN topology influ-
ences decision-making.

A new decision-making approach using PN topology
and a methodological approach for selecting the right alter-
natives is proposed.

4.1. Algorithm

Step 1. Consider the universe D and attributes E.

Step 2.Make a fuzzy Pythagorean matrix of attributes versus
objects.

Step 3. Define R on D to represent the indiscernibility
relation.

Step 4. Build the Pythagorean fuzzy nanotopology τ:

Step 5. Find the score values by using the score function 1/
k∑k

i=1½1/2f1 +m − n:mg� (where m means membership,
n.m means nonmembership, and k is the number of values
in the corresponding topology) of each of the entries of
Pythagorean fuzzy nanotopological spaces.

Step 6. Arrange the score values of the alternatives in
decreasing order and select the maximum as the optimal
decision.

The pieces of information for the object are collected for the
particular object and formed the table, and after that, using
the relation, the PN topology is being framed. Using score
function, the optimal values are calculated and the decision
is made upon the maximal value.
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4.2. Numerical Example. The proposed algorithm helps to
find the suitable choice among all the options (set of
objects). We choose any random situation for this
decision-making process. As in Algorithm, using the PNT

S method, the problem is solved. Let us consider the
decision-making situation where a company in a tourist hot-
spot desires to select and draw a contract with a hotel for
certain years. Let us consider the set of objects as the hotels
which were considered to have a contract. That is, D = fd1
, d2, d3, d4, d5g where diði = 1, 2, 3, 4, 5Þ. Consider the criteria
for deciding to pick a hotel. The attributes are E = ft1, t2,
t3, t4, t5g where ti, ði = 1, 2, 3, 4, 5Þ stands for criteria clean
and tidy, good food, reasonable price, customer driven, and
location, respectively.

Step 1. Let D = fd1, d2, d3, d4, d5g be the set of objects and
E = ft1, t2, t3, t4, t5g be the set of attributes for the objects.

Step 2. In the matrix of Pythagorean fuzzy relationship
between hotels, attributes are developed as in Table 1.

Step 3. The indiscernibility relation for the objects is con-
structed as

R = t1, t2f g, t3, t4, t5f gf g: ð2Þ

Step 4. Build the PNTS for each hotel ðdiÞ with respect to
the attributes.

τ d1ð Þ = ϕ,D,<:6, :4>,<:3, :3>,<:7, :3>,<:5, :1>,<:4, :6>,<:5, :7 >f g,
τ d2ð Þ = ϕ,D,<:5, :6>,<:5, :5>,<:6, :3>,<:7, :2>,<:5, :4 >f g,

τ d3ð Þ = ϕ,D,<:3, :5>,<:5, :7>,<:6, :4>,<:8, :4>,<:6, :5>,<:5, :4 >f g,
τ d4ð Þ = ϕ,D,<:3, :5>,<:4, :5>,<:7, :4>,<:9, :2>,<:7, :5>,<:6, :5 >f g,

τ d5ð Þ = ϕ,D,<:7, :7>,<:3, :7>,<:7, :6>,<:5, :3>,<:3, :6 >f g:
ð3Þ

Step 5. Computation of Pythagorean fuzzy score functions
for the hotels ðdiÞ as in algorithm are as follows:

Score values of hotels ðdiÞði = 1, 2,⋯5Þ are

S d1ð Þ = :5375, S d2ð Þ = :557, S d3ð Þ = :525, S d4ð Þ = :5625, S d5ð Þ = :471:
ð4Þ

Step 6. Organizing the score values, we get the sequence of
the hotels as d4 > d2 > d1 > d3 > d5. Thus, the hotel with
maximum value and in the first position is chosen as the
optimal decision (i.e., d4).

4.3. Comparison Analysis. To check the effectualness of the
presented decision-making approach, a comparison analysis
is performed with Pythagorean fuzzy decision-making
model used in [36]. Though the ranking principle and
method are different, the ranking order results are consistent
with the result obtained in [36] for the selection of the best
alternative. The computation may seem hard, but the calcu-
lation is too easy to compute, while when compared to the
three-valued sets, this possesses a little lack in the indetermi-

nacy part. When compared to the other sets and models, this
plays the upper hand.

5. Conclusion

PNTS is a newly defined space by combining the concepts
of nanotopology and Pythagorean fuzzy topological spaces.
The topological space has been developed, and as an exten-
sion, the concepts of the weak open sets, namely, nanoalpha,
semiopen sets, have been developed and their characteriza-
tions were examined. In this article, the idea of generalized
closed sets in Pythagorean nanotopology has been intro-
duced along with its characteristics. The notion of semige-
neralized closed sets has also been defined, and their
properties were investigated. An application in MADM
using PNTS has been proposed and illustrated using a
numerical example. Further, the proposed concept can be
extended to strong open sets in PNTS and applied to
real-life problems.
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