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ABSTRACT This article examines the issue of event-triggered L2 − L∞ filtering for network-based neutral
systems via Takagi-Sugeno (T-S) fuzzy approach. A dynamic discrete event-triggered scheme (ETS) is
introduced to save the limited communication resource. Based on the T-S fuzzy model, the consider neutral
type system with networked induced delays are represented as a class of T-S fuzzy system. In addition,
by considering a suitable Lyapunov-Krasovskii functional (LKF) and by using the Wirtinger inequality
technique, the stability conditions with respect to linear matrix inequalities (LMIs) are presented to guarantee
the considered filtering systems are asymptotically stable with L2 − L∞ performance index γ . To the end,
numerical examples are given to illustrate the effectiveness of the proposed result.

INDEX TERMS Event-triggered scheme, L2 − L∞ filter, networked control systems, T-S fuzzy systems.

I. INTRODUCTION
Takagi-Sugeno (T-S) fuzzy model [1] has been widely used
design and analysis of fuzzy control systems. Combining
a set of IF-THEN rules with some fuzzy sets, makes it
possible to approximate nonlinear systems with high preci-
sion using a series of linear subsystems. As a result, recent
years have seen an increase in research interest in the con-
trol issues associated with T–S fuzzy systems [2]–[6]. The
authors in [5] have discussed the stability of a T-S fuzzy
system with state quantization under exponential dissipation
using a non-fragile sampled-data control. For estimation of
state variables in a digital sampled system, network-based
estimation/ filtering is required. The standard Kalman fil-
tering does not provide adequate results when the Gaussian
noises with known statistics are not satisfied in real-world
scenarios [7]–[10]. Thus, network-based filtering has gained
much importance [11]–[15]. However, the nonlinear system
filter design issue remains unsolvable due to the difficulty of
analyzing nonlinear system stability. For this reason, over the
last two decades, an increasing number of academics have
dedicated themselves to move on to filtering. In addition,
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as a special case of time delay, the neutral delay occurs in
the derivative of the state, not in the state itself. Recently,
many researchers have focused on the neutral type delay
with different controller techniques in [16], [17]. In [16], the
authors discussed the H∞ filtering technique for T-S fuzzy
neutral-type stochastic system.

Generally, the majority of the control tasks are executed
periodically in numerous digital control applications. Consid-
ering the limited network resources, event-triggered control
scheme (ETCS) has emerged as a successful technique to
address this issue, which provides for limited communication
frequency between the components of networked environ-
ments which also regulates the unwanted waste of computa-
tion and communication resources in conventional intelligent
controls [18]–[21]. So far, the literature has mainly described
three types of event-triggered schemes such as absolute
event-triggered scheme [22]–[24], relative event-triggered
scheme [25]–[27] and mixed event-triggered scheme
[28], [29]. The mixed ETCS is more advantageous as it pro-
vides for the most suitable properties for networked systems
by combining the benefits of both relative and absolute ETCS.
But, with mixed ETCS, the design and analysis methods are
more complex. ETCS was shown to affect the amount of
information that had to be transmitted, which helps to reduce
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network bandwidth occupation compared to a conventional
periodic sampling technique. Lately, event-triggered filtering
has gained more popularity, and key findings have been
published [30]–[34]. The authors in [31] has been discussed
the event-triggered fault detection filter method for nonlinear
networked systems. Event-triggered filtering for nonlinear
networked control systems with T-S fuzzy approach has been
examined in [34].

On the other hand, the estimation of the system states and
filtering is a popular issue in signal processing and control
applications. Over the previous decade, the issue of filter-
ing for the networked system has become a focal point of
consideration, and numerous powerful methodologies have
been created; see, for example, H∞, L2 − L∞, and pas-
sive filtering. Among them, H∞ and L2 − L∞ filtering are
good options for disturbances with unknown characteristics
[35]–[39]. Based on the above filtering methods, the L2 −
L∞ filtering can ensure that the error system is asymptoti-
cally stable and possesses a predefined L2 − L∞ disturbance
attenuation performance in the case when the disturbance
is energy bounded. L2 − L∞ filtering is aiming to make
the estimation error’s peak value minimal for all distractions
satisfying energy bound ability. Therefore, L2 − L∞ filtering
is preferred on the condition that the filtering error’s peak
value is expected to be considered minimal. The filtering
design techniques were introduced for different T–S fuzzy
models in the literature’s [31], [34], [40]. To the author’s
knowledge, the event-triggered L2−L∞ filtering for network-
based neutral systems with time-varying delays via T-S fuzzy
has not been fully investigated.

As a result of the preceding discussions, this article dis-
cusses event-triggered L2 − L∞ filtering for network-based
neutral T-S fuzzy systems. Furthermore, based on the suit-
able Lyapunov-Krasovskii functional (LKF), the delay sta-
bility conditions are derived from linear matrix inequalities
(LMIs).

This article mainly focuses on the following points:
i). A new model of fuzzy filtering error system is provided

under the consideration of dynamic discrete ETCS,
which can save network resources.

ii). A novel dynamic discrete ETCS with different triggered
thresholds is proposed for different fuzzy rules in terms
of the considered error system. Compared with the exist-
ing work [19], [41], the proposed one in this paper,
which can more effectively save the limited communi-
cation resources on the network while achieving good
performance.

iii). The logical Zero Order Holder (ZOH) is used to actively
discard packet failures and select the latest packet to
drive the filter.

iv). By choosing the appropriate LKF, Wirtinger integral
inequality approach, and the sufficient conditions ensure
that the desired filtering system is asymptotically stable
with respect to L2− L∞ performance; as a result, which
plays a vital role in achieving less conservative results
than [19], which can be evaluated in terms of LMIs.

v). Finally, various numerical examples are given to show
the feasibility of the results with a practical appli-
cation of the proposed method to a tunnel diode
circuit model. This implies the merit of derived
delay-dependent conditions.

Notation: For a matrix Q, Q−1 noted as inverse and
QT means the transpose of Q, Rn and Rn×m indicates the
n-dimensional Euclidean space and set of n× m real matrix,
respectively. For Z is a positive (negative) definite matrix,
such that Z > 0, (Z < 0), and In represents the identity
matrix of dimension n, ∗ is used to represent the term that
is induced by symmetry. N represents the set of positive
integers. Maximum allowable upper bound (MAUB).

II. SYSTEM DESCRIPTION
Consider the following T-S fuzzy neutral system with
disturbance:

Rule i: IF s1(t) is Fi1 and s2(t) is Fi2, · · · , and sn(t) is Fin,
THEN 

˙̂x(t) = A0ix̂(t)+ A1ix̂(t − d(t))
+A2i ˙̂x(t − h(t))+ Biw(t)

ŷ(t) = Cix̂(t)
z(t) = Eix̂(t)

(1)

where s1(t), s2(t), · · · , sn(t) are the premise variables that
has been measurable, and each Fij(i = 1, 2, · · · , q, j =
1, 2, · · · , n) is a fuzzy set. i = 1, 2, · · · , q, q noted as the
number of IF-THEN rules. x̂(t) ∈ Rn and ŷ(t) ∈ Rm noted as
state variables and measured output of the system. z(t) ∈ Rp

represents the signal to be estimated. w(t) ∈ Rr means the
disturbance which refers to L2[0,∞). A0i,A1i,A2i,Bi,Ci and
Ei are known matrices with adjustable dimensions. Also d(t)
and h(t) are time-varying delays, which satisfies d1 ≤ d(t) ≤
d2, ḋ(t) ≤ µ1 and h1 ≤ h(t) ≤ h2, ḣ(t) ≤ µ2, h12 = h2 − h1.
Utilizing center-average defuzzifier, product interference

and singleton fuzzifier the dynamic fuzzy model (1) can be
represented as follows

˙̂x(t) =
q∑
i=1

ui(s(t))
[
A0ix̂(t)+ A1ix̂(t − d(t))

+A2i ˙̂x(t − h(t))+ Biw(t)
]
,

ŷ(t) =
q∑
i=1

ui(s(t))
[
Cix̂(t)

]
,

z(t) =
q∑
i=1

ui(s(t))
[
Eix̂(t)

]
, (2)

with

ui(s(t)) =
βi(s(t))∑q
i=1 βi(s(t))

, βi(s(t)) =
n∏
j=1

Fij(sj(t)), (3)

in which Fij(sj(t)) is the grade of membership of sj(t) in Fij.
It is assumed that βi(s(t)) ≥ 0, i = 1, . . . , q,

∑q
i=1 βi(s(t)) >

0 for all t . Therefore, ui(s(t)) ≥ 0 and
∑q

i=1 ui(s(t)) = 1 for
all t .
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FIGURE 1. Framework of L2 − L∞ filtering based on event-triggered
mechanism.

A. DISCRETE EVENT-TRIGGERED SCHEME
Consider the sample of measurement output ŷ(t) with sam-
pling period h > 0. Moreover, the sampling instant is kh(k ∈
N), the sampled signal noted as ŷ(kh) and also k compressed
into a data packet (k, ŷ(kh)).
To design a filter in a time-triggered scheme (TTS), every

sampled-data packets (SDP) are sent to ZOH. Indeed, it is
unnecessary to transmit certain data packets that contain no
new information. Thus, the ETCS is an efficient way to avoid
transmitting unwanted data packets. Assume tkh(k ∈ N) is
the triggered instant. Using the following threshold condition,
the event detector determines if the newly SDP (tk+l, ŷ(tkh+
lh)) sent to the filter:

[ŷ(tkh+ lh)− ŷ(tkh)]Tφ(r(tkh))[ŷ(tkh+ lh)− ŷ(tkh)]

≤ δ(r(tkh))ŷT (tkh)φ(r(tkh))ŷ(tkh), (4)

where 0 ≤ δ(r(tkh)) < 1, φ(r(tkh)) > 0 will be evaluated
later. The data will be stored and transmitted to the filter
at the same time if the sampling instant fails to meet the
ETCS threshold condition (4). The next triggered instant
tk+1h defined as

tk+1h = min
l≥1

{
tkh+ lh|[ŷ(tkh+ lh)− ŷ(tkh)]T

× φ(r(tkh))[ŷ(tkh+ lh)− ŷ(tkh)]

> δ(r(tkh))ŷT (tkh)φ(r(tkh))ŷ(tkh)
}
. (5)

B. FILTERING DESIGN
The ZOH receives a data packet (tk , ŷ(tkh)), it automatically
activates the filter using the signal ŷ(tkh). With respect to the
transmission delay and properties of ZOH, we have:

ỹ(t) = ŷ(tkh), t ∈ [tkh+ υtk , tk+1h+ υtk+1), (6)

where υtk ∈ (0, υ] and υ = max{υtk }. The issue of the
event-triggered filtering is to estimate the state of system (1)
based on the complete information exchange among filters.
Here, we will design a discrete ETCS fuzzy filter. This paper
assumes that the filter’s premise and the plant’s premise
variables are the same. Based on the parallel distributed

compensation, the fuzzy-rule-dependent filter is conducted.
The following full-order filter is designed for system (2).

Rule i: IF s1(t) is Fi1 and s2(t) is Fi2, · · · , and sn(t) is Fin,
THEN

ẋf (t) =
q∑
i=1

ui(s(t))
[
Afixf (t)+ Bfiỹ(t)

]
,

zf (t) =
q∑
i=1

ui(s(t))
[
Cfixf (t)

]
, (7)

where Afi,Bfi and Cfi are filter parameters to be determined.
Substituting (6) into (7) yields

ẋf (t) =
q∑
i=1

ui(s(t))
[
Afixf (t)+ Bfiŷ(tkh)

]
,

zf (t) =
q∑
i=1

ui(s(t))
[
Cfixf (t)

]
. (8)

C. TIME-DELAY MODELING OF THE FILTERING ERROR
SYSTEM
By the preceding discussion, the filtering error system can be
modeled using an interval time delay.

Let ξ (t) = [x̂(t) xf (t)]T and e(t) = z(t)− zf (t). Then, the
resulting error system can be expressed as follows:

ξ̇ (t) =
q∑
i=1

ui(s(t))
q∑
j=1

uj(s(t))
{[

A0i 0
0 Afj

]
ξ (t)

+

[
A1i
0

]
x̂(t − d(t))+

[
A2i
0

]
˙̂x(t − h(t))

+

[
Bi
0

]
w(t)+

[
0
Bfj

]
ŷ(tkh)

}
,

e(t) =
q∑
i=1

ui(s(t))
q∑
j=1

uj(s(t))
{ [

Ei − Cfj
]
ξ (t)

}
. (9)

The filtering error system (9) is subject to constraints

[ŷ(tkh+ lh)− ŷ(tkh)]Tφ[ŷ(tkh+ lh)− ŷ(tkh)]

≤ δŷT (tkh)φŷ(tkh), (10)

where l = 1, 2, · · · , tk+1 − tk−1.
With reference to [40] and [42], the following two condi-

tions hold: (i) If tkh + h + υ ≥ tk+1h + υtk+1 and function
υ(t) defined as

υ(t) = t − tkh, t ∈ [tkh+ υtk , tk+1h+ υtk+1). (11)

Obviously,

υtk ≤ υ(t) ≤ (tk+1 − tk )h+ υtk+1 ≤ h+ υ, (12)

(ii) tkh + h + υ < tk+1h + υtk+1 , considering the following
two intervals

[tkh+υtk , tkh+h+υ) and [tkh+ιh+υ, tkh+h+υ+ιh).

Since υtk ≤ υ and integer a ≥ 1 we get

tkh+ ah+ υ < tk+1h+ υtk+1 ≤ tkh+ ah+ h+ υ.
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Let 
T0 = [tkh+ υtk , tkh+ υ + h)
Tι = [tkh+ ιh+ υ, tkh+ υ + ιh+ h)
Ta = [tkh+ ah+ υ, tk+1h+ υtk+1),

(13)

where ι = 1, 2, · · · , a− 1. Then, we obtain

[tkh+ υtk , tk+1h+ υtk+1 ) =
ι=a⋃
ι=0

Tι. (14)

Define

υ(t) =


t − tkh, t ∈ T0
t − tkh− ιh, t ∈ Tι
t − tkh− ah, t ∈ Ta.

(15)

Clearly, we have
υtk ≤ υ(t) < h+ υ, t ∈ T0
υtk ≤ υ ≤ υ(t) < h+ υ, t ∈ Tι
υtk ≤ υ ≤ υ(t) < h+ υ, t ∈ Ta.

(16)

As a result,

0 ≤ υtk ≤ υ(t) < h+ υ = υ,

t ∈ [tkh+ υtk , tk+1h+ υtk+1 ). (17)

Furthermore, the following two cases are considered:
• Define ek (t) = 0 for t ∈ [tkh+ υtk , tk+1h+ υtk+1 )
• Denote

ek (t) =


0, t ∈ T0
ŷ(tkh)− ŷ(tkh+ ιh), t ∈ Tι,
ŷ(tkh)− ŷ(tkh+ ah), t ∈ Ta

(18)

we obtain

ŷ(tkh) = ek (t)+ ŷ(t − υ(t)). (19)

Combining (9)-(19), the filtering error system can be
written as

ξ̇ (t) =
q∑
i=1

ui(s(t))
q∑
j=1

uj(s(t))
{
˜̃A0ξ (t)+

˜̃A1x̂(t − d(t))

+
˜̃A2 ˙̂x(t − h(t))+

˜̃Bw(t)+ ˜̃B1ek (t)+
˜̃Cx̂(t − υ(t))

}
,

e(t) =
q∑
i=1

ui(s(t))
q∑
j=1

uj(s(t))Eξ (t),

where

˜̃A0 =
[
A0i 0
0 Afj

]
,
˜̃A1 =

[
A1i
0

]
,

˜̃A2 =
[
A2i
0

]
,
˜̃B =

[
Bi
0

]
,
˜̃B1 =

[
0
Bfj

]
,

˜̃C =
[

0
BfjCi

]
,
˜̃E =

[
Ei − Cfj

]
.

For our convenience, the above filtering error system can
be written as follows:

ξ̇ (t) = A0ξ (t)+ A1x̂(t − d(t))+ A2 ˙̂x(t − h(t))+ Bw(t)

+B1ek (t)+ Cx̂(t − υ(t)),

e(t) = Eξ (t), (20)

where

A0 =
[
A0 0
0 Af

]
, A1 =

[
A1
0

]
,

A2 =
[
A2
0

]
, B =

[
B
0

]
, B1 =

[
0
Bf

]
,

C =
[

0
Bf C

]
, E =

[
E − Cf

]
.

Before proceeding, we introduce the following definition
and lemmas, which will help to obtain our key results.
Definition 1 [40]: For a given scalar γ > 0, the filtering

error system (20) is asymptotically stable in terms of L2−L∞
performance γ and w(t) ∈ L2[0,∞), if for initial condition,
the following inequality hold:

‖e(t)‖∞ ≤ γ ‖w(t)‖2 (21)

where

‖e(t)‖∞ =
√
sup
t
{eT (t)e(t)}

‖w(t)‖2 =

√∫
∞

0
wT (t)w(t)dt.

Lemma 1 [43]: Given a matrix M1 > 0, the subsequent
inequality satisfies for every continuously differentiable func-
tion ϕ in [b, c]→ Rn

(c− b)
∫ c

b
ϕT (s)M1ϕ(s)ds

≥

( ∫ c

b
ϕ(s)ds

)T
M1

( ∫ c

b
ϕ(s)ds

)
+ 32TM12,

where 2 =

∫ c

b
ϕ(s)ds−

2
c− b

∫ c

b

∫ s

b
ϕ(u)duds.

Lemma 2 [43]: For a given matrix P, and vector function
ζ : [b1, b2]→ Rn, the subsequent condition holds:∫ b2

b1
ζ̇ T (s)Pζ̇ (s)ds ≥

1
b2 − b1

4T
[
P 0
0 3P

]
4,

where

4 =

[
ζ (b2)− ζ (b1)

ζ (b2)+ ζ (b1)− 2
b2−b1

∫ b2
b1
ζ (s)ds

]
.

III. MAIN RESULTS
A. L2 − L∞ FILTERING PERFORMANCE ANALYSIS FOR THE
NEUTRAL SYSTEM
This section presents new delay-dependent conditions for the
L2−L∞ filtering performance analysis based on Definition 1,
which ensure that the neutral system (20) is asymptotically
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stable for a defined L2 − L∞ performance γ . For clarity,
we represent the matrix as follows:

A0 =
q∑
i=1

ui(s(t))A0i, A1 =
q∑
i=1

ui(s(t))A1i,

A2 =
q∑
i=1

ui(s(t))A2i, B =
q∑
i=1

ui(s(t))Bi,

C =
q∑
i=1

ui(s(t))Ci, E =
q∑
i=1

ui(s(t))Ei,

Af =
q∑
j=1

uj(s(t))Afj, Bf =
q∑
j=1

uj(s(t))Bfj,

Cf =
q∑
j=1

uj(s(t))Cfj.

Theorem 1: For given positive scalars d1, d2, h1, h2, υ,
µ1, γ > 0, δ, and µ2, the filtering error system (20) can
reach asymptotically stable under the L2 − L∞ performance
index γ and event-triggered control (10) if there exist matri-

ces Q =
[
Q1 Q2
∗ Q3

]
> 0,Rl > 0,Ul > 0,Pm > 0, φ >

0, l = 1, 2, 3, 4, 5, 6,m = 1, 2, 3 and positive diagonal
matrix F1 with proper dimensions, such that

5ij < 0, i, j = 1, 2, . . . , q (22)[
Q E

T

∗ γ 2I

]
> 0, (23)

where (5ij)24×24,

5
(1,1)
ij = 2QA0 + R1 + R2 + R3 + d1U1 + d2U2

+ (d2 − d1)U3 −
4
h1
U4 −

4
h2
U5 −

4
υ
P3

+P1 + υP2 + 2F1A0,

5
(1,4)
ij = 2QA1 + 2F1A1, 5

(1,5)
ij = −

2
h1
U4,

5
(1,6)
ij = −

2
h2
U5, 5

(1,7)
ij = 2QC −

2
υ
P3,

5
(1,14)
ij =

6

h21
U4, 5

(1,15)
ij =

6

h22
U5,

5
(1,17)
ij =

6
υ2
P3, 5

(1,19)
ij = −2F1 + (F1A0)T ,

5
(1,22)
ij = 2QA2 + 2F1A2, 5

(1,23)
ij = 2QB1,

5
(1,24)
ij = 2QB+ 2F1B, 5

(2,2)
ij = −R1, 5

(3,3)
ij = −R2,

5
(4,4)
ij = −(1− µ1)R3, 5

(4,19)
ij = (F1A1)T ,

5
(5,5)
ij = −

4
h1
U4 − 4(h12)2U6, 5

(5,6)
ij = −2(h12)2U6,

5
(5,14)
ij =

6

h21
U4, 5

(5,16)
ij = 6(h12)U6,

5
(6,6)
ij = −

4
h2
U5 − 4(h12)2U6, 5

(6,15)
ij =

6

h22
U5,

5
(6,16)
ij = 6(h12)U6,

5
(7,7)
ij = −P1 −

4
υ
P3 + δCTφC,

5
(7,17)
ij =

6
υ2
P3, 5

(7,23)
ij = δCTφ, 5

(8,8)
ij = −

4
d1
U1,

5
(8,9)
ij =

6

d21
U1, 5

(9,9)
ij = −

12

d31
U1, 5

(10,10)
ij = −

4
d2
U2,

5
(10,11)
ij =

6

d22
U2, 5

(11,11)
ij = −

12

d32
U2,

5
(12,12)
ij = −

4
d2 − d1

U3, 5
(12,13)
ij =

6
(d2 − d1)2

U3,

5
(13,13)
ij = −

12
(d2 − d1)3

U3, 5
(14,14)
ij = −

12

h31
U4,

5
(15,15)
ij = −

12

h32
U5, 5

(16,16)
ij = −12U6,

5
(17,17)
ij = −

4
υ
P2 −

12
υ3
P3, 5

(17,18)
ij =

6
υ2
P2,

5
(18,18)
ij = −

12
υ3
P2, 5

(19,19)
ij = R4 + R5 + R6 + h1U4

+ h2U5 + (h12)4U6 + υP3 − 2F1,

5
(19,22)
ij = 2F1A2, 5

(19,24)
ij = 2F1B,

5
(20,20)
ij = −R4, 5

(21,21)
ij = −R5,

5
(22,22)
ij = −(1− µ2)R6, 5

(23,23)
ij = −(1− δ)φ,

5
(24,24)
ij = −I .

Proof: Construct a Lyapunov–Krasovskii functional
(LKF) candidate as,

V (t) =
6∑
l=1

Vl(t), (24)

where

V1(t) = ξT (t)Qξ (t),

V2(t) =
∫ t

t−d1
x̂T (s)R1x̂(s)ds+

∫ t

t−d2
x̂T (s)R2x̂(s)ds

+

∫ t

t−d(t)
x̂T (s)R3x̂(s)ds,

V3(t) =
∫ t

t−h1

˙̂xT (s)R4 ˙̂x(s)ds+
∫ t

t−h2

˙̂xT (s)R5 ˙̂x(s)ds

+

∫ t

t−h(t)

˙̂xT (s)R6 ˙̂x(s)ds,

V4(t) =
∫ 0

−d1

∫ t

t+θ
x̂T (s)U1x̂(s)dsdθ +

∫ 0

−d2

∫ t

t+θ
x̂T (s)

×U2x̂(s)dsdθ +
∫
−d1

−d2

∫ t

t+θ
x̂T (s)U3x̂(s)dsdθ,

V5(t) =
∫ 0

−h1

∫ t

t+θ

˙̂xT (s)U4 ˙̂x(s)dsdθ

+

∫ 0

−h2

∫ t

t+θ

˙̂xT (s)U5 ˙̂x(s)dsdθ
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+h312

∫
−h1

−h2

∫ t

t+θ

˙̂xT (s)U6 ˙̂x(s)dsdθ,

V6(t) =
∫ t

t−υ
x̂T (s)P1x̂(s)ds+

∫ 0

−υ

∫ t

t+θ
x̂T (s)P2x̂(s)dsdθ

+

∫ 0

−υ

∫ t

t+θ

˙̂xT (s)P3 ˙̂x(s)dsdθ.

Taking the time derivative as follows:

V̇1(t) = 2ξT (t)Qξ̇ (t), (25)
V̇2(t) ≤ x̂T (t)[R1 + R2 + R3]x̂(t)

− x̂T (t − d1)R1x̂(t − d1)
− x̂T (t − d2)R2x̂(t − d2)
− (1− µ1)x̂T (t − d(t))R3x̂(t − d(t)), (26)

V̇3(t) ≤ ˙̂xT (t)[R4 + R5 + R6] ˙̂x(t)
− ˙̂xT (t − h1)R4 ˙̂x(t − h1)
− ˙̂xT (t − h2)R5 ˙̂x(t − h2)
− (1− µ2) ˙̂xT (t − h(t))R6 ˙̂x(t − h(t)), (27)

V̇4(t) = x̂T (t)[d1U1 + d2U2 + (d2 − d1)U3]x̂(t)

−

∫ t

t−d1
x̂T (s)U1x̂(s)ds−

∫ t

t−d2
x̂T (s)U2x̂(s)ds

−

∫ t−d1

t−d2
x̂T (s)U3x̂(s)ds. (28)

By Lemma 1, then

−

∫ t

t−d1
x̂T (s)U1x̂(s)ds

≤ −
1
d1

( ∫ t

t−d1
x̂(s)ds

)T
× U1

( ∫ t

t−d1
x̂(s)ds

)
−

3
d1

( ∫ t

t−d1
x̂(s)ds−

2
d1

∫ t

t−d1

∫ t

s
x̂(u)duds

)T
×U1

( ∫ t

t−d1
x̂(s)ds−

2
d1

∫ t

t−d1

∫ t

s
x̂(u)duds

)
, (29)

−

∫ t

t−d2
x̂T (s)U2x̂(s)ds

≤ −
1
d2

( ∫ t

t−d2
x̂(s)ds

)T
× U2

( ∫ t

t−d2
x̂(s)ds

)
−

3
d2

( ∫ t

t−d2
x̂(s)ds−

2
d2

∫ t

t−d2

∫ t

s
x̂(u)duds

)T
×U2

( ∫ t

t−d2
x̂(s)ds−

2
d2

∫ t

t−d2

∫ t

s
x̂(u)duds

)
, (30)

−

∫ t−d1

t−d2
x̂T (s)U3x̂(s)ds ≤ −

1
d2 − d1

( ∫ t−d1

t−d2
x̂(s)ds

)T
×U3

( ∫ t−d1

t−d2
x̂(s)ds

)
−

3
d2 − d1

(∫ t−d1

t−d2
x̂(s)ds−

2
d2 − d1

∫ t

t−d2

∫ t

s
x̂(u)duds

)T
×U3

(∫ t−d1

t−d2
x̂(s)ds−

2
d2 − d1

∫ t−d1

t−d2

∫ t

s
x̂(u)duds

)
,

(31)

V̇5(t)

= ˙̂xT (t)[h1U4 + h2U5 + h412U6] ˙̂x(t)

−

∫ t

t−h1

˙̂xT (s)U4 ˙̂x(s)ds−
∫ t

t−h2

˙̂xT (s)U5 ˙̂x(s)ds

− h312

∫ t−h1

t−h2

˙̂xT (s)U6 ˙̂x(s)ds. (32)

By Lemma 2, then

−

∫ t

t−h1

˙̂xT (s)U4 ˙̂x(s)ds ≤ −
1
h1
4T

1

[
U4 0
0 3U4

]
41,

(33)

−

∫ t

t−h2

˙̂xT (s)U5 ˙̂x(s)ds ≤ −
1
h2
4T

2

[
U5 0
0 3U5

]
42,

(34)

−h312

∫ t−h1

t−h2

˙̂xT (s)U6 ˙̂x(s)ds ≤ −h2124
T
3

[
U6 0
0 3U6

]
43,

(35)

where

41 =

[
x̂(t)− x̂(t − h1)

x̂(t)+ x̂(t − h1)− 2
h1

∫ t
t−h1

x̂(s)ds

]
,

42 =

[
x̂(t)− x̂(t − h2)

x̂(t)+ x̂(t − h2)− 2
h2

∫ t
t−h2

x̂(s)ds

]
,

43 =

[
x̂(t − h1)− x̂(t − h2)

x̂(t − h1)+ x̂(t − h2)− 2
h12

∫ t−h1
t−h2

x̂(s)ds

]
,

V̇6(t) = x̂T (t)[P1 + υP2]x̂(t)+ ˙̂xT (t)[υP3] ˙̂x(t)

− x̂T (t − υ)P1x̂(t − υ)−
∫ t

t−υ
x̂T (s)P2x̂(s)ds

−

∫ t

t−υ

˙̂xT (s)P3 ˙̂x(s)ds. (36)

Using Lemma 1 and 2, then

−

∫ t

t−υ
x̂T (s)P2x̂(s)ds

≤ −
1
υ

( ∫ t

t−υ
x̂(s)ds

)T
P2
( ∫ t

t−υ
x̂(s)ds

)
−
3
υ

( ∫ t

t−υ
x̂(s)ds−

2
υ

∫ t

t−υ

∫ t

s
x̂(u)duds

)T
×P2

( ∫ t

t−υ
x̂(s)ds−

2
υ

∫ t

t−υ

∫ t

s
x̂(u)duds

)
. (37)

Similarly,

−

∫ t

t−υ

˙̂xT (s)P3 ˙̂x(s)ds ≤ −
1
υ
4T

4

[
P3 0
0 3P3

]
44, (38)

where

44 =

[
x̂(t)− x̂(t − υ)

x̂(t)+ x̂(t − υ)− 2
υ

∫ t
t−υ x̂(s)ds

]
.

Furthermore, the following condition is satisfied for any
properly dimensioned matrix F1:

2
[
x̂T (t)F1 + ˙̂xT (t)F1

][
− ˙̂x(t)+ A0x̂(t)

+A1x̂(t − d(t))+ A2 ˙̂x(t − h(t))+ Bw(t)
]
= 0. (39)
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Based on ETCS (10) and w(t) = 0, we obtain

eTk (t)φek (t) ≤ δ[ek (t)+ Cx̂(t − υ(t))]
T

φ[ek (t)+ Cx̂(t − υ(t))], (40)

which corresponds to[
x̂(t − υ(t))

ek (t)

]T [
δCTφC δCTφ

∗ (δ − 1)φ

]
×

[
x̂(t − υ(t))

ek (t)

]
≥ 0. (41)

Combining (25)-(41) yields

V̇ (t) ≤ ζ T1 (t)ψijζ1(t), (42)

in which

ζ T1 (t) =
[
ξT (t), x̂T (t − d1(t)), x̂T (t − d2(t)),

x̂T (t − d(t)), x̂T (t − h1(t)), x̂T (t − h2(t)),

x̂T (t − υ),
∫ t

t−d1
x̂T (s)ds,

∫ t

t−d1

∫ t

s
x̂T (u)duds,∫ t

t−d2
x̂T (s)ds,

∫ t

t−d2

∫ t

s
x̂T (u)duds,

∫ t−d1

t−d2
x̂T (s)ds,∫ t−d1

t−d2

∫ t

s
x̂T (u)duds,

∫ t

t−h1
x̂T (s)ds,

∫ t

t−h2
x̂T (s)ds,∫ t−h1

t−h2
x̂T (s)ds,

∫ t

t−υ
x̂T (s)ds,

∫ t

t−υ

∫ t

s
x̂T (u)duds,

˙̂xT (t), ˙̂xT (t − h1), ˙̂xT (t − h2), ˙̂xT (t − h(t)), eTk (t)
]
,

and (ψij)23×23,

ψ
(1,1)
ij = 2QA0 + R1 + R2 + R3 + d1U1 + d2U2

+ (d2 − d1)U3 −
4
h1
U4 −

4
h2
U5 −

4
υ
P3

+P1 + υP2 + 2F1A0, ψ
(1,4)
ij = 2QA1 + 2F1A1,

ψ
(1,5)
ij = −

2
h1
U4, ψ

(1,6)
ij = −

2
h2
U5,

ψ
(1,7)
ij = 2QC −

2
υ
P3, ψ

(1,14)
ij =

6

h21
U4, ψ

(1,15)
ij =

6

h22
U5,

ψ
(1,17)
ij =

6
υ2
P3, ψ

(1,19)
ij = −2F1 + (F1A0)T ,

ψ
(1,22)
ij = 2QA2 + 2F1A2, ψ

(1,23)
ij = 2QB1,

ψ
(2,2)
ij = −R1, ψ

(3,3)
ij = −R2,

ψ
(4,4)
ij = −(1− µ1)R3, ψ

(4,19)
ij = (F1A1)T ,

ψ
(5,5)
ij = −

4
h1
U4 − 4(h12)2U6, ψ

(5,6)
ij = −2(h12)2U6,

ψ
(5,14)
ij =

6

h21
U4, ψ

(5,16)
ij = 6(h12)U6,

ψ
(6,6)
ij = −

4
h2
U5 − 4(h12)2U6, ψ

(6,15)
ij =

6

h22
U5,

ψ
(6,16)
ij = 6(h12)U6, ψ

(7,7)
ij = −P1 −

4
υ
P3 + δCTφC,

ψ
(7,17)
ij =

6
υ2
P3, ψ

(7,23)
ij = δCTφ, ψ

(8,8)
ij = −

4
d1
U1,

ψ
(8,9)
ij =

6

d21
U1, ψ

(9,9)
ij = −

12

d31
U1, ψ

(10,10)
ij = −

4
d2
U2,

ψ
(10,11)
ij =

6

d22
U2, ψ

(11,11)
ij = −

12

d32
U2,

ψ
(12,12)
ij = −

4
d2 − d1

U3, ψ
(12,13)
ij =

6
(d2 − d1)2

U3,

ψ
(13,13)
ij = −

12
(d2 − d1)3

U3, ψ
(14,14)
ij = −

12

h31
U4,

ψ
(15,15)
ij = −

12

h32
U5, ψ

(16,16)
ij = −12U6,

ψ
(17,17)
ij = −

4
υ
P2 −

12
υ3
P3, ψ

(17,18)
ij =

6
υ2
P2,

ψ
(18,18)
ij = −

12
υ3
P2, ψ

(19,19)
ij = R4 + R5 + R6 + h1U4

+ h2U5 + (h12)4U6 + υP3 − 2F1,

ψ
(19,22)
ij = 2F1A2,

ψ
(20,20)
ij = −R4, ψ

(21,21)
ij = −R5,

ψ
(22,22)
ij = −(1− µ2)R6, ψ

(23,23)
ij = −(1− δ)φ.

In view of the condition (42) ψij < 0, indicates that
V̇ (t) < 0, with the end that the filtering error system (20)
for ETCS (10) with w(t) = 0 is asymptotically stable.
In addition, When w(t) 6= 0, we calculate the L2 − L∞

performance of the filtering error system (20) as follows:
Consider the index

J = V (t)−
∫ t

0
wT (s)w(s)ds. (43)

For all nonzero w(t) ∈ L2[0,+∞), we get

J =
∫ t

0
(V̇ (s)− wT (s)w(s))ds

≤ ζ T2 (t)5ijζ2(t), (44)

where ζ T2 =
[
ζ T1 (t),w

T (t)
]
. Applying the Schur complement

to (44), we know that (22) guarantees J < 0, implying

ξT (t)Qξ (t) ≤ V (t) <
∫ t

0
wT (s)w(s)ds. (45)

Meanwhile, using Schur complement to (23), we can know
that E

T
E < γ 2Q. Then, it is simple to see that for every t ≥ 0

eT (t)e(t) = ξT (t)E
T
Eξ (t)

< γ 2ξT (t)Qξ (t)

< γ 2
∫ t

0
wT (s)w(s)ds

< γ 2
∫
∞

0
wT (s)w(s)ds. (46)

Therefore, by Definition 1, the filtering error system (20)
is asymptotically stable with an L2 − L∞ performance γ .
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B. L2 − L∞ FILTER DESIGN FOR THE NEUTRAL SYSTEM
In reference to the L2 − L∞ performance analysis in Theo-
rem 1. In this part, we will provide a sufficient condition to
derive the existence of event-triggered L2 − L∞ filter of the
form (8) is presented in the subsequent Theorem 2.
Theorem 2: For given positive scalars d1, d2, h1, h2, υ,

µ1, γ > 0, δ, and µ2, the L2 − L∞ filtering system (20) is
solvable if there exist matrices S > 0,Q1 > 0,Rl > 0,Ul >
0,Pm > 0, φ > 0, l = 1, 2, 3, 4, 5, 6,m = 1, 2, 3 and
positive diagonal matrix F1 and Af ,Bf , C f with adjustable
dimensions, such that the following LMIs hold:

ϕij < 0, i, j = 1, 2, . . . , q (47)Q1 S ET

∗ S −CT
f

∗ ∗ γ 2I

 > 0, (48)

where

ϕ
(1,1)
ij = R1 + R2 + R3 + d1U1 + d2U2

+ (d2 − d1)U3 −
4
h1
U4 −

4
h2
U5 −

4
υ
P3 + P1

+ υP2 + 2F1A0 + 2Q1A0,
ϕ
(1,2)
ij = AT0 S + Af , ϕ

(1,5)
ij = 2F1A1 + Q1A1,

ϕ
(1,6)
ij = −

2
h1
U4, ϕ

(1,7)
ij = −

2
h2
U5,

ϕ
(1,8)
ij = −

2
υ
P3 + Bf C, ϕ

(1,15)
ij =

6

h21
U4,

ϕ
(1,16)
ij =

6

h22
U5, ϕ

(1,18)
ij =

6
υ2
P3,

ϕ
(1,20)
ij = −2F1 + (F1A0)T , ϕ

(1,23)
ij = 2F1A2 + Q1A2,

ϕ
(1,24)
ij = Bf , ϕ

(1,25)
ij = 2F1B+ Q1B,

ϕ
(2,2)
ij = 2Af , ϕ

(2,5)
ij = QT2 A1, ϕ

(2,8)
ij = Bf C,

ϕ
(2,23)
ij = QT2 A2, ϕ

(2,24)
ij = Bf , ϕ

(2,25)
ij = QT2 B

ϕ
(3,3)
ij = −R1, ϕ

(4,4)
ij = −R2, ϕ

(5,5)
ij = −(1− µ1)R3,

ϕ
(5,20)
ij = (F1A1)T , ϕ

(6,6)
ij = −

4
h1
U4 − 4(h12)2U6,

ϕ
(6,7)
ij = −2(h12)2U6, ϕ

(6,15)
ij =

6

h21
U4,

ϕ
(6,17)
ij = 6(h12)U6,

ϕ
(7,7)
ij = −

4
h2
U5 − 4(h12)2U6,

ϕ
(7,16)
ij =

6

h22
U5, ϕ

(7,17)
ij = 6(h12)U6,

ϕ
(8,8)
ij = −P1 −

4
υ
P3 + δCTφC,

ϕ
(8,18)
ij =

6
υ2
P3, ϕ

(8,24)
ij = δCTφ,

ϕ
(9,9)
ij = −

4
d1
U1, ϕ

(9,10)
ij =

6

d21
U1,

ϕ
(10,10)
ij = −

12

d31
U1, ϕ

(11,11)
ij = −

4
d2
U2, ϕ

(11,12)
ij =

6

d22
U2,

ϕ
(12,12)
ij = −

12

d32
U2, ϕ

(13,13)
ij = −

4
d2 − d1

U3,

ϕ
(13,14)
ij =

6
(d2 − d1)2

U3, ϕ
(14,14)
ij = −

12
(d2 − d1)3

U3,

ϕ
(15,15)
ij = −

12

h31
U4, ϕ

(16,16)
ij = −

12

h32
U5,

ϕ
(17,17)
ij = −12U6, ϕ

(18,18)
ij = −

4
υ
P2 −

12
υ3
P3,

ϕ
(18,19)
ij =

6
υ2
P2, ϕ

(19,19)
ij = −

12
υ3
P2,

ϕ
(20,20)
ij = R4 + R5 + R6 + h1U4 + h2U5

+ (h12)4U6 + υP3 − 2F1,
ϕ
(20,23)
ij = 2F1A2, ϕ

(20,25)
ij = 2F1B, ϕ

(21,21)
ij = −R4,

ϕ
(22,22)
ij = −R5, ϕ

(23,23)
ij = −(1− µ2)R6,

ϕ
(24,24)
ij = −(1− δ)φ, ϕ(25,25)ij = −I .

Moreover the desired filter of the form (7) is given by

Af = S−1Af ,Bf = S−1Bf ,Cf = C f . (49)

Proof: Since S > 0, there exists a real matrix Q2
and Q3 > 0, such that S = Q2Q

−1
3 QT2 . Defining H =

diag{I ,Q2Q
−1
3 ,

23 times︷ ︸︸ ︷
I , I , I } and denoting Af = Q2AfQ

−1
3 QT2 ,

Bf = Q2Bf , C f = Cf . Multiplying (22) and (23) by both
sides on H and HT , then we get (47) and (48). According to
Theorem 1, if (47) and (48) are feasible, the ETCS L2 − L∞
problem is solvable, the filtering parameters are described
by (49).
Remark 1: Consider the following filtering system

from (20) without neutral delay as follows:

ξ̇ (t) = A0ξ (t)+ A1x̂(t − d(t))+ Bw(t)+ B1ek (t)

+Cx̂(t − υ(t)),

e(t) = Eξ (t), (50)

Using the similar methods in Theorem 2, we can get the
following results.
Corollary 1: For given positive scalars d1, d2, υ, µ1, γ >

0 and δ, the L2 − L∞ filtering system (50) is solvable if there
exist positive definite matrices S > 0,Q1 > 0,Rl > 0,Ul >
0,Pm > 0, φ > 0, l = 1, 2, 3,m = 1, 2, 3 and diagonal
matrix F1 > 0 and Af ,Bf , C f with appropriate dimensions
such that

ζij < 0, i, j = 1, 2, . . . , q (51)Q1 S ET

∗ S −CT
f

∗ ∗ γ 2I

 > 0, (52)

where

ζ
(1,1)
ij = R1 + R2 + R3 + d1U1 + d2U2 + (d2 − d1)U3

−
4
υ
P3 + P1 + υP2 + 2F1A0 + 2Q1A0,

ζ
(1,2)
ij = AT0 S + Af , ζ

(1,5)
ij = 2F1A1 + Q1A1,
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ζ
(1,6)
ij = −

2
υ
P3 + Bf C, ζ

(1,13)
ij =

6
υ2
P3,

ζ
(1,15)
ij = −2F1 + (F1A0)T , ζ

(1,16)
ij = Bf

ζ
(1,17)
ij = 2F1B+ Q1B ζ

(2,2)
ij = 2Af ,

ζ
(2,5)
ij = QT2 A1, ζ

(2,6)
ij = Bf C, ζ

(2,16)
ij = Bf ,

ζ
(2,17)
ij = QT2 B, ζ

(3,3)
ij = −R1, ζ

(4,4)
ij = −R2,

ζ
(5,5)
ij = −(1− µ1)R3, ζ

(5,15)
ij = (F1A1)T

ζ
(6,6)
ij = −P1 −

4
υ
P3 + δCTφC,

ζ
(6,13)
ij =

6
υ2
P3, ζ

(6,16)
ij = δCTφ, ζ

(7,7)
ij = −

4
d1
U1,

ζ
(7,8)
ij =

6

d21
U1, ζ

(8,8)
ij = −

12

d31
U1, ζ

(9,9)
ij = −

4
d2
U2,

ζ
(9,10)
ij =

6

d22
U2, ζ

(10,10)
ij = −

12

d32
U2,

ζ
(11,11)
ij = −

4
d2 − d1

U3, ζ
(11,12)
ij =

6
(d2 − d1)2

U3,

ζ
(12,12)
ij = −

12
(d2 − d1)3

U3, ζ
(13,13)
ij = −

4
υ
P2 −

12
υ3
P3,

ζ
(13,14)
ij =

6
υ2
P2, ζ

(14,14)
ij = −

12
υ3
P2,

ζ
(15,15)
ij = υP3 − 2F1, ζ

(15,17)
ij = 2F1B,

ζ
(16,16)
ij = −(1− δ)φ, ζ (17,17)ij = −I .

Moreover the desired filter of the form (7) is given by

Af = S−1Af ,Bf = S−1Bf ,Cf = C f . (53)

Proof: The proof is similar process in Theorem 2.
Remark 2: Consider the following linear system (similar

as in [17]), which is given by:

˙̂x(t) = A0x̂(t)+ A1x̂(t − d(t))+ A2 ˙̂x(t − h(t)), (54)

According to Theorem 1, we can derive the following
Corollary 2 for the asymptotic stability of the neutral type
system (54).
Corollary 2: For given positive scalars d1, d2, h1, h2, µ1

and µ2, the system (54) is solvable if there exist matrices
Q1 > 0,Rl > 0,Ul > 0, l = 1, 2, 3, 4, 5, 6, and positive
diagonal matrix F1, such that the following LMI holds:

8 < 0, (55)

where 8 = (8ij)19×19

8(1,1)
= R1 + R2 + R3 + d1U1 + d2U2

+ (d2−d1)U3−
4
h1
U4−

4
h2
U5+2F1A0+2Q1A0,

8(1,4)
= 2F1A1 + Q1A1, 8(1,5)

= −
2
h1
U4,

8(1,6)
= −

2
h2
U5, 8

(1,13)
=

6

h21
U4, 8

(1,14)
=

6

h22
U5,

8(1,16)
= −2F1 + (F1A0)T , 8(1,19)

= 2F1A2 + Q1A2,

8(2,2)
= −R1, 8(3,3)

= −R2, 8(4,4)
= −(1− µ1)R3,

8(4,16)
= (F1A1)T , 8(5,5)

= −
4
h1
U4 − 4(h12)2U6,

8(5,6)
= −2(h12)2U6, 8

(5,13)
=

6

h21
U4,

8(5,15)
= 6(h12)U6, 8

(6,6)
= −

4
h2
U5 − 4(h12)2U6,

8(6,14)
=

6

h22
U5, 8

(6,15)
= 6(h12)U6,

8(7,7)
= −

4
d1
U1, 8

(7,8)
=

6

d21
U1,

8(8,8)
= −

12

d31
U1, 8

(9,9)
= −

4
d2
U2, 8

(9,10)
=

6

d22
U2,

8(10,10)
= −

12

d32
U2, 8

(11,11)
= −

4
d2 − d1

U3,

8(11,12)
=

6
(d2 − d1)2

U3, 8
(12,12)

= −
12

(d2 − d1)3
U3,

8(13,13)
= −

12

h31
U4, 8

(14,14)
=−

12

h32
U5, 8

(15,15)
=−12U6,

8(16,16)
= R4 + R5 + R6 + h1U4 + h2U5

+ (h12)4U6 − 2F1, 8(16,19)
= 2F1A2,

8(17,17)
= −R4, 8(18,18)

= −R5, 8(19,19)
= −(1− µ2)R6,

Proof: Consider the following LKF candidate

V (t) =
5∑
l=1

Vl(t),

V1(t) = x̂T (t)Q1x̂(t),

V2(t) =
∫ t

t−d1
x̂T (s)R1x̂(s)ds+

∫ t

t−d2
x̂T (s)R2x̂(s)ds

+

∫ t

t−d(t)
x̂T (s)R3x̂(s)ds,

V3(t) =
∫ t

t−h1

˙̂xT (s)R4 ˙̂x(s)ds+
∫ t

t−h2

˙̂xT (s)R5 ˙̂x(s)ds

+

∫ t

t−h(t)

˙̂xT (s)R6 ˙̂x(s)ds,

V4(t) =
∫ 0

−d1

∫ t

t+θ
x̂T (s)U1x̂(s)dsdθ +

∫ 0

−d2

∫ t

t+θ
x̂T (s)

×U2x̂(s)dsdθ +
∫
−d1

−d2

∫ t

t+θ
x̂T (s)U3x̂(s)dsdθ,

V5(t) =
∫ 0

−h1

∫ t

t+θ

˙̂xT (s)U4 ˙̂x(s)dsdθ +
∫ 0

−h2

∫ t

t+θ

˙̂xT (s)

×U5 ˙̂x(s)dsdθ + h312

∫
−h1

−h2

∫ t

t+θ

˙̂xT (s)U6 ˙̂x(s)dsdθ.

(56)

Then, using the same treatment theory as Theorem 1,
we can easily get the Corollary 2.
Remark 3: Notice that Theorem 2 gives an adequate con-

dition to co-plan the event-triggered filtering (8) and the
event-triggered scheme in the communication (4). If the LMIs
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(47) and (48) is feasible, the desired filter parameters Afj, Bfj
and Cfj can be obtained.
Remark 4: In addition, computational complexity becomes

a major issue, based on the size of the LMIs and the number
of decision variables. However, larger LMIs improve perfor-
mance. In recent years, an increasing number of researchers
are working to improve the performance of time-delayed sys-
tems. The basic problem with time-delayed systems is to build
better LKFs and estimate their derivatives using better inte-
gral inequality techniques. The proposed stability criteria in
this study are derived from the constructions of various LKFs;
the proposed LMI conditions are more complicated and have
computational complexity. To meet these needs, some new
research has been recently published using a different type
of LKF that is more effective at reducing computational
complexity while keeping less conservative results [44], [45].
In future work, we will apply Finsler’s Lemma to reduce the
number of decision variables and use this type of new LKF
to reduce maintainability along with simple LMI conditions.
Therefore, it is easy to use the provided method to reduce
the maintainability and computational load of time-delayed
systems with the new LKF in [44], [45].

IV. NUMERICAL EXAMPLES
In this part, numerical simulation results and application
examples are provided to illustrate the designed filter’s per-
formance. Example 1 shows the feasibility of Theorem 2.
By comparing the results in the previous literature, the advan-
tages of the proposed result are presented in Example 2.
Example 3 is given to benchmark the proposed filter design
through studying a tunnel diode circuit.
Example 1: Consider the following T-S fuzzy neutral type

system (57)

ξ̇ (t) = A0ξ (t)+ A1x̂(t − d(t))+ A2 ˙̂x(t − h(t))

+Bw(t)+ B1ek (t)+ Cx̂(t − υ(t)),

e(t) = Eξ (t), (57)

with the following parameters:

A01 =

[
−2.1 0.1

1 −1

]
, A02 =

[
−2 0

−0.2 −1.1

]

A11 =

[
−1 0.1

−0.8 −0.9

]
, A12 =

[
−0.9 0

−1 −0.8

]

A21 =

[
0.3 −0.15

0.5 −0.2

]
, A22 =

[
0.4 −0.1

0.5 −0.3

]

B1 =

[
2

−0.5

]
, B2 =

[
0.8

0.3

]
, C1 =

[
2 1

]
,

C2 =
[
0.2 −1

]
, E1 =

[
2 −0.5

]
,

E2 =
[
−0.5 0.2

]
.

The membership functions are taken as u1(s(t)) =
3+x̂(t)

3 , −3 ≤ x̂(t) ≤ 0;
3−x̂(t)

3 , 0 ≤ x̂(t) ≤ 3;
0 otherwise,

and u2(s(t)) = 1− u1(s(t)).

Subsequently, we will show the desired performance of
the proposed ETCS (4) and the full order filter (7) for the
system (1) with L2 − L∞ performance index γ according to
Theorem 2. Before computation analysis, we assume 0.1 ≤
d(t) ≤ 0.2, 0.2 ≤ h(t) ≤ 0.4, µ1 = 0.2, µ2 = 0.3, υ =
0.01, the external disturbances w(t) = sin(0.1t)e(−0.1t) and
by applying the LMIs in Theorem 2, we can obtain the related
trigger matrix φ = 2.0324, and the following desired filter
parameters:

Af 1 =

[
−15.0634 −2.3412

−4.1445 −14.5469

]
, Bf 1 =

[
−0.5487

−1.2421

]
,

Cf 1 = [0.5314 0.4478], Af 2 =

[
−16.1543 − 3.5428

−4.2432 − 15.3678

]
,

Bf 2 =

[
−0.6742

−0.4587

]
, Cf 2 = [0.4812 0.3733].

Consider the initial state x̂(t) = [0.2 − 0.1]T and
xf (t) = [−1 0.5]T . The related simulation results are dis-
played in Figure 2, Figure 2a present the state responses of
ξ (t), the corresponding curves of the state x̂1(t), x̂2(t) and
xf 1(t), xf 2(t) are drawn in Figure 2b and Figure 2c, evolution
of the error responses e(t) = z(t) − zf (t) are depicted in
Figure 2d. Based on the above Figures 2a-2d, that the filter-
ing error system is asymptotically stable in terms of L2−L∞
performance by applying the designed parameters. Further-
more, because of the event-triggered mechanism, the release
instants and release intervals are shown in Figure 2e. Finally,
figure 2f depicts the corresponding state responses of the
considered neutral type fuzzy filtering system with different
initial values. In view of the above simulation studies, the pro-
posed event-triggered mechanism with modelled system (20)
can significantly minimize the data communication burden.
We can conclude that the event-triggered scheme-based fil-
ter designed here works well while minimizing unnecessary
communication data.

TABLE 1. Minimum L2 − L∞ performance level γ for different d2.

TABLE 2. Minimum L2 − L∞ performance level γ for different µ1.

Based on the ETCS and network environment, the net-
work induced delay is fully investigated in the filter error
system (20). In this part, the MAUB d2 for guaranteeing the
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FIGURE 2. The panels (2a)-(2f) contain the simulation results of the state
responses and release instants in Example 1.

stability of the error system (20) is essential. By this way
solving Theorem 2, we can obtain the minimum L2 − L∞
performance index for various d2/µ1, and it is summarized
in Table 1 and Table 2. From Table 1 and Table 2, we can
see that the effects of the upper bound d2/µ1 on the L2− L∞
performance index γ .
Example 2: Consider the following T–S fuzzy system.

˙̂x(t) =
2∑
i=1

ui(s(t))
[
A0ix̂(t)+ A1ix̂(t − d(t))

+Biw(t)
]
,

ŷ(t) =
2∑
i=1

ui(s(t))
[
Cix̂(t)

]
,

z(t) =
2∑
i=1

ui(s(t))
[
Eix̂(t)

]
, (58)

where

A01 =
[
−2.1 0.1
1 −1

]
, A02 =

[
−2 0
−0.2 −1.1

]
,

A11 =
[
−1 0.1
−0.8 −0.9

]
, A12 =

[
−0.9 0
−1 −1.8

]
,

B1 =
[

1
−0.2

]
, B2 =

[
0.6
0.3

]
, C1 =

[
1 2

]
,

C2 =
[
1 0.5

]
, E1 =

[
0.5 −2

]
,

E2 =
[
−0.3 0.3

]
, u1(s(t)) = sin2 t,

u2(s(t)) = cos2 t, w(t) =


1, 5 ≤ t ≤ 10
−1, 15 ≤ t ≤ 20
0, else

According to the above parameters and let 0.4 ≤ d(t) ≤
0.5, υ = 0.3. By using LMIs in Corollary 1 and MATLAB
LMI toolbox, then the related trigger matrix φ = 8.3242 and
the subsequent matrices can be derived as follows.

Af 1 =

[
−8.1245 −3.3252

−2.3214 −7.5463

]
, Bf 1 =

[
−2.1025

−0.9425

]
,

Cf 1 = [1.7458 0.8712] Af 2 =

[
−10.4752 −2.1024

−4.1204 −9.2867

]
,

Bf 2 =

[
−0.8412

−0.7458

]
, Cf 2 = [0.4785 0.1025].

Based on the zero initial condition, the state trajectories
of ξ (t) is depicted in Figure 3a, the corresponding simulation
curves of the system states x̂1(t), x̂2(t) and the state responses
of the filters xf 1(t), xf 2(t) are shown in Figures 3b and 3c.
Figure 3d demonstrates the responses of filtering error z(t)−
zf (t) and the triggering instants are picturized in Figure 3e.
Figure 3f depicts the corresponding state responses for the
fuzzy filtering error system with different initial values. Fur-
thermore, by solving LMIs in Corollary 1, we obtain the
maximum allowable upper bounds of d2 for various values
of υ, when d1 = 0.1 (listed in Table 3), which clearly shows
the effectiveness of our work. In addition, compared with
the results of the proposed ETCS and the ETCS in [19],
to show the performance of our proposed method. By design-
ing t ∈ (0, 35] Figure 3e presents the transmission instants
and intervals under the proposed ETCS. Furthermore, the
transmission trigger times during the interval (0, 35] of the
proposed ETCS is 35 release instants. One can check that
the proposed ETCS released less transmitted data than those
in [19], which means the energy consumption is effectively
reduced. In addition, Corollary 1 obtained here are not only
less conservative results but has effectively saved the limited
communication resources greatly under the release intervals
in Figure 3e. In conclusion, all the simulation results have
indicated our theoretical analysis for the proposed algorith-
mic filter.

TABLE 3. Upper bound of d2 for various values of v and d1 = 0.1.
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FIGURE 3. The panels (3a)-(3f) contain the behavior of state trajectories
and triggered instants in example 2.

V. APPLICATION
Example 3: Consider the tunnel diode circuit in [46]

is considered to shown the performance of the proposed
approach.

Cv̇c(t) = −0.002vc(t) − 0.01vc(t)3 + iL(t)
y(t) = vc(t)
Li̇L(t) = −vc(t)− RiL(t)+ w(t),

(59)

where vc(t) noted as voltage of the capacitor, iL(t) denotes
the current of the inductor, w(t) indicates the disturbance,
y(t) is the sampled-data measurement output. Furthermore,
we initiate the parameters of the capacitor, inductor and
resistance C = 20mF,L = 1000mH and R = 10�,
respectively.
For instance, vc(t) ∈ [−3, 3], the tunnel diode circuit

can be described in the following fuzzy system with x̂(t) =
[x̂1(t) x̂2(t)]T = [vc(t) iL(t)]T and z(t) = x̂1(t).

˙̂x(t) =
2∑
i=1

ui(s(t))
[
A0i(t)x̂(t)+ Bi(t)w(t)

]
,

ŷ(t) =
2∑
i=1

ui(s(t))
[
Ci(t)x̂(t)

]
,

FIGURE 4. Schematic diagram of Tunnel diode circuit in [46].

z(t) =
2∑
i=1

ui(s(t))
[
Ei(t)x̂(t)

]
, (60)

where

A01 =
[
−0.1 50
−1 −10

]
, A02 =

[
−4.6 50
−1 −10

]
,

B1 = B2 =
[
0
1

]
, C1 = C2 =

[
1 0

]
,

E1 = E2
[
1 0

]
.

Besides, we suppose the system membership functions

are taken as u1(s(t)) =


3+x̂(t)

3 , −3 ≤ x̂(t) ≤ 0;
3−x̂(t)

3 , 0 ≤ x̂(t) ≤ 3;
0 otherwise,

and

u2(s(t)) = 1 − u1(s(t)). Let the bound of time delay υ =
0.08 and event-triggered parameter δ = 0.9. Utilizing LKF
V1(t),V6(t) with Corollary 1 and the filtering gains are as
follows:

Af 1 =

[
−3.2134 0.1574

0.2473 −2.2154

]
, Bf 1 =

[
−2.0147

0.0112

]
,

Cf 1 = [−2.0157 0.5240], Af 2 =

[
−10.0125 0.2584

8.0012 − 2.1291

]
,

Bf 2 =

[
−6.3120

0.4102

]
, Cf 2 = [−1.0311 0.2471].

Moreover, to illustrate that the effectiveness of the full-
order event-triggered L2 − L∞ filter design approach devel-
oped in Corollary 1, the responses of x̂(t) and xf (t) can be
achieved by iterative estimations from initial value x̂(0) =
xf (0) = [0 0]T , and the error can be easily obtained by
e(t) = z(t)−zf (t) and the disturbance is considered as w(t) =
exp(−0.1t)sin(0.1t). The evolution’s of ξ (t), x̂(t), xf (t) and
e(t) are shown in Figures 5a, 5b, 5c and 5d. Figure 5f shows
the related state trajectories for the fuzzy filtering error sys-
tem with various initial conditions. With the above simulation
results that the filtering error system (60) is asymptotically
stable by applying the designed parameters. The transmission
instants and intervals are presented in Figure 5e. In order
to satisfied the L2 − L∞ performance, the period is taken
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as t ∈ (0, 25] in Figure 5e, which shows that the required
transmission can save network resources. Moreover, from
Figures 5a-5e, one can check ETCS cannot just mitigate the
issue of resource constraints but also make the data in the
transmission process faster and more stable. The trigger-
ing threshold can be chosen accordingly to the real system
application requirements. Under the network communication
parameters υ = 0.08 and δ = 0.9, therefore we get the
minimum value of L2 − L∞ performance γ = 1.0254.
From the above simulation results and discussions, we can
clearly illustrate that the filtering errors can achieve ultimate
L2 − L∞ performance under the designed event-triggered
scheme in this paper, and it is consistent with our theoretical
results.

FIGURE 5. Behavior of the responses for various states ξ (t), x̂1(t),
xf 1(t), x̂2(t), xf 2(t),e(t) and triggered instants in example 3.

TABLE 4. Maximum allowable bound υ and δ for example 3.

Example 4: As illustrated in [47], the partial element
equivalent circuit (PEEC) model in Fig. 4(b) includes
new circuit elements which involve retarded mutual
coupling between the partial inductances of the form

Lpiji′j(t − h2) and retarded dependent current sources of the
form pij/piiicj(t − h2). The general form of modeling PEEC
can be modeled as

C0 ˙̂x(t)+ G0x̂(t)+ C1 ˙̂x(t − h2)

+G1x̂(t − h2) = Bu(t, t − h2), t ≥ t0;

x̂(t) = φ̂(t), t ≤ t0. (61)

To consider the asymptotic stability of the system with the
mathematical deduction, the PEEC (61) can be rewritten as
the following neutral system [17]:

˙̂x(t) = A0x̂(t)+ A1x̂(t − h2)+ A2 ˙̂x(t − h2),

x̂(t) = φ̂(t), t ≤ t0. (62)

FIGURE 6. Illustrate (i) shows the metal strip with two LP cells (dashed
means three capacitive cells) and (b) shows small PEEC model for metal
strip.

If we take different time-varying delays into account,
a more general form of PEEC (62) can be described by the
following system [17]

˙̂x(t) = A0x̂(t)+ A1x̂(t − d(t))+ A2 ˙̂x(t − h(t)),

x̂(t) = φ̂(t), t ≤ t0. (63)

where the system parameters are given as [17]

A0 = 100


−2.105 1 2

3 − 9 0

1 2 − 6

 ,

A1 = 100


1 0 − 3

−0.5 − 0.5 − 1

−0.5 − 1.5 0

 , A2 = 1
72


−1 5 2

4 0 3

−2 4 1

 .
Let us choose time varying delays 0.1 ≤ d(t) ≤ 0.8, 0.1 ≤
h(t) ≤ 0.7, µ1 = 0.5, µ2 = 0.5. Then by utilizing the above
values and calling theMATLAB LMI toolbox, solving the LMI
in Corollary 2, it is found that the system (54) is asymptoti-
cally stable and the state trajectories of the dynamical system
converge to the zero equilibrium point with an initial state
[1.5,−0.4,−0.3]T shown in Figure 7.
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FIGURE 7. State responses of the system (63) in example 4.

Remark 5: Consider the delayed neutral type system (54)
with the input matrices as in [48] (Example 1). Solving
the system (54), using the LMI in Corollary 2 and assume
that µ2 = 0, we obtain the MAUB d2 for different d1 and µ1
as shown in Table 5, which clearly shows the effectiveness of
our work. The results obtained in this paper are significantly
better than those in [48].

TABLE 5. MAUB of d2 for various values of µ1 and d1.

VI. CONCLUSION
To conserve network bandwidth, we presented an event-
triggered L2−L∞ filtering for network-based neutral systems
via T-S fuzzy approach. Using a new ETCS and the suitable
LKF, Wirtinger’s inequality technique, we established some
sufficient conditions and constructed the LMIs to ensure the
asymptotic stability of the filtering error system. The numer-
ical examples demonstrate how the proposed communication
scheme will greatly reduce network bandwidth consumption
while maintaining the desired efficiency of the filtering error
system. Moreover, the model proposed in this work can
be also extended event-triggered mechanism to the discrete
time domain with imperfect communication, such as packet
dropouts and quantization.Wewill also target on the complex
phenomena like the randomly occurring uncertainties, incom-
plete measurements, general switching system with repeated
scalar nonlinearities, T–S fuzzy based piecewise Lyapunov
function and event-triggered with asynchronous sampling,
which makes the model more practical and will be investi-
gated in our future work.
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