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In this paper, interval oscillation criteria for the nonlinear damped dynamic equations with forcing terms on time scales within
conformable fractional derivatives are established. Our approach is determined from the implementation of generalized Riccati
transformation, some properties of conformable time-scale fractional calculus, and certain mathematical inequalities. Also, we
extend the study of oscillation to conformable fractional Euler-type dynamic equation. Examples are presented to emphasize the
validity of the main theorems\enleadertwodots.

1. Introduction

*e consideration of dynamic equations on time scales has
attracted many researchers because of its wide applications
in the field of science and engineering. *e theory of time
scales was presented by Hilger [1] to unify the discrete and
continuous analysis. It not only unifies the continuous and
discrete cases but also gives new areas in between such as
q-calculus [2]. *e qualitative analysis of solutions of dy-
namic equations on different time scales has received
considerable notice. In particular, the investigation of the
oscillation of solutions to dynamic equations [3–5], dynamic
equations with damping term [6–8], and dynamic equations
on various time scales [9–11] has gained extensive attention.
Fractional calculus is a generalization of integration and
differentiation to any order. Recently, it has been realized
that the fractional calculus has numerous applications in
engineering, signal processing, economics and finance,
probability and statistics, neural networks, and thermody-
namics; see for illustrations [12–16] and the citations therein.
In recent times, the importance has been given to fractional
order calculus rather than integer order due to its

applications in engineering such as neural networks, elec-
trical and mechanical engineering, and population dy-
namics. *e fractional dynamic equations on time scales
have been studied by only few authors [17–19].

In [19], Feng and Meng established the asymptotic and
oscillatory behavior of the following dynamic equation of
fractional order on time scales using the generalized Riccati
transformation technique:
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Alzabut et al. [17] considered the following nonlinear
damped dynamic equation with a conformable fractional
derivative:
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Here, the authors established the oscillation of the above
equation when the nonlinear function f is increasing and
nonincreasing. Besides, the results are carried out in light of
the following two cases: 

∞
t0
Δαs/r(s) �∞ and 

∞
t0
Δαs/

r(s)<∞. Motivated by the above discussion, in this work,
we established the oscillation results of nonlinear con-
formable fractional dynamic equations with a forced term.

In the recent papers [18, 20], the conformable time-scale
fractional calculus has been introduced. Applications of the
obtained results demonstrate that the newly defined calculus
will be applied to investigate oscillation for both fractional
differential and fractional difference equations at the same
time.*erefore, the determination of oscillation of solutions
of conformable fractional dynamic equations has become a
promising topic for researchers. To the best of our obser-
vation, papers [17, 19] are the only research that has studied
the oscillation of conformable fractional dynamic equations.

2. Problem Formulation and Preliminaries

In this article, we are concerned with a class of nonlinear
conformable fractional dynamic equations with damped and
forced terms on time scales of the kind:

φ(η) y
(α)

(η)  
(α)

+ a(η)y
(α)

(η) + b(η)f(y(η)) � h(η),

η ∈ η0,∞ T
,

(3)

where T denotes an arbitrary time scale,
[η0,∞)T

� [η0,∞)∩ T , (·)(α) is the conformable fractional
dynamic operator of order α(0< α≤ 1), φ(η), a(η),

b(η) ∈ Cr d([η0,∞)T
, [0,∞)), and f ∈ C(R,R) such that

yf(y)> 0 and the function h(η) �
≤ 0, [α1, β1],
≥ 0, [α2, β2]

 , where

[αi, βi] ⊂ [η0,∞)T
is in Cr d([η0,∞)T

, [0,∞)). We consti-
tute new interval criteria for oscillation of the solutions of
equation (3) when the nonlinear function f is increasing and
nonincreasing and extend the results to the Euler-type
fractional dynamic equations.

By a solution of (3), we insist a nontrivial function
y(η) ∈ R fulfilling (3) for η≥ η0. If a solution of (3) is neither
eventually positive (EP) nor eventually negative (EN), then it
is called oscillatory. Or else, it is said to be nonoscillatory. If
all solutions of (3) are oscillatory, then (3) is called
oscillatory.

Before we proceed to the main results, we present es-
sential preliminaries on conformable time-scale fractional
calculus that will be used to justify further discussion. Terms
and definitions are adopted from the papers [2, 18].

Definition 1 (see [2]). On any time scale T ,
σ(η) � inf υ ∈ T , υ> η  and ρ(η) � sup υ ∈ T , υ< η  are
defined as the forward and backward jump operators,
respectively.

A point η ∈ T is known as right-dense if σ(η) � η, left-
dense if ρ(η) � η, right-scattered if σ(η)> η, and left scat-
tered if ρ(η)< η.

*e graininess function μ(η) of the time scale is given by
μ(η) � σ(η) − η.

*e set T
k

� T\(ρ(supT), T) if supT <∞T if T �∞ .

Definition 2 (see [2]). A real-valued function f defined on T

is known as rd-continuous if at all left-dense points, a finite
left limit of f exists, and if it is continuous at each right-dense
point.

Definition 3 (see [2]). A function ζ: T⟶ R is known as
regressive if 1 + μ(η)ζ(η)≠ 0 for η ∈ T

k. R is the collection
that consists of all rd-continuous regressive functions
f: T⟶ R. We define R+ : � g ∈R: 1 + μ(η)g(η)> 0,

η ∈ T}.

Definition 4 (see [2]). If ζ ∈R, then the function defined by

eζ(η, υ) � exp 
η

υ
Θμ(υ)(ζ(υ))Δυ , for η ∈ T , υ ∈ T

k
,

(4)

is called exponential, where Θh(z) �

log(1 + hz)/h, h≠ 0,

z, h � 0 .

Also, eζ(η, υ) is a nonzero real function and
eζ(σ(η); η0) � [1 + μ(η)ζ(η)]eζ(η, η0).

Definition 5 (see [18]). For η ∈ T
k, α ∈ (0, 1] and

g: T⟶ R, the conformable fractional derivative of order α
for g at η is g(α)(η) (if it exists) so that, for every positive ϵ,
there is a δ-neighborhood N fulfilling

[g(σ(η)) − g(])]η1− α
− g(α)

(η)(σ(η) − ])




≤ ϵ|σ(η) − ]|, for all ] ∈ N.
(5)

Definition 6 (see [18]). If G(α)(η) � g(η), η ∈ T
k, then G is

said to be an α-order antiderivative of g and the integral of g
given by


b

a
g(η)Δαη � 

b

a
g(η)ηα− 1Δη � G(b) − G(a), where a, b ∈ T ,

(6)

is named as Cauchy α-fractional.

Theorem 1 (see [18]). By the definition of α- order con-
formable fractional derivative, f(α)(η) � η1− αfΔ(η). Also, f is
decreasing (increasing) for η> 0, if f(α)(η)< 0(> 0) for η> 0.

Theorem 2 (see [19]). Let ζ(η) � ηα− 1ζ(η), α ∈ (0, 1]. If
ζ ∈R, then, for the IVP x(α)(η) � ζ(η)x(η) and
x(η0) � 1 on T , the unique solution is the exponential func-
tion eζ

(η, η0) for fixed η0 ∈ T .

Theorem 3 (see [18]). Let g, f be real-valued α differentiable
functions defined on T at a point υ in T

k. *en,

(i) (gf)(α)(υ) � g(α)(υ)f(υ) + g(σ(υ))f(α)(υ) � g(υ)

f(α)(υ) + g(α)(υ)f(σ(υ))
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(ii) (g/f)(α)(υ) � (g(α)(υ)f(υ) − g(υ)f(α)(υ)/f(υ)f(σ
(υ))), provided f(υ)f(σ(υ))≠ 0

(iii) g(σ(υ)) � g(υ) + μ(υ)υ1− αg(α)(υ)

Theorem 4 (see [18]). Assume α ∈ (0, 1]; g, f: T⟶ R be
rd-continuous. *en,


b

a
g(η)f(α)

(η)Δαη � [g(η)f(η)]
b
a − 

b

a
g(α)

(η)f(σ(η))Δαη,

(7)

for a, b ∈ T .

Definition 7. Assume D � (η, υ)|η≥ υ≥ η0 . *en, class G
is a collection of functions G ∈ Cr d(D,R) so that G(η, η) �

0 for η≥ η0; G(η, υ)> 0 for η> υ≥ η0 and G has continuous
α-partial fractional derivatives G(α)η(η, υ) and G(α)υ(η, υ)

with respect to η and υ, respectively, such that G(α)η(η, υ) �

h1(η, υ)
������
G(η, υ)


and G(α)υ(η, υ) � − h2(η, υ)

������
G(η, υ)


,

where h1, h2 ∈ Lloc(D, [0,∞)T
).

For simplicity, we use the notion as follows:

Φ(η) � −
ηα− 1

a(η)

φ(η)
. (8)

3. Main Results

*is part supplies the main theorems of the work. We will
present the results in two folds based on the monotonicity of

f and extend the results for fractional Euler-type dynamic
equation.

Lemma 1. Suppose that Φ(η) ∈R+ and 
∞
η0
Δαυ/φ(υ) �∞

hold.

(i) If (3) has an EP solution y, then there is a sufficiently
large η∗ ∈ [η0,∞)T

so that

φ(η)y(α)(η)

eΦ(η) η, η0( 
 

(α)

< 0, y
(α)

(η)> 0 on the interval η∗,∞ T
.

(9)

(ii) If (3) has an EN solution y, then there is a sufficiently
large η∗ ∈ [η0,∞)T

so that

φ(η)y(α)(η)

eΦ(η) η, η0( 
 

(α)

> 0, y
(α)

(η)< 0 on the interval η∗,∞ T
.

(10)

Proof

(i) Since y is EP, there is an η1 such that y(η)> 0 on
[η1,∞)T

. Now, we have

φ(η)y(α)(η)

eΦ(η) η, η0( 
 

(α)

�
eΦ(η) η, η0(  φ(η)y

(α)
(η) 

(α)
− φ(η)y

(α)
(η) eΦ(η) η, η0(  

(α)

eΦ(η) η, η0( eΦ(η) σ(η), η0( 

�
eΦ(η) η, η0(  φ(η)y

(α)
(η) 

(α)
+ a(η)y

(α)
(η)eΦ(η) η, η0( 

eΦ(η) η, η0( eΦ(η) σ(η), η0( 
�

− b(η)f(y(η)) + h(η)

eΦ(η) σ(η), η0( 
.

(11)

By the assumptions, we take α1, β1 ≥ η1 such that
h(η)≤ 0 on [α1, β1]T with α1 < β1 and y(η)> 0.*en,
on the interval [α1, β1]T, we have

φ(η)y(α)(η)

eΦ(η) η, η0( 
 

(α)

�
− b(η)f(y(η)) + h(η)

eΦ(η) σ(η), η0( 
< 0. (12)

Since Φ ∈R+, we acquire that eΦ(η)(σ(η), η0)> 0
and φ(η)y(α)(η)/eΦ(η)(η, η0) is decreasing on
[η1,∞)T

. *erefore, by the assumption that φ is
positive and Φ ∈R+, we get that y(α)(η) is either
negative or positive.
Assume that y(α) < 0 on [η2,∞)T

for sufficiently
large η2 > η1. *us,

y(η) − y η2(  � 
η

η2

φ(υ)y
(α)

(υ)

φ(υ)
Δαυ

≤φ η2( y
(α) η2(  

η

η2

Δαυ
φ(υ)

.

(13)

Letting η⟶∞, we get limη⟶∞y(η) � − ∞. *is
leads to a contradiction that y(η) is EP. *erefore,
y(α)(η) is EP.

(ii) Since y is EN, there is a sufficiently large η1 so that
y(η)> 0 on [η0,∞)T

. Now, we have
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φ(η)y(α)(η)

eΦ(η) η, η0( 
 

(α)

�
eΦ(η) η, η0(  φ(η)y

(α)
(η) 

(α)
− φ(η)y

(α)
(η) eΦ(η) η, η0(  

(α)

eΦ(η) η, η0( eΦ(η) σ(η), η0( 

�
eΦ(η) η, η0(  φ(η)y

(α)
(η) 

(α)
+ a(η)y

(α)
(η)eΦ(η) η, η0( 

eΦ(η) η, η0( eΦ(η) σ(η), η0( 

�
− b(η)f(y(η)) + h(η)

eΦ(η) σ(η), η0( 
.

(14)

By the assumptions, we can choose α2, β2 ≥ η1 such that
h(η)≥ 0 on [α2, β2]T with α2 < β2 and y(η)< 0. *en, on
[α2, β2]T, we attain

φ(η)y(α)(η)

eΦ(η) η, η0( 
 

(α)

�
− b(η)f(y(η)) + h(η)

eΦ(η) σ(η), η0( 
> 0. (15)

Since Φ ∈R+, we get that eΦ(η)(σ(η), η0)> 0 and
φ(η)y(α)(η)/eΦ(η)(η, η0) is increasing on [η1,∞)T

. *ere-
fore, by the assumption of φ(η)> 0 and Φ(η) ∈R+, we get
that y(α)(η) is either negative or positive.

Assume that y(α)(η)> 0 on [η2,∞)T
for sufficiently large

η2 > η1. *erefore,

y(η) − y η2(  � 
η

η2

φ(υ)y
(α)

(υ)

φ(υ)
Δαυ

≥φ η2( y
(α) η2(  

η

η2

Δαυ
φ(υ)

.

(16)

Letting η⟶∞, we get limη⟶∞y(η) �∞, and this
leads to a contradiction that y(η) is EN. *erefore, y(α)

is EN. □

3.1. Oscillation Criteria for (3) When f Is Not Necessarily
Increasing. To establish oscillation criteria, we make use of
the following assumption:

(H1)f(y)/y≥K∀y≠ 0 and for some K> 0.

Theorem 5. LetΦ(η) ∈R+. If 
∞
η0
Δαυ/φ(υ) �∞ and (H1)

holds. If there exists ci ∈ (αi, βi), i � 1, 2, a function Θ(η)> 0
on [T,∞)T

and G ∈ G for sufficiently large T such that

1
G ci, αi( 


ci

αi

G υ, αi( 
Kb(υ)Θ(υ)

eΦ(υ) σ(υ), η0( 
−
φ(υ) z

(α)
(υ)

�������

G υ, αi( 



+ h1 υ, αi( Θ(σ(υ)) 
2

4G υ, αi( Θ(υ)eΦ(υ) υ, η0( 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
Δαυ

+
1

G βi, ci 

βi

ci

G βi, υ 
Kb(υ)Θ(υ)

eΦ(υ) σ(υ), η0( 
−
φ(υ) z

(α)
(υ)

�������

G βi, υ 



− h2 βi, υ Θ(σ(υ)) 
2

4G βi, υ Θ(υ)eΦ(υ) υ, η0( 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
Δαυ> 0,

(17)

then (3) is oscillatory.

Proof. Assume that (3) has a nonoscillatory solution y.
*en, y is either EN or EP for η≥ η1 ≥ η0. Define a gen-
eralized Riccati function as follows:

w(η) �
Θ(η)φ(η)y

(α)
(η)

y(η)eΦ(η) η, η0( 
. (18)

By Lemma 1, clearly w(η)≥ 0 and
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w
(α)

(η) �
Θ
y

 (η)
eΦ(η) η, η0(  φ(η)y

(α)
(η) 

(α)
+ a(η)y

(α)
(η)eΦ(η) η, η0( 

eΦ(η) η, η0( eΦ(η) σ(η), η0( 

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

+
y(η)z

(α)
(η) − Θ(η)y

(α)
(η)

y(σ(η))y(η)
⎡⎣ ⎤⎦

φ(σ(η))y
(α)

(σ(η))

eΦ(η) σ(η), η0( 

·
Θ(η)

y(η)

− b(η)f(y(η)) + h(η)

eΦ(η) σ(η), η0( 
  + z

(α)
(η)

w

Θ
 (σ(η))

−
Θ(η)φ(σ(η))y

(α)
(η)y

(α)
(σ(η))

y(σ(η))y(η)eΦ(η) σ(η), η0( 

≤
− Kb(η)Θ(η)

eΦ(η) σ(η), η0( 
+
Θ(η)h(η)

y(η)eΦ(η) σ(η), η0( 
+ z

(α)
(η)

w

Θ
 (σ(η))

−
Θ(η)y

(α)
(η)φ(σ(η))y

(α)
(σ(η))

y(η)y(σ(η))eΦ(η) σ(η), η0( 
.

(19)

By assumptions, we take αi, βi ≥ η1 for i � 1, 2 so that
h(η)≤ 0 on [α1, β1] with α1 < β1 and y(η) is EP, or h(η)≥ 0

on [α2, β2] with α2 < β2 and y(η) is EN. On the intervals
[α1, β1] and [α2, β2], the above inequality implies that

w
(α)

(η)≤
− Kb(η)Θ(η)

eΦ(η) σ(η), η0( 
+ z

(α)
(η)

w

Θ
 (σ(η)) −

Θ(η)eΦ(η) η, η0( 

φ(η)

w

Θ
 (σ(η)) 

2
. (20)

By multiplying G(η, υ) and taking α- fractional integral
for (20) from ci to η, we have


η

ci

Kb(υ)Θ(υ)

eΦ(υ) σ(υ), η0( 
G(η, υ)Δαυ

≤ − 
η

ci

w
(α)

(υ)G(η, υ)Δαυ + 
η

ci

z
(α)

(η)
w

Θ
 (σ(η))G(η, υ)Δαυ

− 
η

ci

Θ(υ)eΦ(υ) υ, η0( 

φ(υ)

w

Θ
 (σ(η)) 

2
G(η, υ)Δαυ≤G η, ci( w ci( 

+ 
η

ci

w(σ(υ))G(α)
(η, υ)Δαυ + 

η

ci

z
(α)

(υ)w(σ(υ))G(η, υ)

Θ(σ(υ))
Δαυ

− 
η

ci

Θ(υ)eΦ(υ) υ, η0( 

φ(υ)

w

Θ
 (σ(υ)) 

2
G(η, υ)Δαυ

≤G η, ci( w ci(  + 
η

ci

G(η, υ) z
(α)

(υ) −
h2(η, υ)Θ(σ(υ))

������
G(η, υ)

 
w(σ(υ))

Θ(σ(υ))
Δαυ

− 
η

ci

G(η, υ)
Θ(υ)eΦ(υ) υ, η0( 

φ(υ)

w(σ(υ))

Θ(σ(υ))
 

2

Δαυ≤G η, ci( w ci( 

d + 
η

ci

G(η, υ)
φ(υ) z

(α)
(υ)

������

G(η, υ)



− Θ(σ(υ))h2(η, υ) 
2

4G(η, υ)Θ(υ)eΦ(υ) υ, η0( 
Δαυ.

(21)
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Letting η⟶ β
−

i , we get


βi

ci

G(η, υ)
Kb(η)Θ(η)

eΦ(η) σ(η), η0( 
−
φ(υ) z

(α)
(υ)

������

G(η, υ)



− Θ(σ(υ))h2(η, υ) 
2

4G(η, υ)Θ(υ)eΦ(υ) υ, η0( 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
Δαυ

≤G βi, ci w ci( .

(22)

By multiplyingG(υ, η) and taking integration of α-order
from η to ci for (20), we have


ci

η
G(υ, η)

Kb(υ)Θ(υ)

eΦ(υ) σ(υ), η0( 
Δαυ

≤ − 
ci

η
G(υ, η)w

(α)
(υ)Δαυ + 

ci

η
G(υ, η)

z
(α)

(υ)w(σ(υ))

Θ(σ(υ))
Δαυ

− 
ci

η
G(υ, η)
Θ(υ)eΦ(υ) υ, η0( 

φ(υ)

w(σ(υ))

Θ(σ(υ))
 

2

Δαυ

≤ − G ci, η( w ci(  + 
ci

η
G(α)

(υ, η)w(σ(υ))Δαυ + 
ci

η

G(υ, η)z
(α)

(υ)w(σ(υ))

Θ(σ(υ))
Δαυ

− 
ci

η
G(υ, η)
Θ(υ)eΦ(υ) υ, η0( 

φ(υ)

w(σ(υ))

Θ(σ(υ))
 

2

Δαυ

≤ − G ci, η( w ci(  + 
ci

η
G(υ, η) z

(α)
(υ) +

h1(υ, η)Θ(σ(υ))
������
G(η, υ)

 
w(σ(υ))

Θ(σ(υ))
Δαυ

− 
ci

η
G(υ, η)
Θ(υ)eΦ(υ) υ, η0( 

φ(υ)

w(σ(υ))

Θ(σ(υ))
 

2

Δαυ

≤ − G ci, η( w ci(  + 
ci

η
G(υ, η)

φ(υ) z
(α)

(υ)

������

G(υ, η)



+ h1(υ, η)Θ(σ(υ)) 
2

4G(υ, η)Θ(υ)eΦ(υ) υ, η0( 
Δαυ.

(23)

Letting η⟶ α+
i , we get


ci

αi

G(υ, η)
Kb(η)Θ(η)

eΦ(η) σ(η), η0( 
−
φ(υ) z

(α)
(υ)

������

G(υ, η)



+ h1(η, υ)Θ(σ(υ)) 
2

4G(υ, η)Θ(υ)eΦ(υ) υ, η0( 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
Δαυ

≤ − G ci, αi( w ci( .

(24)

Dividing (33) byG(βi, ci) and (24) byG(ci, αi), we attain
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1
G βi, ci 


βi

ci

G βi, υ 
Kb(υ)Θ(υ)

eΦ(υ) σ(υ), η0( 
−
φ(υ) z

(α)
(υ)

�������

G βi, υ 



− h2 βi, υ Θ(σ(υ)) 
2

4G βi, υ Θ(υ)eΦ(υ) υ, η0( 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
Δαυ≤w ci( ,

1
G ci, αi( 


ci

αi

G υ, αi( 
Kb(υ)Θ(υ)

eΦ(υ) σ(υ), η0( 
−
φ(υ) z

(α)
(υ)

�������

G υ, αi( 



+ h1 υ, αi( Θ(σ(υ)) 
2

4G υ, αi( Θ(υ)eΦ(υ) υ, η0( 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
Δαυ≤ − w ci( .

(25)

Adding the above two inequalities, we get a contradic-
tion to hypothesis. □

Remark 1. Assume that the condition of *eorem 5 holds
for everyT≥ 0 and functionG(υ, η) ∈ G for sufficiently large
T. If there exist some ci ∈ (αi, βi), i � 1, 2 so that


ci

αi

G υ, αi( 
Kb(υ)Θ(υ)

eΦ(υ) σ(υ), η0( 
−
φ(υ) z

(α)
(υ)

�������

G υ, αi( 



+ h1 υ, αi( Θ(σ(υ)) 
2

4G υ, αi( Θ(υ)eΦ(υ) υ, η0( 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
Δαυ> 0,


βi

ci

G βi, υ 
Kb(υ)Θ(υ)

eΦ(υ) σ(υ), η0( 
−
φ(υ) z

(α)
(υ)

�������

G βi, υ 



− h2 βi, υ Θ(σ(υ)) 
2

4G βi, υ Θ(υ)eΦ(υ) υ, η0( 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
Δαυ> 0,

(26)

for i � 1, 2, then (3) is oscillatory.

Let G � G(η − υ) ∈ G. *en, h1(η − υ) � h2(η − υ), and
we use h(η − υ) for them. By using thisG(η − υ) in*eorem
5, we have the corollary as follows.

Corollary 1. Suppose that all the assumptions of *eorem 5
hold and for every T≥ η0, there is a T≤ α1 < 2c1 − α1 ≤ α2 <

2c2 − α2 so that h(η) �
≤ 0, η ∈ [α1, 2c1 − α1],
≥ 0, η ∈ [α2, 2c2 − α2]

 . If there is

a G: � G(η − υ) ∈ G such that

1
G ci − αi( 


ci

αi

G υ − αi( 
2Kb(υ)Θ(υ)

eΦ(υ) σ(υ), η0( 
−
φ(υ) z

(α)
(υ) 

2
G υ − αi(  + h

2 υ − αi( Θ2(σ(υ)) 

2G υ − αi( Θ(υ)eΦ(υ) υ, η0( 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
Δαυ> 0, (27)

then (3) is oscillatory.

3.2. Oscillation Criteria for (3) When f Is Increasing. To es-
tablish oscillation criteria, we make use of the following
assumption:

(H2) f′ exists and f′(y)≥M for all y≠ 0 and for some
M> 0

Theorem 6. Let Φ(η) ∈R+. If (H2), 
∞
η0
Δαυ/φ(υ) �∞

holds. If there exists ci ∈ (αi, βi), i � 1, 2, a function Θ(η)> 0
on [T,∞)T

and G ∈ G for sufficiently large T such that

frac 1G ci, αi(  
ci

αi

G υ, αi( 
b(υ)Θ(υ)

eΦ(υ) σ(υ), η0( 
−
φ(η) z

(α)
(υ)

�������

G υ, αi( 



+ h1 υ, αi( Θ(σ(υ)) 
2

4MG υ, αi( Θ(υ)eΦ(υ) υ, η0( 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
Δαυ

+
1

G βi, ci 

βi

ci

G βi, υ 
b(υ)Θ(υ)

eΦ(υ) σ(υ), η0( 
−
φ(η) z

(α)
(υ)

�������

G βi, υ 



− h2 βi, υ Θ(σ(υ)) 
2

4MG βi, υ Θ(υ)eΦ(υ) υ, η0( 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
Δαυ> 0,

(28)

then (3) is oscillatory.
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Proof. Assume that (3) has a nonoscillatory solution y.
Define a generalized Riccati function as follows:

w(η) �
Θ(η)φ(η)y

(α)
(η)

f(y(η))eΦ(η) η, η0( 
. (29)

Clearly, w(η)≥ 0 and

w
(α)

(η) �
Θ(η)

f(y(η))

eΦ(η) η, η0(  φ(η)y
(α)

(η) 
(α)

+ a(η)eΦ(η) η, η0( y
(α)

(η)

eΦ(η) σ(η), η0( eΦ(η) η, η0( 

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

+
f(y(η))z

(α)
(η) − Θ(η)(f(y(η)))

(α)

f(y(σ(η)))f(y(η))
⎡⎣ ⎤⎦

φ(σ(η))y
(α)

(σ(η))

eΦ(η) σ(η), η0( 

�
Θ(η)

f(y(η))

− b(η)f(y(η)) + h(η)

eΦ(η) σ(η), η0( 
  + z

(α)
(η)

w

Θ
 (σ(η))

−
Θ(η)φ(σ(η))(f(y(η)))

(α)
y

(α)
(σ(η))

f(y(σ(η)))f(y(η))eΦ(η) σ(η), η0( 

�
− b(η)Θ(η)

eΦ(η) σ(η), η0( 
+

h(η)Θ(η)

f(y(η))eΦ(η) σ(η), η0( 
+ z

(α)
(η)

w

Θ
 (σ(η))

−
Θ(η)φ(σ(η))(f(y(η)))

(α)
y

(α)
(σ(η))

f(y(σ(η)))f(y(η))eΦ(η) σ(η), η0( 
.

(30)

By the hypothesis, we take αi, βi ≥ η1 for i � 1, 2 such that
h(η)≤ 0 on [α1, β1] with α1 < β1 and y(η) is EP, or h(η)≥ 0

on [α2, β2] with α2 < β2 and y(η) is EN. On the intervals
[α1, β1] and [α2, β2], we have

w
(α)

(η)≤
− b(η)Θ(η)

eΦ(η) σ(η), η0( 
+ z

(α)
(η)

w

Θ
 (σ(η)) −

Θ(η)f′(y(η))y
(α)

(η)φ(σ(η))y
(α)

(σ(η))

f(y(η))f(y(σ(η)))eΦ(η) σ(η), η0( 

≤
− b(η)Θ(η)

eΦ(η) σ(η), η0( 
+ z

(α)
(η)

w

Θ
 (σ(η)) −

MΘ(η)eΦ(η) η, η0( 

φ(η)

w

z
 

2
(σ(η)).

(31)

By multiplying G(η, υ) and taking α- fractional integral
for (31) from ci to η, we have


η

ci

b(υ)Θ(υ)

eΦ(υ) σ(υ), η0( 
G(η, υ)Δαυ≤ − 

η

ci

w
(α)

(υ)G(η, υ)Δαυ

+ 
η

ci

z
(α)

(υ)w(σ(υ))

Θ(σ(υ))
G(η, υ)Δαυ − 

η

ci

MΘ(υ)eΦ(υ) υ, η0( 

φ(υ)

w(σ(υ))

Θ(σ(υ))
 

2

G(η, υ)Δαυ

≤G η, ci( w ci(  + 
η

ci

w(σ(υ))G(α)
(η, υ)Δαυ + 

η

ci

z
(α)

(υ)w(σ(υ))G(η, υ)

Θ(σ(υ))
Δαυ
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− 
η

ci

MΘ(υ)eΦ(υ) υ, η0( 

φ(υ)

w(σ(υ))

Θ(σ(υ))
 

2

G(η, υ)Δαυ≤G η, ci( w ci( 

+ 
η

ci

G(η, υ) z
(α)

(υ) −
h2(η, υ)Θ(σ(υ))

������
G(η, υ)

 
w(σ(υ))

Θ(σ(υ))
Δαυ

− 
η

ci

G(η, υ)
MΘ(υ)eΦ(υ) υ, η0( 

φ(υ)

w(σ(υ))

Θ(σ(υ))
 

2

Δαυ

≤G η, ci( w ci(  + 
η

ci

φ(υ) z
(α)

(υ)

������

G(η, υ)



− h2(η, υ)Θ(σ(υ)) 
2

4MG(η, υ)Θ(υ)eΦ(υ) υ, η0( 
G(η, υ)Δαυ.

(32)

Letting η⟶ β
−

i , we get


βi

ci

G βi, υ 
b(υ)Θ(υ)

eΦ(υ) σ(υ), η0( 
−
φ(υ) z

(α)
(υ)

�������

G βi, υ 



− h2 βi, υ Θ(σ(υ)) 
2

4MG βi, υ Θ(υ)eΦ(υ) υ, η0( 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
Δαυ≤G βi, ci w ci( . (33)

By multiplying (G(υ, η)) and taking α- fractional inte-
gral for (31) from η to ci, we get


ci

η
G(υ, η)

b(υ)Θ(υ)

eΦ(υ) σ(υ), η0( 
Δαυ

≤ − 
ci

η
G(υ, η)w

(α)
(υ)Δαυ + 

ci

η
G(υ, η)

z
(α)

(υ)w(σ(υ))

Θ(σ(υ))
Δαυ

− 
ci

η
G(υ, η)

MΘ(υ)eΦ(υ) υ, η0( 

φ(υ)

w(σ(υ))

Θ(σ(υ))
 

2

Δαυ≤ − G ci, η( w ci( 

+ 
ci

η
G(α)

(υ, η)w(σ(υ))Δαυ + 
ci

η

G(υ, η)z
(α)

(υ)w(σ(υ))

Θ(σ(υ))
Δαυ

− 
ci

η
G(υ, η)

MΘ(υ)eΦ(υ) υ, η0( 

φ(υ)

w(σ(υ))

Θ(σ(υ))
 

2

Δαυ≤ − G ci, η( w ci( 

+ 
ci

η
G(υ, η) z

(α)
(υ) +

h1(υ, η)Θ(σ(υ))
������
G(η, υ)

 
w(σ(υ))

Θ(σ(υ))
Δαυ

− 
ci

η
G(υ, η)

MΘ(υ)eΦ(υ) υ, η0( 

φ(υ)

w(σ(υ))

Θ(σ(υ))
 

2

Δαυ≤ − G ci, η( w ci( 

+ 
ci

η
G(υ, η)

φ(υ) z
(α)

(υ)

������

G(υ, η)



+ h1(υ, η)Θ(σ(υ)) 
2

4MG(υ, η)Θ(υ)eΦ(υ) υ, η0( 
Δαυ.

(34)

Letting η⟶ α+
i , we get
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ci

αi

G υ, αi( 
b(υ)Θ(υ)

eΦ(υ) σ(υ), η0( 
−
φ(υ) z

(α)
(υ)

�������

G υ, αi( 



− h1 υ, αi( Θ(σ(υ)) 
2

4MG υ, αi( Θ(υ)eΦ(υ) υ, η0( 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
Δαυ≤ − G ci, αi( w ci( . (35)

Divide (22) by G(βi, ci) and (35) by G(ci, αi), we obtain

1
G βi, ci 


βi

ci

G βi, υ 
b(υ)Θ(υ)

eΦ(υ) σ(υ), η0( 
−
φ(υ) z

(α)
(υ)

�������

G βi, υ 



− h2 βi, υ Θ(σ(υ)) 
2

4MG βi, υ Θ(υ)eΦ(υ) υ, η0( 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
Δαυ≤w ci( ,

1
G ci, αi( 


ci

αi

G υ, αi( 
b(υ)Θ(υ)

eΦ(υ) σ(υ), η0( 
−
φ(υ) z

(α)
(υ)

�������

G υ, αi( 



− h1 υ, αi( Θ(σ(υ)) 
2

4MG υ, αi( Θ(υ)eΦ(υ) υ, η0( 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
Δαυ≤ − w ci( .

(36)

Adding the above two inequalities, imply a contradiction
to hypothesis. □

3.3. Oscillation Criteria for Fractional Euler Equation. We
consider fractional Euler-type dynamic equation:

y
(α)

(η) 
(α)

+
a

ηα
y

(α)
(η) + b

η2α
y(η) � h(η), η ∈ η0,∞ T

.

(37)

Theorem 7. Assume that (− a/η) ∈R+. If there exists
ci ∈ (αi, βi), i � 1, 2, a function Θ(η)> 0 on [T,∞)T

and
G ∈ G, for sufficiently large T such that

1
G ci, αi( 


ci

αi

G υ, αi( 
b(υ)Θ(υ)

υ2αeΦ(υ) σ(υ), η0( 
−

z
(α)

(υ)

�������

G υ, αi( 



− h1 υ, αi( Θ(σ(υ)) 
2

4G υ, αi( Θ(υ)eΦ(υ) υ, η0( 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
Δαυ

+
1

G βi, ci 

βi

ci

G βi, υ 
b(υ)Θ(υ)

υ2αeΦ(υ) σ(υ), η0( 
−
φ(η) z

(α)
(υ)

�������

G βi, υ 



− h2 βi, υ Θ(σ(υ)) 
2

4G βi, υ Θ(υ)eΦ(υ) υ, η0( 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
Δαυ> 0,

(38)

then (37) is oscillatory.

Proof. *e proof is the same as that of *eorem 6. □

Remark 2. Suppose the conditions in *eorem 5 are
replaced by the assumption given as follows:

h(η) �
≥ 0, α1, β1 ,

≤ 0, α2, β2 ,

⎧⎪⎨

⎪⎩
(39)

then *eorem 5 is accomplished.

Remark 3. In this article, we introduced the interval os-
cillation criteria for conformable fractional dynamic equa-
tions with Riccati transformation. So far, there are many

results concerning the fractional model with oscillation
criteria (see [19]). However, to the best of our cognizance,
there are no results on the oscillation of fractional dynamic
equations with forcing term.

4. Examples

In this part, in view of the conditions acquired in Section 3,
we introduce some examples to represent the adequacy of
the suggested nonlinear fractional model and the merits of
our methodology.

Example 1. We take the nonlinear conformable fractional
damped dynamic equation:
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η− 1
y

(1/2)
(η) 

(1/2)
+ η− 3

y
(1/2)

(η) + η2y(η) 1 + e
y(η)

 

� sin η, η ∈ [1,∞).

(40)
Here, T � R; α � 1/2; φ(η) � η− 1; a(η) � η− 3; b(η) � η2;

f(y(η)) � (y(η))c(1 + ey(η)); η0 � 1. Clearly, f(y)/y � 1+

ey(η) ≥ 1 � K, σ(η) � η, μ(η) � 0, Φ(η) � − η− (5/2),


∞

η0

Δαυ
φ(υ)

� 
∞

η0

υ− (1/2)

υ− 1 dυ � 
∞

η0
υ1/2dυ �∞,

1≥ eΦ(η) η, η0(  � exp 
η

η0
Φ(υ)dυ ≥ 1 + 

η

1
Φ(υ)dυ

� 1 − 
η

1
υ− (5/2)dυ � 1 +

2
3

η− (3/2)
− 1 ≥

1
3
.

(41)

Let α1 � nπ, β1 � α2 � (n + 1)π, β2 � (n + 2)π,
ci � αi + βi/2, i � 1, 2; n � 1, 2, . . ., Θ(η) � η5/2, and G(η,

υ) � η − υ. *en, we get

1
G ci, αi( 


ci

αi

G υ, αi( 
Kb(υ)Θ(υ)

eΦ(υ) σ(υ), η0( 
−
φ(υ) z

(α)
(υ)

�������

G υ, αi( 



+ h1 υ, αi( Θ(σ(υ)) 
2

4G υ, αi( Θ(υ)eΦ(υ) υ, η0( 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
Δαυ

+
1

G βi, ci 

βi

ci

G βi, υ 
Kb(υ)Θ(υ)

eΦ(υ) σ(υ), η0( 
−
φ(υ) z

(α)
(υ)

�������

G βi, υ 



+ h2 βi, υ Θ(σ(υ)) 
2

4G βi, υ Θ(υ)eΦ(υ) υ, η0( 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
Δαυ

≥
2
π


ci

αi

υ − αi(  υ9/2 −
3s

− 1
(5/2)υ2

�����
υ − αi


+

�����
υ − αi


υ5/2 

2

4 υ − αi( υ5/2
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
υ1/2dυ

+
2
π


βi

ci

βi − υ  υ9/2 −
3s

− 1
(5/2)υ2

�����

βi − υ


+

�����

βi − υ


υ5/2 
2

4 βi − υ υ5/2

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

υ1/2dυ> 0.

(42)

Hence, by *eorem 5, (40) is oscillatory.

Example 2. We take the nonlinear conformable fractional
damped dynamic equation:

Δ(1/2) η− (1/2)Δ(1/2)
y(η)  + η− (5/2)Δ(1/2)

y(η) + η1/2y(η) � cos 2t.

(43)

Here, η ∈ [2,∞)Z; T � Z; α � 1/2; φ(η) � η− (1/2);
a(η) � η− (5/2); b(η) � η1/2; η0 � 2; f(y(η)) � y(η).

*erefore, we get f′(y) � 1 � M, σ(η) � η + 1,
μ(η) � 1, Φ(η) � − η− (5/2), 1 + μ(η)Φ(η) � 1 − η− (5/2) ≥ 1 −

(1/2)> 0 which implies Φ(η) ∈R+. Also,
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∞

η0

Δαυ
φ(υ)

� 
∞

2

υα− 1Δυ
φ(υ)

� 
∞

υ�2

υα− 1

υ− (1/2)
� 
∞

υ�2
1 �∞,

1> eΦ(η) η, η0(  � exp 
η

η0
Φ(υ)Δυ ≥ 1

+ 
η

2
Φ(υ)Δυ � 1 − 

η− 1

υ�2
υ− (5/2)

≥ 1 − 
η− 1

1
υ− (5/2)dυ � 1 +

2
3

(η − 1)
− (3/2)

− 1 >
1
3
.

(44)

Let α1 � nπ + (π/4), β1 � α2 � (n + 1)π + (π/4), β2 �

(n + 2)π + (π/4), ci � αi + βi/2, i � 1, 2; n � 1, 2, . . . and Θ
(η) � η2. *en, all the constraints of *eorem 6 are satisfied
with G(η, υ) � η − υ, and (40) is oscillatory.

Example 3. We take the following conformable fractional
Euler-type dynamic equations

y
(1/2)

(η) 
(1/2)

+ aη− (1/2)
y

(1/2)
(η) + bη− 1

y(η) � cos η,

(45)

where η ∈ [1,∞)Z, T � R, α � 1/2, and η0 � 1.*en, μ(η) �

0 and e− a/υ(η, η0) � exp(
η
η0

(− a/υ)dυ) � η− a since σ(η) � η.
If we let α1 � nπ + (π/2), β1 � α2 � (n + 1)π + (π/2),
β2 � (n + 2)π + π/2, ci � (αi + βi/2), i � 1, 2, n � 1, 2, . . .

and Θ(η) � η2, then all the constraints of *eorem 7 are
fulfilled with G(η, υ) � η − υ for suitable choice of a and b.
Hence, we conclude that equation (45) is oscillatory.

5. Conclusion

In this article, we established the interval oscillation criteria
for conformable fractional damped dynamic equations with
forcing term. *e obtained results are improved in the sense
which provides sufficient criteria for the forced oscillation of
the considered equation with various conditions. Finally,
numerical examples are also presented to validate the the-
oretical results of this study, and in addition, the developed
methodology has been tested on the forced oscillation of a
fractional Euler-type dynamic equation with an example.

It would be interesting to extend the results proposed in
this article to more complex systems, including fractional
dynamic equations with time delay. *is will be examined in
our future works.
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