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In this paper, interval oscillation criteria for the nonlinear damped dynamic equations with forcing terms on time scales within
conformable fractional derivatives are established. Our approach is determined from the implementation of generalized Riccati
transformation, some properties of conformable time-scale fractional calculus, and certain mathematical inequalities. Also, we
extend the study of oscillation to conformable fractional Euler-type dynamic equation. Examples are presented to emphasize the

validity of the main theorems\enleadertwodots.

1. Introduction

The consideration of dynamic equations on time scales has
attracted many researchers because of its wide applications
in the field of science and engineering. The theory of time
scales was presented by Hilger [1] to unify the discrete and
continuous analysis. It not only unifies the continuous and
discrete cases but also gives new areas in between such as
g-calculus [2]. The qualitative analysis of solutions of dy-
namic equations on different time scales has received
considerable notice. In particular, the investigation of the
oscillation of solutions to dynamic equations [3-5], dynamic
equations with damping term [6-8], and dynamic equations
on various time scales [9-11] has gained extensive attention.
Fractional calculus is a generalization of integration and
differentiation to any order. Recently, it has been realized
that the fractional calculus has numerous applications in
engineering, signal processing, economics and finance,
probability and statistics, neural networks, and thermody-
namics; see for illustrations [12-16] and the citations therein.
In recent times, the importance has been given to fractional
order calculus rather than integer order due to its

applications in engineering such as neural networks, elec-
trical and mechanical engineering, and population dy-
namics. The fractional dynamic equations on time scales
have been studied by only few authors [17-19].

In [19], Feng and Meng established the asymptotic and
oscillatory behavior of the following dynamic equation of
fractional order on time scales using the generalized Riccati
transformation technique:

a (o) a
(a@([r@x@]“)) "+ po([rox o] )
+q(Of (x() =0,

t € [ty,00)y.

(1)

Alzabut et al. [17] considered the following nonlinear
damped dynamic equation with a conformable fractional
derivative:

(rO(=2 O + pO (@ ©) +q@Of x (1) =0,
t € [ty,00)y.

(2)


mailto:porpattama@pkru.ac.th
https://orcid.org/0000-0003-2033-4633
https://orcid.org/0000-0003-0125-5032
https://orcid.org/0000-0003-1238-3523
https://orcid.org/0000-0003-0267-110X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6642192

Here, the authors established the oscillation of the above
equation when the nonlinear function f is increasing and
nonincreasing. Besides, the results are carried out in light of

the following two cases: IZO A%s/r(s) = co and J:) A%s/

r(s) < co. Motivated by the above discussion, in this work,
we established the oscillation results of nonlinear con-
formable fractional dynamic equations with a forced term.

In the recent papers [18, 20], the conformable time-scale
fractional calculus has been introduced. Applications of the
obtained results demonstrate that the newly defined calculus
will be applied to investigate oscillation for both fractional
differential and fractional difference equations at the same
time. Therefore, the determination of oscillation of solutions
of conformable fractional dynamic equations has become a
promising topic for researchers. To the best of our obser-
vation, papers [17, 19] are the only research that has studied
the oscillation of conformable fractional dynamic equations.

2. Problem Formulation and Preliminaries

In this article, we are concerned with a class of nonlinear
conformable fractional dynamic equations with damped and
forced terms on time scales of the kind:

(e (@)™ +atmy® ) + bt (v (m) = hi),
1 € (19, 00)5
3)

where T  denotes an  arbitrary time scale,
[110,00)% = [#,,00) NT, ()@ is the conformable fractional
dynamic operator of order @w(0<w<l), ¢(n),a(n),
b(n) € C, d([rlo,oo)% [0,00)), and f € C(R,R) such that

. <0, (@B,
(y) >0 and the function h(#) = { < “PELY Swhere
yf(y n >0, (@Bl

[a;, ;] € [170,00)% is in C,d([qo,oo)%, [0, 00)). We consti-
tute new interval criteria for oscillation of the solutions of
equation (3) when the nonlinear function f is increasing and
nonincreasing and extend the results to the Euler-type
fractional dynamic equations.

By a solution of (3), we insist a nontrivial function
y(n) € R fulfilling (3) for 1 > . If a solution of (3) is neither
eventually positive (EP) nor eventually negative (EN), then it
is called oscillatory. Or else, it is said to be nonoscillatory. If
all solutions of (3) are oscillatory, then (3) is called
oscillatory.

Before we proceed to the main results, we present es-
sential preliminaries on conformable time-scale fractional
calculus that will be used to justify further discussion. Terms
and definitions are adopted from the papers [2, 18].

Definition 1 (see [2]). On any time scale T,
o(n) = inf{v eT,v> 17} and p(n) = sup{v eT,v< 11} are
defined as the forward and backward jump operators,
respectively.

A point 1 € T is known as right-dense if ¢ (1) = #, left-
dense if p(n) = #, right-scattered if 0 (%) >#, and left scat-
tered if p (1) < 7.
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The graininess function g (#) of the time scale is given by

plm =oln) 2n. _ L L
The set T = {'I]'\ (p(supT), T)if supT <ooTif T = oo}

Definition 2 (see [2]). A real-valued function f defined on T
is known as rd-continuous if at all left-dense points, a finite
left limit of f exists, and if it is continuous at each right-dense
point.

Definition 3 (see [2]). A function (:jkr —> R is known as
regressive if 1+ (7){(n) #0forn € T . R is the collection
that consists of all rd-continuous regressive functions
f: T— R. We define #*: ={geR: 1+u(ng(n >0,
nel}

Definition 4 (see [2]). If { € R, then the function defined by

1 - -
ec(n,0) = exp(J 0, () (C(v))Au), forneT,ve Tk,
(4)
is called exponential, where 0,(z) =
log(1 + hz)/h, h#0,
z, h=0"

Also, e (n,v) is a nonzero real function and
ec (a0 (m);ng) = [1+u(m (e (1, 1)

De]jm'tion 5 (see [18]). For #e¢ Tk, e (0,1] and
g T — R, the conformable fractional derivative of order «
for g at 5 is g@ (n) (if it exists) so that, for every positive €,
there is a §-neighborhood 9 fulfilling

|lg (@ () - gln' ™ = g@ () (a () - )|

forally € M.

(5)

<elo(n) -,

Definition 6 (see [18]). If GW@ (=g, ne 'ﬁ'k, then G is
said to be an @-order antiderivative of g and the integral of g
given by

b _ b _
J. g(mA“n = J g™ A= G(b) - G(a), wherea,beT,
(6)

is named as Cauchy w-fractional.

Theorem 1 (see [18]). By the definition of a- order con-
formable fractional derivative, £ @ (1) = #'~%* (1)). Also, f is
decreasing (increasing) for >0, if £ (17) <0 (> 0) for n>0.

Theorem 2 (see [19]). Let ) = = (), @ e (0,1]. If
(€ R, then, for the IVP xD(y)={(nx(y) and
x(ny) = 1onT, the unique solution is the exponential func-
tion e(:(r], 1o) for fixed n, € T.

Theorem 3 (see [18]). Let g, f be real-valyed « differentiable
functions defined on T at a point v in T . Then,

(i) (2)® (1) = g@ (W (v) + (o (WP (v) = g (v)
£@ (v) + g@ (0)f (o (v))
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(i) (g/6)® (v) = (@ Wf(v) - gWE@ (V/f W (o
(v))), provided £ (v)f (o (v)) #0

(ii)) §(0 (v)) = g(v) + (V)" g @ (v)

Theorem 4 (see [18]). Assume @ € (0,1]; g, f: T—Rbe
rd-continuous. Then,

b _ _ b _ _
| gnf @ sty =gt it - | s o sy
@)
for a,b eT.

Definition 7. Assume D = {(5,v)|>v>1#,}. Then, class &
is a collection of functions G € C, ;(D, R) so that G(r,7) =
0 for > 1, G(#,v) >0 for n>v>1, and G has continuous
a-partial fractional derivatives G(agﬂ (#,v) and (j@v (n,v)
with respect to 5 and v, respectively, such that G® (,v) =

hy (1,0)\/G(n,v) and G @ (n,v) = —h, (n,V)VG (1, v),
where hy, h, € L, (D, [0, 00)5).

For simplicity, we use the notion as follows:

a—1
o () = 1t (8)

@ (1)

3. Main Results

This part supplies the main theorems of the work. We will
present the results in two folds based on the monotonicity of

f and extend the results for fractional Euler-type dynamic
equation.

Lemma 1. Suppose that © () € " and JZO A*v/g(v) = 00
hold. '

(i) If (3) has an EP solution y, then there is a sufficiently
large n* € [n,, 00) so that

(fp(ﬂ)y@ (1)

(@)
<0, @ (1) > 0 on the interval [1*, 00)~.
€ () (’1» ’70) ) ro [’7 )T

(9)

(ii) If (3) has an EN solution y, then there is a sufficiently
large n* € [ny, 00)+ so that

(‘P(’?))’@(ﬂ)

(@)
>0, y@ () <0ontheinterval [5*,00)-.
€ (n) (1:10) ) [ )T

(10)
Proof

(i) Since y is EP, there is an #, such that y () >0 on
[111,00)%. Now, we have

(@)

(go(n)y@ (11))(“) _ o (1 10) (9 ()y® 1) =0y @ (n)eary (110))
€ (y) (1, ’10)e®(r/> (o (1), o)

€ () (11, 10)

By the assumptions, we take &,f; >#; such that
h(n)<0on [a,, f,]- with@, <f, and y(n) > 0. Then,
on the interval [&, ﬂl]f, we have

- (11)

_ean (110) (9 00y ® 1) + a )y ® (e (110) b (y o)+ h(n)

e@(q)(’?’ ’10)%(@ (o (1) ecpm)(g(ﬂ)’%) .

1 @ _
y(m) - y(n,) = J” 7(/)(0;}20) (U)Aav
(13)
a 1A
ea(p (0 (1) 5?’(’72))’( )(’72) J-n2 ‘P(;'

(‘P(ﬂ)y@ (17)>@ 2D R ()
e () (1 1o) .

Since ® € %", we acquire that ey (0(1)19) >0
and (p(11)y("‘)(17)/eq,(,7)(f1, o) is decreasing on
(17, 00)-. Therefore, by the assumption that ¢ is
positive and ® € &7, we get that y@ () is either
negative or positive.

Assume that y® <0 on [1,,00)= for sufficiently
large 7, > #,. Thus,

Letting # — 00, we get lim, .,y (1) = —co. This
leads to a contradiction that y(#) is EP. Therefore,
y@ () is EP.

(ii) Since y is EN, there is a sufficiently large #, so that
y(n)>0 on [170,00)%. Now, we have



@ (n)y@ (n)

o 1) (2 My @ ) = 0y ® 1 (ewy (1 10))
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(@)

() -

€o(y) (’7> ’70)

_ o (1) (9 )y

€ (n) (1, ’10)%0,) (o () 1)

D)) +atny® (e (1.1) (14)

€o(y) (1, ’70)%(;1) (o (n), 1)

_ bty (m) + h(n)

€ (n) (o (m) 1)

By the assumptions, we can choose ®,, B, =7, such that
h(11)>0 on [y, B,]= with ®, <B, and y(#)<0. Then, on
[@y, B,]> we attain

()

Since ® € &7, we get that eq, (d(n),7)>0 and
p(my® (M)leq ) (11, 1p) is increasing on [7,,00)=. There-
fore, by the assumption of ¢ () >0 and O (#) € % we get
that y® () is either negative or positive.

Assume that y® () > 0 on [, 00)- for sufficiently large
1, > ;. Therefore,

o(ny@ (n)
e@(q)(’?’ ’70)

_ bty () +h(n)

(15)
€o(y) (o (1)

> 0.

o (v)y®@ (v)

y() -y () = J’7 o)

(16)

> (1,)y @ (1,) L o)

Kb ()0 (v) 9"(“)[2(

Letting 7 — co, we get hmﬂﬁoo y (1) = 00, and thls
leads to a contradiction that y(#) is EN. Therefore, y®

is EN. O

3.1. Oscillation Criteria for (3) When f Is Not Necessarily
Increasing. To establish oscillation criteria, we make use of
the following assumption:

(HDf(»)/y =KV y#0 and for some K> 0.

Theorem 5. Let @ (1) € R*. Ifj A%v/¢(v) = 0o and (H,)
holds. If there exists ¢; € (&, 3;), = 1,2, a function @ (1) >0
on [T,00)- and G € § for sufficiently large T such that

Y (v) G(v, ;) +h (v,%)® (U(U))]z

1 G _ o

G(c,a) | 2 SN o ) 4G (1,0 (V)eq ) (0. 1) a
(17)

L | wmew  #@[z7 0N6(E) (e Pl .
+—= J G(B,v) A%v>0,
G(ﬁi, C,») < € (v) (o(v), ’70) 4G(ﬁi’ v)@ (Ve () (v:10)

h 1 ill 2 _

then (3) is oscillatory. wir) - ®(’1)<P(’1))’(a)(77) (18)

Proof. Assume that (3) has a nonoscillatory solution y.
Then, y is either EN or EP for #>#, >#,. Define a gen-
eralized Riccati function as follows:

y(Meg e (1:10)

By Lemma 1, clearly w(#) >0 and
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@\ _(©
w (n) <y)(11)

N [ym)z@ () -0my® (n)} @)y (a(n)
y (o (m)y(n) ey (0 (1) 1)

a (@ o
eoip (1:10) [y @ (] +amy® (eq, (1 1o)
€o(n) (1, ’10)%(;7) (o (s 1)

IO [—b(ﬂ)f()’(ﬂ)) +h(n)

(@ w
y(m | eow (a(mn) ]+Z (’7)(@))(0(’7))

(19)
@ (Mg (a(m)y®@ (n)y® (a(n)
y(@(m)y (e, (o (1),7,)

. “Ke(me ) N O (mh(n)
“eawm (0, np) v (e (a(1n).1,)

0y @ (e am)y® ()
y(my(a(n)ewqy(o(n),no)

+2@ (%) (o)

By assumptions, we take @;,f;>#, for i = 1,2 so that  on [a,,5,] with @, <, and y () is EN. On the intervals
h(n)<0on [a,3,] with @, <8, and y(n) is EP, or h(y) >0 [@,,,] and [@,, 3,], the above inequality implies that

@ Kb () @, (W _O(meqy (n:10) 1w 2
W s <n)(®)(a(n)) i [(6)(001))]. (20)

By multiplying G (7, v) and taking &- fractional integral
for (20) from ¢; to %, we have

1 Kb(0)® (v) .
———G(n,v)A
L,.em(w(o(vmo) (08w

< [[ w6+ [ 2® () @G (8%
_ J "0 (Weaw (v fo)

0 oW [(%)““7”]2‘*(’7’ v)A" <G (1, ¢ )w(c;)

) ) @ _
v j" (o )G® ()% + J” z (v)tg((z((z))))G(ﬂ’ 2CH

B J” ® (v)eg ) (v 1) 21)

o« 9 [(%) ("(”))]ZG(”’ VA

1 @ hy (7, 0)0 (0 (v) | w(o(v)) &
G(n,¢)w(c) + JCi G(7, U)[Z (v) - NEOR) ] @(o(v))A

0 (v)eg () (v 710) [W(U(U))
¢ (v) O (o(v))

2
- r G(n,v) ] A0 <G (¢ )w(c)

— 2
A A S T
4G (1,v)0 (vV)eg () (v, 1) "

n
d+j G(1,v)
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Letting 7 — B;, we get

2

A%

[ 6w XEl0Ow W[z 0\G00) 00wk )
c eo () (0 (1), 7o) 4G (17, 0)© (v)eg () (05 7o)

< G(Bi, ci)w(ci).

By multiplying G (v, #) and taking integration of @-order
from 5 to ¢; for (20), we have

J'C[G(U>’1) Kb (v)O (v) ATy

1 €0 (v) (0 (v), 1)

2@ (w (o (v) 5

_[° @ (AT 1 [
<= || G @ater | 6w grrs

@ (v)eg ) (v 1) [w(aw))]z AF

-] S S CIC0)

ch G (v, )z@ (Vw(o(v) 4

<~ G(cpn)w(c) + JciG‘R)(v, Dwo@IA'y+ | ==y A

n

G ® (v)e (y) (Vs 7o) [w(ﬂ(v))r @
- | G, A
L @00 |eww)
) - hy (0,70 (0 (V) |w(o(v) &
< G(c,-)n)w(ci)+LG(U”7)[Z AN TR ]@(a(v))A ’
_[® ® (V)eg ) (¢ 7o) [ww(v»r a
Jﬂ G(v, 1) o (v) 0 (0 (v) A'v

_ 2
9 (0)|2® G (w.1) + 1y (.1)® (0 ()] K

< -G(cpnw(q) + L G(v,7) 4G (0, )8 (Wea ) (01 10)

v.

Letting # — @/, we get

— 2
“ ot PO OVGwD b (100 w)] K
I PN PN R ¥ TS ‘

< -G(cp a)w(c).

Dividing (33) by G (B,», ¢;) and (24) by G (¢;, @;), we attain

(22)

(23)

(24)
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_ — _ 2

1 Jﬁf 6 o) Kb ()0 (v) _(P(U)[z(“)(v) G(ﬂi,v)—hz(ﬁpv)@(c(v))]
G(Bi’ Ci) o o | eaw(@)n) 4G(Bi’ U)® (ew ) (v:1o)

— 2

] JCiG(v )] Kewew _<p(u)[z<“>(v) G(v,&i)+h1(u,ai)®(0(v))]
G(c,@) Ja 7 | eqw (a(v).7) 4G (v, @;)0 (V)eg () (v 10)

Adding the above two inequalities, we get a contradic-
tion to hypothesis. O

LA <w(c),

(25)

LA < —w(c,).

Remark 1. Assume that the condition of Theorem 5 holds
for every T > 0 and function G (v, 1) € & for sufficiently large

T. If there exist some ; € (&, ;)i = 1,2 so that

- 25
Kb ()0 (v) ¢(v)[z(“)(v)\/G(v,Ri) +h, (v,&,)@(a(v))]

eq ) (0 (), 1) - 4G (0, %) 0 (vV)eg () (v 7o)

|“cwa

J

J

Kb (v)® (v) ¢ (v) [z@ (v) G(Bi’ U) - hZ(Bi’ U)® ((7(0))]2 ‘

B

G(Fv)

<

LAY >0,
(26)

-A&v>0,

eaq (0(0),70) 4G(B,, 1) (v)eg ) (v: 1)

for i = 1,2, then (3) is oscillatory. Corollary 1. Suppose that all th

hold and for every T > 1, there

e assumptions of Theorem 5
isaT<o <2¢;—o<a,<

Let G=G(n—-v) € @. Then, h, (n - v) = h,(n - v), and
we use h (7 — v) for them. By using this G (# — v) in Theorem
5, we have the corollary as follows.

1
G(¢-a

then (3) is oscillatory.

3.2. Oscillation Criteria for (3) When £ Is Increasing. To es-
tablish oscillation criteria, we make use of the following

assumption:

G
frac1G(c;, a;) J_ G (v, ;)

1
+

then (3) is oscillatory.

G(Bi, c

) J; G(v-a)

B

J

)

<

6(A0)1

<0, 75e€la,2¢ -
20, ne€[a,2c-a,
a G: =G(n—-v) € & such that

2¢, — o, so that h(n) = { }’. Ifthere is

Kb(1)O(v) ¢ (v)[(z(a) ) G(v-g)+ I (v-g)e’ (o(v))]
e () (0 (), 10) - 2G (v - ;)@ (v)eg ) (s 7o)

A% >0, (27)

(H2) f' exists and f' (y) =M for all y#0 and for some
M>0

Theorem 6. Let ® (1) € Z*. If (H,), foo A%/ (v) = 0
holds. If there exists ¢; € (o, 5;), i = 1,2, affmction O(n)>0
on [T,00)= and G € G for sufficiently large T such that

_ R
(p(ﬂ)[z(“)(v)\/G(v,&i) +h (v,a,.)@(o(u))]

4MG (v, ;)0 (v)eg () (v, 1)

0)[=® OG(E,0) - (o v)0 )]

4MG(B” U)® (v)eCD(U) (U, ’10)

b(v)O(v) B
€o(v) (‘7(0)’ ’70)

(28)

bO(r)
{%(u) (0 (v), 1)
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Proof. Assume that (3) has a nonoscillatory solution y. Clearly, w(#) >0 and
Define a generalized Riccati function as follows:
® (@)
wln) = (e (my ™ (n) (29)
£(y (Mew iy (1:10)

w®(y) =

O [eown (1:10) [0 0y ™ (1] ™ + ameay (1.10)y™ ()
f()’ (’1)) eq;(”) (0(71)’ }/IO)eKD(r/) (’7) rlo)

N [f(y(n))z(“) () -0(n) (f(y(m))‘“’] @ (a(n)y® (a(n))
£(y (o (M) (y (1) ey (0 (1) 1)

_ e [—b(n)f(y(n)) +h(n)
f(y(n) ea ) (0 (1), 1)

] +2@ () (o)
(30)
O e EmN@y® (o)
£(y (o (NE (¥ (M)eg (7 (1): 1)

__bmel) | h(n)® (1)
o (@ (mme) £y (M)egy (o (n), 1)

+z@(f1)(%)(o(n))

® (g (o () £y () @y (o ()
f(y (o (m)E(y (M)ep (a(n)s)

By the hypothesis, we take @, 3; >, fori = 1,2 such that  on [@,,,] with @, <f, and y () is EN. On the intervals
h(n)<0on [a,p;] with @, <f; and y () is EP, or h(5) >0 [®;, 3] and [@,, B,], we have

O f (ym)y® (e (a(m)y® (a(n)

@ -b(7)© (1)
W £y (E (y (0 (M) i (0 (1) 710)

_ed)(n) (0(7’]), ”Io)

bW @ (Y _ MO (eagy (110) (w)?
S%m)((f('?),ﬂo)” ('7)(®)(0('7)) o(n) <Z> (o (n)).

+2® (n)(g) (@) -
(31)

By multiplying G (#, v) and taking @- fractional integral
for (31) from ¢; to 7, we have

noo _
w® (V)G (n,v)A"v

CX

J” b(v)® (v)

VTN G, v)AT < —
o 2o (0 g S PR S J

<

Jﬂ 2@ (vw(o(v)
+ R ——

2
[ @(O’(U)) ] G(11, U)A

G(T’], U)Aav _ Jn M@(U)eq;(v) (‘l), }’]0) |:w(0—(v))

5 o (v) 0 (0 (v))
1 2@ (Vw0 (V)G (4, v) 5

<GOne)w(e)+ [ w6 mvat+ [ o) "
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B n M@(U)ecp(v) (U, 170) [w(o.(v))]Z .
J ¢ (v) 0 (a(v)) G (1, 0)A" <G (1, ¢ )w(c)

n @, h@veW)|we®) s
+JCiG(ﬂ,U)|:Z (v) G0 ]@(a(v))

B J'ﬂ MO (v)eg, ) (v 1) [w(a(v))

) ©(0 ()

_ 2
| Jq gv(v)[z(“)(v)\/G(ﬂ, v) - h, (1,0)0 (0 (1))

G(n,¢;)w(c) + G(m v
(1, ¢;)w ( 4MG (77, v)O (v)eg () (v 7o) )

Letting 7 — B;, we get

PN e @l aMG(B, )®<v>%<v><“”7°>

B ()| 2® (0)y/G(B, v v)®(0(v)) -
Jﬁ G(ﬁ ) POk ! [ ]]’ G(ﬁi’ci)w(ci)'

By multiplying (G (v, #)) and taking - fractional inte-
gral for (31) from # to c;, we get

€ b(v)O(v) &
G(v,n) —————A
-['1 (v € (v) (0 (v), 7o) 0

2@ (Vw (o (v)) &

G (v, ;/I)u)(lx) (U)A v+ J i G (v, 1’]) @0 (0)

n

G (v
" ¢ (v)

M®(U)€q>(v (v.1) [w(o () ]?
WO o< ~G(e )

“G(v,mz® (v)w(O(v))
7 0 (0 (v))

+ [ 6@ (0, pw (o (v)AT U+I

n

=],
f
)
[t ) et
)
J e

G)

e @(0(0))] A< - Glep ()

h 1 (B (0 (V) |w(o(v),z

VG(,v) | ©(a(v)

M®(U)€q>(y (v.10) [w(o(@))]*
o) A"v< - G(c, nw(c)

+

G (v, 11)[

n

" ¢ (v)

Go.m) A%v.
. n 4MG (v, 7)O (vV)eg (y) (vs10)

J (p(v)[z@(v)\/G(v, 1 +hy (0, q)@(a(v))]z )
s

Letting # — @/, we get

(32)

(33)

(34)
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b(v)O(v)

_ 2
o[z \6(0,) - by (13)0 (0 ()

Journal of Mathematics

“ 5 _ e — Gle. @ wlc. 35
J&iG(v’a’) eq ) (0(0), 7o) 4MG (v, %)O (v)eg ) (0> 7o) Avs - Glempwla) 9
Divide (22) by G(Bv ¢;) and (35) by G(c;, o;), we obtain
) B _ ~ .
A ¢ ()| 2@ (V)\G(B»v) = hy(Biv)O (0 (v)) B
(g _twew [ 0feG) -mEeww])
G(ﬁpci) < €o(v) (0(1)),1’]0) 4MG(ﬁi,l))®(0)€®(u) (0’770)
) (36)

b(v)O(v)

@ )
(p(v)[z D (G (0.@) - hy (v, a,.)®(a(u))]

i

1 G
_— G(v,a;)- —
G(c»®) J& (%) e () (0 () 10)

Adding the above two inequalities, imply a contradiction
to hypothesis. O

3.3. Oscillation Criteria for Fractional Euler Equation. We
consider fractional Euler-type dynamic equation:

@ (@) @
(@) + Ly @ () +b
n

2

y(n)=h(n), ne€ [ny00)

(37)

b(v)O (v)

4MG (v, ;)0 (v)eg ) (Vs 7o)

[Z(R)(U) G(v,®) - h, (v,&,-)@(U(U))]2 _
A

A%< —w(c;).

Theorem 7. Assume that (-a/n) € R,. If there exists
¢, € (@,f;),i=1,2, a function ®(n)>0 on [T,oo)% and
G ¢ @, for sufficiently large T such that

a
v

— | 6wm)] -
G(c, @) Ja,. Uza%(v) (o (v), 7o)

+

4G (v, ®,)0 (v)eg ) (vs779)

(38)

G(Fv)

Ci vz&eq)(v) (U(U)> ’70)

G(Bi’ Ci)

then (37) is oscillatory.
Proof. 'The proof is the same as that of Theorem 6. O

Remark 2. Suppose the conditions in Theorem 5 are
replaced by the assumption given as follows:

=0, [51’31]’

h(n) = o (39)
<0, [“pﬂz]’

then Theorem 5 is accomplished.

Remark 3. In this article, we introduced the interval os-

cillation criteria for conformable fractional dynamic equa-
tions with Riccati transformation. So far, there are many

_ = _ 2
1 JE b(v)® (v) _9"(’1)[2(“)(0) VG(ﬁi’ U) _hZ(ﬁi’ U)®(U(v))] A

Al v>0,
4G(ﬁi’ U)G) (U)ed)(v) (U, }/IO)

results concerning the fractional model with oscillation
criteria (see [19]). However, to the best of our cognizance,
there are no results on the oscillation of fractional dynamic
equations with forcing term.

4. Examples

In this part, in view of the conditions acquired in Section 3,
we introduce some examples to represent the adequacy of
the suggested nonlinear fractional model and the merits of
our methodology.

Example 1. We take the nonlinear conformable fractional
damped dynamic equation:
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_ (/2) Let @ =n1, fi=a=m+Dr, B,=m+2n
(’7 1y(1/2)(,7)) o y(l/z)(ﬂ) +7 ;V(’7)(1 i) ) - +Bi/21’ i 1)2;51: 1,22)”.) O (n) = ,15();2) and G(7,
=siny, #ne[l,00). v) = - v. Then, we get
R (40)
Here, T=R;a=1/2;9(n) =1 Sa(n) =4 3b(y) =
f(y(m))=(mHra +er); 110 =1. Clearly, f(y)y= 1+
@W>1=K, 0(n) =n pun) =0, 0 =-1
00 A® (1/2) o)
J ﬂz‘[ dv—J v"?dv = oo,
Mo (P(U) Mo v o
1 1
1>eq ) (1:10) = 6XP<J (D(v)dv> >1+ J @ (v)dv
"o 1
_ LG SN C V) 1
_l—jlv 52dv—1+§(11 " —1)25.
(41)
2
(@) — —
. J ooy | KwOW _go(v)[z VG (0.&) + (0,30 (0 (1) o
G, @) Ja, 7 | ep (0 (), 10) 4G (v, @) (V)eg () (vs 7o)
_ — _ 2
L rs 6(5.0) Kb () (v) _q)(u)[z(“)(v)\/c(/s,-,v) +h2(/3,-,v)®(a<u>>] )
G(/§i>ci) < : eo ) (0 (v), 1) 4G(Bi,v)®(v)e®(v)(v, o)
(42)
205, | oon s GRW =& + o -5 5’2] g
>=| (v-a)4v 7
m)g, 4(v—&i)v
_ 2 5 5/2
5 (B o [(5/2)v Bi—v+\Bi—vv ] gy o
e (ﬂi‘“) v s vodv>0.
4(B; - v)v
Hence, by Theorem 5, (40) is oscillatory. Therefore, we get f'(y)=1=M, 0(11) n+1,
pm =1, 0 =-n 5, 1+um@() =1-5 P >1-

Example 2. We take the nonlinear conformable fractional

damped dynamic equation:

A(I/Z)(?l—(l/Z)A(l/Z)y(’7)) + ﬂ_(S/Z)A(I/Z)y(ﬂ) + ’71/2}/(’7) = cos 2t.
(43)

Here, 7€ [2,00)2; 1]' 7, a=1/2 o(n)=n V2,
a(n) =n 560 =1%o =2£(y(n) = )’(’1)

(1/2) > 0 which 1mphes CD(11) € %*. Also,
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00 AEU OOUE—IAU 0 U(x—l 0
J J sz_mzlez‘x”

W@ 12 o) &

n
1> eq ) (1:19) = exp(J CD(U)Au) >1

o

n n
+ I D(v)Av=1-Y v
2 v=2

>1- jﬂ_l v 4y =1 +%(( -1 PP 1) .-
= . 3 11 3

(44)

Let @, =nn+ (n/4), By =0 = (n+ D+ (n/4), B, =
(n+2)m+ (n/4), c;=a;+B,/2,i=1,2;n=1,2,... and @
(n) = n*. Then, all the constraints of Theorem 6 are satisfied
with G(#,v) = - v, and (40) is oscillatory.

Example 3. We take the following conformable fractional
Euler-type dynamic equations

(1/2) - .
(y(llz)(ﬂ)) +an (1/2)}/(1/2)(11) +by 1}/(11) = cos 7],
(45)

where 77 € [1,00),, T = R, @ = 1/2,and 7, = 1. Then, u (1) =
Oande_,;, (1,7, = exp(IZ (-alv)dv) = #~ % since o (1) = 1.
If we let « =nm+ (n/2), B =a = (n+ D)m+ (n/2),
By=m+2)m+7n2, ¢ =(a+p/2),i=1,2,n=12,...
and O () = %, then all the constraints of Theorem 7 are
tulfilled with G (#,v) = 5 — v for suitable choice of a and b.

Hence, we conclude that equation (45) is oscillatory.

5. Conclusion

In this article, we established the interval oscillation criteria
for conformable fractional damped dynamic equations with
forcing term. The obtained results are improved in the sense
which provides sufficient criteria for the forced oscillation of
the considered equation with various conditions. Finally,
numerical examples are also presented to validate the the-
oretical results of this study, and in addition, the developed
methodology has been tested on the forced oscillation of a
fractional Euler-type dynamic equation with an example.

It would be interesting to extend the results proposed in
this article to more complex systems, including fractional
dynamic equations with time delay. This will be examined in
our future works.
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