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This article addresses the investigation of strict dissipativity synchronization for a class of static neural
networks under an event-triggered scheme. An event-triggered scheme is recommended, it can upgrade
the exhibition of system dynamics and diminishes the network communication burden at the same time.
Firstly, an appropriate Lyapunov-Krasovskii functional (LKF) with double and triple integral terms with
the details on both lower and upper bounds of the delay is completely designed. Secondly, under the sin-
gle and double Auxillary function-based integral inequalities (SAFBII and DAFBII, respectively) and gen-
eralized free weight matrix approach, a new class of delay-dependent adequate condition is proposed,
so that the error system is (Q S, ®) — y — strict dissipative. A resilient distributed event-triggered control
scheme is developed by this criterion in terms of linear matrix inequalities (LMIs). At last, simulation
examples are provided to demonstrate the performance of the derived results.
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1. Introduction

During the past few decades, neural networks (NNs) have been
effectively applied in numerous areas, for example, pattern recog-
nition, signal processing, solving optimization problems, static im-
age processing, associative memories, target tracking, and auto-
matic control, etc [1-4]. Time-delays are inescapable in executing
the NNs because of the limited conduction speed and switching
velocity of electronic components. It is notable, the appearance
of time delays may cause the structured NNs to change the pre-
scribed dynamical properties like instability of system and perfor-
mance deterioration. Based on this aspect, various problems of NNs
with respect to time-varying delays have been tackled [5-9]. It is
worth pointing out that the dynamic behaviors of NNs are essen-
tial for each successful application, such as medicine and biology,
economics, electronics, and telecommunications. According to the
different positions of the weight matrices associated with the ac-
tivation functions, NNs possibly divided into two kinds: local field
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neural networks (LFNNs) and static neural networks (SNNs) [10,11].
In the view of SNNs could be moved comparably to an LFNNs in
the account of fulfilling definite hypothesis, maximum focus can be
turned to LFNNs. As a tool for scientific computing and engineer-
ing application, an obvious characteristic of SNNs is its capability
for implementing a nonlinear mapping from many neural inputs
to many neural outputs [5]. On the other side, SNNs have been
working a crucial act in the investigation based on stability and
stabilization issues and countless remarkable results have been ac-
counted in [12-14].

On the other hand, dissipative theory is the needed one in
dynamical framework, which can instinctively give back the loss
or dissipation of energy. Generally, dissipativity theory originates
from electrical networks and by using an input-output descrip-
tion, presents a tool for analysis and synthesis of control systems,
robotic system, electrical power system, engine system, combus-
tion engines, circuit theory, damping, and electromechanical sys-
tems and so forth [15-17]. The dissipativity hypothesis addition-
ally gives a crucial framework to examine control issues of SNNs.
Furthermore, it fills in as a useful asset in symbolizing framework
dynamics such as stability and passivity. Besides that, the theory of
passivity assumes a significant part of circuits, networks and con-
trol systems. The principle thought of the passivity approach role
is that, able to maintain the system internally stable [18-21]. Based


https://doi.org/10.1016/j.chaos.2021.111212
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2021.111212&domain=pdf
mailto:vadivelsr@yahoo.com
mailto:porpattama@pkru.ac.th
mailto:gunasmaths@gmail.com
mailto:saravanamaths30@gmail.com
mailto:hemen_dutta08@rediffmail.com
https://doi.org/10.1016/j.chaos.2021.111212

R. Vadivel, P. Hammachukiattikul, N. Gunasekaran et al.

Chaos, Solitons and Fractals 150 (2021) 111212

Master é‘ Sensor “_(I)m(t)
network | ¢(t)
.4 .
—)[ Subtraction
Slave _— > Sensor
network | ¢s(t)
‘ Sensor 1 ‘ ‘ Sensor n ‘ Sensor m
Actuator
Sensor | l Sensor n Sensor m
et ten cndemtian fe X\ P Apetamt mdan i \ e e -~ \
{ Event-triggered mechanism { Event-triggered mechanism ‘ Event-triggered mechanism
| I I
I ’ Triggered mechanism 1 ‘ | ! ’ Triggered mechanismn | | I Triggered mechanism m ‘ |
I [ 1L 1| |
| (. (I |
: ‘ Feedback controller 1 ‘ 1 : Feedback controller n 1 : Feedback controller m ‘ |
] ] !
\____\L____/ \____\t___/ \____\t___/
Network

SIS

Fault attack

Fig. 1. The diagrammatic of master slave DETS.

on the framework of dissipativity, some effective results were in-
vestigated for continuous-time neural networks [22,23], discrete-
time neural networks [24], and static neural networks [14]| with
stability and stabilization issues. For instance, in [22], authors pro-
posed dissipative-based sampled-data synchronization control for
complex dynamical networks with time-varying delay. Authors in
[24], established a robust dissipative observer-based control design
for discrete-time switched systems with time-varying delay. Event-
triggered dissipative observer-based control for delay-dependent
Takagi-Sugeno (T-S) fuzzy singular systems has been investigated
in [23]. It is noted that the concept of dissipativity theory plays
a vital part in analysis and control issues in the past years with
respect to SNNs but only limited research has been done on the
event-triggered control, which motivates our present research ar-
ticle. The diagrammatic of master-slave distributed event-triggered
scheme (DETS) has been represented in Fig. 1.

The synchronization criteria is an active research area and it
is a fascinating and remarkable one in numerous real systems. As
reported, the interactions among a group of neurons may trigger
synchronization, such as the synchronization of two neurons [25],
the neural ensemble synchrony [26], and the partial synchroniza-
tion of subsets of brain areas [27]. The synchronization has a large
number of engineering background like biological model frame-
work, combinational optimization, pattern recognition and har-
monic oscillation generation, chemical systems, electrical circuits
and systems, secure communications, image processing, parameter
estimation, and neuroscience [27-30]. For example, the synchro-
nization of two Hindmarsh-Rose neuronal models have been uti-
lized for secure communications in the industrial internet of things
in [29]. Recent studies on neural modeling demonstrated the influ-

ential role of synchrony between neuronal oscillators on construct-
ing cognitive electronics in [31]. Recently, synchronization analy-
sis for the static NNs get a lot of consideration, and some suc-
cessful results for synchronization based control schemes with ex-
ternal disturbance (like dissipativity) have been proposed in the
literatures. Accordingly, as of late, the dissipative synchronization
concept has been successfully applied to various types of NNs
in reports [28,30,32]. For example, authors in [32] studied event-
triggered dissipative synchronization for Markovian jump neural
networks with general transition probabilities. In [28], event-based
synchronization control for memristive neural networks with time-
varying delay has been proposed. Exponential synchronization of
coupled stochastic memristor-based neural networks with time-
varying probabilistic delay coupling and impulsive delay has been
researched in [30]. Additionally, in pragmatic frameworks, resilient
are typically inescapable in the controller performance. Because of
this reality, the closed-loop system may be without a stable re-
gion. Subsequently, it is essential to plan a controller which need
to permit the uncertain parameters. To defeat this trouble, resilient
controller has been intended for different kinds of control systems
(see [33-35]). It should be noted that, limited works have been ex-
pressed on resilient dissipative analysis in the research of synchro-
nization techniques, which is the another direction of motivation
in this work.

Note that the evolution of information technology and heavy
transmission burdens in the efficiency of networks, an event-
triggered control (ETC) has been actively engaged in research con-
sideration. With advantages such as fast response, high reliabil-
ity, easy implementation and robustness, ETS have been applied
in military, manufacturing, transportation, NNs, network control
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systems, and social life [36-38]. Moreover, only when the event-
triggering conditions are satisfied will the transmissions of the sig-
nals be triggered. In recent days, certain altered ETC has proved
its usefulness to different system requirements. For example, de-
centralized ETC [39], adaptive ETC [36], distributed event-triggered
scheme (DETS) [40-43], and deterministic ETC. So as to addition-
ally diminish the release times, saving the network transmission
resources and enhance the system dynamics behavior, nowadays
researchers focusing on the distributed ETC. Many interesting re-
sults about event-triggered strategy have been obtained over the
past few decades [40-43]. On another research frontier, controller
failures has attracted more and more attention because of the diffi-
culty of a dynamic system bigger, numerous components damaged
by environment and machine errors could make a system having a
failure [44-46]. Moreover, we will establish distributed event trig-
gered scheme with the effect of controller failures is more effective
to reduce the network transmission resources. To the best of au-
thor’s knowledge, the dissipative synchronization for delayed static
neural networks with distributed event-triggered control has not
been studied so far, which motivates the present study.

Motivated by the above observations, this article focuses on the
design of dissipative synchronization for delayed SNNs via DETS.
The main contributions are summarized as below:

(i) An DETS is set up for the SNNs, which can successfully save
network transmission resources and also enhance dynamic
property of the system subject of controller failures.

(ii) A new dissipative error system model is proposed, which takes
into account delayed SNNs, event-triggered schemes.

(iii) A suitable Lyapunov-Krasovski functional with single and dou-
ble auxillary function-based integral inequalities (SAFBII, DAF-
BII), generalized free weighting matrix (GFM), Bessel-Legendre
inequality approach is introduced to guarantee strict dissipa-
tive performance in the mean square of the error system, which
provides the analysis framework of SNNs with time-varying de-
lay.

(iv) The control gain matrices can be designed to achieve the de-
sired performance by the use of the MATLAB LMIs Toolbox, and
thus event-triggered parameters can be co-designed to guran-
tee the dissipative synchronization of the SNNs.

(v) In the end, the feasibility and advantage of the main results
have been indicated by numerical examples section.

Notations: Let R™™ and R" represent the set of all n x m real
valued matrices and n— dimensional Euclidean space. The expres-
sions X > 0 or (X > 0) denote a positive definite or (semi-positive
definite) matrix X, respectively; the superscripts T and —1 indicate
that the transpose and inverse of a matrix. * denotes the elements
that are introduced due to corresponding symmetry. N represents
the set of natural number. The space of square-integrable vector
functions defined on [0, c0) is defined by £,[0, c0). I means the
identity matrix of the appropriate dimensions, Sym{X} =X + X7, ®
denotes the kronecker product, diag{---} means the block-diagonal
matrix, and E{.} is the expectation operator.

2. Preliminaries and problem formulation

Consider a class of SNNs consisting of interval-time varying de-
lay:

P ()= A () + f(HPm(t — p(0)) +1), )
Zn(t) = D (t),

where  @n(t) =[] (), ¢ (©),...., 0L, (O]T eR" is the state
of ith neuron with time t, A=diag{a;,a,,...,an} with q; >
0,(i=1,2,..., n) is the system known matrix, f(Hemn(t)) =
[T (h1d1m (D). f1 (ha@om (). ... fT (haum (t))]T € R" denotes the
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activation function of the neuron, H € R™" is the delayed connec-
tion weight matrix, D is the known matrix with compatible dimen-
sion, I =[I1, 15, ...,I,]T € R" is a external input vector, and zy, (t) is
the measurement output. p(t) is a continuous and bounded dif-
ferentiable function, which represent the time-varying delay and
satisfies

P1=p(E) = p2, (L) < p3, (2)
where pq, py, and p3 are real constants. It is assumed that the
neuron activation functions f(-) satisfy the following condition

_ fie®1) = fi(a)

(H1) g, < po— <g.k=12_..n

For all x;,x; e R and x; # x,. Throughout this paper, the
master-slave scheme shall be adopted. We set system (1) to be a
master system, and the relevant slave system is given as follows:

$s(t) = —Ads(6) + f(HPs(t = p(0) +1) +Bu(D) + Co(0), (5
z(t) = Ds(0),

where @¢(t) e R", u(t) e R" and w(t) € RP are the state vectors,
control input and exogenous external disturbance, respectively, and
w(t) belongs to £,]0, co). B and C are known matrices with appro-
priate dimensions.

Set ¢(t) = pm(t) — Pe(t) and z(t) =z (t) — z¢(t), then we are
able to write the synchronization-error system as follows:

¢ () = —Ap(t) + g(Hp (t — p(£)) + Bu(t) + Cor(t) (4)
2(t) =D (1),
where H (£ — p(0)) = f(Hpm(t — p(£)) +1) - f(Hepe(t

p(t)) +1). Assume that the system (4) is controlled over a
communication network by resorting to a novel event-triggering
technique. Let toh, t1h,tyh, ... defined as the release times, which
satisfy the event triggered condition and can be sent to the
transmission channel. Therefore (4) can be explained as

B (t) = —Ap(t) + g(HP(t — p(t)) + Bu(t;sh) + Cor(t),
z(t) = D¢ (t).

The goal of this work is to design an event-triggered controller
as u(t) = Xe(t)

G () = —Ap(t) + g(HP(t — p(1)) + BKP (&) + Cor(0), (5)
z(t) =De(t),

where ¢ (tsh) = [¢] (tJh) ¢T(t21) ... ¢F(t21)]T and K denotes the
control gain matrix and to be designed later. Assume that 7] €

(0.n) denoted as the transmission delay, >0 is a scalar, j=
1,2,...,n, s e N. The released state ¢j(tsf i) occurs at the actuator

at the time tg h+ ng. Subsequently, the designed system together
with the following network transmission delay can be described
as:

O = min{8|t] + nl +5h > tsj+1

+nl,. 8=01.2..} (6)
Let

H) = [t/h+nl + (8 — DA, tdh+ 1] + 8h),

Hy, = [t{h+ 0!+ (©f = Dh.t] h+nl ).

§=1.2,....0] - 1. (7)
Moreover,
o!
[+l hnl ) =H]. (8)
8=1
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For [tih+ nl, tst h+ '7£+1)' define that

t—tlh, teHl,
t—tih—h, teH,

nl(t) = (9)
t—t{h—(®]-1h, teH,,
0, te H{
d(tin) —p(tih+h), teH,

vs(t) = (10)
(tih) — PR+ (O] - D), teHL.

Moreover, 0 < ng <ni(t)<n. In addition, we intro-
duce the time-varying parameter as follows pos(t), os(t) =

diag{o! (t), @2 (t). .... oM (t)}. Here

0l(t) = 0l(sd). tem), j=1.2,....n,
) vigyT
Q] =é+ s8 i i
R €+ (T

vl = @I (th) — @i (th+ (8 - Dh), 8 =1,2,..., 6L, (11)

i
v .
8 -

2 (vl - 9),

where € > 0 denoted as constant, Qis = diag{o);. 0%..... 0%}, 0
noted as upper bound of 9518, and ¢ € [0,1),0§Q£] < 0. Next,
we consider the ETS together with time-varying term os(t), t €
[tsh + 75, b o+ sq1).
v (O Fvs(t) < 09" (t — () FP(t —n(t)), (12)
where Pt —n(®) = [$] (t =" (). 7 (t = 0> (O))..... P} (t —
n"(t))T] and ¥ is the symmetric positive definite matrix.

Together with vs(t) and 7n(t), for t € [tsh + ns, ts 17t + Nsi1), We
can rewrite the control input as
u(t) =Xt —n(t)) + Kvs(t). (13)

Moreover, the designed controller can be utilized with some
faults and can be presented as follows:

u(t) = BO[Ke(t — n(t)) + Kvs(0)], (14)
where B(t) is a random variable can be described as follows:
Bt = {1, t € [R(ta+ mp). K (a+ ip) + Mp). K €N

0, telk(ta+ mp)+ My £+ 1(ha+ Up)),
0<n()=n. (15)

where 114 > 0 and p, > 0 noted as constants and termed as dwell
times of B(t) have unique values.
Therefore, (5) could be written as

()= —Ap(t) + gHP(t — p(t)) +U(t) + Ca (t),
u(t) = pO[X(t —n (1)) + Kvs (D], (16)
z(t) =Dg(t),

The aim of this paper is to propose new linear matrix in-
equality (LMI) based (Q s, ®) — y — dissipative conditions for SNNs
(16) with time-varying delays (2). To this end, the following Defini-
ton and Lemmas will be useful.

Definition 2.1. [5] The system (16) is said to be strictly (Q S, %) —
y — dissipative for any t; > 0 and some scalar y > 0, the following
inequality holds under zero initial conditions [21]:

tr t
/ (). z(t)dt > y/ o (Dw(t)dt Vef > 0,
0 0
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where u(w(t),z(t)) with u(0,0) =0 is a defined energy supply
rate function for the system (16) and satisfies
u((t),z(t)) = 2" () Q@(t) + 22" (t) sw(t) + o' (t) R (1),

where @, 5, and R are real matrices with ¢ = Qand % = ® with-
out loss of generality, it is assumed that Q < 0.

Lemma 2.2. [6] Let Z > 0 and for given scalars o and B, the fol-
lowing relations are well defined for any differentiable function u in
[, B] > R"

1

p 3
— | dTs)zZu(s)ds < — —— 0T 701 — —— 01 Z0,,
[ i ©zies < - gz olzp - 7= elze

B rB
—/ f uT (s)Zu(s)dsdr < — 293 Zps — 4@l Zq,,
a JA

B rr
- / f 0T (5)Zu(s)dsdd. < — 291 Zgs — 4l Zgs,

where

2 B
o1 =u(h) ~u(@). g2 =u(p) +u@) ~ 7= [“u(s)ds.

B B
o =uB) - g [ us)ds. gs=ute) - o= [Cuwas

2 B 6 B B
s =u(B) + m/ﬂ u(s)ds — W/& A u(s)dsdA,

b B o8
(pszu(oz)fﬂ%/ u(s)ds+(ﬂ_76a)2/ [ utsasa.

Lemma 2.3. [4] For symmetric positive definite matrix Q € R™", any
matrices X,Y, and vector ¢ : [, B] — R" such that the integration
concerned is well defined and the following inequality holds

B
/ #7(5)Q(5)ds = Sym{nT X1y + 11V 1)

T <3XQ1XT3+ YQlYT) X

where nq is any vector and n,, 1. are defined as

B 2 B B
M :/a ¢(s)ds and ne = —np + m/a /S ¢ (u)duds.

Lemma 2.4. [40] For any u<|[0,1],s,r € N, the shifted Lengendre
polynomial is

Ysw) = (<1)° Y g,

r=0
where p; = (—1)r(i> (s-;—r) and the binomial co-efficient (i) =
—sL__ Correspondingly, the polynomial matrix

((s=r)irt)*
Tp(W) = [Yo@h, y1 W, ..., ypW)h]",
where n e N, p e N. Moreover, T(0) and Tp(1) can be defined as

In I
Iy R In

T,0=| . |=0u T,(M=]|.|=0a (17)
(=1l In

Lemma 2.5. [4] For any constant matrix M e R™" M =M > 0,
scalar n > 0, vector function w : [0, n] — R" such that the following
relation holds

T
no B ] ]
n/o w' () Mw(s)ds < [/0 W(s)ds} M|:/0 W(S)d5i|.
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Definition 2.6. [19] The system (16) is stated that passive, for any
t; > 0 and all solutions of (16) with ¢(0) = 0, there exist a scalar
y > 0, ensure that the following inequality

ty ty
2/ 2T (s)w(s)ds > —y/ w! (s)w(s)ds
0 0
is satisfied under the zero initial condition.
Remark 2.7. The derivative of Lengendre polynomial matrix in

Lemma 2.4, can be defined as follows:

d

ﬁqrp(u) = ApTp(u) = ApT, 1 (u),

%(UTP(U)) =Tp(u) + ¥pTp(u),

where Ap=[Ap Oppi1ynl. Ap=vp®Iy, and ¥, =8, @I, The
matrices vp € RPH1%P and €, e RP+1*P+1 are defined as follows

0, ifs=>r,

Vp(s, 1) = )
2s—-1)(1 - (=1)7"), ifs<r,
0, ifs>r,

ép(s,ry=14s, ifs=r,
2s—1, ifs<r

3. Main results
3.1. Strict (Q S, ®) — y — dissipative synchronization analysis

In this part, we will discuss dissipativity criteria for SNNs
(16) with event-triggered controller. Based on the framework of
Lyapunov-Krasovskii functional (LKF) and the integral inequality
approaches, we will give the (Q S, ®) — y— dissipative conditions
in the following Theorems 3.1 and 3.3. Moreover, we represent the
block entry matrices.

ej = [Onx(jfl)n Inxn 0n><(35—j)n]T € R35mxn, j=1,2,...,35, for ex-
ample
es=[00001 000],n;(t) =[el elg]” =EI,

30 times

PN

d(t) =[e] ell", ma(t) = [e] ef]", S=g (Hp(s)),

n3(t) = (el eXl, pie=pt) — p1, par = p2 — p(8),
q) =167 ¢Tt — p©) ¢T(t — p1) Tt — p2) ST ()
LY LY R A
,O(t) t— ,o(t)¢ (S)dS ,02t t—py d) (S)dS]

t—p
¢l (t) = [— [ UGS / ¢ (s)dsdf

,02 ®) Ji—p)

t t R t— )\
Ny R, o7 (s)ds / Sds /
t-Ap1 t=Ap1 t—p;

"7 (s)ds].

t—Apa t—p1 t—p(t) N 1 t
T _ - T
do=if &ds /{ s /t s oo gTes
t—p
LT T (s)ds 8y Ny $7(E - ()],
P21 Jt—p,
i) =[e"(t- n (t) ¢T(s)as
1 0
T=0© Je, ¢ (s)ds ¥s5 Ng],
L3 (t) = [g" (Hp(t)) g (H(p(t — p1))) g (H(@(t — p(£))))
g (H(@(t - p2))) vI(t) Qi Qiz w(t)]
T =1 @© @) L@ i ) LI O], pa1 = p2—p1
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N 1 t—p4
T e® -2 e

t—p(t) pt—p(t)
Rz = (,02— (r)>2/ [ s
T
8= / f &7 (s)dsd6,
_ 1 T
"~ (2 — )2 /ﬁ)z fr+9¢ (s)dsdo,
B 1 t t T
A TOIE /Hm)/ ¢ (s)dsdu,
t—n(t) pt-n(t)
= n(r»Z/t [ o
Py oo ooy s
mo=[o'0 [ 9T o e L[ .
- /t ¢T(s)dsd9]
1 12 N 11 12
[Pu] U2 = |:U 522i|7u3 = |:U3 [lezzz:|,

(,j=1,2,...,15).

/ T T (s)dsdo,

Rg =

x @7 (s)dsd@

Theorem 3.1. Under Assumption (Hy), for given matrix X
and scalars p1, p2, p3, 1, 0 and 0< X <1, if there ex-
ist positive symmetric matrices P e R Ry, Ry, R3,Q1,Q,,V €
R22n [J; e R2<20 Ty To i = 2,3, 4, Wy, W, S, 51,55, S5, Ws, Wy, W
Va, V), € R™1 positive diagonal matrices X, %, z, and any compatible
matrices F;, X;, Y; e R ¥ > 0,i=1,2, such that the follow
matrix inequalities are hold

U0, w
=0
e

IT I
Y= <0, (18)
*  —(R-yD)
30 times
———
where F]z = [?]CT 0 0O 3~2CT 000 ]T,

and the elements of the matrix I1 = 21»120 I1; are represented in
Appendix A then, for any initial condition, the error system (16) is
dissipative. That is, the slave system (3) and master system (1) are
(Q 8 ®R) — y— dissipative synchronous via DETS, such that for p(t)

[o1, p2] and B(t) = {0, 1}.

Proof. Choose a LKF candidate for system (16) as follows:

7
V(t) =) Vi(t) +V (), (19)
i=1
where

Vi(t) = A (OPA (D),

t t—p
Lo = [ §TORGEs+ [ " 8T () Rap(s)ds
t—p(t)

+ t T ()R3(s)ds,

t=p2

t t . .
Vs(6) = oo / / RACLEIOLET
—P2
—P1 t .
+o=pn) [ ’ /[+ 7 (5)Qu (5)dsd
P2

t—p; pt—p
[ / 7 ()b (s)dsd .
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t t
Va(t) = Apy / X [ﬂ 0T ($)02m: (s)dsd
t=Apy

t=Apy

+ (02— 2p2) /ﬁ 0T (5)03m; (s)dsdp

t-ps
v [ ] T )0am (5)dsdp.
V(o) = [ Z /| i ﬂ $7(5)Ty(s)dsdpde
+f i [ /ﬁ &7 ()b (5)dsd B
+f : / i /ﬁ BT (5T (s)dsd B0

—pP1 —P1 t T .
+ /_ X /9 /Hﬁqb (5)Tach (5)dsd 86,
Vs() = (p(6) — p)nS (OW12(6) + (2 — PO} (Y Warg3 (0),
t
V() = nl ()Sna(t) + / #7(5)S1(s)ds
t—n(t)

t—n(t) r t t.T .
[ esedsn [ [ §essds.

P (W3¢ (s)ds — @7 (s)dsWs

t—py t—p2

g (Ho(s))Wag(He(s))ds
02

V(t)=pa

t

x @ (s)ds + o2

t—p, t—
t t
- g (Ho(s))dsW, g(Hp(s))ds.
t—ps t—p2
The derivatives of V;(t) and V in terms of t together with the
trajectories of system (16), wherei=1,2,..., 7 yield
7

V()= Vi(t)+V <0, (20)

i=1
where
Vi(t) = SymA T (OPA1 (1) = ¢T ()L (8),
Va(t) < ¢T(OOR1p () + BT (t — p1)(Ry — RGPt — p1)
— (1= p3)@T (t — p(OIRP(E — p(1)) + DT (DR3P(D)
— @7 (t — p2)R3p(t — p2),
<T(OMZ (),
V3(t) < 038 ()Qid (D) + p3 9T (D Qe (1)

S s —pn [ GT6)

t—p2 t—py

. N N t—p1 “
x Qu(5)ds + prud VOO - " T (s (s)ds,
—P2

— 02

Utilizing Lemma 2.2, we get
t . . t-p() .
o PO - [ T OQHE)s
t—p(t) t—p>

<=¢"(®O)[(er —e2)Qi(er —e2)" + 3(er + €2 — 2e)

x Q1(e1 4+ e3 — 2eg)T + 5(e1 — e, — 6eg + 12e9)

x Qi (e1 — e; — 6eg + 12e9)" + (62 — €4)Q

x (€3 —es)" +3(e2 + 4 —2e7)Qi (2 + €4 — 2e7)"

+5(e; — eq — 667 + 12e11)Q; (e2 — e5 — 6e7 + 12e41) "] (¢)

Similar to the above case, we get
t‘,

pu [T ($)Q (s)ds

t—p1
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<—¢T(®)[(e3s —e2)Qa(e3 —e2)" + 3(e3 + e, — 2es)

x Qa(e3 +e; —2eg)” +5(e3 — e, — 6eg + 12eq9)

x Qz(e3 — €3 — Beg + 12e10)" + (e2 — e4) Qo

x (63 —eq)T +3(es +e4 —2e7)Qa(ey +e4 — 2e7)T

+5(e2 — e4 — 6e7 + 12e11)Qz (e — €4 — 6e7 + 12e11) 72 ().

We can establish the subsequent zero-value term to further re-
duce the conservatism of the system (16)

. N t—p(t) A
£T(0)lePaeh — esVael 12 (1) — 2 / 7 (5)Pa(s)ds = 0,
—P2
t-p1 s
ST Oleste] - eaellc© -2 [ FTNpeds =0, (21)
t—p(t)

where ¥, =V} and V, = V! are symmetric matrices, combining
(21), we get

. t—p(t) R
— IO (t) - / BT ()T (s)ds
t—p2
t—pq ~ .
[ " Fendeds
t—p(t)

8= py [g;]v[g;]r — e[ Va + Vplel +esVyel —eqVee]. Next, for
any matrices X;, Y; € R9™21 i = 1,2, letting X, be
Xo = [@(t) g(HP(t)) p(t — p(t)) gHP(t — p(t)))

e; eg eg eyp w(t)] = L (t),

By Lemma 2.3 to calculate the single integral term V5(t), we
get

t—p(t) A t=p1 DN

- / B (5)Vap(s)ds — / BT ()T (s)ds
t—py t—p(t)

< T OIsym{TT1} + ya + 1) (O,

where
Iy = 0oy + T Y190 + 1100 s + 110 Yy,
n=1(p(t) - pr)eg e} —el],
v2=1[(p(t) — p1)?el +2el, el +el —2el],
y3=1(p2— p())e] e} —eil,
va=I[(p2— p(t))*e] +2ef; €] +ef—2eq;],
1

Vo= (p(t) = pOITIGX1 Vg X o + 5 11541 VY7 ],

N - N 14 - N
Vo = (P2 = PTG XV "X e + 5 T15 Y2y Y3 T,
f[a:[e{ eg 658 egg e; eg eﬂ e¥0 e§S]T~
Vs(t) < {104 (D).

. N t
Va(t) = 220207 (021 (£) — Apy /

1 ()0zn1 (s)ds

N t=p1 N
T (2 — 2p2)* 0T (OO, (£) — pan / 0T ($)04n: (s)ds

t—p2
. t=Ap2 N
+ 2T (O (6) — (02 — Ap2) / 0t (s)0s11 (s)ds.
t—p

By utilizing Lemma 2.5, it obtains

t
f/\mf n1 (s)Uan; (s)ds
t=Ap

t—Ap2 N
—(pr—p2) / 0T (s)0s11 (s)ds
t—p2
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e Ull U]Z e T
< _ ;T(t) 12 2 222 12
- e Us“ || es
11 12 T
€14 U3 U3 €14 ¢
- U22 C( )
€15 3 €15

By Lemma 2.5 and reciprocal convex technique utilized in [11],
we get

t—p; N
—:021/ 1] ($)Uam (s)ds < —px |:/
t

t—p1 N
11 ($)Usn1 (s)ds
—p2 t*p(t)

t—p(t) r N
+ [ 0T ()04 (s)ds |,
t

—p2

t—py . t=p
< / 0t (s)dsU, f 71 (5)ds
t t—p(t)

—p(t)

t—p(t) T R t—p(t)
- / 0t (s)dsUs [ 1 (s)ds.
t

—02 t—p2
s—;T(t){ys[”“ g"}ys’}m),
4
<O @),

egdy e

, 81 = P1r, 03 = Pyt
e:8, ew} 1= P1t, 02 = P2t

where y5 = |:

: . ~ 002 2 ,
Vs(t) = ¢T<r>[(p22pl)m +1)+ By Tz)]¢(t)

0 t+6 . . t .
- f [ FT ST (s) + f ¢T(S)Tz¢(5)i|d5d9
-p t—p1 t+0
-p1 pt+0 .
- / $7 (5)Ts b (5)dsdo
—p2 Jt=p2

-p1 pt=p1 . .
_ / BT (5)Tudh (s)dsd6.
—py Jt+0

Utilizing Lemma 2.2, the following inequality can be rewritten
as

0 t+60 . . 0 t, .
- [ / ST (s) + / / ¢T<s>5¢(s>}dsde
—p1 Jt=p1 —p1 Jt+6

< =2¢T(t)[(e3 — e1g) Ty (e3 — e13)" + 2(e3 — 4eqs + 6eag)
Ty (e3 — 4eig + 6e30)" + (e1 — e1z)Ta(er — eyg)”
+2(eq + 2e15 — 6e20) To (€1 + 2e15 — 6e20) T2 (1).
Similarly
- [ [ [T eremse s [ d)T(s)mS(s)}dsde
—py Jt—py —py Jt+6
< =20T(t)[(es — e19)T3(es — e19)" + 2(e4 — 4e19 + 6e37)
Ts(es — 4e19 + 6€31)" + (e3 — e19)Ty(e3 — e19)"
+2(e3 + 2e19 — 6e21) Ty (e3 + 2e19 — 6e21) 1 (£).
Vs(t) < £T(0)T14E (). (22)
Now, let us focus on Vi (t) in (19), we have
Ve(£) = p(O)N3 (OYW1n2 () + 2(p () — p1)m5 () Whja (t)
— PONFOWa21j3(6) +2(02 = p(£))N5 ()W2n3(6)

T
o207, [60] _, n[¢©
=0 [yl (t)}wl [m <r)} PO [)/2 (t)}WZ

T T .
<[¢© ¢®) ] 1o [(0©® = pd®
] rom{ )]
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T .
@) (p2 = p()P(t)
[ el )

Vs(t) <¢T(OTIsE (1), (23)
where

G'=¢(t—p1)—(t—pE)PE—p) —pE)y:(t)

GP = (t— p(6)P(t — p(t)) — P (t — p2) — p(£)ya (L)
Yi(t) =egl (t), ya(t) =ejg(t).

Before obtaining the derivative of V5 (t), define that
na(t) = [nOKQT () (n—nt)HKQ D],

1 [
Qi (t) = 7O o Qup(s)ds,
1 -n)
Q0= | - Qugsds
S (s—t+nO)\ & . [S—t+]
2 JT”( () ) SZlz_T'J(n—rl(t))' (24)

Furthermore, we get
IO ©1= 1020 + 1)

1 .
X /0 Tp(8) (5(8)[811(t) + 1 — 7 (£)]dd

1 .
=70t (t)+r7(t)n(t)f0 8Tp(8)p(s(8))ds

l .
+(1—RE)N() fo Tp(8)h(5(8))ds.

where § = 5‘514;7[’7)“) then s =68n(t) +t— n(t). Utilizing the novel

techniques with (17) and Remark 2.7, we obtain
1 .
10 [ Th()(5(6))d5

1 d
= Tr (D) — [ $(s(8)) 75 (57(8))ds.
= (O ~ 2 (O~ B2 ().
Similarly,

1 .
n(t) /0 Tp(8)h (5(8))d3

1
= T (DB - TH OB~ 1)~ [ $5(8)) 75 (Th(E)ds
= Bagp(t) = Bap (t = 1(6)) = Ap<2: (b).

Correspondingly, the derivative of (n — n(t))2,(t) gives,
%[(77 = 1(0)2(0)] = -7 (6)20(t) — N(O[Tap (t = n(t))
— Q2(6) = Pr(0)] + Bagp (£ = 7(1))

—Bagp(t — 1) — ApQ (). (25)
Combining (24)-(25), we get
d - NS R
i A OSna O} = Sym{ (7 + 0 (0 712)" 5@} (26)

Therefore, the derivative of V;(t) becomes
Vo (t) < Sym{(7n + 712)7S@s} + @7 (£)S19(t)
—@T(t = mS2p(t — 1) + 0" ()S3h(¢)

t . .
- / A7 (5)S36(5)ds.
t—-n
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From Lemma 2.2, the above inequality can be written as

—n / BT (5)S3¢(5)ds = —£T(O)[(e1 — €22)S5
t-n

x (e1 —e22)T +3(e1 + €2 — 2e24)S3(e1 + €2 — 2e24)"

+5(e1 — ez — 6eaq + 12€6)S3 (€1 — €25 — 6exq + 12e56)"

+ (e22 — €23)S3(e22 — €23)" + 3(e22 + €23 — 2€25)S3

x (622 + €23 — 2€35)" + 5(e22 — €33 — 625 + 12€27)S3

x (22 — €23 — 6e5 + 12e57)T1¢ (1)

V5(t) < £T(0) 6L (). (27)

V(©) = 7O palerWae] — eaWae}) ~ 2(eq - )
Ws(p(t)es + (02 — p(t))er) + pa(easWaels — e3Wyel)
— 2(ez8 — e31)Wa (el + e{7)]§ (t)

Vs(6) = ¢T(OT7¢ (8). (28)

In addition, for any compatible matrices F;(j = 1,2), one can
get the following equation based on system (16)

0 =Sym(¢" (OF] + T (OF) [T (t) — AT (t)
+g(H(t — p(t)) +BIBE)[KP(t — () + Kvs(D)]] + Cor(0)]
= ¢T(6)TTgL (b). (29)

From the neuron activation function in (Hy), the subsequent re-
lations hold for any x, %, z> 0

() 80 T(t) = 0, Tt~ p(t)) Ap Tt — p(t)) =0,
() Ac Ty (t) > 0, (30)
where

() =[P (08" (HP()], T () = [T (O)T(t — p(t))]

[—GHX GHX —-GHY GH
Ng = , Ap = ,
L * —X * -y
r-¢gHz @Hz GgHz —-@H
s -z  —GHz z
Ac=
* * ~-GHz  GHz
L x * * —Z
X=diag{xy1, X12,..., X1}, Y=diag{y», y».....Yn}
and z = diag{231 s 2325 ey Z3n}.

Therefore from (30), we get ¢T(t)ITg¢ (t) and also combining
(20)-(30) with (12), it can be obtained that

V() —uw(t), z(t)) + yw (Ow(t) < ¢T(OTIZ (t),

where T = Y19 IT; is defined in Theorem 3.1. Suppose IT < 0, we
can obtain

V(t) — u(w(t), z(t)) + yw' (t)w(t) < 0. (31)
Integrating (31) from O to ¢, the following inequality holds:
t t
y/fwT(t)w(t)dt—/fu(w(t),z(t))dt < V(ty) +V(0).
0 0

Under the zero initial condition V(0) =0, Vt; > 0, it is clear
that

y/[f W ()w(t)dt — /tfu(w(t),z(t))dt < V(ty) <0.
0 0
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Thus, the error system (16) is (Q S, ®) — y —dissipative in the
sense of Definition 2.1, which shows that the master system
(1) and the slave system (3) are dissipative synchronous. Moreover,
if w(t) =0 and following the similar procedures used above, we
can obtain the error system (16) is asymptotic stable. The proof is
completed. O

Remark 3.2. The synchronization of sampled-data control sys-
tem has reported in an extraordinary volume of literatures see
[28,30] and the references therein. It is worth mentioning that
the sampled-data control with synchronization analysis is adopted
in the above literature. In contrast, the resilent distributed event-
triggered control (RDETC) with fault approach is developed in this
paper. Generally, the RDETC presents better dynamic performance
of the closed-loop system and reducing the amount of controller
updates and lessing the network communication than the other
controller as explained in the introduction section. The result in
Theorem 3.3 fills the gap on the resilient event-triggered control
of SNNs.

3.2. Resilient dissipative event-triggered controller design

It is observed that arguments in the previous literature works
the modelled controller could be very sensitive or fragile in terms
of various changes in the feedback gain. The following resilient
control idea being implemented to frame a feedback control gain.
In the following Theorem 3.3, we will discuss resilient event-
triggered control framework for the SNNs. By the way, the control
gain can be modelled as X + Y (t) AX(t), where

AX(t) = GH(D)F, (32)

where G and F denoted as known matrices and #(t) defined
as unknown matrix which satisfies #T (t)#(t) = I. Moreover, Y (t)
taken as random variable and can be utilized to model the ran-
domly occurring controller gain fluctuations. Y (t) is termed as
Bernoulli-distributed white sequences take off the values of 0 or 1
with B{Y(t) =1} = E{T(t)} = T. Now consider the following sys-
tem with resilient event-triggered controller

$(t) = —-Ad(t) +g(Hp(t — p(D)) +Bu(t) +Car(t).

ut) = BOIK+TOAKD)E - 1(t)) (33)
+(X + T OAKO) (D)),

z2(t)  =Dg(t).

Theorem 3.3. Under Assumption (Hy), for given scalars
01, P2 P3N, A A, @ ¢, and matrices Q=5 R= 1%,
the neural network (33) is (Q S, ®) — y— dissipative and asymp-
totically stable in mean square sense and using the event-
triggered controller (14), if there exist positive symmetric matrices

I@’ c RSnxSn’ IQLR\Z» R‘3’ QL QZ’ v c RanZn’ Ui c RanZn’ Th Ti’ i—
2,3,4,W1,W2,§,§1,§2,§3,W3,W4,W, R, Va,Vb ERnxn, pOSi-
tive diagonal matrices X,9,z, and any compatible matrices 7,
X, Y e R 7> 0,i=1,2, B(t) ={0,1} and p(t) €[p1, p2] in
such a way the subsequent inequalities hold

0, W
Vo,
"ol

ﬁ f]z A] Ag

* —(R-yDh 0 0 <0, (34)
* —Al 0
* * A

where [1 = Z}SO IEI,- are defined in Appendix B and
29 times

~ ———
Fp=[ac™ 0 0 0 c 000,
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— & RT T T
=[GaB"B(t) 000 GBTB(t) 000]",
30 times
21 nmes

Az_[OOOS"TIFT 000 F'FT 0 0 0].

9 times

Then, the error system (33) is dissipative synchronous. Moreover,
the dgsired resilient event-triggered control gain can be achieved by
= K51, such that for p(t) € [p1, p2] and B(t) = {0, 1}.

Proof. Utilizing (32) and the condition in (18), we obtain
2+ RHOI + ITHT ()RT,

where
30 times
—
%t =[(GFBB(t))T 000 (GFHBA(t)T 0007,
21 times
—— —~
3=[000 FOOO FOODO.
9 times

Furthermore, it follows from Lemma 3.5 of [39] that there exists
scalar A > 0, such that ¥ + A~ 197 + A373. Then, by using schur
complement, it is easy to obtain

by "o AT
A= -M 0 | (35)
* —Al

The proof follows the similar procedure as in Theorem 3.1. De-
fine
]@ZBFT@P@?, R] ?Rlﬁt R2 Srsz}'
R3 =FRsF, Q1 =FTQF, @ = F Q7.

= 5TWiF, W, = FTW, 5, ¥ =5Tv7,
va — 579,9, U, = I, 5, U1’< FTujkg,
Trr122 _aqT
qj =707, U4_3U4§r, T1_ffTl g (36)
L=9"%L7, =957 T,=9"T,7,
S=97S7, § =977, §, = F7S,7,

Sy = I7S:F, Wy = FTW35, W, = FTW, 7,
W =3TW7F, ¥ =977,
j=2,3, k=1,2.

Moreover, F, = -1, F; = @71, K = XF. Then performing congru-
ence transformation to (35) with
diag{7, 7,3, 11,1}, we obtain the condition (34). O
——— =

32 times 5 times

4. Passivity analysis

Willems [21] built up an efficient structure for dissipative sys-
tems, including passive modelled systems, by presenting the entry
of a storage function and a supply rate. Inspired by the above facts,
in this following segment, we discuss the synchronization problem
for passivity analysis of SNNs with event-triggered scheme.

Remark 4.1. Theorem 3.1 established a strict dissipativity synchro-
nization analysis of SNNs (16). In the view of Theorem 3.1, we
obtain the passivity analysis of error system (16) with respect to
Q=0,5=1, and ®=2yI in the following Theorem 4.2.

Theorem 4.2. Under Assumption (Hy), for given scalars
o1, P2, p3. M A & O and matrices Q=q, 5 R="%,
the error system (33) is passive with the event-triggered
controller (14), if there exist positive symmetric matri-

ces P e R™SM Ry, Ry, R, Q1, Qo Wl Wy, € R2D2, 0 e
R202n Fy T i=2,3,4,5,5,5,, S5, Wa, Wy, W, R, U, 0}, € R,

positive diagonal matrices X, 9, z, and any compatlble matrices 7,
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xis %l’ € Rgnxzn‘):( >0,i=1,2, IB(t) = {Ov 1} and p(t) € [,O]s p2] in
such a way the subsequent inequalities hold

0, W
Vo,
R

T <0, (37)
* =y

where T1 = Z l'[ and Zl 0 1'[ are defined in Appendix B, l'[w =
—e1FDess +Q€22X€22 - e32xe32 and the remaining terms are de-
fined in Theorem 3.3.

Then for any initial condition, the error system (33) is passive. For
this case, the slave system (3) and master system (1) are passive syn-
chronous. Furthermore, the desired resilient event-triggered controller
gain can be achieved by X = KF~1, such that for p(t) € [p1, p2] and
B(t) = (0,1},

Proof. Considering the same LKF as in Theorem 3.1 and following
the similar proof of Theorem 3.1, we can see that the subsequent
inequality is true.

Therefore,

V(e) - 22" (Ow(e) —w' ©)yw(t) < ¢TOTE (D),

where ¢ (t) and IT is defined in Theorem 3.1. Hence if IT < 0 holds,
then the above inequality implies that

V() = 22" Ow() —wl (H)yw(t) < 0. (38)

Integrating (38) from O to t;, under zero initial condition, we
get

2 /tf 2T (s)w(s)ds > V(ty) -V(O0) -y /t[ w! (s)w(s)ds
0 0

>y /tf wT (s)w(s)ds, (39)
0

for all t; > 0. Therefore, the error system (33) is passive with re-
spect to Definition 2.6. O

Remark 4.3. If taking w(t) = 0 and z(t) = 0, then the error system
(5) turns into the subsequent system (40).

$U) = —Ap(t) + g(H(t - p(1)) +Bu(t), (40)
() = BOIKGE =) +Xvs()]

A stabilization criterion for synchronization network (40) with
time-varying delay can be discussed in the following Corollary 4.4.
The other procedures of Corollary 4.4 for synchronization network
(40) are similar to the proof of Theorem 3.1.

Corollary 4.4. Under Assumption (Hy), for given scalars
P1, P2, P3, 1, A, xoa, 0, and the error system (40) is
asymptotically stable in the sense of event-triggered con-
troller (14), if there exist positive symmetric matrices Pe
RSnxSn’R‘hﬁLI%’ le QAz,WLWZ,\} c RZ"XZH,U,' c RanZn’fl’ Tivi:
2,3,4,5,5,.5,, 55, Wy, W,, W, K, symmetric matrices Vg, V, e R™",
diagonal matrices Xx,9,z, and any compatible matrices 7,
Xi, Y e RO 75 0,i=1,2, B(t)={0,1} and p(t) € [p1, p2]
in such a way the subsequent inequalities hold

U0, w
.~ | >0
"ol
fl<o (41)

where T1 = Y7, T1; are same as defined in Theorem 3.3.
Then, the error system without resilient are asymptotically syn-
chronous. Moreover, the control gain matrix is given by X = KF-1.

Proof. Setting w(t) =0 and construct
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=

— p(t)

Control responses

5 L L L L L L L L
5 6
Time(Secs)

(b)

Fig. 2. The panels (a)-(c) contain the evolution of curves for case I in Example 5.1.

g1 =[¢{ (©) &3 (©) & ©) 25 @) & O] &5 (0) = [g" (H(g(t —
p1))) g (H(p(t - p(1)))) g (H(p(t — p2))) vi () (&) QO]
The remaining vector elements are defined in Theorem 3.1. The
proof is the same as that of Theorem 3.3. O

5. Numerical examples

In this section, the following numerical examples are discussed
to prove the usefulness of the derived results in this paper

Example 5.1. Consider the following system with the parameters
as follows:

¢(t)=—Ap(t) + gHp(t — p(t)) + Bu(t) + Co (1),

{u(t) = BO[Kp(t —n(t)) + Kvs(D)], (42)
z(t) =Dg(t),
L_[7024 0 649 —12.02
L o 7,4367:|’ B |:—O.68 5.66 }
r05 -0.1 01 0
B= ,C= :
|04 02 } [ 0 0.1}
—1 04
D= 0 . } G = diag{0.5,0.5}, F = diag{0.1,0.1}.

The objective of this example is to find the maximum permissible
time delay p,, such that the system is strictly (Q 5, ®) — y— dissi-

10

pative. For this, we choose

0.1

Q=diag{-1, -1}, ®=diag{3,3}, 5= |:—Ol 05

0.5 :|
In this example, the activation functions are assumed to be g(¢;) =
0.5(]¢j+ 1| = |¢j — 1]). It can be verified that Assumption (Hj)
is hold with GJT =0, G}f =1,j=1,2. Thus, G =diag{0,0}, g, =
diag{0.5,0.5}. By using MATLAB LMI toolbox and by taking n =
0.5, p(t) =1+ 0.5sint, which means p, =1.5 and the time-
derivative of the delay satisfies p3 =0.5, p; =0.5. Based on
the above parameter value and solve the LMI conditions in
Theorem 3.3 for two cases. In this simulation, we introduce two
cases to validate the design control performance.

Case:l (with fault):

In this case B(t) is assume to be fixed with respect to the be-
low parameters. In addition, some of the efficient results have been
produced with respect to fault approach based on the traditional
approaches, for instance [47] and [48]. Such a controller with fault
have not conventionally, (i.e) switching between two different ap-
proaches are very fast. In the sense of practical applications, it may
be difficult or impossible for implementation. Furthermore, the fast
switching will cause multiple damages to equipments. With ref-
erence to these facts, it is appropriate to design a controller with
fault belongs to the intervals. According to the key idea in [47] and
[48], one could design fault approach. However, the corresponding
variable B(t) with respect to traditional Bernoulli variable and let
E[B(t)] = 0.889.
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Fig. 5. Behavior of various solutions trajectories ¢y, ¢, ¢3 in Example 5.2.

We can solve the LMIs in Theorem 3.3 and applying the above
parameters, fault value, the corresponding control gain matrix and
triggered parameters are obtained as follows:

2.2748
F =10% x
0.0001

[—0.0263

0.0001]

0.1215
0.4221

—0.2874]'

0.1411

For the simulation purpose, we consider the exogenous distur-
bance input w(t) = 0.5+ sin(0.13exp(0.5t)) and the initial con-
dition ¢ =[-3, 3]", the error simulation of open-loop system is
given Fig. 2¢ in which the trajectories diverge. The corresponding
closed-loop error response curves are depicted in Fig. 2a, which
shows that the trajectories converges quickly to zero. In addi-
tion, the event-triggered scheme is applied to dissipative problem
for SNNs in this paper, which greatly reduce the communication
burden. The corresponding triggered events for dissipative case is
given in Fig. 4, which indicates that the proposed event-triggered
controller scheme can reduce the number of controller executions
effectively and save resources. The corresponding control input has
been shown in Fig. 2b. Concluded, from Fig. 2 it is revealed that
the proposed controller effectively stabilize the considered system
even in the presence of fault approach.
Case:Il (without fault approach):

For this case, no fault approach. Furthermore, solving the LMlIs
presented in Theorem 3.3 with the same system parameters as
mentioned in the previous case, the controller gain matrices and
event-triggered parameters are solved out as follows

5.6335 4.8231
A =10% x ,
48231 3.5412

~1.5342  0.5672
03118 —2.5922]|

Using the above gain matrices and with the randomized initial
condition, the error responses of both closed and open-loop sys-
tem, control variation of the system (42) with respect to Case II
are depicted in Fig. 3(a—c).

Example 5.2. Consider a general form of the SNNs can be ex-
pressed as [1]

d¢mi (t)
dt

(43)

n
—Qimi(t) + Y & (Hijm;(tp(t))).
j=1
where &; is the inverse of the time constant governing the rate of
change of the ith neuron. Moreover, a vector form of the system
given in (43) can be expressed as

d¢mt(t) = —Adn(t) + g(Hpm(t — p(t))).

- (44)

12
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Now, we consider the event-triggered synchronization with de-
layed SNNs. Based on the system (44), let us take into account the
master and slave system as follows:

master : %20 = _A@n (t) + gHpm(t — p(1))).
slave : 950 = —Ag,(t) +g(Hes(t — p(£))) +Bu(t),
error = slave — master :

{error: 900 = _A@(t) + g(Hp(t — p(t))) + Bu(t), (45)

2 0 0 02 -01 0
A=|o0 2 o, H=|o01 03 -02],

0 0 2 02 01 02
B=[1 1 1].

In order to get a synchronization for the above SNNs (45),
let us consider the activation function as g(¢(t)) = tanh(¢(t))
with g; = diag{0, 0,0, 0}, g, = diag{1,1,1,1}. Also, p, =0.3, p;
0.2,7n = 0.2, and using the Matlab LMI Control Toolbox to solve the
LMIs of Corollary 4.4, we can obtain the corresponding control gain
matrix and triggered parameters as follows:

% =[0.9836 0.3125 0.4086].

73.3163 -0.0150 -0.0105
A=1]-0.0150 73.2579 -0.0138|.
—0.0105 -0.0138 73.3012

13

Time(Secs)

(b)

(a) error responses; (b) control responses; (c) release time and release interval of the error system (44).

The behavior of the uncontrolled system (45) is depicted in
Fig. 5. Moreover, under the randomized initial conditions corre-
sponding dynamic behaviors of error system (45) is displayed in
Fig. 6a and the control input of the considered system is shown
in Fig. 6b and transmission intervals are presented in Fig. 6¢; it is
obvious that the error system (45) is asymptotically stable under
the event-triggered controller (13). In other words, the considered
SNNs designed in this paper is feasible, which can synchronize the
considered system effectively.

6. Conclusion and future directions

In this paper, the distributed event-triggered control for SNNs
was studied with dissipative synchronization and time-varying de-
lay. In view of the time-varying delay techniques and adequate
conditions have been acquired to guarantee the SNNs is strict
(Q S ®R) — y— dissipative and passivity subject to synchronization
criteria. Then, by taking the influence of the controller failures
into account, a novel error model with the DETS has been estab-
lished. The desired controller gain and event-triggered parameters
have been obtained by solving a set of linear matrix inequalities.
Finally, simulation examples are given to verify the effectiveness
of the proposed method. The presented results and approaches in
this article can be extended to many complex dynamic systems,
such as multiagent systems, stochastic delayed NNs, and the semi-
Markovian jump-delayed NNs.
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