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In this paper, we consider a class of singularly perturbed advanced-delay differential equations of convection-diffusion type.
We use finite and hybrid difference schemes to solve the problem on piecewise Shishkin mesh. We have established almost
first- and second-order convergence with respect to finite difference and hybrid difference methods. An error estimate is
derived with the discrete norm. In the end, numerical examples are given to show the advantages of the proposed results
(Mathematics Subject Classification: 65L11, 65L12, and 65L20).

1. Introduction

Differential equations depend both on past and future values
(mixed delay) called functional differential equations. It
attains many application problems such as optimal control
problems [1], nerve conduction theory [2], economic dy-
namics [3], traveling waves in a spatial lattice [4] and has
discussed both linear and nonlinear functional differential
equations.

The functional differential equation has been multiplied
by small parameter (0 < &< 1) in the highest order derivative
term called the singularly perturbed mixed delay differential
equations. The main determination for such a problem is the
study of biological science, epidemics, and population
[5-10].

The authors in [11] have considered functional differential
equation in singularly perturbed problems, such as

2
(%)y" (x) + (= x)y" (x) + Agy (x +ag)

+ Ay (x—ap) —(Ag + A1)y (%) = -1,

(1)

and considered the problem of determining the expected
time for the generation of action potentials in nerve cells by
random synaptic inputs in the dendrites. The general linear
second-order functional differential equation with the
boundary-value problem arises in the modeling of neuron
activation, where ¢ and y are the variance and drift pa-
rameters and y is the expected first-exit time. The first-order
derivative term —xy' (x) corresponds to exponential decay
between synaptic and inputs. The undifferentiated terms
correspond to excitatory and inhibitory synaptic inputs
modeled as a Poisson process with mean rates A, and A; they
produce jumps in the membrane potential of amounts ay
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and a;, which are small quantities and could depend on the
voltage. The boundary condition is

y(x)=0, Vx ¢ (x,%,), (2)

where the values x = x; and x = x, correspond to inhibitory
reversal potential and the threshold value of membrane
potential for action potential generation. This biological
problem motivates the investigation of boundary-value
problems for differential-difference equations with mixed
shifts. In this biological model, using the Taylor series for the
small delay term, provided the delay is of order ¢, the small
delay problem has oscillatory solution that has been dis-
cussed in [12]. The same authors discussed the signal
transmission problem in [13].

The authors in [14, 15] have considered the singularly
perturbed problem with derivative depending on small delay
term such as

ey" () +a(t)y' (t)+b(t)y(t)

(3
+c()yt—-1)=f(1),

where0< 7« 1,

to solve the boundary-value problem using the following
numerical method such as the finite difference scheme
[14, 16], fitted mesh B-spline collocation method [17], and
hybrid difference scheme [15].

The authors in [18, 19] investigated various concepts of
singularly perturbed differential equation with derivative
depending on both past and future small variables,

ey" () +al)y &) +bt)y ) +c(®)y(t-1)
+d@)y(t+1) = f(1),

also proposed a finite difference scheme to solve singular
perturbation problems in [18, 20, 21].

The authors in [19] have been proposed to solve the
singular perturbation problem with mixed small shifts using
the fitted operator method. In recent years, the authors in
[22-25] considered singular perturbation problem with
derivative depending on large delay (7 = 1) variable, such as

ey ) +a@®)y @) +b®)y®)+c®yt-1)=f(), (5

(4)

where0< 1< 1,

FKy(r) = —ey" (r) + a(r)y' () +b(r)y(r)+
y(r) = ¢ (),
y(r)=¢(r),

where ¢(r) and ¢(r) are history function on [-1,0] and
[3,4]. Assume that a(r)>a;>a>0, b(r)=2>0,
p<c(r)<0,d(r)=25n=0, B+y=p; >0, and the coeflicients

c(r)yr-1)+dr)y(r+1)=f(r),
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has been developed various numerical schemes are finite and
hybrid difference method [22], iterative scheme [26], finite
element method [27, 28]. The study in [23] proposed solving
singularly perturbed delay differential equation with integral
boundary condition using finite difference method.

Throughout the literature, the researcher concentrates
on solving the singular perturbation problem with a small
delay or mixed small delay or large delay using finite or
hybrid or finite element methods on uniform meshes or
nonuniform mesh. To the best of the author’s knowledge, up
to now, no theoretical results are given for comparative
study on numerical methods for singularly perturbed ad-
vanced-delay differential equations. Moreover, we proposed
two numerical methods such as the finite and hybrid dif-
ference scheme on nonuniform meshes, to solve the singular
perturbation problem with mixed large delay using the finite
difference scheme and hybrid difference scheme on Shishkin
mesh.

This paper is structured as follows: Section 2 describes
the problem statement. Section 3 proves the maximum
principle and stability result. Moreover, it introduces the
terminology for Shishkin decomposition and proves many
inequalities. In Section 4, we introduce the numerical
methods to discretize the continuous problem. Error
analysis for finite and hybrid difference scheme approximate
solution is given in Sections 5 and 6. Finally, Section 7
presents numerical results.

Throughout our analysis, we use the following notations:
T=1[03], T= (0,3)3,N I, =(0,1), T, =(1,2), T3=(23),
*=r,uL,ul;. T ={0,1,2,...,3N}, I?N={1,2,...,
N-1}, I¥N={(N+L....,2N-1}, I¥"={2N+1,...,
3N —1}. The parameter ¢ and mesh points 3N are inde-
pendent of C and C, are positive constants. The norm is

yllr = sup,crly ().

2. Statement of the Problem

Consider the following singularly perturbed mixed delay
differential equation:

rel,
r € [-1,0], (6)
r € [3,4],

are smooth function on r € T. The above problem solution
satisfies y(r) € G = C°(T)nC* () nC?(T*). Problem (1) is
rewritten as Xy (r) = g(r), where
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Fiy(r) = —sy" (r) +a(r)y' (") +b(r)y(r)+dr)y(r+1),
Fyy(r) = —ey" (r) +a(r)y' N+b(ry(r)+c@)y(r-1)+d(r)y(r+1), rel,, (7)
Fay(r) = —sy" (N +a(r)y (r)+b(r)y(r) +c(r)y(r-1),

Hy(r)=

fr)—cr)¢(r-1), rel,
g(r)y=4 f(), rel,, (8)
fr)-dr)e(r+1), rel,,
with boundary conditions
y(r) =¢(r), r € [-1,0],

y(17)=y(1%), y'A7)=y (1",

- + I 1A= 1 (At (9)
y(27)=y(2"), Y (2)=y'(2),
y(r) =o(r), r € [3,4].
3. Analytical Results

Lemma 1 (maximum principle). If y(r) € G such that
y(0)=0, y(3)20, F,y(r)=0, Vrel,, F,y(r)=0,
Vrel, F;y(r)=0, Vrels, [y']1(1)<0, and [y'](2)<0,
then y(r) >0, Vr € I.

Proof. Let
1
—+£, r e [0,1],
12 4
2
s(r) =< E+%’ re[1,2], (10)
4 r
—+—, re[2,3]
{12 12

Clearly, s(r)>0,Vx €T, Hs(r)>0,Vr € T*, s(0)>0,
s(3)>0, [s'](1)<0, and [s'](2)<0. Consider that u=
max{ ((—y(r))/s(r)): r € T}; then, there exists r, € I such
that v (ry) + us(ry) = 0 and v (r) + us(r) =0, Vr € T implies
that (y +ps) obtain minimum at ¢t =r, If y<0, then
y(r)=0.

If u>0, then the function w(r) nonnegative is not
possible. The following cases are easy to prove the contra-
diction if y > 0.

Case (i): vy = 0:

0<(y+us), (0)=y(0)+us(0)=0. (11)
Case (ii): 4 € I'y:
0<F, (y+ps)(ry) 0. (12)

Case (iii): ry = 1:
0<[(y+us) (D) =[y'] (1) +pu[s'](1)<0.  (13)
Case (iv): ry € I';:

0<F, (y+us)(ry) <0. (14)

rely,

rels,

Case (v): 1y =2:
0<[(yw+us) ] =[v']2)+u[s'](2)<0.  (15)
Case (vi): ry € I's:

0<H5(y+us)(ry) <0. (16)

Case (vii): ry = 3:

0< (y+us)(3)=(v)(3) +u(s)(3) =0. (17)
All the cases are contradiction.

Lemma 2 (stability result). If y(r) is a solution of problems
(7)-(9), then

ly () SCmaX{Iy(O)I, |y (3)], sup I%y(r)l}, rel.

rel™

(18)

Lemma 3. If y(r) is a solution of problems (7)-(9), then
|y(k) (r)|r* <Ce*,  wherek = 1,2,3,4. (19)

Proof. First, to prove y' (r) is bound on Iy,
Hy(r)=—ey" (r)+a(r)y (r)+b(r)y(r)
+d()y(r+1)=f(r)—c(¢(r-1).
Integrating the above equation on both sides, we have

—e(y' (1) = y'(0)) = ~a(r)y (r) — a(0)u(0)]

+ Jr a (t)y(t)dt - Jr b(t)y(t)dt
0 0

(20)

—er(t)y(t+1)dt
0

N J LF () = c (D (£ - 1)] dt.
0

(21)
Therefore,

ey' (0) =y’ (r) =[a(r)y(r) —a(0)y(0)]

" J o (£)y(£) dt - J b(t)y (8) dt
0 0

- J;d(t)y(t +1)dt + J;[f(t) —c(t)p(t—1)]dt.
(22)



Using Mean Value Theorem, then ey’ (x)] <C(||y(r)||
ILf (I, 19l _107)> for some x € (0,¢) and ley’ (0)| <C(lly
(NI +1f (DN + g ()]). Then, we have |ey’ (r)| < Cmax(||y
N 1f I NI, 7 € T,

To prove y' (r) is bound on T,,
F,y(r)=—ey" (r)+a(r)y' (r) +b(r)y(r)

+c(r)y(r-1)+dr)y(r+1)=f(r).

Integrating the above equation on both sides, we have

(23)

—&(y' (r) = y'(0)) = —[a(r)y(r) — a(0)u(0)] + J a (t)y(t)dt
_ J b(t)y (t) dt - J c@W)y(t-1)dt
0 0
- er(t)y(t+ 1) dt + Jrf(t)dt.
0 0
(24)
Therefore,

ey' (0) =¢ey' (r) —[a(r)y(r) —a(0)u(0)] + J; a' (t)y(t)dt
_ er(t)y(t) dt - Jrc(t)y(t— 1) dt
0 0

- er(t)y(t+ 1)dt + rf(t)dt.
0 0
(25)

Using Mean Value Theorem, then ey’ (x)] <C(||y(r)||
If (I Il 1)), for some x € (0,¢) and |$)/ Ol=Cy
M+ 1f(r) II+II</> r)l). Then, we have |ey’ (r)| <C max

Ly I Af 1), 7 € T,

Next, to prove y' (r) is bound on T},
Hiy(r)=—ey" (r)+a(r)y (r)+b(r)y(r) 26)

+c(r)y(r-1)= f(r)-d(r)e(r+1).

a(r)vy(r) +b(r)vy(r) + c(r)vy (r—1) =

{ vy (r) = ¢ (1),

{ a(r)vy(r) + b(r)vy (r) + d(r)vy (r + 1) = f(r),

v (r) = @(1),

If v, (r) € CO(T)NCH(T* U {3)}),

{ a(r)vl' (") +b(r)v,(r) +c(rv,(r-1) = v(')' (r),

v (r)=0

{ a(r)vl' ") +b(rv(r)+d(r)v,(r+1) = v(')'(r),

vy (r) =
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Integrating the above equation on both sides, we have

-e(y' (r) - y'(0)) = —{a(r)y(r) —a(0)u(0)]
+ J a (t)y(t)dt - Jr b(t)y(t)dt
0 0
_ J c(B)y(t-1)dt
0
_ er(t)y(t+ 1) dt + Jrf(t) dt.
0 0
(27)
Therefore,

ey' (0) =¢ey' (r)—[a(r)y(r) —a(0)u(0)] + J; a' (t)y(t)dt
- J b(t)y () d - J c@W)y(t-1)dt
0 0

- er(t)y(t F1)dt+ Jrf(t) dr.
0 0
(28)

Using Mean Value Theorem, then [y’ (x)| <C(||y(r)||,
If (¢l _1 ), for some x € (0,¢) and Isy O <C(ly
I+ 1f @I+ g )). Then, we have, |ey' (r)| <C max
Uy (IS @I NN, r € Ts.

Hence, |y(k) ") < Ce’k, wherek = 2, 3,4. O

3.1. Shishkin Decomposition. The solution y(r) is decom-
posed into v(r) smooth component and w(r)-layer com-
ponent.  Furthermore,  v(r) = v, (r) + ev, (r) + €%v, (1),
where v, (), v, (r), and v, (r) are solutions of the following
differential equations.

Obtain reduced problem solution v, (1) € X such that

f(@r), rern(r,ul,), (29a)
€ [_1101
rel'n(T,Ul;)U{3}, (29b)
r € [3,4].
rel'n (T ul,), (30a)
r € [-1,0].
reTn (T,ul;)u{3}, (30b)

r € [3,4].
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Ifv,(r) € X,
—evy (r) +a(r)vy (r) + b(r)v, (r) +c(r)v, (r = D) +d(r)v, (r +1) = v/ (r), rel”
v, (r) =0, r € [-1,0], (31)
v, (r) =0, r € [3,4].
If v(r) e CO(T)NC* (™),
[ Fv(r)=—eV" (r)+a@) (r) +b(r)v(r) +c(r)v(r-1)+d(r)v(r+1) = f(r), rel",
v(r) = ¢(r), r € [-1,0],
1 v(1) = v, (1) + ev, (1) + €2, (1), (32)
Vv(2) = v, (2) + &v, (2) + €7, (2),
V(T) =0, r € [3,4]
Also, w(r) satisfies the following problem: if the singular
component w(r) € C°(T) N C*(T*),
Fw(r)=-ew" () +ar)w @) +b(Nwr) +c(Nwr-1)+d(Nw(r+1)=0, rel’,
w(r) =0, r € [-1,0],
1 [ =-[]), (33)
[w'](2) =-[V](2),
[ w(r) =¢(r), r e [3,4].
Furthermore, we decompose w(r) as is boundary layer component and wy, (r), wy, (r) are interior
w(r) =wg(r)+ wy, (r)+ wy, (r), where the function wg(r) layer components.
If the boundary layer wy (1) € X,
FHwg (r) = —ewp (r) + a(Nwg (r) + b(r)wg (r) + c(Nwg (r = 1) + d (r)wg (r + 1) = 0,
wg(r) =0, r € [-1,0], (34)
wg(r) = ¢ (r), r € [3,4].
If the first interior layer wy (r) € C*(T)nC?(T*),
Fwy (r) = —swﬁll (r) + a(r)wll'(r) +b(rw; (r) +c(rw; (r—1) +d(rw (r+1) =0,
wy, (r)=0, r € [-1,0], (35)
[w,'] (1) = -[v'] (1),
wy, (r)y=0, r € [3,4].

If the second interior layer w; (r) € CY(T)NC2(T™),



6 Journal of Mathematics

Fwy (r) = —ew”I2 (r)+ a(r)w,z' () +b(Nwy, (r) + c(Nw, (r - 1) +d (rw, (r +1) =0,

wy (r) =0, r € [-1,0],

2 (36)
[w/]@ = V]2,
wlz(r) =0, r € [3,4].

-a(3-71)

Theorem 1. If y(r) and v,(r) are solutions of problems ©"(r) = C1<ss(r) +eXp< >> t(y(=-w(), rel

(7)-(9) and (29a)-(29b), then

(38)
ly (r) = vy (r)| SCl(e + exp(_(x(3 — r)))) rel. (37) Clearly, ® * (r) € C°(T) N C?(I'*). Note that ® * (0) >0,
€ ®* (3) 20, for a suitable choice of C; >0.
Ifrel,
Proof. Consider
H,0" (r) =C, [(‘z (a(r) - ) +b(r)+ d(r)exp(j>exp<_“(3 - ”) +e(a(r)s (r) +b(r)s(r) +d(r)s(r + 1))] + eVl (1),
(39)
>C, |:<(z (ay—a)+B+7 exp(j))exp(ﬂ(?g_”) + s(%-r[)’s(r) +ns(r+ 1))] + Ce=0.
Ifrel,,
H,0" (r) =C, [(j (a(r)—a)+b(r)+ c(r)exp(—%) + d(r)exp(j))exp<_“(i — r))
+e(a(r)s’ (r)+b(r)s(r) +c(r)s(r—1) +d(r)s(r+1))] + evg (1), (40)
>C, |:(‘: (e —a)+B+y+7 e;cp(ic»e)(p(_m(3 — r)) + e<g+/5$(r) +ys(r—1)+ns(r + 1))]1 Ce=0.
Following the same process, we have %30 * (r) 2 0. Lemma 4. If v(r) and w(r) are the solution of regular and
Using Lemma 1, then ©* (r)>0,r € I. Therefore,  singular component problems (32) and (33), then
|y (r) — vy (NI <C, (e + exp ((—a (3 —1))/e)). O
'vk(r)|r* <C(1+&7%), fork=0,1,2,3,4, (41)
|wlfg(r)|SCs_keXp<_“(i_r)), rel”, (42)
slkexp<_“(1 —r)), rel,
jul, (0] <c ) (43)

ek, rel,, rel;,
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—a(

where k=0, 1, 2, 3, 4.
Proof. The smooth component derivative bound is easy to

prove by using stability result and integrating (30a), (30b),
and (31). Next, to prove (42), consider that

,%qf(r)zc[% (e —(x)+[3+y+r]exp<

By Lemma 1,

|wB (r)l SCexp<_a(3‘;_r)). (47)

2-71)

7
, rel,,
‘ > 2 (44)
rel,rels
O*(r) = C(“p(@)) +wy(r), rel. (45)
Note that ®* (0)>0, ®* (3)>0, and
%) exp(@) + Fwg(r)=0. (46)

Integration of (34) yields the estimates of |wg (r)|. From
the differential equations (33), one can derive the rest of the
derivative estimates (42).

Inequalities (43) and (44) can be proved, using Theorem
1 and maximum principle for the barrier functions:

, (1 -
s(exp(#)) tw(r), rely,
@ (r) = Cy re t wy (1), rel,,
| e+ wy, (r), rels,
(48)
a —a(2 -
s(exp(u)> tw (r), rel,
& 2
@7 (r) = Cy re + wlz(r), rel,,
| re wlz(r), rel,.
Hence, it is proved. O  Remark. The following inequalities are easy to prove, using
Theorem 1 and Lemma 4:
| -a(l-r) -a(3-7)
£+¢e exp — + exp — ) rely,
—a(2 - —a(3 -
ly(r)—v(r)|<Cq e+¢ exp(¥>+exp(y>, rel,, (49)
(—oc(3 - r))
£+ exp — /) rels.

4. The Discrete Problem

4.1. Shishkin Mesh. Problems (7)-(9) are convection-diffu-
sion type containing delay term. Then, the layers occur in
boundary at t = 3 and interior at t = 1 and t = 2.

The intervals [0, 1], [1,2], and [2, 3] are partitioned into
[0,1-0],[1-0,1],[1,2~0], [2~-0,2], [2,3—0],and [3 -
0, 3] for each interval (N/2) mesh points and ¢ = min{(1/2),
2(¢/a)ln N} is transition parameter.
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o o <3N
The interior of points is denoted by I = {r,7,.. .,
r3x}- Then, the mesh widths are

2(1-o0) . N | 3N | 5N
H = , fori=1to —i=N+1to—,i=2N+1to —,
N 2 2 2
h(r;) = (50)
20 . N . 3N . 5N
h=—, fori=—+1toN,i=—+1to2N,i =—+ 1to3N.
N 2 2 2

4.2. Finite Difference Method. The discrete scheme corre-
sponding to the original problems (7)-(9) is as follows:

INY (r;) = =e8°Y (r;) + a(r)D"Y (r;) + b(r,)Y (r;) + d(r,)Y (riun) = fi = i el
TV (1) =1 HY (r)) = =e8°Y (r,) +a(r)D"Y (r,) + b(r)Y (r) +c(r)Y (rin) +d(r)Y (rin) = fio 1€, (51)
HZY (1) = =e8°Y (r;) + a(r)D"Y (r;) + b(r))Y (r;) + c(r)Y (riy) = f; = dipisn» rel3,
with 4.3. Hybrid Difference Scheme. The hybrid scheme corre-
Y (r(0)) = é, sponding to the original problems (7)-(9) is as follows:
D Uy =D'Uy,
N N (52)

D Uy = D+U2N’
Y (r(3)) = ¢sn.

i} ~ ~ _ N
-e8°Y (r;) + a1y DY (r,) + b(r)U (r;) + d (r)U (r;n) = fiqn) — Gin» i=1to >
HVY (r)) = (53)
~e8%Y (r;) + a(r)D"Y (r;) + b(r)Y (r;) + d (r))Y (riun) = fi = cihion i= g +1toN -1,

—e8’Y (r) + ai—(l/Z)Diy(ri) + b(”i)U(”i) + C(ri)U(ri—N) + d(”i)U (rin) = ficany i=N+1to g’

*%QIY (r;) =
—e8’Y (r)+ a(ri)DOY (r) +b(r)Y (r;) +c(r))Y (riiy) +d(r)Y (riun) = fo i= % +1to2N -1,

(54)

2 - ~ ~ _ ) 5N

—e8°Y (r;) + a;_ 1D Y (1) + b(r)U (r;) + c(r)U (riin) = ficyp) = di®iun> i=2N +1to ER
%?Y(ri) = (55)

_552Y(ri) + a(ri)DOY (r) +b(r)Y (r) +c(r)Y (riin) = fi = dipisns i= ? +1to3N -1,

FNY (1)) = Yi,—4Y; , +3Y; -V, +4Y;, - 3Yi) i=N,2N, (56)

2h 2H

where
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2 _ 2 Y(ri,) - Y(r) _ Y(r) =Y (riy)
oY (n) = hi + hiyy ( i+l h; ’
U(T’i) Y( )+Y(rt 1)
2
0 Y( 1+1) Y(rl 1)
DY (r,) = b (57)
D_Y(Ti) — Y( ) _Y(ri 1)
h;
i-1 7
(1/2) a(%).
< [D](y + us) (ry) <0. (61)
5. Numerical Estimates for the Finite
Difference Method Case (iv): 1 € I3N:
2
Lemma 5 (discrete maximum principle). If U(r;) satisfies 0< T, (y +us) (ri) = =" (y + us) ()
U(rg) 20, U(rsy) 20, YU (r) 20, H3U(r) 20, Z3U +a(r)D” (v + ps) (i) + b(ry) (v + ps) (ry)
(r)=0, D*(U(ry)) - D (U(rN))<0 %nd D* (U(rZN))—
D™ (U(r,g)) <0, then U(r;) 20, Vr; €T
+c(ry) (y + ps) (rin) + d (i) (w + ps) (r ) <0
Proof. (62)
) 1_12+%’ r e [0,1] AN Case (v): 1 = 1y
< [D](y + us)r,n <O0. (63)
Define S(r;) = 1 1—22+%, € [1,2]nTY, (58) Case (vi): 1 € I3N:
0<FH;(y+us)(ry) = —e8 (y + us) (1)
%+1r_2 € [2,3]nTY +a(r)D™ (y+us)(ri) + b(r) (y +ps) (i) (64)

It is easy to see that s(r)>0,¥r, €T,

Hs(r)>0,Vr; e INUDNUTIN,  s(r))>0, s(rsy)>0,
D*(s(ry)) — D™ (s(ry)) <0, and
D* (s(ryn)) — D™ (s(r,5)) <0. Let

= min]((~y (/s (r)): ry e T h}
Then, there exists r, € T ,Suc that y(ry) + ps(ry) =

and y(r;) + us(r;)=0,Vr; € I . Then, (y + ps) attains 1ts

maximum at r; = . If,u <0, then Y > 0. Suppose y > 0.

Case (i): rp =1
0<(y+us)(ry) =0. (59)

Case (ii): r € T3N:

0<T, (y +ps) (ri) = 28" (y + u3) (1)
+a(r)D” (y +us) () + b(r) (y +us) () (60)
+d(r) (v + us) (re,n) <O.

Case (iii): 7 = ry:

+c(re) (v +ps) (r_y) <0.

Case (vii): 7 = 13yt

0<(y+us)rsy =0. (65)

All the cases are a contradiction. O

Lemma 6. The discrete solution of (51) and (52) is bounded:

%NU(ri)|}.

(66)

|U(ri)|sCmax{|U(ro)|,|U(r3N)|, max

S 3N 3N 3N
ierNurNurs

Proof. Consider y*(r;) = CMs(r;) £ U(r;), 0<i<3N,
where M = maX{IU(rO)I [U (r55)1 MaX;epv y v y rwl‘%N
(r)I}h.

Observe y* (1) >0 and y* (r5y) = 0:
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FNy*(r)=0,Vr; €TY,
HNy* (r)20,¥r; € T,
HNy* (r)20,¥r; € TS, (67)
D'y*(ry) - D y" (ry) <0.
D"y* (ron) = Dy (ray) <O0.

V (ry) = v(0),

[DIV (ry) =[v'] (1),

[DIV (ron) = [V'] (2),
LV (r3n) = v(3),

A

HNW (r;) = —S‘SZW(H) +a(r)D" W (r;) +b(r)W (r;) + c(r)W (riy) +d(r)W (rin) = fo

W (ry) = w(0),

[DIW (ry) = -[D]IV (ry)s
[DIW (r,y) = =DV (r,y),
W (rsy) =w(3).

Theorem 2. If Y(r;) and V(r;) are a solution of dis-

cretization problem (51), (52), and (68), thenl|Y (r;) =V (r;)
<CN™L
Proof. Consider
6 (r,) = CN's(r) £+ (Y (r,) =V (r})), Vr,eT"
(70)
Note that 6* (r,) >0 and 6" (r5y) > 0:
%?]91 (r;)=0, forallie{1,2,...,N—-1},
HNO"(r;)=0, forallie (N+1,...,2N -1},  (71)
KNG (r)=0, forallie 2N +1,...,3N -1},
[D]6" (ry) = —-C(N~1/6) £ [v'](1) <0, [D]6* (r,n) <0,

using Lemma 5; then, the theorem has been proved.

Theorem 3. The error estimates for smooth components
bounded by CN™':

[v(r)-V(r)|<CN"', 1 eT™. (72)

Proof. The proof of Theorem 3 has the same idea in [29]:

' *%Nv(ri) = _852V(”i) +a(r)D"V (r;) +b(r)V(r;) + c(r)V (rin) +d(r)V (rin) = fo

Journal of Mathematics

Using Lemma 5, y*(r;) >0, Vr; € Y
To decompose numerical solution Y (r;) into V (r;) and
W (r;) satisfy the following equations, respectively:

i e TN\{0, N, 2N, 3N},

(68)

i e T"\{0,N, 2N, 3N},

(69)
o

|7 (v(r)) -V (r))| <N, e unVurY

(73)
Using Lemma 6, then
lv(r)-V(r)|<CN"', ierfunNunN.  (74)

Therefore, we get |v(r;) =V (r;)]SCN "1, i € . O

Theorem 4. Derive the error estimates for singular compo-
nents bounded by CN~'log* N:

roem. (75)

1

[w(r) =W ()| <CN"log?N,

Proof. Note that

|w(r) W (r | |y(r Y(ri)|+|v(ri)—V(ri)|. (76)

Then, by (49) and from Theorems 1, 3, we have

ly(r:) =Y ()| = |Y(f) V()| +|v(r; (ri) =v(r)l:
Ly (r) =Y (r)| <[Y (ri) =V (r)| +]v(r) V(’i)|+|}’(ri)“’(’i)|-
(77)

Now,
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w(r;) =W (r)|<[Y (r) =V (r)| +2|v(r;) =V ()] +]y (r;) = v(r)]
—a(3 =
SClel +C, exp(%) +e
—a(3 =
<C,N"'+C, exp((x(e ”) +C,N! (78)
—-ao 1
< Cl CXP(T> + ClN
<CNY, =0t 2,
2
Consider the mesh functions: 6. Numerical Estimates for the Hybrid
O (r,) = C,N"1s(r,) + N~ 132 (ri=(3-0)) Difference Method
y (79)  Assume the following inequality:
+(w(r)-W(r)), reB-a3nT". N .« (2)
InN~ " a

Observe that ®* (r(55/,)) 20 and @ * (r;y)>0, and
FNO* (r,)20. o
Then, by the Lemma 5, we have ©®* (r;)>0,r; € .
Therefore,
|w(r;) =W (r;)] <CN"'log’N,

1

eV, (80)
O

Theorem 5. If y (r;) and Y (r;) are a solution of (7)-(9) and
(51), (52),

ly(r) =Y (r,)|<CN"'log’N, r; ¢ . (81)

1
That is, the order of convergence is almost one.

Proof. The proof of Theorem 5 follows from y, = v, + wy,

Lemma 7. Assume (78) holds true. Let ¥ (r;) satisfy
Y (ry) 20, ¥ (rsy) = 0; the operator FN defined by (53)-(55)
satisfies %{"‘I’ (@3%0, %5‘1’ (r;) =0, e%é\]\l’ (r;) = 0; and then
Y (r)>0,Vr, e

Lemma 8. If ¥ (r,) is discrete solution of problems (53)-(55),
then

|‘I’ (rl-)| <C max{ |‘I’ (ro)

, \‘I’(QN)L max

FeT3N 3N 3N
ieNurN urs

HNY (r,-)|}.
(83)

6.1. Error Estimate. To decompose the numerical solution

Y, =V, + Wy, and Theorems 3 and 4. O Y (r;) into V(r;) and W (r,), satisfy the following equations,
respectively:
HVV (r,) = { ~e8°V (r;) + a1yD”V (1) + b (r)V (r;) + ¢ (r)V (rin) + A (1)U (rin) = Ficaray (84)
—~e8°V (r;) +a(r)D°V (r;) + b(r,)V (r;) + ¢ (r)V (rig) + d(r)V (rien) = f
TN (r,) = ~e0'W (r;) + @i 1yD W (1)) + b(r)W () + ¢ (r)W (riy) + d(r)W (rian) = 0, (85)
i 2 0
—e6W (r;) + a(r)D°W (r;) + b(r)W (r;) + ¢ (r)W (rion) + d(ri)W (rian) = 0.

Lemma 9. Derive the error estimation of discretization
original problems (53)-(56) and regular problem (84)
solutions:

Y (r,) -V (r;)|<CN"% (86)

Proof. The proof of Lemma 9 has the same idea in Lemma 7:
0" (r) =CN’s(r) £ (Y(r) -V (r)), Vriel.

(87)

O



12

Lemma 10. The error estimates for smooth components are
bounded by CN™2:

[V (r)-v(r)|<CN"% r el (88)

1

ety O+ 1 (| )+,

Journal of Mathematics

Proof. Utilizing the method adopted in [30],

. N
i=1to—,
2

| % (Y - y)(r;)|<C (89)
€h2||y(4)"+h2||a,»||“y(3)|', i=§+ltoN—1,
Using e<CN~! and the above equation, the bounds on
the derivatives of v can be written as
eH[[v?] + H2<||V<3>|| +||V<z)”>, i—1to Y
2
| %, (V=) (r;)|<C
. N
e’ |[v )+ a7 + Bl 7]. i S H1oN-1,
N71(£+ Nfl), i=1to %
|7, (V -v)(r;)|<C N 00)
N7, i=—+1toN-L
-2 2 =3N
Then, we have L% (V=v)(r)| <CN-2. Similarly, lw(r;) =W (r;)|<CN “log" N, r;eT . (92)

| (V-v)(r)|[<CN7?, j=2,3,

I% (V=) (r)|<CN-2,j=1,2,3,i e T""\{0,N,2N, 3N},
and by Lemma 8, we have

[V (r)-v(r)|<CN2 1T 6D

1

Lemma 11. Derive the error estimates for singular compo-
nents bounded by CN~*log* N:

Jw () =W ()| <[ (r;

<C1exp< )+CN <CN?

Consider the mesh functions

o (r,) = CIN_zs(ri) + ClN_ZE2 (r;i-(3-0)
) (95)

+(w(r)-W(r)), relB3-031nT".

Clearly, @ * (r (55/2) 20 and @ * (r;y) 20, for a suitable

choice of C, > 0.

FNo* (1) 20. (96)

V(ri)| + Zlv(r ) —

Proof. Note that
[w(r;) =W (r)|<|y(r;) =Y (r)| +[v(r) =V ()],
lJ’(ri) - Y(ri)l = |Y(7i) - V(”i)| +|V(ri) - V(ri)l +|J’(ri) - V(Ti)|-

(93)
Now,
V(”i)l +|)’(7’i) - V(ri)"
. 5N (94)
i=0to —.
2

Then, by Lemma 7, we have ®* (r;)>0,r; eV
Therefore,

lw(r) -W(r)|<CN 2log’N, reT . (97D)

Theorem 6. If y (r;) andY (r;) are the solution of (7)-(9) and
(53)-(56), then
rel, (98)

1

|y(ri) - Y(r,-)| < CNleogzN,
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TasLE 1: Computed PV rate of convergence and DY maximum errors for Example 1.

Number of mesh points 3N

€ 16 32 64 128 256 512 1024
Finite difference method
1073 2.8530e-03 1.6423e-03 8.6257e - 04 4.3424e - 04 2.1521e—-04 1.0694e — 04 5.4208e - 05
107* 3.0817e - 03 1.8315e-03 9.9232e - 04 5.1418e - 04 2.6100e — 04 1.3150e - 04 6.6324e - 05
107° 3.1526e - 03 1.8900e - 03 1.0321e-03 5.3860e — 04 2.7489%¢ — 04 1.3887¢ - 04 6.9901e - 05
107¢ 3.1750e - 03 1.9083e - 03 1.0446e - 03 5.4624e - 04 2.7922e - 04 1.4116e - 04 7.1008e — 05
1077 3.1820e-03 1.9141e - 03 1.0486e — 03 5.4864e - 04 2.8058e — 04 1.4188e - 04 7.1355e — 05
10-8 3.1842e-03 1.9159e - 03 1.0498e - 03 5.4940e - 04 2.8101e - 04 1.4211e-04 7.1465e — 05
107° 3.1849e-03 1.9165e-03 1.0502e - 03 5.4965e - 04 2.8115e- 04 1.4218e - 04 7.1499e - 05
10710 3.1851e-03 1.9167e - 03 1.0503e - 03 5.4972e - 04 2.8119¢ - 04 1.4220e - 04 7.1510e - 05
DN 3.1851e-03 1.9167e-03 1.0503e - 03 5.4972e - 04 2.8119e - 04 1.4220e - 04 7.1510e - 05
PN 7.327520e - 01 8.6771e - 01 9.3412e - 01 9.6712e - 01 9.8357e - 01 9.9178e - 01 —
Hybrid difference method
1073 1.6679e — 02 6.7615e — 03 2.4201e-03 8.5271e - 04 2.6786e — 04 7.8677e — 05 2.6259¢ - 05
107* 1.6684e — 02 6.7758e — 03 2.4331e—-03 8.6109¢e — 04 2.7258e - 04 8.3394e - 05 2.5535e - 05
107° 1.6684¢ — 02 6.7772e-03 2.4344e-03 8.6194e — 04 2.7307e — 04 8.4126e - 05 2.6113e-05
107° 1.6684e — 02 6.7774e - 03 2.4345e-03 8.6202e - 04 2.7312e - 04 8.4200e - 05 2.6192e - 05
1077 1.6684¢e — 02 6.7774e - 03 2.4345e-03 8.6203e - 04 2.7312e - 04 8.4207e - 05 2.6200e - 05
10-8 1.6684e — 02 6.7774e - 03 2.4345e-03 8.6203e - 04 2.7312e - 04 8.4208e - 05 2.6201e - 05
107° 1.6684e — 02 6.7774e - 03 2.4345e-03 8.6204e - 04 2.7312e - 04 8.4209e - 05 2.6200e - 05
10710 1.6685e — 02 6.7774e - 03 2.4346e - 03 8.6201e - 04 2.7308e - 04 8.4224e - 05 2.6206e - 05
DN 1.6685e — 02 6.7774e - 03 2.4346e - 03 8.6204e - 04 2.7312e - 04 8.4224e - 05 2.625% - 05
PN 1.2997e + 00 1.4770e + 00 1.4979e + 00 1.6581e + 00 1.6972e + 00 1.6814e + 00 —

TasLE 2: Computed PV rate of convergence and DY maximum errors for Example 2.

Number of mesh points 3N

£ 16 32 64 128 256 512 1024
Finite difference method
1073 5.5384e-03 2.5272e-03 1.1887e-03 5.6672e - 04 2.7241e - 04 1.3205e - 04 6.4844e - 05
107* 5.8841e - 03 2.7585e - 03 1.3350e - 03 6.5461e — 04 3.2299¢ - 04 1.6003e — 04 7.9627e - 05
1073 5.9911e-03 2.8296e - 03 1.3798e - 03 6.8149e — 04 3.3841e-04 1.6851e - 04 8.4085e — 05
10-6 6.0248e - 03 2.8519¢ - 03 1.3939e - 03 6.8989%¢ — 04 3.4321e—-04 1.7116e - 04 8.5469¢ - 05
1077 6.0354e - 03 2.8590e - 03 1.3983e - 03 6.9253e — 04 3.4473e - 04 1.7199¢ - 04 8.5904e - 05
1078 6.0387e - 03 2.8612e - 03 1.3997e - 03 6.9337e — 04 3.4521e - 04 1.7225e - 04 8.6041e — 05
107° 6.0398e - 03 2.8619¢ - 03 1.4001e - 03 6.9363e — 04 3.4536e — 04 1.7233e - 04 8.6085e — 05
10710 6.0401e - 03 2.8621e—03 1.4003e - 03 6.9371e - 04 3.4541e - 04 1.7236e - 04 8.6098e — 05
DN 6.0401e - 03 2.8621e—-03 1.4003e - 03 6.9371e - 04 3.4541e - 04 1.7236e - 04 8.6098e — 05
PN 1.0774e + 00 1.0313e + 00 1.0133e + 00 1.0060e + 00 1.0028e + 00 1.0013e + 00 —
Hybrid difference method
1073 2.8953e - 02 1.1470e - 02 3.9972e-03 1.4195e - 03 4.4816e - 04 1.3262e - 04 3.963906e - 05
107* 2.8954e - 02 1.1483e - 02 4.0105e - 03 1.4282¢-03 4.5308e - 04 1.3799¢ - 04 4.255447e¢ - 05
107° 2.8954e - 02 1.1484e - 02 4.0119e - 03 1.4291e - 03 4.5358e - 04 1.3871e - 04 4.303554e - 05
10-6 2.8954e - 02 1.1485e - 02 4.0120e - 03 1.4292e¢-03 4.5363e - 04 1.3879e - 04 4.308411e - 05
1077 2.8954e - 02 1.1485e - 02 4.0120e - 03 1.4292e-03 4.5364e - 04 1.3879e - 04 4.308899%¢ - 05
1078 2.8954e - 02 1.1485e - 02 4.0120e - 03 1.4292e-03 4.5364e — 04 1.3879e - 04 4.308959%¢ - 05
107° 2.8954e - 02 1.1485e - 02 4.0120e - 03 1.4292e¢-03 4.5363e - 04 1.3880e — 04 4.309005e - 05
10710 2.8954e - 02 1.1485e - 02 4.0121e-03 1.4292e-03 4.5358e - 04 1.3882e - 04 4.309514e - 05
DN 2.8954e - 02 1.1485e - 02 4.0121e-03 1.4292e-03 4.5364e - 04 1.3882e - 04 4.309514e - 05
PN 1.3340e + 00 1.5173e + 00 1.4891e + 00 1.6556¢ + 00 1.7082¢ + 00 1.6876¢e + 00 —
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Proof. The proof of Theorem 6 follows from y, = v, + w;
and Y, =V, + W, and using Theorems 3 and 4 O

7. Numerical Experiments

In this section, consider two examples for constant and
variable coefficient problems and apply both of the nu-
merical methods to find error and rate of convergence. The
exact solution is not easy to find in these problems.
Therefore, we use the double mesh principle:
N N 1N
Dy = max [U} - U3'| (99)
We compute the uniform error and the rate of con-
vergence as

N N
D maxD,,
€

DN
PN = logz(lij)

To solve the following numerical examples, we use two
computational methods such as finite and hybrid difference
scheme on the nonuniform mesh.

(100)

Example 1

—ey" (N 45y (N+2y(N-y(r-D+yr+1) =1, forrel”,
y(r)=1, forre [-1,0],
y(r)=2, forre [3,4].

(101)

Example 2
—ey" (r)+(r+5)y (r)+2y(r)—y(r-1)
+x2y(r +1)=¢, forrel”,
forr € [-1,0],

forr € [3,4].

y(r)=1,
y(r) =2,
(102)

We proved that the error is of order O(N~!In N) and
O(N~2ln* N). The theory has been validated with two
examples; referring to these numerical results, it can be
observed that the proposed method has been effective and
applicable.

8. Discussion

In the literature, many authors have considered singular
perturbation problem mixed delay (v« 1) differential
equation. In this paper, we consider a singular perturbation
problem with mixed delay (7 = 1) differential equation. We
suggested two computational methods such as finite and
hybrid difference scheme. We proved that the error is of
order O(N~!'In N) and O(N~2In* N). Finally, two nu-
merical examples are also presented to validate the theo-
retical results of this study. Maximum pointwise errors and
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order of convergence of Examples 1 and 2 are given in
Tables 1 and 2, respectively.
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