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Abstract: In this paper, we explore the finite-time synchronization of Clifford-valued neural networks
with finite-time distributed delays. To address the problem associated with non-commutativity per-
taining to the multiplication of Clifford numbers, the original n-dimensional Clifford-valued drive
and response systems are firstly decomposed into the corresponding 2m-dimensional real-valued
counterparts. On the basis of a new Lyapunov–Krasovskii functional, suitable controller and new
computational techniques, finite-time synchronization criteria are formulated for the correspond-
ing real-valued drive and response systems. The feasibility of the main results is verified by a
numerical example.

Keywords: Clifford-valued neural network; finite-time synchronization; distributed delay; Lyapunov–
Krasovskii fractional

1. Introduction

Neural Network (NN) models have been used successfully to solve a variety of tasks,
which include optimization, associative memory, signal and image recognition, as well
as other dynamic issues. Recently, the dynamic study of NN models has drawn a great
deal of interest from numerous researchers, and useful methods for the stability theory
of NN models have been reported [1–6]. Specifically, quaternion- and complex-valued
NN models have been recently shown to be useful in many fields, including night vision
analysis, radar images, polarized signal classification, 3D wind forecasts, and others [7–11].
Recently, many important results have been published concerning different dynamics of the
complex-valued and quaternion-valued NN models [12–19]. There are also several studies
focusing on stability including finite stability [12], stability analysis [10,13,17], finite-time
stabilizability and instabilizability [14], µ-stability, and multistability [18]. However, due
to the slow signal propagation, it is inevitable that time delays exist in nearly all kinds
of NN models. Time delays are the main source of various dynamics, such as chaos,
poor functionality, divergence and instability [1–3,17–19]. As such, NN dynamics studies
involving constant or time-varying delays are essential.

Clifford algebra provides a solid principle to solve geometry problems. It has been
implemented in many areas, such as neural computing [20–24], and computer and robot
vision [25–27]. Clifford-valued NN models present a generalization of real-, complex-, and
quaternion-valued NN models. To address the challenges associated with high-dimensional
data and spatial geometric transformation, Clifford-valued NN models are superior to real-,
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complex- and quaternion-valued NN models [28–31]. Recently, theoretical and applied
studies on Clifford-valued NN models have become a new research subject. However,
the dynamic properties of Clifford-valued NN models are usually more complex than
those of real-, complex- and quaternion-valued ones. Due to the non-commutativity of
multiplication with respect to Clifford numbers, studies on Clifford-valued NN dynamics
are still limited [28–35]. By using the linear matrix inequality (LMI) approach, the authors
in [28] derived the global exponential stability criteria with respect to delayed Clifford
recurrent NN models. Leveraging the decomposition process, the issue of global asymptotic
stability in Clifford-valued NN models was explored in [29]. In [31], the authors studied
the presence of globally asymptotic almost automorphic synchronization pertaining to the
problem of Clifford-valued RNN models by using suitable feedback controllers. Utilizing
the Lyapunov–Krasovskii functional as well as Banach fixed point theorem, the global
asymptotic almost periodic synchronization problems for Clifford-valued NN models were
examined in [33].

In 1990, the fundamental principle of drive-response synchronization with respect to
chaotic systems was introduced [36]. Since then, the issue of synchronization has become
an important research topic attracting great attention from researchers, as this phenomenon
is applicable in many areas including image processing, neural computing, associative
memory, secure communication traffic systems, and others. As a result, a number of
approaches for investigating synchronization of different nonlinear and NN models have
been developed. The existing literature mostly focuses on long-time synchronization, par-
ticularly exponential and asymptotic synchronization [37–39]. In real situations including
limited life spans of machines, relatively speaking, synchronization in finite-time is more
pertinent, as it occurs naturally [40–46]. As such, the issue of finite-time synchronization
pertaining to NN models is studied via several approaches including LKF method [40],
LMI method [41], novel controller techniques [42], and others. In [40], the authors explored
synchronization issues in finite-time complex-valued RNN models with time-varying
delays and discontinuous activation functions. A useful control and analytical tech-
niques for investigating finite-time synchronization of complex-valued NNs with multiple
time-varying delays were studied in [44]. Recently, the authors in [45] derived finite-time
synchronization pertaining to complex-valued NN models that incorporate finite-time
distributed delays. However, with respect to finite-time distributed delays, the problem of
finite-time synchronization associated with Clifford-valued NN models is yet to be well
studied.

To the best of our knowledge, there are few papers that deal with the problem of finite-
time synchronization of Clifford-valued NN models with finite-time distributed delays.
Indeed, this interesting topic is still an open challenge. Therefore, we study the sufficient
conditions pertaining to finite-time synchronization of Clifford-valued NN models with
time delays in this paper. The main contributions of this paper are as follows:

(1) The finite-time synchronization of Clifford-valued NNs with finite-time distributed
delays is investigated for the first time.

(2) By considering an appropriate controller, Lyapunov functional and new computational
methods, some sufficient conditions that ascertain the finite-time synchronization
of Clifford-valued NN models are derived by decomposing the Clifford-valued NN
model into real-valued models.

(3) When Clifford-valued NN model is reduced to real-, complex-, and quaternion-valued
ones, the results obtained in this paper are valid as special cases.

(4) A numerical example with simulations is given to support the effectiveness and merits
of the theoretical results.

This paper is organized as follows. In Section 2, the proposed Clifford-valued NN
model is formally defined. In Sections 3 and 4, respectively, we derive the new sufficient
conditions for finite-time synchronization of the considered NN models and present the
numerical example and the associated main results. A summary of the main results is
given in Section 5.
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2. Mathematical Fundamentals and Problem Formulation
2.1. Notations

The superscripts of T and ∗ indicate matrix transposition and matrix involution
transposition, respectively. A matrix O > 0 (< 0) denotes a positive (negative) definite
matrix, while A is defined as the Clifford algebra having m generators over real number
R. An and Rn denote the n-dimensional real Clifford vector as well as real vector spaces,
respectively. While, Rn×n and An×n denote the set of all n× n real matrices and the set of

all n× n real Clifford matrices, respectively. We define the norm of Rn as ‖r‖ =
n
∑

i=1
|ri|,

and for A = (aij)n×n ∈ Rn×n, denote ‖A‖ = max
1≤i≤n

{ n
∑

j=1
|aij|

}
. While r = ∑

A
rAeA ∈ A,

denote |r|A = ∑
A
|rA|, and for A = (aij)n×n ∈ An×n, denote ‖A‖A = max

1≤i≤n

{ n
∑

j=1
|aij|A

}
.

For ‖ϕ‖τ ≤ sup
−τ≤s≤0

‖ϕ(t + s)‖.

2.2. Clifford Algebra

The definition of Clifford real algebra over Rm is

A =

{
∑

A⊆{1,2,...,m}
aAeA, aA ∈ R

}
,

where eA = el1 el2 ...elν with A = {l1, l2, ..., lν}, 1 ≤ l1 < l2 < ... < lν ≤ m. Moreover
e∅ = e0 = 1 and el = e{l}, l = 1, 2, . . . , m represent the Clifford generators, and they satisfy

eiej + ejei = 0, i 6= j, i, j = 1, 2, ..., m,
e2

i = −1, i = 1, 2, ..., m,
e2

0 = 1.

For simplicity, when an element is the product of multiple Clifford generators, their
subscripts are combined, e.g., e4e5e6e7 = e4567. Let Λ = {∅, 1, 2, ..., A, ..., 12...m}, and
we have

A =

{
∑
A

aAeA, aA ∈ R
}

,

where ∑
A

denotes ∑
A∈Λ

and A is isomorphic to R2m
. For any Clifford number r = ∑

A
rAeA,

the involution of r is defined by

r̄ = ∑
A
rA ēA,

where ēA = (−1)
σ[A](σ[A]+1)

2 eA, and

σ[A] =

{
0, if A = ∅,
ν, if A = l1l2...lν.

From the definition, we can directly deduce that eA ēA = ēAeA = 1. For a Clifford-
valued function r = ∑

A
rAeA : R → A, where rA : R → R, A ∈ Λ, we use dr(t)

dt =

∑
A

drA(t)
dt eA to represent its derivative. Since eB ēA = (−1)

σ[A](σ[A]+1)
2 eBeA, we can write

eB ēA = eC or eB ēA = −eC, where eC is a basis of Clifford algebra A. As an example,



Mathematics 2021, 9, 1163 4 of 19

el1l2 ēl2l3 = −el1l2 el2l3 = −el1 el2 el2 el3 = −el1(−1)el3 = el1 el3 = el1l3 . Therefore, a unique basis
eC with respect to a given eB ēA can be identified. Define

σ[B.Ā] =

{
0, if eB ēA = eC,
1, if eB ēA = −eC,

and then, eB ēA = (−1)σ[B.Ā]eC.
Moreover, for any G ∈ A, there is a unique G C that satisfies G B.Ā = (−1)σ[B.Ā]G C for

eB ēA = (−1)σ[B.Ā]eC. Therefore

G B.ĀeB ēA = G B.Ā(−1)σ[B.Ā]eC = (−1)σ[B.Ā]G C(−1)σ[B.Ā]eC = G CeC.

and G = ∑
C

G CeC ∈ A.

2.3. Problem Definition

A class of Clifford-valued NN model with discrete-time-varying delays and dis-
tributed delays are considered as follows:

ṙi(t) = − diri(t) +
n

∑
j=1

aijhj(rj(t)) +
n

∑
j=1

bijhj(rj(t− τj(t)))

+
n

∑
j=1

cij

∫ t

t−πj

θij(t− s)hj(rj(s))ds + ki, t ≥ 0, (1)

ri(t) = ϕi(t) ∈ C((− y, 0],An), (2)

where i ∈ N, j ∈ N (N = 1, 2, ..., n), and n corresponds to the number of neurons; ri(t) ∈ A
represents the state vector of the ith unit; di ∈ R+ indicates the rate that the ith unit is going
to reset its potential to the resting state in isolation in the event that it is not connected
to the network and external inputs; aij, bij, cij ∈ A indicate the strengths of connection
weights; ki ∈ A is the external input associated with the ith unit; hj(·) : An → An is the
activation function pertaining to signal transmission; τj(t) indicates the bounded function
and πj is a constant; θij(t) is a non-negative bounded scalar function defined on [0,+ y)
describing the delay kernel of the time distributed delay along the axon of the jth unit from
the ith unit; ϕ(t) = [ϕ1(t), ..., ϕn(t)]T is the initial value in C((− y, 0],An), which denotes
the Banach space of all continuous functions mapping (− y, 0] into An.

Assumption 1. Positive constants τj and µj < 1 exist, whereby 0 < τj(t) ≤ τj, τ̇j(t) ≤ µj,
j ∈ N.

Remark 1. It is clear that NN model (1) includes real-, complex- and quaternion-valued NN
models. These mean that the proposed NN model is more general than the corresponding one in
the existing articles. For example, the Clifford-valued NN model (1) includes real-valued (m = 0),
complex-valued (m = 1), and quaternion-valued (m = 2) counterparts as its special cases.

We take (1) as the drive system. The corresponding response system is constructed
as follows:

ṡi(t) = − disi(t) +
n

∑
j=1

aijhj(sj(t)) +
n

∑
j=1

bijhj(sj(t− τj(t)))

+
n

∑
j=1

cij

∫ t

t−πj

θij(t− s)hj(sj(s))ds + ki + ui(t), t ≥ 0, (3)

si(t) = φi(t) ∈ C((− y, 0],An), (4)
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where i ∈ N, j ∈ N (N = 1, 2, ..., n), and n corresponds to the number of neurons; si(t) ∈ A
represents the state vector of the ith unit; while φ(t) = [φ1(t), ..., φn(t)]T is the initial value,
C((− y, 0],An) denotes the Banach space of all continuous functions mapping (− y, 0] into
An. In addition, the control input is indicated by ui(t), while other notations associated
with (3) and (4) are the same as those in (1) and (2).

Assumption 2. Function hj(·) fulfills the Lipschitz continuity condition with respect to the n-
dimensional Clifford vector. Given each j ∈ N, there exists positive constant lj such that for any
x, y ∈ A,

|hj(x)− hj(y)|A ≤ lj|x− y|A, j ∈ N, (5)

where lj (j ∈ N) is known as the Lipschitz constant and hj(0) = 0. In addition, positive constant
lj exists such that |h(x)|A ≤ lj for any x ∈ A.

Assumption 3. There exists positive constant θ̃ij such that

∫ + y

0
θij(s)ds = θ̃ij, i, j ∈ N. (6)

3. Main Results

We transform the Clifford-valued NN models (1) and (2) into the real-valued models,
as to handle non-commutativity of multiplication in Clifford numbers. This can be achieved
with the help of eA ēA = ēAeA = 1 and eB ēAeA = eB. Given any G ∈ A, a unique G C

that is able to satisfy G CeChAeA = (−1)σ[B.Ā]G ChAeB = G B.ĀhAeB can be identified. By
decomposing (1) and (2) into ṙ = ∑

A
ṙAeA, we have the following real-valued models:

ṙA
i (t) = − dir

A
i (t) +

n

∑
j=1

∑
B∈Λ

aA.B̄
ij hB

j (rj(t)) +
n

∑
j=1

∑
B∈Λ

bA.B̄
ij hB

j (rj(t− τj(t)))

+
n

∑
j=1

∑
B∈Λ

cA.B̄
ij

∫ t

t−πj

θij(t− s)hB
j (rj(s))ds + kA

i , t ≥ 0, (7)

rA
i (t) = ϕA

i (t) ∈ C((− y, 0],An), (8)

where

rA(t) = (rA
1 (t),r

A
2 (t), ...,rA

n (t))
T , ri(t) = ∑

A∈Λ
rA

i (t)eA,

kA = (kA
1 , kA

2 , ..., kA
n )

T , ki = ∑
A∈Λ

kA
i eA,

hB(r(t)) = (hB
1 (r

C1
1 (t),rC2

1 (t), ...,rC2m
1 (t)), hB

2 (r
C1
2 (t),rC2

2 (t), ...,rC2m
2 (t)),

..., hB
n (r

C1
n (t),rC2

n (t), ...,rC2m
n (t)))T ,

hB(r(t− τ(t))) = (hB
1 (r

C1
1 (t− τ(t)),rC2

1 (t− τ(t)), ...,rC2m
1 (t− τ(t))),

hB
2 (r

C1
2 (t− τ(t)),rC2

2 (t− τ(t)), ...,rC2m
2 (t− τ(t))),

..., hB
n (r

C1
n (t− τ(t)),rC2

n (t− τ(t)), ...,rC2m
n (t− τ(t))))T ,

aij = ∑
C∈Λ

aC
ij eC, aA.B̄

ij = (−1)σ[A.B̄]aC
ij ,

bij = ∑
C∈Λ

bC
ij eC, bA.B̄

ij = (−1)σ[A.B̄]bC
ij ,

cij = ∑
C∈Λ

cC
ij eC, cA.B̄

ij = (−1)σ[A.B̄]cC
ij ,

eA ēB = (−1)σ[A.B̄]eC.
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We can use the same method to transform (3) and (4) into the following real-valued
models:

ṡA
i (t) = − dis

A
i (t) +

n

∑
j=1

∑
B∈Λ

aA.B̄
ij hB

j (sj(t)) +
n

∑
j=1

∑
B∈Λ

bA.B̄
ij hB

j (sj(t− τj(t)))

+
n

∑
j=1

∑
B∈Λ

cA.B̄
ij

∫ t

t−πj

θij(t− s)hB
j (sj(s))ds + kA

i + uA
i (t), t ≥ 0, (9)

sA
i (t) = φi(t) ∈ C((− y, 0],An), (10)

where

sA(t) = (sA
1 (t),sA

2 (t), ...,sA
n (t))T , si(t) = ∑

A∈Λ
sA

i (t)eA,

uA(t) = (uA
1 (t), uA

2 (t), ..., uA
n (t))

T , ui(t) = ∑
A∈Λ

uA
i (t)eA,

hB(s(t)) = (hB
1 (s

C1
1 (t),sC2

1 (t), ...,sC2m
1 (t)), hB

2 (s
C1
2 (t),sC2

2 (t), ...,sC2m
2 (t)),

..., hB
n (s

C1
n (t),sC2

n (t), ...,sC2m
n (t)))T ,

hB(s(t− τ(t))) = (hB
1 (s

C1
1 (t− τ(t)),sC2

1 (t− τ(t)), ...,sC2m
1 (t− τ(t))),

hB
2 (s

C1
2 (t− τ(t)),sC2

2 (t− τ(t)), ...,sC2m
2 (t− τ(t))),

..., hB
n (s

C1
n (t− τ(t)),sC2

n (t− τ(t)), ...,sC2m
n (t− τ(t))))T .

Note that the remaining notations of (9) and (10) are the same as those in (7) and (8).
The error vectors between the real-valued drive models (7) and (8) and the real-valued

response models (9) and (10) are defined as eA
i (t) = sA

i (t)− rA
i (t) and ψA

i (t) = φA
i (t)−

ϕA
i (t), respectively. As such, from (7)–(10), the following error models are produced:

ėA
i (t) = − die

A
i (t) +

n

∑
j=1

∑
B∈Λ

aA.B̄
ij (hB

j (sj(t))− hB
j (rj(t)))

+
n

∑
j=1

∑
B∈Λ

bA.B̄
ij (hB

j (sj(t− τj(t)))− hB
j (rj(t− τj(t))))

+
n

∑
j=1

∑
B∈Λ

cA.B̄
ij

∫ t

t−πj

θij(t− s)(hB
j (sj(s))− hB

j (rj(s)))ds + uA
i (t), t ≥ 0, (11)

eA
i (t) = ψA

i (t) ∈ ((− y, 0],An). (12)

The following definitions and lemmas are utilized for solving main results in this study.

Definition 2. [45] Given an appropriate controller, if constant t1 > 0, such that ‖eA(t1)‖1 =

0 and ‖eA(t)‖1 ≡ 0 for t > t1, where ‖eA(t)‖1 =
n
∑

i=1
∑

A∈Λ
|eA

i (t)|, then models (7) and (8)

is said to be finite-time synchronization with models (9) and (10).

3.1. Finite Time Synchronization

In accordance with Definition (2), the finite-time synchronization arisen from mod-
els (7)–(10) is equal to the finite-time stabilization with respect to the error models (11) and
(12) at zero, respectively. As a result, controller ui(t) should satisfy the condition in which
ui(t) = 0 when ei(t) = 0, i ∈ N. Inspired by the controllers in [47], and [46], where the
sign function is utilized to finite-timely synchronize complex networks without delay, we
design the following discontinuous controllers:
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ui(t) = ∑
A∈Λ

uA
i (t)eA,

uA
i (t) = − αie

A
i (t)− βi sgn(|eA

i (t)|), (13)

where i ∈ N, A ∈ Λ, αi > 0 are the control gains, while βi > 0 indicate the constants that
need to be tuned. Therefore, the following main result can be obtained.

Remark 3. The controller design (13) is very simple and straightforward. This section demonstrates
that the control law (13) can finite-timely synchronize NNs (11) with time-varying discrete delay
and bounded time distributed delay.

Theorem 4. Given positive constants αi, βi, i ∈ N and Assumptions 1–3 are satisfied, we have

di + αi−
( n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ

lj|aA.B̄
ij |+

n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ

1
1− µj

lj|bA.B̄
ij |

+
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ

lj|cA.B̄
ij |θ̃ij

)
> 0, i, j ∈ N, (14)

then the Clifford-valued NN models (7) and (8) are synchronized with the NN models (9) and (10)
in finite-time under controller (13).

Proof: The following Lyapunov–Krasovskii functional is considered:

V(t) =
3

∑
i=1

Vi(t), (15)

where

V1(t) =
n

∑
i=1

∑
A∈Λ
|eA

i (t)|, (16)

V2(t) =
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ

1
1− µj

|bA.B̄
ij |lj

∫ t

t−τj(t)
(eA

i (s))ds, (17)

V3(t) =
n

∑
i=1

n

∑
i=1

∑
A∈Λ

∑
B∈Λ
|cA.B̄

ij |lj

∫ 0

−πj

∫ t

t+s
θij(−s)(eA

i (u))duds. (18)

We then bring controller (13) into error models (11) and (12). Through the computa-
tion of the derivative pertaining to V(t) with the trajectory of (11), we can derive from
Assumption 2 that

V̇(t) =
3

∑
i=1

V̇i(t), (19)

where
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V̇1(t) =
n

∑
i=1

∑
A∈Λ

sgn(eA
i (t))ėA

i (t)

=
n

∑
i=1

∑
A∈Λ

sgn(eA
i (t))

(
− die

A
i (t) +

n

∑
j=1

∑
B∈Λ

aA.B̄
ij (hB

j (sj(t))− hB
j (rj(t)))

+
n

∑
j=1

∑
B∈Λ

bA.B̄
ij (hB

j (sj(t− τj(t)))− hB
j (rj(t− τj(t))))

+
n

∑
j=1

∑
B∈Λ

cA.B̄
ij

∫ t

t−πj

θij(t− s)(hB
j (sj(s))− hB

j (rj(s)))ds + uA
i (t)

)

=
n

∑
i=1

∑
A∈Λ

sgn(eA
i (t))

(
− die

A
i (t) +

n

∑
j=1

∑
B∈Λ

aA.B̄
ij (hB

j (sj(t))− hB
j (rj(t)))

+
n

∑
j=1

∑
B∈Λ

bA.B̄
ij (hB

j (sj(t− τj(t)))− hB
j (rj(t− τj(t))))

+
n

∑
j=1

∑
B∈Λ

cA.B̄
ij

∫ t

t−πj

θij(t− s)(hB
j (sj(s))− hB

j (rj(s)))ds

− αie
A
i (t)− βi sgn(|eA

i (t)|)
)

≤
n

∑
i=1

∑
A∈Λ
−di|eA

i (t)|+
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ
|aA.B̄

ij |lj|eA
j (t)|

+
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ
|bA.B̄

ij |lj|eA
j (t− τj(t))|

+
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ
|cA.B̄

ij |lj

∫ t

t−πj

θij(t− s)(ej(s))ds

−
n

∑
i=1

∑
A∈Λ

αi|eA
i (t)| −

n

∑
i=1

∑
A∈Λ

βi sgn(|eA
i (t)|)

=
n

∑
i=1

∑
A∈Λ
−(di + αi)|eA

i (t)|+
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ
|aA.B̄

ij |lj|eA
j (t)|

+
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ
|bA.B̄

ij |lj|eA
j (t− τj(t))|

+
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ
|cA.B̄

ij |lj

∫ t

t−πj

θij(t− s)(ej(s))ds−
n

∑
i=1

βiλi, (20)

where λi = 1 if |eA
i (t)| 6= 0, otherwise λi = 0. It follows from Assumption 2 that
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V̇2(t) =
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ

1
1− µj

|bA.B̄
ij |lj|eA

j (t)|

−
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ

1
1− µj

(1− τ̇j(t))|bA.B̄
ij |lj|eA

j (t− τj(t))|

≤
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ

1
1− µj

|bA.B̄
ij |lj|eA

j (t)|

−
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ

1
1− µj

(1− µj)|bA.B̄
ij |lj|eA

j (t− τj(t))|

=
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ

1
1− µj

|bA.B̄
ij |lj|eA

j (t)| −
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ
|bA.B̄

ij |lj|eA
j (t− τj(t))|, (21)

and

V̇3(t) =
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ
|cA.B̄

ij |lj

∫ 0

−πj

θij(−s)eA
i (t)ds

−
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ
|cA.B̄

ij |lj

∫ 0

−πj

θij(−s)eA
i (t + s)ds

≤
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ
|cA.B̄

ij |lj θ̃ije
A
i (t)

−
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ
|cA.B̄

ij |lj

∫ t

t−πj

θij(t− s)eA
i (s)ds. (22)

Combining (20)–(22), we obtain

V̇(t) ≤
n

∑
i=1

∑
A∈Λ
−(di + αi)|eA

i (t)|+
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ
|aA.B̄

ij |lj|eA
j (t)|

+
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ
|bA.B̄

ij |lj|eA
j (t− τj(t))|

+
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ
|cA.B̄

ij |lj

∫ t

t−πj

θij(t− s)(ej(s))ds−
n

∑
i=1

∑
A∈Λ

αi|eA
i (t)|

−
n

∑
i=1

βiλi +
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ

1
1− µj

|bA.B̄
ij |lj|eA

j (t)|

−
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ
|bA.B̄

ij |lj|eA
j (t− τj(t))|+

n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ
|cA.B̄

ij |lj θ̃ije
A
i (t)

−
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ
|cA.B̄

ij |lj

∫ t

t−πj

θij(t− s)eA
i (s)ds

=
n

∑
i=1

∑
A∈Λ

(
− di − αi +

n

∑
j=1

∑
B∈Λ

lj|aA.B̄
ij |+

1
1− µj

n

∑
j=1

∑
B∈Λ

lj|bA.B̄
ij |

+
n

∑
j=1

∑
B∈Λ

lj|cA.B̄
ij |θ̃ij

)
|eA

i (t)| −
n

∑
i=1

βiλi. (23)
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Substituting condition (14) into (23), we obtain:

V̇(t) ≤ −
n

∑
i=1

βiλi ≤ 0. (24)

Using V(t) in (15), which is positive definite, we have nonnegative constant V∗ and
t1 ∈ (0,+ y) such as

lim
t→t1

= V∗ and V(t) ≡V∗, ∀t ≥ t1. (25)

Next, we will demonstrate that

‖eA(t1)‖1 = 0 and ‖eA(t1)‖1 ≡ 0, ∀t ≥ t1. (26)

Firstly, we prove that ‖eA(t1)‖1 = 0; otherwise ‖eA(t1)‖1 > 0. As such, there is a the
small constant ε > 0 such as ‖eA(t1)‖1 > 0 for all t ∈ [t1, t1 + ε], so there exists at least one
k0 ∈ N such that |eA

k0
(t)| > 0 for t ∈ [t1, t1 + ε], leading to V̇(t) ≤ −βk0 < 0 that holds for

all t ∈ [t1, t1 + ε]. This presents a contradiction to (25).
Secondly, we prove ‖eA(t)‖1 ≡ 0 for t ≥ t1. Using contradiction, suppose, without

loss of generality, that there exists at least one k0 ∈ N and t2 > t1 such that |eA
k0
(t2)|1 > 0.

Let ts = sup{t ∈ [t1, t2] : ‖eA(t)‖1 = 0}, we have ts < t2, ‖eA(ts)‖1 = 0 and |eA
k0
(t)|1 > 0

for all t ∈ (ts, t2]. In addition, there exists t3 ∈ (ts, t2] such that |eA
k0
(t)| is monotonously

increasing to the interval [ts, t3]; therefore, V(t) is also monotonously increasing pertaining
to [ts, t3], i.e., V̇(t) > 0 for t ∈ (ts, t3]. Moreover, according to the first part of the discussion,
we can obtain V̇(t) ≤ −βk0 < 0 holds for all t ∈ [ts, t3]; and this presents a contradiction.
As a result, ‖eA(t)‖1 ≡ 0 for t ≥ t1.

In summary, the conditions in (26) hold. Referring to Definition (2), the NN models (7)
and (8) are synchronize with the NN models (9) and (10) in finite time under controller (13).
This completes the proof.

Corollary 5. Consider cij = 0, i, j ∈ N. Given that Assumptions 1 and 2 are satisfied and

di + αi −
( n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ

lj|aA.B̄
ij |+

n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ

1
1− µj

lj|bA.B̄
ij |

)
> 0, i, j ∈ N, (27)

then the Clifford-valued NN models (7) and (8) are synchronized with the NN models (9) and (10)
in finite-time under controller (13).

Corollary 6. Consider that bij = cij = 0, i, j ∈ N. Given Assumption 2 is satisfied and

di + αi −
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ

lj|aA.B̄
ij | > 0, i, j ∈ N, (28)

then the Clifford-valued NN models (7) and (8) are synchronized with the NN models (9) and (10)
in finite-time under controller (13).

Remark 7. It is well known that the multiplication of the Clifford numbers does not comply with the
commutative law, which complicates the investigation of the Clifford NNs dynamics. Although the
known results regarding Clifford-valued NNs are still limited, we know that the decomposition approach
is very efficient to solve the problem of non commutativity of the multiplication of the Clifford numbers.
Thus, the use of decomposition to analyze Clifford-valued NNs is highly meaningful. Recently, most of
the results are obtained through the decomposition method [28,29,48–50].
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Remark 8. In Theorem (4) by decomposing the original n-dimensional Clifford-valued system
into a multidimensional real-valued system, several sufficient conditions are derived to show the
considered system model is finite-time synchronization, but our result is really about Clifford-valued
systems themselves.

Remark 9. It should be pointed out that Clifford-valued neural networks aim to explore new
capabilities and improve accuracy in order to solve problems that cannot be solved by real-, complex-
and quaternion-valued NNs. For instance, the results of finite-time synchronization of complex-
valued NNs [44,45] can then be summarized as a special case of the results of this paper.

Remark 10. Many important results have recently been published concerning the various dynamics
of Clifford valued NNs [28–35,48–50]. Specific examples includes Sp-Almost periodic solutions
[30], globally asymptotic almost automorphic synchronization [31], global exponential stability
of pseudo almost periodic solution [32], global stability analysis [50], and so on. However, any
work on the topic of finite-synchronization of Clifford-valued NNs with time-varying delays has
not yet been reported. As a result, in order to fill such gaps, we (for the first time) derived new
sufficient conditions to ensure the finite-time synchronization of Clifford-valued NNs models with
time delays. Therefore, this paper’s main results are new and different compared with those in the
existing literature.

4. Numerical Examples

We present a numerical example to demonstrate the feasibility and effectiveness of
the main results established in Section 3.

Example 1. For m = 2 and n = 2, the following two-neuron drive model (1) is considered:

ṙi(t) = − diri(t) +
2

∑
j=1

aijhj(rj(t)) +
2

∑
j=1

bijhj(rj(t− τj(t)))

+
2

∑
j=1

cij

∫ t

t−πj

θij(t− s)hj(rj(s))ds + ki, t ≥ 0.

The corresponding response model (3) is:

ṡi(t) = − disi(t) +
2

∑
j=1

aijhj(sj(t)) +
2

∑
j=1

bijhj(sj(t− τj(t)))

+
2

∑
j=1

cij

∫ t

t−πj

θij(t− s)hj(sj(s))ds + ki + ui(t), t ≥ 0.

The multiplication generators are: e2
1 = e2

2 = e2
12 = e1e2e12 = −1, e1e2 = −e2e1 = e12,

e1e12 = −e12e1 = −e2, e2e12 = −e12e2 = e1, r1 = r0
1e0 +r1

1e1 +r2
1e2 +r12

1 e12, r2 = r0
2e0 +

r1
2e1 + r2

2e2 + r12
2 e12, s1 = s0

1 e0 + s1
1 e1 + s2

1 e2 + s12
1 e12, s2 = s0

2 e0 + s1
2 e1 + s2

2 e2 + s12
2 e12.
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Furthermore, we take

d1 = d2 = 5,

a11 = 0.5e0 + 0.1e1,

a12 = 0.1e0 + 0.2e2 + 0.6e12,

a21 = 0.5e0 − 0.1e1 + 0.3e2,

a22 = 0.3e0 + 0.1e1 + 0.5e12,

b11 = 0.1e0 + 0.2e1 + 0.5e2,

b12 = 0.3e0 + 0.1e2 + 0.4e12,

b21 = 0.6e0 − 0.2e1 + 0.3e2,

b22 = 0.4e0 + 0.1e12,

c11 = 0.1e0 + 0.2e2 + 0.6e12,

c12 = 0.3e0 + 0.1e1 + 0.5e12,

c21 = 0.1e0 + 0.2e1 + 0.5e2,

c22 = 0.6e0 − 0.2e1 + 0.3e2,

k1 = 0.1e0 − 0.2e1 + 0.2e2 + 0.1e12,

k2 = − 0.2e0 + 0.2e1 + 0.1e2 + 0.1e12,

g1(e1) =
1− e−e

0
1

1 + e−e
0
1

e0 +
1

1 + e−e
1
1

e1 +
1− e−e

2
1

1 + e−e
2
1

e2 +
1

1 + e−e
12
1

e12,

g2(e2) =
1− e−e

0
2

1 + e−e
0
2

e0 +
1

1 + e−e
1
2

e1 +
1− e−e

2
2

1 + e−e
2
2

e2 +
1

1 + e−e
12
2

e12.

in which ei(t) = si(t)−ri(t) and eA
i (t) = sA

i (t)−rA
i (t), i = 1, 2. Consider the following

time-varying delays τ1(t) = τ2(t) = 0.6|cos(t)| + 0.4, π1 = π2 = 0.8, θij(t) = e−0.5t,
i, j ∈ N. It is obvious to obtain that τ1 = τ2 = 1, µj = 0.6 < 1 and θ̃ij = 2 (i, j ∈ N).
Furthermore, the activation function satisfies Assumption 2 with l1 = l2 = 0.5 by selecting
α1 = 2.5, α2 = 2.6, β1 = 3.5 and β2 = 3.8.

In addition, it is easy to obtain aA.B̄
11 = 0.6, aA.B̄

12 = 0.9, aA.B̄
21 = 0.7, aA.B̄

22 = 0.9,
bA.B̄

11 = 0.8, bA.B̄
12 = 0.8, bA.B̄

21 = 0.7, bA.B̄
22 = 0.5, cA.B̄

11 = 0.9, cA.B̄
12 = 0.9, cA.B̄

21 = 0.8, cA.B̄
22 = 0.7.

We consider the initial conditions of the drive-response models (1)–(4) as follows: ϕ1(t) =
−1.5e0 + 1.2e1 + 0.9e2 + 0.5e12 for t ∈ [−1, 0], ϕ2(t) = 1.6e0 − 3.5e1 + 2.2e2 − 0.9e12 for
t ∈ [−1, 0], φ1(t) = 2.5e0 − e1 + 1.5e2 − 1.2e12 for t ∈ [−1, 0], and φ2(t) = −2.6e0 − 2.6e1 −
2.2e2 + 0.8e12 for t ∈ [−1, 0].

By simple computation, we have

di + αi−
( n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ

lj|aA.B̄
ij |+

n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ

1
1− µj

lj|bA.B̄
ij |

+
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ

lj|cA.B̄
ij |θ̃ij

)
= 3.95 > 0,

di + αi−
( n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ

lj|aA.B̄
ij |+

n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ

1
1− µj

lj|bA.B̄
ij |

+
n

∑
i=1

n

∑
j=1

∑
A∈Λ

∑
B∈Λ

lj|cA.B̄
ij |θ̃ij

)
= 3.45 > 0.

To sum up, we have shown that all conditions in Theorem (4) are satisfied. The drive-
response models (1) and (3) can achieve synchronization in finite-time with controller (13).
The following is a detailed explanation of Figures 1–12. Figures 1, 2, 4, 5, 7, 8, 10 and 11,
respectively, show the time responses of the states of the drive-response models (1) and (3).
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Besides, Figures 3, 6, 9 and 12 disclose the time responses of the states of the error systems
(11). From Figures 3, 6, 9 and 12, it can be seen that model (7) synchronize with model (9)
in finite-time through the controller (13) with the given initial values.
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Figure 1. Time responses of state variables r0
1(t), s

0
1 (t) of NN models (1) and (3).
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Figure 2. Time responses of state variables r0
2(t), s

0
2 (t) of NN models (1) and (3).
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2(t) of NN model (11) under con-
troller (13).
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Figure 4. Time responses of state variables r1
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Figure 7. Time responses of state variables r2
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1 (t) of NN models (1) and (3).
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Figure 8. Time responses of state variables r2
2(t), s

2
2 (t) of NN models (1) and (3).
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Figure 9. Synchronization curves of state variables e2
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2(t) of NN model (11) under con-
troller (13).
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Figure 10. Time responses of state variables r12
1 (t), s12

1 (t) of NN models (1) and (3).
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Figure 11. Time responses of state variables r12
2 (t), s12

2 (t) of NN models (1) and (3).
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Figure 12. Synchronization curves of state variables e12
1 (t), e12

2 (t) of NN model (11) under con-
troller (13).

5. Conclusions

In this article, we have investigated the finite-time synchronization of Clifford-valued
NN models with finite-time distributed delays. To address the problem of non-commutativity
of multiplication of Clifford numbers, the original Clifford-valued drive and response models
are firstly decomposed into the corresponding real-valued drive and response counterparts.
Moreover, suitable controller has been constructed to examine the synchronization problem
associated with the finite-time error models. On the basis of a new Lyapunov–Krasovskii
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functional and some new computational techniques, finite-time synchronization criteria have
been derived for the obtained real-valued drive-response models. In addition, we have
presented a numerical simulation to illustrate the usefulness of the main results. The results
obtained in this paper can be further extended to other complex systems. Accordingly, we plan
to extend our results to more general Clifford-valued NN models, such as Clifford-valued
inertial NNs, Clifford-valued high-order Hopfield NNs, and fuzzy Clifford-valued NNs.
Moreover, we will focus on the problem of global stabilization analysis of Clifford-valued NN
models with the help of various controller approaches.
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