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Abstract: A simple and rapid synthesis of highly fluorescent and water-soluble carbon dots 
(CDs) is reported. Thua-nao khap (fermented soya bean crisp or Thai natto sheet) was used as 
carbon source through low-temperature carbonisation at 220˚C for 12 hr with no other reagent 
required. The CDs with bright and stable blue photoluminescence was afforded under UV 
irradiation at a maximum fluorescent emission wavelength of 450 nm. The 7-nm spherical-
shape i.d. of CDs can serve as fluorescent sensors for mercuric ions (Hg2+) detection without 
nitrogen or sulfur doping. The quenching effect of Hg2+ on the fluorescence intensity of CDs 
was found to be concentration dependent over the linear range of 0.05 - 100 g L-1, while the 
lowest detectable concentration of Hg2+ ions was observed at 0.05 g L-1. The results 
demonstrate that the CDs from Thua-nao khap, which can be prepared easily and inexpensively, 
have an excellent fluorescence property for Hg2+ determination. 
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INTRODUCTION 
 

Fluorescence spectroscopy has attracted great interest in environmental monitoring since it 
inherently provides a lower limit of detection than any other molecular spectroscopy. Sophisticated 
instruments such as cold-vapour atomic absorption spectrometer or inductively coupled plasma mass 
spectrometer may be used for detecting a very low concentration of mercury. Thus, the design and 
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development of highly sensitive and selective fluorescent sensors with ease of use, rapid 
implementation and inexpensive instrumentations, is needed in the fluorometric analysis of mercury.  

Intensive research on carbonaceous nanomaterials has recently focused on the exploration of 
photoluminescent fluorophore because of its higher photoactivity, lower toxicity and less-expensive 
cost, compared with quantum dots containing heavy metals. Fluorescent carbon dots (CDs), spherical 
carbon nanoparticles with normally less than 10-nm i.d., have aroused much interest and intensive 
research due to their intriguing properties such as low toxicity, high aqueous solubility, robust 
chemical stability, high resistance to photo-bleaching and excellent biocompatibility [1, 2]. CDs can 
be prepared from various raw materials by both ‘top-down’ [3-5] and ‘bottom-up’ [6-8] methods. 
Numerous top-down technique approaches for carbon quantum dots have been developed, including 
carving graphite crystallites using high-resolution electron-beam lithography [9], cutting graphene 
oxide sheet via hydrothermal route [10], reoxidation [11], electrochemical technique [12] and 
chemical oxidation by treating carbon black and carbon fibres [13, 14]. However, most top-down 
methods usually suffer from some major disadvantages such as the requirement of special equipment,  
expensive chemicals with and frequent generation of harmful or highly toxic waste. The carbonisation 
of some natural materials such as fruits [15], flowers [16], leaves [17] and animal products [18, 19] 
by thermal treatment is called the ‘bottom-up’ method. The advantages of using organic precursors 
for the synthesis of CDs are cost-effectiveness and eco-friendliness. 

Fermented soya bean is well known as a protein-rich dietary supplement with a high protein 
component (54.6%) [20] and consists of nitrogen- and sulfur-containing amino acids [21, 22]. A high 
amino acid content makes fermented soya bean suitable as an ideal carbon source for CDs synthesised 
through low-temperature carbonisation. 

Recently graphene CDs from microwave-assisted pyrolysis of aspartic acid have been 
reported as a fluorescent probe sensor for Fe3+, which exhibited a linear-response concentration range 
of 0–50 μM [23]. Gonçalves et. al. [24] also described the application of an optical fibre sensor with 
a sol-gel immobilised CDs nanoparticles functionalised with PEG200 and N-acetyl-l-cysteine for Hg2+ 
in aqueous solution based on fluorometric measurements. Moreover, nitrogen-doped CDs from lotus 
root were recently used to detect Hg2+in environmental water samples and applied to multicolour 
fluorescence bioimaging [25]. However, the precursors used in those methods involved tedious 
synthetic procedures which are difficult to achieve.  

Herein, a simple method of synthesising CDs has been developed using fermented soya bean 
crisp (Thua-nao khap or Thai natto sheet) as a CDs precursor.  A pyrolysis process was used without 
any recourse to reducing or oxidising agents. The properties and morphology of Thua-nao khap CDs 
(TNK-CDs) were characterised and studied. The fluorescence system is proposed as a sensitive and 
environmental friendly method for the determination of Hg2+, which is a highly toxic heavy metal ion 
occasionally found in natural water and industrial wastewater samples.  
 
MATERIALS AND METHODS 
 
Chemicals and Reagents  
  

All chemicals used were analytical-grade reagents and were used without any further 
purification. Ultrapure deionised water was used in all preparations and prepared by a compact 
ultrapure water system (18.2 M�, Elga, UK). A mercuric chloride standard solution (1000 mg L-1) 
for atomic absorption measurement and quinine sulphite were acquired from Fluka (USA). Stannous 
chloride, nitric acid and hydrochloric acid were obtained from Merck (Germany). Sulphuric acid 
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solution (0.05M) was prepared by appropriate dilution of concentrated sulphuric acid (Merck, 
Germany). 
 

Synthesis and Characterisation of CDs 
 

TNK-CDs were prepared using a pyrolysis method without any reagent doping. The 
preparation and purification methods were modified from Feng et al. [16]. Briefly, 50 g of fermented 
soya bean crisp commonly available from Maejo municipal market in Chiang Mai was ground to a 
fine powder and placed in a hot-air oven (Memmert, Germany) at 220°C for 12 hr. Then the black 
carbon residue after grinding with a porcelain mortar was weighed to 1.0000 g and placed into a 
cellophane membrane bag (CelluSep, USA) and dialysed with 100 mL of ultrapure distilled water. 
After 6 hr, TNK-CDs were filtered and dispersed completely in 100 mL of ultrapure deionised water. 
Appropriate dilution of the TNK-CDs solution was applied prior to use. The preparation process of 
the CDs can be briefly illustrated in Figure 1. The bright blue, stable fluorescence and excellent water 
dispersion of TNK-CDs can be observed under UV irradiation using a mercury-vapour lamp.  

 

  
       Figure 1.  Schematic illustration of the synthesis process of fluorescent TNK-CDs and its 
       fluorescence property under UV irradiation 

 

Absorption spectra of TNK-CDs were studied by a UV-visible spectrometer (U-2900, Hitachi, 
Japan). The fluorescence spectrophotometric measurements were carried out on a luminescence 
spectrometer (LS50B, Perkin Elmer Corporation, USA). The TNK-CDs solution at appropriate 
dilution was put in a quartz fluorescence cuvette with 10-mm optical path length, while the excitation 
and emission slits were set at 5 nm. The emission spectra were observed when the excited wavelength 
was set at 337 nm and recorded over the wavelength range of 400-600 nm. 

Determination of the fluorescence quantum yield of TNK-CDs was carried out by comparison 
with a standard solution of quinine sulphite (quinine sulphite dissolved in 0.05M H2SO4, quantum 
yield 54%) as reference compound. The quantum yield was calculated using the slope of the 
regression line generated by plotting the integrated fluorescence intensity at the emission wavelength 
of 450 nm under the excitation wavelength of 337 nm for multiple concentrations of TNK-CDs 
solutions [26]. 

Images from bright field transmission electron microscopy (TEM) of the TNK-CDs were 
obtained from a transmission electron microscope (JOEL-2100, JEOL, Japan) operated at 200 keV. 
Before the TEM measurements, the TNK-CDs were dispersed in ethanol using ultrasonic vibration 
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for approximately 5 min. The suspended mixture was then dropped on a 200-mesh copper grid coated 
with continuous carbon film and allowed to dry at room temperature. The TEM image obtained was 
then used for size and morphology investigation. 

 

Fluorescence Quenching Detection of Hg2+ and Hg2+ Analysis in Real Samples 
 
 A 1000 µL suspension of TNK-CDs solution (about 400 mg L-1, based on an appropriate 
dilution of the solution of 1.0000 g of black carbon residue) was added and mixed well with Hg2+ 
standard solution at different concentrations in a 25-mL volumetric flask. The quenching fluorescence 
spectra were recorded at λex/λem 337/450 nm 5 min. after the addition of TNK-CDs to the Hg2+ 
solution. The fluorescence intensities were used to plot the quenching external calibration curve for 
Hg2+. 

Three wastewater samples were collected from university laboratories and a hospital 
wastewater treatment plant. To remove the solid, the samples were filtered through Whatman filter 
paper (No.1). The filtrate was collected into 4 polypropylene bottles and added with Hg2+ solution (0, 
20, 50, 100 μg L-1). All of the sample solutions were stored at 4°C and kept away from light before 
fluorescent measurement. Finally, a 1000-µL suspension of TNK-CDs was applied to each 25 mL of 
standard Hg2+and wastewater sample solutions, and fluorescence observation was carried out 5 min. 
after the addition of TNK-CDs to the Hg2+ solution. 

Comparative atomic absorption method was performed by a cold-vapour atomic absorption 
spectrometer (model FIAS-AAnalyst 100, Perkin Elmer, USA). Standard mercury solutions 
containing 0-5 mg L-1 were prepared by appropriate dilution of the stock solution with deionised 
water containing 0.1% (v/v) nitric acid. The carrier stream solution was 3% (v/v) hydrochloric acid. 
The reducing stream solution was an aqueous solution of 10% (w/v) stannous chloride in a 3% (v/v) 
hydrochloric acid solution, which was freshly prepared prior to use [27].  
 
RESULTS AND DISCUSSION 
 
Characterisation and Optical Properties of TNK-CDs 
 

TEM was used to characterise the morphology and size distribution of the TNK-CDs. The 
TEM image shows that TNK-CDs were uniform in size (5-10 nm) with an average diameter of about 
7 nm and a narrow size distribution (Figure 2) and were well dispersed with spherical particles in 
aqueous solution. 

The UV spectrum of purified TNK-CDs (Figure 3) shows two distinct peaks at 230 and 235 
nm, which arise from π→π* and n→π* transitions associated with C=C and carbonyl groups exposed 
on the CDs surface [28]. To investigate the fluorescence property of the TNK-CDs, its dispersed 
solution was placed in a 10-mm quartz fluorescence cuvette under visible and UV lights. It can be 
seen from the inset of Figure 3 that TNK-CDs are easily dispersed in water and transparent under 
visible day light while emitting bright blue fluorescent light under UV light excitation (365 nm).  

The TNK-CDs have a high quantum yield of 40% (compared with quinine sulphite). The high 
quantum yield is probably due to the existence of nitrogen- and sulfur-containing functional groups, 
which come from the amino acid content in fermented soya bean. The fluorescence intensity of TNK-
CDs was stable for more than 3 months under ambient condition. 
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Figure 2.  Typical TEM image of the TNK-CDs 
 

 
 

     Figure 3. UV spectrum of purified TNK-CDs; inset shows photographs of TNK-CDs aqueous 
     solution under (a) daylight and (b) 365-nm UV light  

 
 

Spectral Characteristics of TNK-CDs and Hg2+ 
 

The fluorescence spectra of TNK-CDs dispersed in deionised water are shown in Figure 4. 
The maximum photoluminescent emission wavelength was observed at 450 nm under 337-nm 
irradiation. It is illustrated in Figure 5 that Hg2+ at different concentrations can quench the 
fluorescence intensity of the 400-mg L-1 TNK-CDs solution, and the fluorescence quenching is 
concentration dependent, which makes it possible for TNK-CDs to be used as an Hg2+ sensor.  
 

Application of TNK-CDs to Hg2+ Detection in Real Samples 
 

The practical application of the prepared TNK-CDs sensor for Hg2+ was investigated using 
wastewater from two scientific laboratories and a local hospital. Under the optimum condition, a 
calibration curve was constructed which showed a linear response at the Hg2+ concentration range of 
0.05-100 g L-1. The regression equation of y = 3.682x + 0.371 (R2=0.9986) was observed with the 
limits of quantitation and detection of 10 g L-1 and 0.05 g L-1 respectively. 
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Figure 4.  Fluorescence excitation (blue line) and emission (red line) spectra of TNK-CDs 
 

  
   (a)        (b) 
Figure 5.  (a) Fluorescence spectra of 400 mg L-1 TNK-CDs solution after addition of Hg2+ at 
different concentrations; (b) Fluorescence/concentration graph for quenched Hg2+, showing linear 
portion of the curve between 0-100 mg L-1 
 

Because of the relatively low values of the Hg2+concentration in all wastewater samples, none 
of the samples quenched the TNK-CDs fluorescence intensity, indicating that the Hg2+content of these 
wastewater samples was below detection limit. Likewise, the cold-vapour atomic absorption 
spectrometer did not detect any Hg2+ from the tested samples. Good recovery from three spiked 
samples with different Hg2+ concentrations are shown in Table 1.  

These findings demonstrate the potential of TNK-CDs for routine analysis of Hg2+ level in 
water samples. The US Environmental Protection Agency limits mercury in drinking water to 0.002 
mg L-1, while the pollutant control department in Thailand sets the maximum mercury level permitted 
by the industrial effluent standards at 0.005 mg L-1 [29, 30]. A detection limit of 0.05 mg L-1 is equal 
to the typical detection limit achieved with a cold-vapour atomic absorption spectrometer [31, 32]. 
The TNK-CDs can achieve a much lower detection limit than those previously reported in other 
fluorescent probes, as shown in Table 2.  
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Table 1.  Results of Hg2+ analysis in wastewater samples using TNK-CDs sensor 
 

Source of sample Amount Hg2+added 
(μg L-1) 

Amount found ± SD * 
(μg L-1) 

Recovery (%) 

Lab A 20 18.09±0.02 90.45 
50 46.76±0.02 93.52 

100 98.88±0.05 98.88 
Lab B 20 18.49±0.01 92.45 

50 48.13±0.01 96.26 
100 103.73±0.04 103.73 

Hospital 20 17.97±0.01 89.85 
50 45.71±0.02 91.42 

100 93.84±0.04 93.84 
* Standard deviation from triplicate measurements 
 

Table 2.  Comparison of sensing performance of different fluorescent sensors for Hg2+ 
 

Fluorescent sensor Detection Limit  
(μg L-1) 

Linear range 
(μg L-1) 

Ref. 

Thymine-functionalised CDs 7.0 0 - 200  [33] 
N-doped CDs (from lotus root) 3.74 20 - 1200 [25] 
Hydrothermal synthesis CDs 2.0 0 - 100 [34] 

TNK-CDs 0.05 0.05 - 100 This work 

 
 
CONCLUSIONS 
 

CDs synthesised from fermented soya bean crisp without using any further reagent 
modification, were applied as a metal sensor for the quantitation of Hg2+ by fluorescence quenching. 
The fluorometric method developed herein was successfully used to determine Hg2+ ions in waste-
water at µg level.  
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