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1. Introduction

In stochastic queueing-inventory(SQI) models, many authors assumed that the chosen item could
not be delivered immediately at the initial period, because the customered item not only requires some
random time to deliver it also cause the queue formation in front of the system. For example, in a
mobile shop, the sales man do not sale the product directly without demonstrating the features of an
item and this demonstration took some random time and cause the queue formation. Such situations
allow us to develop the SQI system in the area of service facility. Initially, service facility was
introduced by Melikov [31] and Sigman and Simchi-Levi [37]. Berman et al. [9] discussed the
inventory management system(IMS) along with service channel assuming one item per service,
deterministic customer and service rates, during the stock out period only queues can occur and
determined the minimum total cost using optimal order quantity. Berman and Kim [10] determined
the SQI problem with service facility in which arrival and service times follow Poisson and
exponential distributions, including average inter-arrival time is larger than average service time. He
et al. [18] analyzed the related model in the production inventory system(PIS) which is generated by a
single machine for a batch of size one.

Berman and Sapna [11] analyzed inventory control problem(ICP) with service channel assuming
one item per service, Poisson arrival, arbitrary service times, finite capacity and zero lead times. They
determined the minimized total cost using the feasible order quantity under the specified cost
structure. Schwarz et al. [36] examined the SQI system with the Poisson arrival, exponential service
time and randomized ordering polices(ROP). Paul Manual et al. [30] considered the perishable SQI
system with service facility(SF) and retrial customers under the assumption of Markovian arrival
process(MAP), phase-type(PH) service distribution and life time, lead time are follows an exponential
distribution.

Lopez-Herrero [29] concentrated on measuring the waiting time, reorder time and time of a
pending demand for the finite retrial group. Artalejo et al. [7] considered the retrial QIS in which the
any arriving customer who knows that the server is busy, immediately they join into the retrial group.
They studied the waiting time of a retrial customers using Laplace-Stieltjes transform. Amirthakodi
and Sivakumar [2] discussed the single server SQI system containing a finite queue. They assumed
that the unsatisfied customer may join into the orbit in which the customer who can attempt the
service directly if the server is free and studied the waiting time distribution for both queue and retrial
queues. Yadavalli et al. [41] analyzed the multi server inventory system of a finite queues and
discussed the expectation and variance of the waiting time on the impact of parameters. Recently,
Jeganathan and Abdul Reiyas [24] investigated the IMS with parallel heterogeneous servers having
vacations and they discussed the waiting time for both queues.

Threshold based service rates also play a sufficient role in the SQI to diminish the waiting time of
customer in the queue. Harris [17] studied the queueing systems in which the they assumed that the
service rates are stochastic and state-dependent. Lakshmanan et al. [27] discussed the SQI system
under the threshold based priority service of N-policy. Gautam Choudhury et al. [13] and Tae-Sung
Kim et al. [25] discussed the threshold based services in their queueing models. Elango [14] has
discussed the perishable inventory system(PIS) with exponential service time and zero lead time.
They assumed that the service parameter dependent on the number of customers in the waiting hall
Kuo-Hsiung Wang and Keng-Yuan Tai [40] introduced the concept of additional servers, that is the

AIMS Mathematics Volume 6, Issue 7, 7386–7420.



7388

number of service channel has been changed depending upon size of the queue. The related work has
been generalized in [19]. Martin Reiser [35] analyzed the queue-dependent server in closed networks
by applying mean value analysis and convolution method. In SQI system, Jeganathan et al. [22]
studied three heterogeneous servers, including one with a flexible server. Subsequently, many authors
proposed the multi-server and retrial models to reduce the congestion. A queue with retrial facility
has been discussed in [4, 15, 16, 23, 26, 39]. For more description on multi server retrial queues one
may refer [5, 6, 8, 12, 32] whereas in SQI system with multi sever service facility has been considered
by [3, 41]. Similarly, the references [14, 20, 34, 42] gave a brief idea about PIS.

There are some gaps in SQI literature, one can realize that, although a multi-server SQI system
will reduce the waiting time of a customer for an unit item per service, in real life; there are many
single server SQI system and we do not extend into multi-server models for example, in a juice shop,
they provide the juice to the customer on first come first service (FCFS) basis because they had only
single server and do not extend into multi-server model due to economic and space problems.

All the above mentioned models, the corresponding authors assumed that the system had a
single/multi server and exponential service time which is homogeneous(uniform). In real life
experience, SQI system need not have a homogeneous service rate for example, in a restaurant, one
can observe that the time spent by the server varies from one customer to another customer and this
may happens in supermarket, textiles shop etc. Nowadays, we are living in a congested emerging
society, homogeneous service rate is not enough to satisfy the customer in concerning the queues
because, by nature, we have three categories of customer: 1) Balking 2) Reneging and 3) Jockeying.
In order to satisfy these types of customers, one should improve the service facility.

Stochastic queueing-inventory modeling has a widespread attention in the area of service facility
along with infinite retrial group. With the emerging society, customers who do not have adequate time
to wait in the queue. There are three categories of people on the basis of their behavior: 1) some of
them get appointment previously to purchase the items, 2) half of the remaining people are ready to
wait in the queue until they get a service and 3) another set of people will also prefer to wait in the
queue, but they become impatient after some random time. As a business owner, one has to plan to
attract the three categories of peoples by reducing the waiting time. One can experience this kind of
situations in vegetable market, super market, mobile shop, textile show room, service center, jewel
shop etc.

In this competitive economic world, customer satisfaction is a key factor to earn more profits; if
they are not satisfied, then they will move to another firm. So the waiting time is one of the main
determinants to satisfy the customer. Consider the real-life situation, during lunchtime, a customer
wants to have lunch used to visit a restaurant. On seeing the queue, they will decide to wait in the
queue. After some random time, they realize that the server is working without changing the service
speed and the queue length is long, so they become impatient and immediately move to another one.
This real-life situation motivates us to bring this mathematical model in order to carry out the waiting
time issues and customer lost due to impatient.

In many situation, there is a necessity that the server should increase the service speed to reduce
the waiting time of a customer, since a customer may become impatient due to the increase of waiting
time and it causes the customer lost. It is generally perceived that the waiting time plays a significant
role in the stochastic modeling of queueing-inventory system(SMQIS). A customer satisfaction not
only depends on the fair items and cost but also on the waiting time. For example, consider a dam; if
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the level of water in the dam is high, the speed of releasing water becomes high due to heavy pressure
and vice-versa.

The queue-dependent service rate will give the more advantages for both the inventory
management and the customer. It mainly reduce the waiting time of a customer in the queue and the
impatiences of a waiting customer. Also, the customer lost, balking, reneging are to be decreased. On
the other hand, the management receives a more number of customer in the system, this leads a more
sale and profit of the firm. We conclude that if the waiting time is less, then there will be increase in
the arrival, for this purpose speed of the server should be increased according to the length of queue.

On seeking the solution to fill such a gap in the SQI system, very few papers are discussed in the
single server SQI literature. In this context, Jeganathan [21] has filled the gap partially using the
flexible server under the threshold based level L for the queue length. They defined only two
non-homogeneous service rates before L and after L. However, we can observe in real life, consider a
footwear shop, for every customer the service time must be changed depending upon the customers
waiting in the queue.

We extend this paper to the multi-threshold level; that is, the service rate is changed depend upon
the number of customers in the queue. On utilizing this discussion, we present a model: single server
queueing-inventory system(QIS) with queue-dependent service rates. In addition, any customer finds
that the queue size is M, they may enter into the orbit of infinite size under the Bernoulli trials, and
they can compete only through the queue. Hence, we propose a new model as a single server
perishable SQI system with queue-dependent service rates and an infinite orbit having (s,Q) ordering
policy. In the rest of this paper, we present a description in section 2, methods of analysis in section 3,
waiting time analysis in section 4, economic analysis in section 5 and conclusion in section 6.

2. Descriptive analysis

2.1. Notations

I : An identity matrix
0 : A zero matrix of suitable size having all zeros
e : A column vector of suitable size having all ones

H(x) :
{

1, if x ≥ 0,
0, otherwise

δi j :
{

1, if j = i,
0, otherwise

δ̄i j : 1 − δi j

M : Waiting hall size
S : Maximum Inventory level
s : Reorder level

2.2. Assumptions

This model explores a performance of single server service channel in the perishable QIS. This
system consists a finite waiting hall(queue) whose capacity is denoted as M, inventory of S items for
sales and a single server. The server is always busy whenever the current inventory level and number
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of customers in the queue are positive. Otherwise the server become free. A customer approaches the
QIS to purchase their inventory. Suppose any arriving customer finds that the server is busy, they must
wait in the queue. The customer approaches QIS for the first time, say primary customer with an
intensity λp and the primary customer arrival processes follows Poisson process.

This system provides the one more facility to attract their customer in order to avoid the customer
lost, called the Orbit(virtual waiting place of infinite capacity). Whenever the arriving customer sees
that the queue is fully occupied, they enter into an orbit with the probability p or leave the system
with its complement 1 − p. The customer in an orbit, called orbital customer who finds that the queue
size is less than M, they immediately enter into the queue with an intensity λr under the classical
retrial policy. Otherwise they repeatedly tries until get success. This process is known as retrial
process. For retrial customer(a customer approaches QIS for the second time), the time interval
between any two successive arrivals considered as exponential.

This system provides a well deserved service to their customer through a well experienced server.
The server will change the speed of service according to the current queue size in order to reduce the
customer waiting time. This service process follows an exponential process with an intensity µw

where 1 ≤ w ≤ M. The customer receives their inventory only when the time of service completion.
Since the service rate is dependent on the queue size, it considered as heterogeneous service rate(not
homogeneous).

Further, this system also concentrates on two more things, called as (1) ordering policy and (2)
perishable items. Here, the current inventory level of the system getting decreased by the two
following process: (i) service process and (ii) perishable process. Such processes allow us to make a
reorder process. This takes place a reorder of Q(= S − s) items whenever the current inventory level
falls into the fixed s. This policy is known as (s,Q) ordering policy. The reorder process follows an
exponential with an intensity β.

Generally, not all the items are being perfect until they sold to the customer. The system also
consists this natural defectiveness of an item which could be happened by manufacturing defect,
warranty expires, damage on handling items, etc., with a classical perishable policy(any one of S
items getting perished) with an intensity γ and this perishable process also follows an exponential
process. Stability of the system are to be discussed by the Neuts MGA and the waiting time
distribution of both customers are to be derived with Laplace-Stieltjes transform(LST).

Remark 2.1. 1) For the numerical calculations µw can be defined as µw = µwα, where 0 ≤ α ≤ 1.
2) If α = 0, then the model deduced to homogeneous service rate model.
3) If α ∈ (0, 1], then the model deduced to non-homogeneous service rate model.

2.3. Matrix Building

Let P1(t), P2(t) and W(t) are the random variables and represent orbit size, present stock
level(PSL), and queue size respectively. From the assumptions developed on the birth and death
process of a SQIS in the descriptive analysis (subsection 2.2) forms a stochastic process
{P(t), t ≥ 0} = {(P1(t), P2(t),W(t)), t ≥ 0} at time t and it is also said to be a continuous-time stochastic
process(CTSP) with the state space D such that

D = {(u, v,w) : u = 0, 1, · · · ; v = 0, 1, · · · , S ; w = 0, 1, · · · ,M}.
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Theorem 2.3.1. In a quasi birth and death process(QBD), the infinitesimal generator matrix, P, with
discrete state space D, and the CTSP {P(t), t ≥ 0}, is defined by

P =



P00 P01

P10 P11 P01

P20 P22 P01
. . .

. . .
. . .


(2.1)

where

[P01]S +1 =

{
P0 v′ = v, v = 0, 1, 2, ..., S ,
0 otherwise.

(2.2)

[P0]M+1 =

{
pλp w′ = w, w = M,
0 otherwise.

(2.3)

[Pu0]S +1 =

{
Pu v′ = v, v = 0, 1, 2, ..., S , u = 1, 2, 3, · · ·
0 otherwise.

(2.4)

[Pu]M+1 =

{
uλr w′ = w + 1, w = 0, 1, 2, ...,M − 1,
0 otherwise.

(2.5)

and u = 0, 1, 2, · · · ,

[Puu](S +1)(M+1) =



β v′ = v + Q, v = 0, 1, 2, ..., s,
w′ = w, w = 0, 1, ...,M.

λp v′ = v, v = 0, 1, 2, ..., S ,
w′ = w + 1, w = 0, 1, ...,M − 1.

vγ v′ = v − 1, v = 1, 2, ..., S ,
w′ = w, w = 0, 1, ...,M.

µw v′ = v − 1, v = 1, 2, ..., S ,
w′ = w − 1, w = 1, ...,M.

−[δ̄0vvγ + H(s − v)β
+δ̄Mwλp + δMw pλp+ v′ = v, v = 0, 1, 2, ..., S ,
δ̄0vδ̄0wµw + δ̄Mwuλr] w′ = w, w = 0, 1, ...,M.

0 otherwise.

(2.6)
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Proof: Using the assumptions of proposed model (subsection (2.2)), first consider P01 matrix which
contains sub-matrix P0 of dimension (M + 1) along the diagonal whose entries are the transition rate
of primary arrival enter into the orbit under the probability p as follows:

(u, v,M)
pλp
−−→ (u + 1, v,M), u = 0, 1, 2, · · · , ; v = 0, 1, 2, · · · S , (2.7)

from Eq (2.7), the Eqs (2.2) and (2.3) are obtained.
Then the matrices below main diagonal, Pu0, where u = 1, 2, · · · , has the sub-matrix Pu of

dimension (M + 1) whose entries are the transition rate of retrial arrival enter into the waiting hall
with classical retrial policy as follows:

(u, v,w)
uλr
−−→ (u − 1, v,w + 1), u = 1, 2, · · · ; v = 0, 1, 2, · · · S , w = 0, 1, 2, · · ·M − 1, (2.8)

by the Eq (2.8), the Eqs (2.4) and (2.5) are obtained. Then the diagonal matrices Puu where u =

0, 1, 2, · · · of dimension (M + 1)(S + 1) whose elements are of the transition rates as follows:
(1) β denotes the rate of reorder transition which follows the (s,Q) ordering policy,

(u, v,w)
β
−→ (u + Q, v,w), u = 0, 1, 2, · · · ; v = 0, 1, 2, · · · s; w = 0, 1, 2, · · ·M. (2.9)

(2) λp be the rate of primary arrival transition enter into the waiting hall,

(u, v,w)
λp
−→ (u, v,w + 1), u = 0, 1, 2, · · · ; v = 0, 1, 2, · · · S ; w = 0, 1, 2, · · ·M − 1. (2.10)

(3) γ indicates the perishable transition rates which is dependent on the number of present inventory
level,

(u, v,w)
vγ
−→ (u, v − 1,w), u = 0, 1, 2, · · · ; v = 1, 2, · · · S ; w = 0, 1, 2, · · ·M. (2.11)

(4) µ represents the service rate of the arrivals but it is dependent on the size of the queue

(u, v,w)
µw
−−→ (u, v − 1,w − 1), u = 0, 1, 2, · · · ; v = 1, 2, · · · S ; w = 1, 2, · · ·M. (2.12)

(5) The diagonal element of the Puu matrices are filled by the sum of all the entries in the corresponding
rows of Puu, Pu0 and P01 with a negative sign in order to satisfy the sum of all entries in each row of a
matrix P yield zero.

From (1)–(5), the Eq (2.6) is achieved. Hence all the sub-matrices obtained through the respective
transitions give the infinitesimal generator matrix P as in Eq (2.1).

Remark 2.2. From the normalizing condition of the infinitesimal generator matrix P, that is, Φ =(
Φ(0),Φ(1), . . . ,

)
preserves

ΦP = 0, (2.13a)
Φe = 1, (2.13b)

and one can obtain the solution of Φ’s either using Direct truncation method or MGA. The partition
of Φ(u) is defined as

Φ(u) =
(
Φ(u,0),Φ(u,1), . . . ,Φ(u,S )

)
, u ≥ 0,

Φ(u,v) =
(
Φ(u,v,0),Φ(u,v,1), . . . ,Φ(u,v,M)

)
, u ≥ 0; 0 ≤ v ≤ S .
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3. Methods of analysis

3.1. Direct truncation method (DTM)

This method is used to evaluate the stationary probability vector Φ of the CTSP, {P(t), t ≥ 0},
by truncating the orbit size as the finite instead of infinite size. Suppose K be the size of orbit in
the truncation process, then the arrival a of customer to orbit upon the size K as considered as lost.
However, choosing a sufficiently larger K, one can reduce the customer lost. To get the smaller loss
probability for this truncation system, we follow the below Theorem (3.1.1).

Theorem 3.1.1. Suppose K be the cut-off point for this DTM. Then the modified generator matrix P̄
and the steady state probability vector Φ(K), generates the truncation point K∗, if

max0≤u≤K∗−1‖Φ
(u+1) − Φ(u)‖∞ < ε, (3.1)

where ε is an infinitesimal quantity.

Proof: The modified generator matrix for this DTM P̄ is obtained from the Eq (2.1) as follows:

P̄ =



(0) (1) (2) · · · (K − 1) (K)
(0) P00 P01

(1) P10 P11 P01

(2) P20 P22 P01
...

. . .
. . .

. . .
...

. . .
. . .

. . .

(K − 1) PK−1,0 PK−1,K−1 P01

(K) PK0 PKK + P01


. (3.2)

Now, the corresponding steady state probability vector Φ can be partitioned into

Φ = (Φ(0),Φ(1), · · · ,Φ(K)). (3.3)

These Φ’s can be determined by exploiting the significant structure of the coefficient matrices. We
have several method to solve this system referring Stewart [38] such as Gauss-Seidel iterative process
and aggregate / dis-aggregate iterative algorithm. But there is no proper algorithm to choose K, one
may proceed the iterative process by choosing K = 1 and increase gradually until there is no significant
change happen in the elements of Φ. At such stage, the corresponding K considered as a K∗, be the
truncation point and it obviously satisfies the norm as in Eq (3.1). �

3.2. Matrix geometric approximation (MGA)

3.2.1. Steady state behaviour

This is also a method to find the stationary probability vector Φ of the SQIS, {P(t), t ≥ 0} by
assuming that whenever there exist almost N customer in the orbit, they follow the classical retrial
policy to enter into the waiting hall. Suppose the orbit size exceeds N, they follow the constant retrial
policy to go to the waiting hall. This assumption is called MGA and N is said to be the truncation point
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of MGA process which is introduced by Neuts [33]. To find the steady state of the considered system
{P(t), t ≥ 0}, we assume PU0 = PN0 and PUU = PNN for all U ≥ N in Eq (2.1). The quasi birth and
death process of this system have a repeating structure after a stage N which is sufficiently large, in
particular, if the number of customer in the orbit exceeds N, then the retrial rate of customer remains
unchanged. Then the modified generator matrix for the MGA having the below structure:

P̂ =



(0) (1) (2) · · · · · · (N) (N + 1) · · · · · ·

(0) P00 P01

(1) P10 P11 P01

(2) P20 P22 P01
...

. . .
. . .

. . .
...

. . .
. . .

. . .
...

. . .
. . .

. . .

(N) PN0 PNN P01

(N + 1) PN0 PNN P01
...

. . .
. . .

. . .
...

. . .
. . .



. (3.4)

Theorem 3.2.1. The steady-state probability vector φ =
(
φ(0), φ(1), . . . , φ(S )

)
corresponding to the

generator GN = PN0 + PNN + P01,N ≥ 1 is given by

φ(v) = φ(Q)av, v = 0, 1, . . . , S , (3.5)

where

av =



(−1)Q−vDQC−1
Q−1DQ−1 · · ·Dv+1C−1

v v = 0, 1, · · · ,Q − 1,
I v = Q,

(−1)2Q−v+1
S−v∑
j=0

[(DQC−1
Q−1DQ−1 · · ·Ds+1− jC−1

s− j)×

FC−1
S− j(DS− jC−1

S− j−1DS− j−1 · · ·Dv+1C−1
v )] v = Q + 1,Q + 2, · · · , S .

Then φ(Q) is obtained by solving

φ(Q)[(−1)Q
S−v∑
j=0

[(DQC−1
Q−1DQ−1 · · ·Ds+1− jC−1

s− j)FC−1
S− j(DS− jC−1

S− j−1DS− j−1 (3.6)

· · ·Dv+1C−1
v )]DQ+1 + CQ + (−1)QDQC−1

Q−1DQ−1 · · ·D1C−1
0 F] = 0

and
S∑

v=0

φ(v)e = 1. (3.7)

Proof: The normalizing condition to the generator matrix GN is defined by

φGN = 0 (3.8a)
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φe = 1. (3.8b)

Here,

[GN]vv′ =


Cv v′ = v, v = 0, 1, 2, · · · , S ,
Dv v′ = v − 1, v = 1, 2, · · · , S ,
F v′ = v + Q, v = 0, 1, 2, · · · , s,
0 otherwise.

where

F =

{
β w′ = w, w = 0, 1, ...,M,
0 otherwise.

Dv =


vγ w′ = w, w = 0, 1, ...,M,
µw w′ = w − 1, w = 1, ...,M,
0 otherwise.

Cv =



δ̄Mw(λp + Nλr) + pλpδMw w′ = w + 1, w = 0, 1, ...,M,

vγ w′ = w, w = 0, 1, ...,M,

µw w′ = w − 1, w = 1, ...,M,

−[δ̄0vvγ + H(s − v)β
+δ̄Mwλp + δMw pλp+

δ̄0vδ̄0wµw + δ̄Mwuλr] w′ = w, w = 0, 1, ...,M,
0 otherwise.

The Eq (3.8a) yields the set of equations:

φ(v+1)Dv+1 + φ(v)Cv = 0, v = 0, 1, · · · ,Q − 1 (3.9a)
φ(v+1)Dv+1 + φ(v)Cv + φ(v−Q)F = 0, v = Q,Q + 1, · · · , S − 1 (3.9b)

φ(v)Cv + φ(v−Q)F = 0 v = S . (3.9c)

On solving the set of Eqs (3.9a) and (3.9b), we get an Eq (3.5) and using Eqs (3.5) and (3.9c), the
equation (3.6) is obtained. The Eq (3.8b) produces an Eq (3.7). Hence, φ(Q), is obtained by solving
(3.6) and (3.7). �

Note: The partition of φ(v) is defined as

φ(v) =
(
φ(v,0), φ(v,1), . . . , φ(v,M)

)
, 0 ≤ v ≤ S .
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Theorem 3.2.2. The stability condition of the system at truncation point N is given by

k1 pλp < k2λr (3.10)

where k1 =
S∑

v=0
φ(v,M) and k2 =

S∑
v=0

M∑
w=1

φ(v,w)N.

Proof: By Neuts [33] stability condition and the matrices P01 and PN0, we have

φP01e < φPN0e.

=⇒ [φ(0), φ(1), · · · , φ(S )]P01e < [φ(0), φ(1), · · · , φ(S )]PN0e.

Now, exploiting the structure P01 and PN0,

[φ(0)P0, φ
(1)P0, · · · , φ

(S )P0]e < [φ(0)PN , φ
(1)PN , · · · , φ

(S )PN]e.

By the partition of φ(v) and exploiting P0 and PN ,

S∑
v=0

φ(v,M) pλp <

S∑
v=0

M∑
w=1

φ(v,w)Nλr.

Hence, the Eq (3.10) is obtained as desired. �

Remark 3.1. (1) Using (3.10), we get,
k1 pλp

k2λr
< 1.

(2) If
k1

k2
= k(say), then

λp

λr
<

1
kp
.

Remark 3.2. The most interesting factor in the stability condition is that it is independent of µ and β.

Remark 3.3. Using Theorems (3.2.1) and (3.2.2), the rate matrix P in Eq (2.1) has Markov process
{(P(t), t ≥ 0} with the state space D is regular. Hence the limiting probability distribution

Φ(u,v,w) = lim
t→∞

Pr [P1(t) = u, P2(t) = v,W(t) = w|P1(0), P2(0),W(0)] ,

exists and it is never dependent of initial state.

Theorem 3.2.3. Due to the specific structure of P using the vector Φ and R can be determined by

R2PN0 + RPNN + P01 = 0 (3.11)

where R is the minimal non-negative solution of the matrix quadratic equation.

Proof: The stationary probability distribution exists and is given by Eqs (2.13a) and (2.13b). We
assume

Φ(u) = Φ(N)Ru−N , u ≥ N

by the stability of R which has the spectral radius(supremum of the absolute values of the eigen values)
less than one.
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Then, we get

Φ(u)(R2PN0 + RPNN + P10) = 0, u = N,N + 1,N + 2, ...
⇒ (R2PN0 + RPNN + P10) = 0.

Then R is a minimal non-negative solution of matrix quadratic Eq (3.11) and we assume R matrix is of
the form

R =


R00 R01 · · · R0S

R10 R11 · · · R1S
...

...
. . .

...

RS 0 RS 1 · · · RS S

 (3.12)

This R has only (S + 1) non zero rows of dimension (S + 1)(M + 1).
Now, due to the specified structure of P01, the structure of block matrix Rvv′ is of the form

Rvv′ =



0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

r0
vv′ r1

vv′ r2
vv′ · · · rM

vv′


(3.13)

which is a square matrix of dimension (M + 1).
Now, exploiting the co-efficient matrices PN0, PNN , P01 with R2 and R equating with 0, we obtain a

system of equations as follows:
Case (1): If v = 0, 1, · · · S and w = 0, we have three sub-cases such as given below:
(i) v′ = 0, 1, · · · , s,

−rw
vv′(λp + Nλr + β) + rw

vv′+1(v′ + 1)γ + rw+1
vv′+1µ1 = 0.

(ii) v′ = Q,Q + 1, · · · , S − 1,

rw
vv′−Qβ − rw

vv′(λp + Nλr + v′γ) + rw
vv′+1(v′ + 1)γ + rw+1

vv′+1µ1 = 0.

(iii) v′ = S ,
rw

vv′−Qβ − rw
vv′(λp + Nλr + v′γ) = 0.

Case (2): If v = 0, 1, · · · , S and w = 1, 2, · · · ,M, we have three sub-cases such as given below:
(i) v′ = 0, 1, · · · , s,

S∑
v1=0

rw
v1v′r

M
vv1

Nλr + rw−1
vv′ λp − rw

vv′(δ̄Mw(λp + Nλr) + δ̄0v′v′γ + +δ̄0v′µw + β) +

δ̄Mwrw
vv′+1(v′ + 1)γ + rw+1

vv′+1µw + δMw pλp = 0.

(ii) v′ = Q,Q + 1, · · · , S − 1,

S∑
v1=0

rw
v1v′r

M
vv1

Nλr + rw
vv′−Qβ + rw−1

vv′ λp − rw
vv′(δ̄Mw(λp + Nλr) + δ̄0v′v′γ + δ̄0v′µw) +
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δ̄Mwrw
vv′+1(v′ + 1)γ + rw+1

vv′+1µw + δ̄Mw pλp = 0.

(iii) v′ = S ,

S∑
v1=0

rw
v1v′r

M
vv1

Nλr + rw
vv′−Qβ + rw−1

vv′ λp − rw
vv′(δ̄Mw(λp + Nλr) + δ̄0v′v′γ + +δ̄0v′µw) + δ̄Mw pλp = 0.

On solving the set of non-linear equations, the R matrix is obtained as in (3.12) and (3.13). �

Remark 3.4. The matrix R can also be obtained using Logarithmic Reduction Algorithm(LRA) which
is introduced by Latouche and Ramaswamy [28]:
Step (i): R1 ← (−PNN)−1P01,R2 ← (−PNN)−1PN0,R3 = R2 and R4 = R1

Step (ii):

R5 = R1R2 + R2R1

R6 = R2
1

R1 ← (I − R5)−1R6

R6 ← R2
2

R2 ← (I − R5)−1R6

R3 ← R3 + R4R2

R4 ← R4R1

Continue Step (i) until ‖e − R3e‖∞ < ε.
Step (iii): R = −P01(PNN + P01R3)−1.

Theorem 3.2.4. From the rate matrix P the vector Φ can be determined by

Φ(u+N−1) = Φ(N−1)Ru; u ≥ 0 (3.14)

where R is defined in Eq (3.11) in Theorem (3.2.3) and the vector Φ(u), u ≥ 0

Φ(u) =

 σX(0)
N∏

j=u
P j0

{
−{−δ0 jI + δ̄0 jP′j−1}

}
, 0 ≤ u ≤ N − 1

σX(0)R(u−N), u ≥ N
(3.15)

where

σ = [1 + X(0)
N−1∑
u=0

N∏
j=u

P j0

{
−{−δ0 jI + δ̄0 jP′j−1}

}
e]−1 (3.16)

X(0) can be obtained by solving

X(0)(P′N + RPN0) = 0 (3.17a)
X(0)(I − R)−1e = 1 (3.17b)
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Proof: The sub-vector (Φ(0),Φ(1), . . . ,Φ(N−1)) and the block partitioned matrix of P satisfies the
following relation

Φ(u)Puu + Φ(u+1)Pu0 = 0, u = 0, (3.18a)
Φ(u−1)P01 + Φ(u)Puu + Φ(u+1)P(u+1)0 = 0, 1 ≤ u ≤ N − 1. (3.18b)

Using equations (3.18a) and (3.18b) recursively, we obtain
Φ(0) = Φ(1)P10(−P′0)−1 with P′0 = P00,Φ

(1) = Φ(2)P20(−P′1)−1 with P′1 = (P11 + P10(−P′0)−1P01),Φ(2) =

Φ(3)P30(−P′2)−1 with P′2 = (P22 + P20(−P′1)−1P01) and so on up to N times.
Hence, we conclude that,

Φ(u) = Φ(u+1)P(u+1)0(−P′u)−1, 0 ≤ u ≤ N − 1 (3.19)

where

P′u =

{
Puu, u = 0
(Puu − Pu0(−P′u−1)−1P01), 1 ≤ u ≤ N.

To find the sub-vector (Φ(N),Φ(N+1),Φ(N+2) . . .), we apply block Gaussian elimination method. The
sub-vector (Φ(N),Φ(N+1),Φ(N+2) . . .) can be determined by

(Φ(N),Φ(N+1),Φ(N+2) . . .)


P′N P01

PN0 PNN P01
. . .

. . .
. . .

. . .
. . .

 = 0. (3.20)

Assume,

σ =
∞∑

u=N
Φ(u)e (3.21)

and X(u) = σ−1Φ(N+u), u ≥ 0. (3.22)

From (3.20), we get

Φ(N)P′N + Φ(N+1)PN0 = 0. (3.23)

Applying the Eq (3.22) in (3.23) and (3.14) along with
∞∑

i=0
X(i)e=1, the Eqs (3.17a) and (3.17b) are

obtained. The unique solution of X(0) is found by solving the Eqs (3.17a) and (3.17b), and substituting
it in (3.22), we get

Φ(u) = σX(0)R(u−N), u ≥ N (3.24)

Again by (3.19) and (3.22),

Φ(u) = σX(0)
N∏

j=u

P j0

{
−{−δ0 jI + δ̄0 jP′j−1}

}
, 0 ≤ u ≤ N − 1 (3.25)

Therefore, combining (3.24) and (3.25), the Eq (3.15) is obtained as desired. And σ is found by
applying the vector Φ in the Eq (2.13b). �
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Corollary 3.2.1. The mean inventory level(MIL) of the SQIS in the steady state, using the vector Φ

along with positive inventory is defined by

MIL =

∞∑
u=0

S∑
v=1

M∑
w=0

vΦ(u,v,w). (3.26)

Corollary 3.2.2. Suppose there are (s + 1) items in the PSL, due to either a service can be completed
or an item may be perished, then the PSL dropped into the level s, we start the reorder process. The
mean reorder rate(MRR) of the SQIS in the steady state, using the vector Φ is defined by

MRR =

∞∑
u=0

M∑
w=1

µwΦ(u,s+1,w) +

∞∑
u=0

M∑
w=0

(s + 1)γΦ(u,s+1,w). (3.27)

Corollary 3.2.3. The PSL may be diminished by perishing items. The mean perishable rate(MPR) of
the SQIS in the steady state, using the vector Φ is defined by

MPR =

∞∑
u=0

S∑
v=1

M∑
w=0

vγΦ(u,v,w). (3.28)

Corollary 3.2.4. In the waiting hall, there should be at least one customer has to wait for getting a
service and the PSL need not be positive. The mean customer in the queue(MCQ) of the SQIS in the
steady state, using the vector Φ is defined by

MCQ =

∞∑
u=0

S∑
v=0

M∑
w=1

wΦ(u,v,w). (3.29)

Corollary 3.2.5. In the orbit, there should be at least one customer has to wait for entering into the
waiting hall. The mean customer in the orbit(MCO) of the SQIS in steady state, using the vector Φ is
defined by

MCO =

∞∑
u=1

S∑
v=0

M∑
w=0

uΦ(u,v,w). (3.30)

Corollary 3.2.6. Suppose the waiting hall is full, the new arrival has the choice to take the decision
to become lost. The expected primary customer lost in the queue(EPL) of the SQIS in the steady state,
using the vector Φ is defined by

EPL =

∞∑
u=0

S∑
v=0

(1 − p)λpΦ
(u,v,M). (3.31)

Corollary 3.2.7. The possible chances of an orbital customer for trying to enter into the waiting hall,
called overall rate of retrial(ORR). The ORR of SQIS in steady state, using the vector Φ is defined by

ORR =

∞∑
u=1

S∑
v=0

M∑
w=0

uλrΦ
(u,v,w). (3.32)
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Corollary 3.2.8. The possible successful chances of an orbital customer to enter into the waiting hall,
called successful rate of retrial(SRR). The SRR of SQIS in the steady state, using the vector Φ is defined
by

S RR =

∞∑
u=1

S∑
v=0

M−1∑
w=0

uλrΦ
(u,v,w). (3.33)

Corollary 3.2.9. The possible chances of any customer to enter into the waiting hall, say expected
customer enter into queue(ECEQ). The ECEQ of SQIS in the steady state, using the vector Φ is defined
by

ECEQ =

∞∑
u=0

S∑
v=0

M−1∑
w=0

λpΦ
(u,v,w) +

∞∑
u=1

S∑
v=0

M−1∑
w=0

uλrΦ
(u,v,w). (3.34)

Corollary 3.2.10. The expectation of a customer enter into the orbit, say ECEO. The ECEO of SQIS
in the steady state, using the vector Φ is defined by

ECEO =

∞∑
u=0

S∑
v=0

pλpΦ
(u,v,M). (3.35)

Corollary 3.2.11. The fraction of successful rate of retrial(FSSR) is defined by the ratio of ORR and
SRR and is given by

FS S R =
S RR
ORR

.

4. Waiting time analysis

The time interval between an epoch of arrival of a customer enter into the waiting hall and the
instant at which their time of service completion, called waiting time(WT ). We discuss the WT of a
customer in the queue as well as orbit individually using LST. By nature, we restrict the orbit size to
finite for finding the waiting time of the orbital customer as follows:

D1 = {(u, v,w) : u = 0, 1, · · · , L; v = 0, 1, · · · , S ; w = 0, 1, · · · ,M}.

We represent Wp and Wo are the continuous time random variables to denote the WT of a customer in
queue and orbit.

4.1. WT of a customer in queue

To find a WT of a customer in the queue, the state space D1 is redefined and is given by, D2 =

{(u, v,w) : u = 0, 1, · · · , L; v = 0, 1, · · · , S ; w = 1, 2, · · · ,M}

Theorem 4.1.1. The probability of a customer does not wait into the queue is considered as

P{Wp = 0} = 1 −
L∑

u=0

S∑
v=0

M−1∑
w=0

Φ(u,v,w) (4.1)
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Proof: Since the sum of probability of zero and positive waiting time is 1, we have

P{Wp = 0} + P{Wp > 0} = 1 (4.2)

Clearly, the probability of positive waiting time of customer in the queue can be determined as

P{Wp > 0} =

L∑
u=0

S∑
v=0

M−1∑
w=0

Φ(u,v,w) (4.3)

The Eq (4.3) can be found using Theorem (3.2.4) and substitute in equation (4.2) we get the stated
result as desired. �

To enable WT distribution of Wp, we shall define some complementary variables. Suppose that the
QIS is at state (u, v,w), w > 0 at an arbitrary time t,
1). Wp(u, v,w) be the time until chosen customer become satisfied.
2). LST of Wp(u, v,w) is W∗

p(u, v,w)(x) and we denote Wp by W∗
p(x).

3). W∗
p(x) = E[exWP] LST of unconditional waiting time(UWT).

4). W∗
p(u, v,w)(x) = E[exWP(u,v,w)] LST of conditional waiting time(CWT).

Theorem 4.1.2. The LST {W∗
p(u, v,w)(x), (u, v,w) ∈ Dc

2 where Dc
2 = D2 ∪ {c}} satisfy the following

system

Zp(x)W∗
p(x) = −µwe(u, v,w), 0 ≤ u ≤ L, 1 ≤ v ≤ S , 1 ≤ w ≤ M (4.4)

Zp(x) = (A − xI), the matrix A is obtained from P by removing the following state (u, v, 0), 0 ≤ u ≤
K, 1 ≤ v ≤ S and {c} be the absorbing state and the absorption occurs if the primary customer is
satisfied.

Proof: To obtain the CWT, we apply first step analysis as follows:
For 0 ≤ u ≤ L, v = 0, 1 ≤ w ≤ M

W∗
p(u, 0,w)(x) =

δ̄Mwλp

a
W∗

p(u, 0,w + 1)(x) +
β

a
W∗

p(u, S − s,w)(x) +

δ̄Mwuλr

a
W∗

p(u − 1, 0,w + 1)(x) +
δMwδ̄Lu pλp

a
W∗

p(u + 1, 0,w)(x), (4.5)

where a = (x + δ̄Mwλp + β + uλr + δMwδ̄Lu pλp)
For 0 ≤ u ≤ L, 1 ≤ v ≤ S , 1 ≤ w ≤ M

W∗
p(u, v,w)(x) =

δ̄Mvλp

b
W∗

p(u, v,w + 1)(x) +
H(s − v)β

b
W∗

p(u, v + Q,w)(x) +

vγ
b

W∗
p(u, v − 1,w)(x) +

µw−1

b
W∗

p(u, v − 1,w − 1)(x) + (4.6)

δ̄Mvuλr

b
W∗

p(u − 1, v,w + 1)(x) +
δMwδ̄Lu pλp

b
W∗

p(u + 1, v,w)(x) +
µ

b

where b = (x + δ̄Mvλp + H(s − v)β + vγ + µw + uλr + δMwδ̄Lu pλp).
From the linear system of Eqs (4.5) and (4.6), we obtain a co-efficient matrix of the unknowns as a

block tri-diagonal yields a stated result. �
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Theorem 4.1.3. The nth moments of CWT is given by

Zp(x)
dn+1

dxn+1 W∗
p(x) − (n + 1)

dn+1

dxn+1 W∗
p(x) = 0 (4.7)

and

dn+1

dxn+1 W∗
p(x)|x=0 = E[Wn+1

p (u, v,w)(x)], (u, v,w) ∈ Dc
2 (4.8)

Proof: On exploring the set of equations which are obtained in Theorem (4.1.2), we get a recursive
algorithm to find a CWT and UWT.

Now, we differentiate the Eqs (4.5) and (4.6) for (n + 1) times and computing at x = 0, we have,
for, 0 ≤ u ≤ L, v = 0, 1 ≤ w ≤ M,

E[Wn+1
p (u, 0,w)] =

δ̄Mwλp

a
E[Wn+1

p (u, 0,w + 1)] +
β

a
E[Wn+1

p (u, S − s,w)] +

δ̄Mwuλr

a
E[Wn+1

p (u − 1, 0,w + 1)] +
δMwδ̄Lu pλp

a
E[Wn+1

p (u + 1, 0,w)], (4.9)

where a = (x + δ̄Mwλp + β + uλr + δMwδ̄Lu pλp).
for 0 ≤ u ≤ L, 1 ≤ v ≤ S , 1 ≤ w ≤ M

E[Wn+1
p (u, v,w)] =

δ̄Mvλp

b
E[Wn+1

p (u, v,w + 1) +
H(s − v)β

b
E[Wn+1

p (u, v + Q,w)] +

vγ
b

E[Wn+1
p (u, v − 1,w)] +

µw−1

b
E[Wn+1

p (u, v − 1,w − 1)] +
δ̄Mwuλr

b

E[Wn+1
p (u − 1, v,w + 1)] +

δMwδ̄Lu pλp

b
E[Wn+1

p (u + 1, v,w) + (n + 1)E[Wn+1
p (u, v,w)]

(4.10)

where b = (x + δ̄Mwλp + H(s − v)β + vγ + µw + uλr + δMwδ̄Lu pλp).
With reference to equations (4.9) and (4.10), one can examine the unknowns E[Wn+1

p (u, v,w)] in
terms of moments having one order less. On setting n = 0, we attain the desired moments of particular
order in an algorithmic way. �

Theorem 4.1.4. The LST of UWT of a customer in the queue is given by

W∗
p(x) = 1 −

L∑
u=0

S∑
v=0

M−1∑
w=0

Φ(u,v,w) +

L∑
u=0

S∑
v=0

M−1∑
w=0

Φ(u,v,w) W∗
p(u, v,w + 1)(x) (4.11)

Proof: Using PASTA(Poisson arrival see time averages) property, one can obtain the LST of Wp as
follows:

W∗
p(x) = Φ(u) W∗

p(u, v,w)(x), 0 ≤ u ≤ L, 0 ≤ v ≤ S , 1 ≤ w ≤ M (4.12)

using the expression (4.12), we get the stated result. By referring Euler and Post-Widder algorithms in
Abatt and Whitt [1] for the numerical inversion of (4.11), Wp is obtained. �
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Corollary 4.1.1. 1. The nth moments of UWT, using Theorem (4.1.4), is given by

E[Wn
p] = δ0n + (1 − δ0n)

L∑
u=0

S∑
v=0

M−1∑
w=0

Φ(u,v,w)E[Wn
p(u, v,w + 1)] (4.13)

Proof: To evaluate the moments of Wp, we differentiate Theorem (4.1.4), n times and evaluate at x = 0,
we get the desired result which gives the nth moments of UWT in terms of the CWT of same order. �

Corollary 4.1.2. The expected waiting time of a customer in the queue is defined by

E[Wp] =

L∑
u=0

S∑
v=0

M−1∑
w=0

Φ(u,v,w)E[Wp(u, v,w + 1)] (4.14)

proof: Using equation (4.13) in Corollary (4.1.1), and substitute n = 1, we get the desired result as in
(4.14). �

4.2. WT of orbital customer

To find a WT of a customer in the orbit, the state space D1 is redefined and is given by, D3 =

{(u, v,w) : u = 1, · · · , L; v = 0, 1, · · · , S ; w = 0, 1, · · · ,M}

Theorem 4.2.1. The probability of an orbital customer does not wait into the orbit is given by

P{Wo = 0} = 1 − b1 (4.15)

where b1 =
L−1∑
u=1

S∑
v=0

Φ(u,v,M)

Proof: Since the sum of probability of zero and positive waiting time is 1, we have

P{Wo = 0} + P{Wo > 0} = 1 (4.16)

Clearly, the probability of positive WT of orbital customer can be determined as

P{Wo > 0} =

L−1∑
u=1

S∑
v=0

Φ(u,v,M) (4.17)

The Eq (4.17) can be found easily using Theorem (3.2.4) and substitute in Eq (4.16) we get the stated
result as desired in (4.15). �

To enable the distribution of Wo, we shall define some complementary variables. Suppose that the
QIS is at state (u, v,w), u > 0 at an arbitrary time t,
1). Wo(u, v,w) be the time until chosen customer become satisfied.
2). LST of Wo(u, v,w) is (u, v,w)(x) and we denote Wo by W∗

o(x).
3). W∗

o(x) = E[exWo] LST of UWT.
4). W∗

o(u, v,w)(x) = E[exWo(u,v,w)] LST of CWT.
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Theorem 4.2.2. The LST {W∗
o(u, v,w)(x), (u, v,w) ∈ Dd

3 where Dd
3 = D3 ∪ {d}} satisfy the following

system

Zo(x)W∗
o(x) = −λre(1, v,w), 0 ≤ v ≤ S , 0 ≤ w ≤ M − 1. (4.18)

Zo(x) = (B − xI), the matrix B is derived from P by deleting the following state (0, v,w), 0 ≤ v ≤
S , 0 ≤ w ≤ M and {d} be the absorbing state and the absorption appears if the orbital customer
enters into the waiting hall.

Proof: To analyze the CWT, we apply first step analysis as follows:
for 1 ≤ u ≤ L, v = 0, 0 ≤ w ≤ M

W∗
o(u, 0,w)(x) =

δ̄Mwλp

a
W∗

o(u, 0,w + 1)(x) +
β

a
W∗

o(u, S − s,w)(x) +

δ̄Mw(u − 1)λr

a
W∗

o(u − 1, 0,w + 1)(x) +
δMwδ̄Lu pλp

a
W∗

0(u + 1, 0,w)(x) +
λr

a
(4.19)

where a = (x + δ̄Mwλp + β + uλr + δMwδ̄Lu pλp),
for 1 ≤ u ≤ L, 0 ≤ v ≤ S , 0 ≤ w ≤ M

W∗
o(u, v,w)(x) =

δ̄Mvλp

b
W∗

o(u, v,w + 1)(x) +
H(s − v)β

b
W∗

o(u, v + Q,w)(x) +

vγ
b

W∗
o(u, v − 1,w)(x) +

µw

b
W∗

o(u, v − 1,w − 1)(x) +

δ̄Mv(u − 1)λr

b
W∗

o(u − 1, v,w + 1)(x) +
δMwδ̄Lu pλp

b
W∗

o(u + 1, v,w)(x) +
λr

b
(4.20)

where, b = (x + δ̄Mvλp + H(s − v)β + vγ + µw + uλr + δMwδ̄Lu pλp).
From the equations (4.19) and (4.20) we attain a co-efficient matrix of the unknowns as a block

tri-diagonal yields a stated result as in (4.18). �

Theorem 4.2.3. The nth moments of conditional waiting time is given by

Zo(x)
dn+1

dxn+1 W∗
o(x) − (n + 1)

dn+1

dxn+1 W∗
o(x) = 0 (4.21)

and

dn+1

dxn+1 W∗
o(x)|x=0 = E[Wn+1

o (u, v,w)(x)], (u, v,w) ∈ Dd
3 (4.22)

Proof: Linear equations which are obtained in Theorem (4.2.2), we get a recursive algorithm to find a
conditional and unconditional waiting times.

Now, we differentiate the equations (4.19) and (4.20) for (n + 1) times and setting at x = 0, we have,
For 1 ≤ u ≤ L, v = 0, 0 ≤ w ≤ M

E[Wn+1
o (u, 0,w)] =

δ̄Mwλp

a
E[Wn+1

o (u, 0,w + 1)] +
β

a
E[Wn+1

o (u, S − s,w)] +
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δ̄Mw(u − 1)λr

a
E[Wn+1

o (u − 1, 0,w + 1)] +
δMwδ̄Lu pλp

a
E[Wn+1

o (u + 1, 0,w)] (4.23)

where a = (x + δ̄Mwλp + β + uλr + δMwδ̄Lu pλp)
For 1 ≤ u ≤ L, 1 ≤ v ≤ S , 0 ≤ w ≤ M

E[Wn+1
o (u, v,w)] =

δ̄Mvλp

b
E[Wn+1

o (u, v,w + 1) +
H(s − v)β

b
E[Wn+1

o (u, v + Q,w)] +

vγ
b

E[Wn+1
o (u, v − 1,w)] +

µk

b
E[Wn+1

o (u, v − 1,w − 1)] +
δ̄Mv(u − 1)λr

b

E[Wn+1
o (u − 1, v,w + 1)] +

δMwδ̄Lu pλp

b
E[Wn+1

o (u + 1, v,w) + (n + 1)E[Wn+1
o (u, v,w)]

(4.24)

where, b = (x + δ̄Mwλp + H(s − v)β + vγ + µw + uλr + δMwδ̄Lu pλp)
With reference to Eqs (4.23) and (4.24), one can determine the unknowns E[Wn+1

p (u, v,w)] in terms
of moments of one order less. On setting n = 0, we obtain the desired moments of particular order in
an algorithmic way. �

Theorem 4.2.4. The LST of UWT of orbital customer is given by

W∗
o(x) = 1 − b1 + b1 W∗

o(u + 1, v,w)(x) (4.25)

Proof: Using PASTA property, one can obtain the LS transform of Wo as follows:

W∗
o(x) = Φ(i) W∗

o(u, v,w)(x), 1 ≤ u ≤ L, 0 ≤ v ≤ S , 0 ≤ w ≤ M (4.26)

using the expressions (4.26), we get the stated result. By considering Euler and Post-Widder algorithms
in Abatt and Whitt [1] for the numerical inversion of (4.25), we obtain Wo. �

Corollary 4.2.1. 1. The nth moments of UWT, using Theorem (4.2.4), is given by

E[Wn
o ] = δ0n + (1 − δ0n)

L−1∑
u=0

S∑
v=0

M∑
w=0

Φ(u,v,w)E[Wn
o (u + 1, v,w)] (4.27)

Proof: To evaluate the moments of Wo, we differentiate Theorem (4.2.4), n times and evaluate at x = 0,
we get the desired result which gives the nth moments of UWT in terms of the CWT of the same order.�

Corollary 4.2.2. The expected waiting time of a orbital customer is defined by

E[Wo] =

L−1∑
u=0

S∑
v=0

M∑
w=0

Φ(u,v,w)E[Wo(u + 1, v,w)] (4.28)

proof: Using Eq (4.27) in Corollary (4.2.1) and substitute n = 1, we get the desired result as in (4.28).�
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5. Economical analysis

Here, we discuss the feasibility of a proposed model through the system characteristics and sufficient
economical illustrations. The expected total cost(ETC) is given by

ETC = (Ch × MIL) + (Cs × MRR) + (Cp × MPR) + (Cpl × EPL) + (Cwp × E[Wp]) + (Cwo × E[Wo])

where
Ch- holding cost per unit at time t.
Cs- set up cost per unit at time t.
Cp- perishable cost per unit at time t.
Cpl- primary customer cost per customer at time t.
Cwp- waiting cost of a customer in the queue at time t.
Cwo- waiting cost of a customer in the orbit at time t.
To analyze numerically, we first fix the parameter as follows:

S = 19, s = 8, λp = 0.4, λr = 0.002, β = 0.6, α = 0.06, γ = 0.005, p = 0.3,M = 7 and µ = 8 and the
cost values are Ch = 0.01.Cs = 0.02,Cp = 0.01,Cwp = 0.5 and Cwo = 0.4. The truncated point for the
matrix geometric method is N = 80.
Note:
Under the behaviour of α, we can have a classification of the proposed model as follows:
1) If α = 0, then the model become a single server SQI system with homogeneous service rates.
2) If 0 < α < 1, then this is a single server SQI system non-homogeneous service rates.
3) If α = 1, then it will be a single server SQI system with linear service rates.

Example 1:
In Table 1, we discuss the local convex point on the ETC varying S and s. We observe that the

minimum ETC exist in each row and column. Here, the minimum ETC in each row and column are
differentiated by underlined numbers and bold numbers respectively. The intersection of underlined
and bold numbers, called optimum point and indicated by (S ∗, s∗) where S ∗ = 19 is the optimum PSL
and s∗ = 8 is the optimum reorder level and they gave a optimum total cost ETC∗ = 4.711953.

Table 1. Impact of S and s focusing convex on ETC.

s 6 7 8 9 10 11
S
16 5.688521 5.585172 5.335717 5.466370 5.794372 6.217789
17 5.363327 5.240321 4.982175 5.054033 5.277367 5.544535
18 5.168421 5.037845 4.783913 4.824732 4.990188 5.176271
19 5.079380 4.951638 4.711953 4.740968 4.878154 5.026076
20 5.081969 4.963681 4.744422 4.773719 4.900528 5.034442
21 5.162549 5.057890 4.862353 4.899462 5.026782 5.160525
22 5.320958 5.233488 5.063674 5.114357 5.250626 5.394339
23 5.739162 5.681582 5.546915 5.635172 5.814073 6.007993
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Example 2: ( Investigation on N)
We investigate the truncation point in the MGA by Neuts-Rao algorithms varying parameters in

Tables 2 and 3.

• The value of N decreases as α increases along with the increasing service rate µ.
• Whenever λr increases N decreases relating to the increasing service rate.
• Generally, if µ increases, one can observe from the Table 1, the truncation point N decreases, this

SQI system become stable quickly.
• We can observe that, p is high, then N become significantly larger, that is they are directly

proportional and highly sensitive.
• If β increases, then N decreases. Suppose α and β are small, then N is highly differ under µ.
• In Tables 2 and 3, we assure that, λr is small, N will be very larger.
• The appearance of truncation point become small, if we increase the α, λr and µ but p should be

decreased.

Example 3: Investigation of fraction of successful rate of retrial(FSRR)

• From Table 4, one can observe that, although there is an increase in each λp for each µ, FSRR
decreases if each α, but the very notable point is FSRR increases if α increases. Hence, α become
a decision factor to increase the FSRR.
• Meanwhile, there is an increase in λr, FSRR will increase for each α and µ because when we

increase µ, MCQ will decrease and it cause the increase of FSRR.
• It is interesting to observe that if γ increases, FSRR will increases for every α, λp, λr and µ.

However. the behaviour of γ never affect the increase of FSRR because γ and µ diminished the
PSL to s , then replenishment should be placed immediately.
• The parameters λp and µ behave contrary to each other on the FSRR with respect to α.
• If we increase both λp and λr, then the FSRR decreases considerably.
• On comparing λr and µ, we note that, both are behave likely to each other for each α on FSRR.

Example 4: The E[Wp] and E[Wo] had been discussed in Figure 1 and Figure 2 respectively.

• Figure 1 shows that WT of a customer in the queue decreases as µ increases. As we predicted that
the case α = 0(homogeneous service rate) has higher WT than the case α = 0.5 and α = 1. Then
the aim of model can be achieved.
• Figure 2 explains E[Wo] with the non-homogeneous service rates. We observe that E[Wo]

decreases when we increase µ, that is figure 1 and 2 have shown that WT and service rates are
inversely proportional to each other. In particular, α = 0.5 gave the predicted result when we
analyzing both α = 0 and α = 1.
• Figure 3 depicts that the expected WT of a queue is increases when the perishable rate γ increases.

Clearly, α = 0 gave the higher WT than the other cases α = 0.5 and α = 1.
• Figure 4 shows that the WT of orbital customer also increases if we increase γ and here also,
α = 0.5 gave the feasible result.
• In Figure 5 depicted that E[Wp] increases when we increase λp for each α. When α = 0, E[Wp]

is higher the other α’s.
• In Figure 6 depicted that E[Wo] decreases when we increase λr for each α. When the case α = 0,

E[Wo] is greater than the other two cases.
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Table 2. Influence of the parameters α, λr, p and β on the Truncation point N.

α λr p β µ = 8 µ = 12 µ = 16 µ = 20 µ = 24
0 0.002 0.3 0.6 305 249 217 209 206

1 87 60 50 50 48
12 76 49 46 45 45

0.7 0.6 950 900 860 800 710
1 129 60 55 54 51
12 117 56 49 47 46

0.2 0.3 0.6 144 136 122 120 112
1 30 20 19 18 16
12 23 16 11 10 9

0.7 0.6 950 700 520 445 440
1 50 30 27 26 26
12 46 26 18 14 13

2 0.3 0.6 115 112 112 109 100
1 24 20 20 18 16
12 19 14 10 9 8

0.7 0.6 720 660 480 420 405
1 51 29 28 27 26
12 38 25 17 13 11

0.06 0.002 0.3 0.6 284 227 222 208 197
1 58 56 55 54 54
12 48 48 46 45 45

0.7 0.6 900 870 810 777 674
1 102 63 58 57 57
12 92 53 48 46 46

0.2 0.3 0.6 140 129 119 119 111
1 32 26 25 24 23
12 21 14 10 9 8

0.7 0.6 850 659 508 438 437
1 49 36 33 32 32
12 37 22 16 13 12

2 0.3 0.6 110 104 103 103 98
1 29 25 24 23 23
12 17 13 9 8 7

0.7 0.6 600 594 430 400 378
1 40 30 27 26 25
12 33 21 15 12 11
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Table 3. Influence of the parameters α, λr, p and β on the Truncation point N.

α λr p β µ = 8 µ = 12 µ = 16 µ = 20 µ = 24
0.9 0.002 0.3 0.6 184 155 145 120 90

1 47 35 30 28 28
12 45 34 32 27 26

0.7 0.6 650 530 490 420 300
1 85 56 50 47 47
12 75 42 40 38 36

0.2 0.3 0.6 115 96 80 78 75
1 25 20 18 15 14
12 16 10 8 7 7

0.7 0.6 600 510 475 390 250
1 46 35 33 29 28
12 33 17 14 11 10

2 0.3 0.6 90 85 79 72 65
1 26 23 20 19 18
12 13 10 8 7 6

0.7 0.6 550 475 386 345 225
1 36 26 22 21 20
12 30 18 13 10 10
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Table 4. Impact of parameters λp, λr, γ, α and µ on FSRR.

λp λr γ µ = 7 µ = 8 µ = 9
α = 0 α = 0.5 α = 1 α = 0 α = 0.5 α = 1 α = 0 α = 0.5 α = 1

0. 3 0.001 0.8 1.6398 1.7976 1.8332 1.6692 1.8103 1.8298 1.6923 1.8177 1.8297
1.6 1.6958 1.8169 1.8271 1.7229 1.8178 1.8302 1.7434 1.8157 1.8336
2.4 1.7250 1.8227 1.8336 1.7507 1.8213 1.8369 1.7691 1.8198 1.8401
3.2 1.7405 1.8279 1.8399 1.7653 1.8273 1.8427 1.7825 1.8270 1.8453

0.003 0.8 1.6468 1.7989 1.8380 1.6738 1.8116 1.8370 1.6955 1.8190 1.8388
1.6 1.7031 1.8180 1.8301 1.7279 1.8188 1.8336 1.7469 1.8166 1.8369
2.4 1.7330 1.8237 1.8358 1.7561 1.8221 1.8394 1.7729 1.8205 1.8428
3.2 1.7491 1.8289 1.8416 1.7711 1.8281 1.8446 1.7867 1.8277 1.8474

0.005 0.8 1.6504 1.7994 1.8398 1.6764 1.8120 1.8388 1.6975 1.8194 1.8393
1.6 1.7069 1.8185 1.8306 1.7307 1.8192 1.8340 1.7489 1.8170 1.8363
2.4 1.7370 1.8243 1.8362 1.7591 1.8225 1.8398 1.7751 1.8209 1.8433
3.2 1.7534 1.8295 1.8419 1.7743 1.8285 1.8449 1.7891 1.8280 1.8477

0.4 0.001 0.8 1.5671 1.7752 1.8050 1.6100 1.7895 1.8003 1.6425 1.7972 1.7997
1.6 1.6191 1.7925 1.7973 1.6604 1.7949 1.7992 1.6907 1.7926 1.8019
2.4 1.6447 1.7961 1.8023 1.6851 1.7955 1.8049 1.7139 1.7932 1.8077
3.2 1.6561 1.7984 1.8078 1.6962 1.7984 1.8102 1.7243 1.7976 1.8126

0.003 0.8 1.5832 1.7772 1.8119 1.6206 1.7912 1.8008 1.6498 1.7988 1.7991
1.6 1.6363 1.7943 1.8001 1.6718 1.7963 1.8027 1.6986 1.7939 1.8067
2.8 1.6632 1.7981 1.8045 1.6975 1.7969 1.8074 1.7225 1.7944 1.8103
3.2 1.6762 1.8005 1.8096 1.7099 1.7999 1.8121 1.7339 1.7988 1.8147

0.005 0.8 1.5906 1.7781 1.8108 1.6259 1.7919 1.7954 1.6538 1.7958 1.7999
1.6 1.6441 1.7953 1.8005 1.6775 1.7971 1.8036 1.7029 1.7985 1.8074
2.6 1.6715 1.7992 1.8050 1.7036 1.7977 1.8078 1.7214 1.7950 1.8108
3.2 1.6850 1.8017 1.8099 1.7164 1.8008 1.8125 1.7389 1.7995 1.8151

0.5 0.001 0.8 1.4778 1.7507 1.7820 1.5382 1.7676 1.7763 1.5833 1.7765 1.7718
1.6 1.5248 1.7665 1.7709 1.5846 1.7720 1.7713 1.6281 1.7710 1.7733
2.4 1.5456 1.7686 1.7742 1.6053 1.7705 1.7760 1.6480 1.7688 1.7783
3.2 1.5522 1.7682 1.7786 1.6124 1.7705 1.7806 1.6549 1.7703 1.7827

0.003 0.8 1.5102 1.7539 1.7829 1.5599 1.7701 1.7688 1.5981 1.7786 1.7782
1.6 1.5594 1.7699 1.7739 1.6079 1.7744 1.7748 1.6442 1.7729 1.7768
2.4 1.5828 1.7723 1.7765 1.6306 1.7731 1.7786 1.6656 1.7708 1.7810
3.2 1.5923 1.7726 1.7807 1.6400 1.7735 1.7827 1.6744 1.7725 1.7849

0.005 0.8 1.5230 1.7555 1.7823 1.5693 1.7712 1.7631 1.6052 1.7795 1.7797
1.6 1.5731 1.7717 1.7744 1.6180 1.7757 1.7744 1.6518 1.7738 1.7773
2.4 1.5973 1.7743 1.7770 1.6414 1.7745 1.7791 1.6738 1.7718 1.7815
3.2 1.6077 1.7748 1.7812 1.6515 1.7751 1.7832 1.6832 1.7737 1.7854
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Figure 1. Expected WT of customer in the queue on α vs µ.
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Figure 2. Expected WT of orbital customer on α vs µ.
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Figure 3. Expected waiting time of customer in the queue on α vs γ.
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Figure 4. Expected waiting time of orbital customer on α vs γ.
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Figure 5. Expected WT of customers in the queue on α vs λp.
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Figure 6. Expected WT of orbital customer on α vs λr.
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Example 5:
Table 5 shows that the domination of p and λp on the MCQ and MCO.

• Whenever we increase λp, we can observe the increased MCQ as well as MCO. However it is
interesting to note that both MCQ and MCO decreases as α increases.
• The remarkable thing is, on increasing p, it never affect the MCQ but the domination of p reflects

in MCO towards increasing.
• In Table 6, when λr increases, MCQ increases where as MCO decreases and both has been

decreased as α increases, this is because due to faster service, MCQ will decrease which cause
the decreasing MCO.
• Here, when we increase p, both MCQ and MCO will increase.
• On comparing Table 5 and Table 6, we can realize the significant of p with λp is that the MCQ is

unchanged and λr has the considerable increment in MCQ.

Example 6: Investigation of β and γ on ETC with µ and α We investigate the influence of the
parameters β, γ, µ and α on the ETC in Table 7.

• As µ increases, the corresponding ETC decreases, in particular, for every increasing α, there can
be seen that the ETC decreases.
• As we predicted earlier, the increase of γ provide the increasing ETC considerably for each µ and
α.
• Although the γ sustains the ETC in an increasing manner, β dominates the ETC in a decreasing

manner.
• However, when we increase β, γ, µ and α at time t, we get a minimized ETC, that is the optimum

ETC is achieved.
• In the case α = 0, the ETC always larger when we comparing other α’s and Table 7 assures that

the choice of α plays the key role to provide the best optimum ETC.
• Here, the impact of γ and β on ETC are contrary to each other where as β and µ behave the same

but γ and µ are reacting against to each other.
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Table 5. Impact of p and λp on MCQ and MCO.

MCQ MCO
p λp α = 0 α = 0.5 α = 1 α = 0 α = 0.5 α = 1

0.1 0.3 3.1927737 3.1925672 3.1924299 2.01×10−7 1.88×10−7 1.84×10−7

0.4 3.2349524 3.2346278 3.2344164 3.23×10−6 4.36×10−6 4.27×10−6

0.5 3.2760552 3.2755901 3.2752934 4.48×10−5 4.20×10−5 4.11×10−5

0.6 3.3145532 3.3139230 3.3135288 2.53×10−4 2.37×10−4 2.32×10−4

0.7 3.3498148 3.3489916 3.3484858 1.00×10−3 9.41×10−4 9.20×10−4

0.8 3.3816921 3.3806448 3.3800113 3.11×10−3 2.91×10−3 2.84×10−3

0.4 0.3 3.1927737 3.1925672 3.1924299 1.00×10−6 9.41×10−7 9.21×10−7

0.4 3.2349524 3.2346278 3.2344164 2.32×10−5 2.18×10−5 2.13×10−5

0.5 3.2760552 3.2755901 3.2752934 2.24×10−4 2.10×10−4 2.05×10−4

0.6 3.3145532 3.3139230 3.3135288 1.26×10−3 1.18×10−3 1.16×10−3

0.7 3.3498148 3.3489916 3.3484858 5.02×10−3 4.71×10−3 4.60×10−3

0.8 3.3816921 3.3806448 3.3800113 1.55×10−2 1.45×10−2 1.42×10−2

0.9 0.3 3.1927737 3.1925672 3.1924299 1.81×10−6 1.69×10−6 1.65×10−6

0.4 3.2349524 3.2346278 3.2344164 4.18×10−5 3.92×10−5 3.84×10−5

0.5 3.2760552 3.2755901 3.2752934 4.03×10−4 3.78×10−4 3.70×10−4

0.6 3.3145532 3.3139230 3.3135288 2.28×10−3 2.13×10−3 2.09×10−3

0.7 3.3498148 3.3489916 3.3484858 9.05×10−3 8.47×10−3 8.28×10−3

0.8 3.3816921 3.3806448 3.3800113 2.80×10−2 2.62×10−2 2.55×10−2
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Table 6. Impact of p and λr on MCQ and MCO.

MCQ MCO
p λr α = 0 α = 0.5 α = 1 α = 0 α = 0.5 α = 1

0.1 0.001 3.23495244 3.23462789 3.23441645 4.65×10−6 4.36×10−6 4.27×10−6

0.002 3.25566972 3.25527872 3.25502658 2.32×10−6 2.18×10−6 2.13×10−6

0.003 3.27585241 3.27538996 3.27509473 1.55×10−6 1.45×10−6 1.42×10−6

0.004 3.29536999 3.29483092 3.29449016 1.16×10−6 1.09×10−6 1.06×10−6

0.005 3.31413860 3.31351747 3.31312857 9.30×10−7 8.73×10−7 8.54×10−7

0.006 3.33210886 3.33139996 3.33096016 7.75×10−7 7.27×10−7 7.12×10−7

0.007 3.34925700 3.34845430 3.34796063 6.64×10−7 6.23×10−7 6.10×10−7

0.4 0.001 3.23495246 3.23462790 3.23441646 2.32×10−5 2.18×10−5 2.13×10−5

0.002 3.25566976 3.25527875 3.25502661 1.16×10−5 1.09×10−5 1.06×10−5

0.003 3.27585251 3.27539006 3.27509483 7.75×10−6 7.27×10−6 7.12×10−6

0.004 3.29537023 3.29483115 3.29449038 5.81×10−6 5.45×10−6 5.34×10−6

0.005 3.31413907 3.31351793 3.31312903 4.65×10−6 4.36×10−6 4.27×10−6

0.006 3.33210973 3.33140081 3.33096100 3.87×10−6 3.63×10−6 3.56×10−6

0.007 3.34925846 3.34845573 3.34796204 3.32×10−6 3.11×10−6 3.05×10−6

0.9 0.001 3.23495246 3.23462791 3.23441647 4.18×10−5 3.92×10−5 3.84×10−5

0.002 3.25566978 3.25527878 3.25502664 2.09×10−5 1.96×10−5 1.92×10−5

0.003 3.27585259 3.27539013 3.27509491 1.39×10−5 1.30×10−5 1.28×10−5

0.004 3.29537041 3.29483132 3.29449056 1.04×10−5 9.82×10−6 9.61×10−6

0.005 3.31413945 3.31351830 3.31312930 8.37×10−6 7.85×10−6 7.69×10−6

0.006 3.33211033 3.33140150 3.33096501 6.97×10−6 6.54×10−6 6.40×10−6

0.007 3.34926272 3.34845690 3.34797384 5.98×10−6 5.61×10−6 5.49×10−6
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Table 7. Impact of parameters β, γ, α and µ on ETC.

β γ µ = 6 µ = 8 µ = 10
α = 0 α = 0.5 α = 1 α = 0 α = 0.5 α = 1 α = 0 α = 0.5 α = 1

0.2 0.002 12.9457 12.7382 12.6635 12.7882 12.6438 12.5913 12.6999 12.5896 12.5493
0.004 13.1785 12.9647 12.8878 13.0164 12.8678 12.8137 12.9258 12.8122 12.7707
0.006 13.4047 13.1848 13.1057 13.2383 13.0854 13.0299 13.1452 13.0285 12.9858
0.008 13.6253 13.3992 13.3180 13.4544 13.2974 13.2404 13.3591 13.2392 13.1954
0.010 13.8407 13.6085 13.5254 13.6655 13.5044 13.4460 13.5679 13.4449 13.4001

0.4 0.002 5.1177 5.0976 5.0904 5.1000 5.0866 5.0817 5.0904 5.0804 5.0767
0.004 5.1352 5.1146 5.1072 5.1171 5.1034 5.0983 5.1074 5.0971 5.0932
0.006 5.1524 5.1311 5.1235 5.1340 5.1198 5.1146 5.1240 5.1133 5.1094
0.008 5.1693 5.1474 5.1396 5.1505 5.1359 5.1305 5.1403 5.1293 5.1253
0.010 5.1858 5.1634 5.1554 5.1667 5.1517 5.1462 5.1564 5.1451 5.1409

0.6 0.002 4.7487 4.7428 4.7412 4.7406 4.7379 4.7369 4.7369 4.7351 4.7344
0.004 4.7528 4.7470 4.7454 4.7449 4.7421 4.7411 4.7412 4.7393 4.7386
0.006 4.7568 4.7512 4.7495 4.7491 4.7463 4.7452 4.7454 4.7435 4.7427
0.008 4.7608 4.7552 4.7536 4.7532 4.7504 4.7493 4.7495 4.7476 4.7468
0.010 4.7648 4.7593 4.7576 4.7573 4.7545 4.7534 4.7537 4.7517 4.7509

0.8 0.002 4.7056 4.6976 4.6967 4.6948 4.6930 4.6925 4.6911 4.6903 4.6900
0.004 4.7065 4.6993 4.6984 4.6964 4.6947 4.6942 4.6928 4.6920 4.6917
0.006 4.7074 4.7008 4.6999 4.6979 4.6963 4.6958 4.6944 4.6936 4.6933
0.008 4.7084 4.7024 4.7015 4.6994 4.6978 4.6973 4.6960 4.6952 4.6949
0.010 4.7095 4.7039 4.7030 4.7010 4.6994 4.6989 4.6976 4.6968 4.6965

1.0 0.002 4.7006 4.6879 4.6869 4.6858 4.6829 4.6825 4.6810 4.6801 4.6798
0.004 4.7014 4.6884 4.6876 4.6861 4.6835 4.6831 4.6815 4.6807 4.6804
0.006 4.7025 4.6889 4.6881 4.6864 4.6840 4.6836 4.6820 4.6812 4.6810
0.008 4.7038 4.6894 4.6885 4.6866 4.6845 4.6841 4.6824 4.6817 4.6814
0.010 4.7054 4.6898 4.6890 4.6869 4.6850 4.6846 4.6829 4.6822 4.6819

6. Conclusions and Future Work

The performance of a single server system in a perishable SQIS is investigated with the
queue-dependent service rate. The stability condition and stationary probability vector of the
proposed model is derived by the Neuts MGA. The waiting time of both primary and an orbital
customer are constructed by the LST. The illustrated numerical examples explored the impact of
queue-dependent service rate. With the system performance measures, the discussion made in the
numerical section proved that queue-dependent service rate(non-homogeneous service rate) is much
better than the homogeneous service rate. In all the examples, the case α = 0 and α ∈ (0, 1] are
distinguished properly. Since the paper thoroughly analyzes the homogeneous and non-homogeneous
service rates, it will give the generalized result for both cases(homogeneous and non-homogeneous
service rates). Due to the increase of the service speed, number of customer serviced in the system is
increased. This leads not only a more sale and profit to the management also this will reduce the
impatient mindset of a customer. If a customer getting service quickly with the satisfaction, they will
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prefer the same system for the next purchase. Subsequently, the number of arriving customer to the
system will increase day-by-day. Most of the inventory management purely dependent on the
customer only. In this competitive society, every management wants to survive with a wealthy growth.
For this growth, the concept made in this paper, will be much helpful to all the inventory management.

In future, this model can be extended into a multi server SQIS system involving additional service
for a feedback customer of an infinite queue size.
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