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+is article examines mixed H-infinity and passivity synchronization of Markovian jumping neutral-type complex dynamical
network (MJNTCDN) models with randomly occurring coupling delays and actuator faults. +e randomly occurring coupling
delays are considered to design the complex dynamical networks in practice. +ese delays complied with certain Bernoulli
distributed white noise sequences. +e relevant data including limits of actuator faults, bounds of the nonlinear terms, and
external disturbances are available for designing the controller structure. Novel Lyapunov–Krasovskii functional (LKF) is
constructed to verify the stability of the error model and performance level. Jensen’s inequality and a new integral inequality are
applied to derive the outcomes. Sufficient conditions for the synchronization error system (SES) are given in terms of linear matrix
inequalities (LMIs), which can be analyzed easily by utilizing general numerical programming. Numerical illustrations are given to
exhibit the usefulness of the obtained results.

1. Introduction

Complex dynamical network (CDN) models are firstly in-
vestigated byWatts and Strogatz [1].+ese models are sets of
large-scale coupled nodes of interconnected systems, e.g.,
chemical substrates, microprocessors, and computers [2, 3].
Generally, CDN models are epitomized in practice, e.g., the
World Wide Web, food webs, cellular and metabolic net-
works, neural systems, aviation systems, transportation

systems, and electricity distribution systems [4, 5]. A
number of these systems exhibit complexities in their to-
pological and dynamical properties. +e application of these
networks can be found in streamlining the structure as well
as reducing the control costs [6].

Particularly, synchronization remains normal along with
the significant group of powerful performance as concerns
CDNs, which has turned into an expanding concern fur-
thermore, close inquire about the theme with its expressive
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ongoing years [7]. Synchronization is a regular and signif-
icant aggregate conduct of a complex network. As a key look
into zone broad, endeavors are given to the comprehension
of the synchronization system of such organization. As a
central wonder in moving practices about systems, syn-
chronization issue as concerns CDNs has appealed to an
impressive consideration against different range, for ex-
ample, environment, aerology, building, control matrices as
well as banking sector [8, 9], because of its productive ap-
plications. Since inadequate data frequently show up in some
practical systems, for example, just 5% of excitatory neu-
rotransmitters can be received between two associated
cortical regions of brain systems [10], not all the diverted
data of clients in wireless systems are known to the trans-
mitter [11]. Immediately, the synchronization issue of
complex networks with partial coupling is tended to in [12].
For the model, a time-varying complex dynamical networks
model and its synchronization criteria are investigated in
[13]. Synchronization of CDNs with a weighted time-
varying adjacency matrix was explored by means of dis-
tributed adaptive control in [14]. +e coupled network
models are regularly utilized as scientific instruments to
demonstrate in break down systems. For asynchronous
complex networks, it is specifically noteworthy to locate a lot
of controllers to accomplish synchronization of dynamical
practices of all nodes in systems.

Markovian jump networks (MJNs) are a class of sto-
chastic hybrid models. +ey are dynamic networks whose
structures are subjected to random parameter that changes
abrupt condition disturbances, changing subsystem inter-
connections that occur nonlinearly [15–21]. When CDN
models get unexpected changes in their structure, we can
represent them using Markovian jumping complex net-
works, which have been studied by many researchers
[22,23].

In practical systems, time delays are regularly experi-
enced. Consequently, time delays in couplings and in dy-
namical nodes have received considerable attention [24, 25].
On the other hand, time delays are unavoidable as a result of
constrained transmission speeds and traffic congestion.
Many researchers have investigated the effects of time delays
on stability and synchronization [26]. Indeed, the existence
of time delays can be found in numerous systems, such as
atomic reactors, population dynamic models, aircraft sta-
bilization, natural frameworks, chemical engineering sys-
tems, and ship stabilization circuit theory [27, 28].

It is natural that actuator faults occur frequently, which
can lead to unstable system operation [29]. It is imperative to
design controllers with the capability of ensuring the sta-
bility of closed-loop systems in the event of faults. In this
regard, various control methodologies are available to realize
the control objectives subject to faults. Fault-tolerant control
(FTC) systems can be divided into two types: passive and
active approaches. Passive FTC controllers usually have
basic structures with restricted fault-tolerant capabilities. In
contrast, active FTC controllers have structures with better
self-organization. Fault identification or estimation gener-
ally requires dynamic fault-tolerant controllers that can be
changed in accordance with data limitations (see [30, 31]).

Motivated by the above discussion, we study mixed
H-infinity and passivity-based synchronization of Mar-
kovian jumping neutral-type complex dynamical network
(MJNTCDN) models with time-varying distributed cou-
pling delays and actuator faults in this paper that are as
follows:

(1) We analyze the mixed H-infinity and passivity
synchronization of MJNTCDN models with dis-
tributed random coupling time-varying delays and
actuator faults

(2) +e randomly occurring coupling delays satisfy the
Bernoulli random binary procedure

(3) Delay-dependent conditions are derived to guar-
antee the MJNTCDN models is mixed H-infinity
and passive performance at level c

(4) Improved Jensen’s inequalities and integral in-
equalities are utilized to infer the sufficient condi-
tions in terms of LMIs

(5) Numerical results are provided to exhibit the ef-
fectiveness of the proposed method

Notations. +e following notations are used throughout
this paper. Rn and Rm×n denote the n-dimensional Eu-
clidean space and the set of all m × n real matrices, re-
spectively, while P1 > 0 means that matrix P1 is real
symmetric and positive definite. Superscript “T” stands
for the transpose; diag ·{ } stands for a block diagonal
matrix; A− 1 denotes the matrix inverse of A; E ·{ } stands
for the mathematical expectation operator with respect to
the given probability measure; L2[0,∞) stands for the
space of square-integrable vector functions over interval
[0,∞); ‖ · ‖ denotes the Euclidean norm of a vector and its
induced norm of a matrix. +e symbol “⋆” is used to
represent the term of a symmetric matrix which can be
inferred by symmetry; symbol “ ⊗ ” stands for the Kro-
necker product. If not explicitly stated, all matrices are
assumed to have compatible dimensions for algebraic
operations. Given a complete probability space
(Ω,F, Ft􏼈 􏼉t≥0,P) with a natural filtration Ft􏼈 􏼉t≥0 ful-
filling the typical conditions (i.e., the filtration contains all
P-invalid sets and is right continuous), where Ω is the
sample space, F is the algebra of events, and P is the
probability measure defined onF. +e process δ(t), t≤ 0{ }

is a continuous homogeneous Markovian process with
right continuous trajectories and takes values in the finite
space S � 1, 2, . . . ,N{ }. In particular, δ(t) is related to the
change likelihood network Θ � (θpq)N×N(p, q ∈ S) given
by the transition rates:

P δ(t + h) � q|δ(t) � p􏼈 􏼉 �
θpqh + o(h), p≠ q,

1 + θpph + o(h), p � q,

⎧⎨

⎩

(1)

where h> 0 is the visit time and limh⟶0o(h)/h � 0. Here,
θpq ≥ 0 is the change rate from mode p at time t to mode q at
time t + h if p≠ q and θpp � − 􏽐

N
q�1,q≠p θij.
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2. Problem Statement and Preliminaries

We recognize a class of MJNTCDN models composed of N

indistinguishable coupled nodes, in which each node has
n-dimensional randomly occurring distributed coupling

delays and actuator faults and position of the elements of the
zth hub is spoken to through the accompanying nonlinear
dynamical subsystem:

_􏽢rz(t) � A1(δ(t))􏽢rz(t) + B1(δ(t))f t, 􏽢rz(t)( 􏼁 + B2(δ(t))f t, 􏽢rz(t − ϑ(t))( 􏼁 + C(δ(t)) _􏽢rz(t − κ(t))

+(1 − β(t)) 􏽘
N

j�1
g(1)

zj Γ1(δ(t))􏽢rj(t) + β(t) 􏽘
N

j�1
g(2)

zj Γ2(δ(t)) 􏽚
t

t−ρ(t)
􏽢rj(s)ds + D1(δ(t))u

f
z (t) + E1(δ(t))vz(t),

􏽢yz(t) � A2(δ(t))􏽢rz(t), z � 1, 2, . . . , N,

􏽢rz(t) � Φz(t), ∀t ∈ [−h, 0], h � max ϑ2, κ2􏼈 􏼉,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where 􏽢rz(t) � (􏽢rz1(t), 􏽢rz2(t), . . . , 􏽢rzn(t))T ∈ Rn stands for
the state vector zth node with respect to the model at time t,
􏽢yz(t) is the measured output corresponding to the zth node;
Φz(t) is the continuous initial function of the zth node;
u

f
z (t) ∈ Rm denotes the fault control input vector of the zth

hub; wz(t) ∈ Rp represents the constant external input
vector which belongs to L2[0,∞); f: R × Rn⟶ Rn is
continuously differentiable smooth nonlinear vector-valued
field, which satisfies sector-bounded conditions which will
be characterized later; G(q) � (g(l)

zj ) ∈ RN×N(l � 1, 2) are the
outer-coupling configuration matrices representing the to-
pological structure of the model, in which gzj is defined as
follows: if there is a connection from node z to node j(z≠ j),
then the coupling matrix g(1)

zj � g(1)
jz � 1 and g(2)

zj � g(2)
jz � 1;

otherwise, g(1)
zj � g(1)

jz � 0 and g(2)
zj � g(2)

jz � 0. +e diagonal
elements are defined by

g(1)
zz � − 􏽘

N

j�1,j≠z
g(1)

zj ,

g(2)
zz � − 􏽘

N

j�1,j≠z
g(2)

zj , z � 1, 2, . . . , N.

(3)

Γa(δ(t)) � diag ua1(δ(t)), ua2(δ(t)), . . . , uan(δ(t))􏼈 􏼉(a �

1, 2) are constant diagonal inner-coupling matrices. In ad-
dition, A1(δ(t)), A2(δ(t)), B1(δ(t)), B2(δ(t)), C1(δ(t)),
D1(δ(t)), and E1(δ(t)) are constant matrices with appro-
priate dimensions. For the time delay signals, ϑ(t), κ(t), and
ρ(t) denote the retarded delays, distributed delays, and
neutral time-varying delays, respectively, and are assumed to
satisfy the following inequalities:

0≤ ϑ1 ≤ ϑ(t)≤ ϑ2,

ϑ
.

(t)≤ ς1 < 1,

0≤ κ1 ≤ κ(t)≤ κ2,

_κ(t)≤ ς2 < 1,

0≤ ρ(t)≤ ρ,

ρ(t)
.

≤ μ3,

(4)

where ϑ1, ϑ2, κ1, κ2, ς1, ς2, μ3, and ρ are real constant scalars.

+e randomly occurring coupling delay β(t) ∈ R de-
notes a stochastic variable which is in the form of a Bernoulli
distributed sequence defined by

β(t) �
1, if delayed information exchanges happen,

0, if delayed information exchanges do not happen,
􏼨

(5)

+e probability occurrence of stochastic variable β(t) is
given by

Prob β(t) � 1􏼈 􏼉 � β,

Prob β(t) � 0􏼈 􏼉 � 1 − β,
(6)

where β ∈ [0, 1] is a known constant.
+en, we can obtain

E β(t) − β􏽮 􏽯 � 0,

E (β(t) − β)
2

􏽮 􏽯 � β(1 − β),
(7)

Assumption 1. For nonlinear function f(·): Rn⟶ Rn,
there exist constant matrices G1 and G2 such that

f t, 􏽢rz(t)(
����

����≤G1 􏽢rz(t)
����

����,

f t, 􏽢rz(t − ϑ(t))( 􏼁
����

����≤G2 􏽢rz(t − τ(t))
����

����,
(8)

for any 􏽢rz(t) ∈ Rn.
To synchronize all the N indistinguishable nodes in

model (2) to a common value, let us characterize the syn-
chronization error vector 􏽢ez(t) � 􏽢rz(t) − 􏽢s(t) be the syn-
chronization error, where 􏽢s(t) ∈ Rn represents the state
vector of the unforced isolate node and is chosen as

_􏽢s(t) � A1(δ(t))􏽢s(t) + B1(δ(t))f(t, 􏽢s(t))

+ B2(δ(t))f(t, 􏽢s(t − ϑ(t))) + C1(δ(t))_􏽢s(t − κ(t)),

􏽢ys(t) � A2(δ(t))􏽢s(t),

(9)

where 􏽢ys(t) is the unforced isolate output vector. We define
the synchronization error dynamics as
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_􏽢ez(t) � A1(δ(t))􏽢ez(t) + B1(δ(t))h1 t, 􏽢ez(t)( 􏼁 + B2(δ(t))h2 t, 􏽢ez(t − ϑ(t))( 􏼁 + C1(δ(t))_􏽢ez(t − κ(t))

+(1 − β(t)) 􏽘
N

j�1
g(1)

zj Γ1(δ(t))􏽢ej(t) + β(t) 􏽘
N

j�1
g(2)

zj Γ2(δ(t)) 􏽚
t

t−ρ(t)
􏽢ej(s)ds + D1(δ(t))u

f
z (t) + E1(δ(t))vz(t),

􏽥yz(t) � A2(δ(t))􏽢ez(t), z � 1, 2, . . . , N,

􏽢ez(t) � Φz(t), ∀t ∈ [−h, 0], h � max ϑ2, κ2􏼈 􏼉,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where h1(t, 􏽢ez(t)) � f(t, 􏽢rz(t)) − f(t, 􏽢s(t)), h2(t, 􏽢ez(t−

ϑ(t))) � f(t, 􏽢rz(t − ϑ(t))) − f(t,􏽢s(t − ϑ(t))), and 􏽥yz(t) �

􏽢yz(t) − 􏽢ys(t).
+e actuator fault model is used as [32, 33]

u
f
z,j(t) � 1 − λz,j(t)􏼐 􏼑uz,j(t), 0≤ λz,j(t)≤ λ∗j < 1, (11)

where z � (1, 2, . . . , N) denotes the zth agent and
j � (1, 2, . . . , m) denotes the jth actuator, uz,j is the input
signal of the actuator, u

f

z,j is the output signal from the
actuator, λz,j(t) is an unknown and piecewise continuous
bounded actuator failure factor which shows the degree of
effectiveness of the actuator, and λ∗j is a known constant
which represents the upper limits of λz,j(t), ∀z. Note that,
when λz,j(t) � 0, there is no deficiency of the actuator, i.e.,

the jth actuator of the zth agent is sound or typical; when
0< λz,j(t)< 1, the jth actuator is subject to fault.

We indicate

u
f
z (t) � u

f
z,1(t), u

f
z,2(t), . . . , u

f
z,m(t)􏽨 􏽩

T
,

λz(t) � diag λz,1(t), λz,2(t), . . . , λz,m(t)􏽮 􏽯.
(12)

In this case, a uniform actuator fault model is repre-
sented as

u
f
z (t) � Im − λz(t)( 􏼁uz(t). (13)

Taking the actuator fault (13) into account, model (10)
can be represented as follows:

_􏽢ez(t) � A1(δ(t))􏽢ez(t) + B1(δ(t))h1 t, 􏽢ez(t)( 􏼁 + B2(δ(t))h2 t, 􏽢ez(t − ϑ(t))( 􏼁 + C1(δ(t))_􏽢ez(t − κ(t))

+(1 − β(t)) 􏽘
N

j�1
g(1)

zj Γ1(δ(t))􏽢ej(t) + β(t) 􏽘
N

j�1
g(2)

zj Γ2(δ(t)) 􏽚
t

t−ρ(t)
􏽢ej(s)ds + D1(δ(t)) Im − λz(t)( 􏼁uz(t) + E1(δ(t))vz(t),

􏽥yz(t) � A2(δ(t))􏽢ez(t), z � 1, 2, . . . , N,

􏽢ez(t) � Φz(t), ∀t ∈ [−h, 0], h � max ϑ2, κ2􏼈 􏼉,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where λ � diag λ∗,1, λ∗,2, . . . , λ∗,m􏽮 􏽯.
+e following state feedback controller law is employed

for the synchronization error model:

uz(t) � Kz(δ(t))􏽢ez(t), z � 1, 2, . . . , N, (15)

where Kz(δ(t)) is a real constant matrix representing the
gain matrix of the feedback controller to be determined.

+erefore, the control input is substituted into the error
model (14) leading to

_􏽢ez(t) � A1(δ(t))􏽢ez(t) + B1(δ(t))h1 t, 􏽢ez(t)( 􏼁 + B2(δ(t))h2 t, 􏽢ez(t − ϑ(t))( 􏼁 + C1(δ(t))_􏽢ez(t − κ(t))

+(1 − β(t)) 􏽘
N

j�1
g(1)

zj Γ1(δ(t))􏽢ej(t) + β(t) 􏽘
N

j�1
g(2)

zj Γ2(δ(t)) 􏽚
t

t−ρ(t)
􏽢ej(s)ds + D1(δ(t)) Im − λz(t)( 􏼁Kz(δ(t))􏽢ez(t) + E1(δ(t))vz(t),

􏽥yz(t) � A2(δ(t))􏽢ez(t), z � 1, 2, . . . , N,

􏽢ez(t) � Φz(t), ∀t ∈ [−h, 0], h � max ϑ2, κ2􏼈 􏼉.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

For convenience, every conceivable estimation of δ(t) is
meant by p, p ∈ S in the sequel. As such, we have
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A1(δ(t)) � A1p,

A2(δ(t)) � A2p,

B1(δ(t)) � B1p,

B2(δ(t)) � B2p,

C1(δ(t)) � C1p,

D1(δ(t)) � D1p,

E1(δ(t)) � E1p,

Γ1(δ(t)) � Γ1p,

Γ2(δ(t)) � Γ2p,

(17)

where A1p, A2p, B1p, B2p, C1p, D1p, and E1p for any p ∈ S
are known constant matrices of appropriate dimensions.

+en, error dynamical model (16) in virtue of the
Kronecker product can be written in the following compact
form:

_􏽢e(t) � IN ⊗A1p􏼐 􏼑 + IN ⊗D1p􏼐 􏼑 IN ⊗Kp􏼐 􏼑 − IN ⊗D1p􏼐 􏼑λ(t) IN ⊗Kp􏼐 􏼑􏼐 􏼑􏽢e(t)

+ IN ⊗B1p􏼐 􏼑H1(t, 􏽢e(t)) + IN ⊗B2p􏼐 􏼑H2(t, 􏽢e(t − ϑ(t))) + IN ⊗C1p􏼐 􏼑_􏽢e(t − κ(t))

+(1 − β(t)) G(1) ⊗ Γ1p􏼐 􏼑􏽢e(t) + β(t) G(2) ⊗ Γ2p􏼐 􏼑 􏽚
t

t−ρ(t)
􏽢e(s)ds + IN ⊗E1p􏼐 􏼑v(t),

􏽥y(t) � IN ⊗A2p􏼐 􏼑􏽢e(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

where

􏽢e(t) ≔ 􏽢e
T
1 (t)􏽢e

T
2 (t), . . . , 􏽢e

T
N(t)􏽨 􏽩

T
,

H1(t, 􏽢e(t)) ≔ h
T
1 t, 􏽢e1(t)( 􏼁h

T
1 t, 􏽢e2(t)( 􏼁, . . . , h

T
1 t, 􏽢eN(t)( 􏼁􏽨 􏽩

T
,

H2(t, 􏽢e(t − ϑ(t))) ≔ h
T
2 t, 􏽢e1(t − ϑ(t))( 􏼁h

T
2 t, 􏽢e2(t − ϑ(t))( 􏼁, . . . , h

T
2 t, 􏽢eN(t − ϑ(t))( 􏼁􏽨 􏽩

T
,

λ(t) ≔ di ag λ1(t)λ2(t), . . . , λN(t)􏼈 􏼉,

v(t) ≔ v
T
1 (t)v

T
2 (t), . . . , v

T
N(t)􏽨 􏽩

T
,

􏽥y(t) ≔ 􏽥y
T
1 (t)􏽥y

T
2 (t), . . . , 􏽥y

T
N(t)􏽨 􏽩

T
,

Kp ≔ diag K1pK2p, . . . ,KNp􏽮 􏽯.

(19)

In the following, we present the associated definitions
and lemmas, which are required to derive the main results of
this paper.

Definition 1 (see [34]). Model (18) is said to have mixed
H-infinity and passive performance c, if there exists a
constant c> 0 such that

􏽚
Tp

0
−σ􏽥y

T
(t)􏽥y(t) + 2(1 − σ)c􏽥y

T
(t)v(t)􏽨 􏽩dt≥ − c

2
􏽚
Tp

0
v

T
(t)v(t)􏽨 􏽩dt, (20)

for any Tp ≥ 0 and any nonzero v(t) ∈L2[0,∞), where
σ ∈ [0, 1] represents the parameter that defines the trade-off
between H-infinity and passive performance.

Definition 2. +e mixed H-infinity and passive synchro-
nization of model (18) can achieve the mixedH-infinity and
passive performance at level c.
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Definition 3 (see [35]). For model (18), if there exists a scalar
υ> 0 such that the derivative of the Lyapunov function with
respect to time t satisfies

_V(t)≤ − υ|e(t)|
2
, (21)

then model (18) with v(t) � 0 is said to be quadratically
stable.

Remark 1. +is article considered the complex dynamic
network system with the linear coupling strength on the
mode at time t, while the rest of the coefficient is constant
matrix, in the process of jump. +is makes the complex
dynamical network system more general.

Remark 2. Note that model (20) incorporates mixed
H-infinity and passivity performance level, which is a
unique instance of dissipativity. For instance, if σ is esti-
mated as 1, model (20) decreases toH-infinity performance
level; if σ is estimated as 0, model (20) decreases to the
passivity performance; when σ takes (0, 1), model (20)
represents the mixed H-infinity and passivity performance
level.

Lemma 1 (see [36]). For any matrix N ∈ Rn×n and
N � NT > 0, and given scalar λ> 0, the vector function is
Φ: [0, λ]⟶ Rn such that the following relation holds:

−λ􏽚
λ

0
ΦT

(s)NΦ(s)ds≤ − 􏽚
λ

0
Φ(s)ds􏼠 􏼡

T

N 􏽚
λ

0
Φ(s)ds􏼠 􏼡.

(22)

Lemma 2 (see [36]). For any matrix N ∈ Rn×n and
N � NT > 0, and given a scalar function λ ≔ λ(t)> 0, the
vector-valued function is Φ: [−λ, 0]⟶ Rn such that the
following relation holds:

−λ􏽚
t

t−λ
_ΦT

(s)N _Φ(s)ds≤
Φ(t)

Φ(t − λ)
􏼢 􏼣

T
−N N

⋆ −N
􏼢 􏼣

Φ(t)

Φ(t − λ)
􏼢 􏼣.

(23)

Lemma 3 (see [37]). For a given matricesA11,A12,A21, and

A22 with appropriate dimensions, A11 A12
A

T
21 A22

􏼢 􏼣< 0 holds if

and only if A22 < 0, A12 − A12A
−1
22A

T
12 < 0.

Lemma 4 (see [38]).  eKronecker product has the following
properties:

(1) (αA)⊗B � A⊗ (αB)

(2) (A + B)⊗C � A⊗C + B⊗C

(3) (A⊗B)(C⊗D) � (AC)⊗ (B D)

(4) (A⊗B)T � AT ⊗BT

3. Main Results

In this section, we establish the LMI to determine a fault-
tolerant controller which is mixed H-infinity and passive
with synchronization error model (18).

Theorem 1. Given some constants such as ϑ1, ϑ2, κ1, κ2, ς1,
ς2, μ3, ρ, β1, β2, σ, β ∈ [0, 1], c, λ

∗
and diagonal matrices Γ1p,

Γ2p(p ∈ S), G1, G2, and G(1), G(2) are known constant
matrices, error model (18) satisfies a mixed H-infinity and
passivity performance c> 0 in the sense of Definitions 1 and 2,
if there exist symmetric positive definite matrices
Xp > 0(p ∈ S), Pp > 0, Um > 0(m � 2, . . . , 11), Z> 0, and Yp

and Mp(p ∈ S) are of appropriate dimension matrices such
that the following successive LMIs hold:

Ψ �
[􏽢Ψp]14×14 􏽢χp

⋆ −􏽢Fp

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦< 0, (24)

where
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􏽢Ψp11 � θpp IN ⊗Xp􏼐 􏼑 + IN ⊗ 􏽢U2􏼐 􏼑 + IN ⊗ 􏽢U4􏼐 􏼑 + IN ⊗ 􏽢U5􏼐 􏼑 + IN ⊗ 􏽢U7􏼐 􏼑 −
1
ϑ1

IN ⊗ 􏽢U8􏼐 􏼑 −
1
ϑ2

IN ⊗ 􏽢U9􏼐 􏼑

−
1
κ1

IN ⊗ 􏽢U10􏼐 􏼑 −
1
κ2

IN ⊗ 􏽢U11􏼐 􏼑 + IN ⊗A1p􏼐 􏼑 IN ⊗Xp􏼐 􏼑 + IN ⊗Xp􏼐 􏼑 IN ⊗A1p􏼐 􏼑
T

+ IN ⊗D1p􏼐 􏼑

× IN ⊗Yp􏼐 􏼑 + IN ⊗Yp􏼐 􏼑
T
IN ⊗D1p􏼐 􏼑

T
− IN ⊗D1p􏼐 􏼑λ∗ IN ⊗Yp􏼐 􏼑 − IN ⊗Yp􏼐 􏼑

T
λ

T

∗ IN ⊗D1p􏼐 􏼑

+(1 − β) G(1) ⊗ Γ1p􏼐 􏼑 IN ⊗Xp􏼐 􏼑 +(1 − β) IN ⊗Xp􏼐 􏼑
T
G(1) ⊗ Γ1p􏼐 􏼑

T
+ ρ2 IN ⊗ 􏽢Z􏼐 􏼑,

􏽢Ψp12 � IN ⊗ 􏽢Pp􏼐 􏼑 − IN ⊗Xp􏼐 􏼑 + β1 IN ⊗Xp􏼐 􏼑
T
IN ⊗A1p􏼐 􏼑

T
+ β1 IN ⊗Yp􏼐 􏼑

T
IN ⊗D1p􏼐 􏼑

T

− β1 IN ⊗Yp􏼐 􏼑
T
λT

∗ IN ⊗D1p􏼐 􏼑
T

+(1 − β)β1 IN ⊗Xp􏼐 􏼑 G(1) ⊗ Γ1p􏼐 􏼑
T
, 􏽢Ψp13 �

1
ϑ1

IN ⊗ 􏽢U8􏼐 􏼑,

􏽢Ψp14 � β2 IN ⊗Xp􏼐 􏼑
T
IN ⊗A1p􏼐 􏼑 + β1 IN ⊗Yp􏼐 􏼑

T
IN ⊗D1p􏼐 􏼑 − β2 IN ⊗Yp􏼐 􏼑

T
λT

∗ IN ⊗D1p􏼐 􏼑
T

+ β2(1 − β) IN ⊗Xp􏼐 􏼑 G(1) ⊗ Γ1p􏼐 􏼑
T
,

􏽢Ψp15 �
1
ϑ2

IN ⊗ 􏽢U9􏼐 􏼑, 􏽢Ψp16 �
1
κ1

IN ⊗ 􏽢U10􏼐 􏼑, 􏽢Ψp17 �
1
κ2

IN ⊗ 􏽢U11􏼐 􏼑,

􏽢Ψp18 � IN ⊗C1p􏼐 􏼑 IN ⊗Xp􏼐 􏼑, 􏽢Ψp19 � IN ⊗B1p􏼐 􏼑 + β2 IN ⊗B1p􏼐 􏼑,

􏽢Ψp110 � IN ⊗B2p􏼐 􏼑 + β2 IN ⊗B2p􏼐 􏼑, 􏽢Ψp111 � β G(2) ⊗ Γ2p􏼐 􏼑 IN ⊗Xp􏼐 􏼑,

􏽢Ψp112 � −2 IN ⊗Xp􏼐 􏼑 ×(1 − σ)c IN ⊗A2p􏼐 􏼑
T
, 􏽢Ψp113 � IN ⊗Xp􏼐 􏼑 IN ⊗G1( 􏼁,

􏽢Ψp114 � σ IN ⊗Xp􏼐 􏼑 IN ⊗A2p􏼐 􏼑,

􏽢Ψp22 � IN ⊗ 􏽢U6􏼐 􏼑 + ϑ1 IN ⊗ 􏽢U8􏼐 􏼑 + ϑ2 IN ⊗ 􏽢U9􏼐 􏼑 + κ1 IN ⊗ 􏽢U10􏼐 􏼑 + κ2 IN ⊗ 􏽢U11􏼐 􏼑 − IN ⊗Xp􏼐 􏼑β1 − β1 IN ⊗Xp􏼐 􏼑
T
,

􏽢Ψp24 � −β2 IN ⊗Xp􏼐 􏼑, 􏽢Ψp28 � β1 IN ⊗C1p􏼐 􏼑 IN ⊗Xp􏼐 􏼑,

􏽢Ψp29 � β1 IN ⊗B1p􏼐 􏼑, 􏽢Ψp210 � β1 IN ⊗B2p􏼐 􏼑,

􏽢Ψp211 � β1 G(2) ⊗ Γ2p􏼐 􏼑 IN ⊗Xp􏼐 􏼑 + β1 IN ⊗Xp􏼐 􏼑,

􏽢Ψp212 � β1 IN ⊗E1p􏼐 􏼑, 􏽢Ψp33 � − IN ⊗ 􏽢U2􏼐 􏼑 −
1
ϑ1

IN ⊗ 􏽢U8􏼐 􏼑,

􏽢Ψp44 � − 1 − ς1( 􏼁 IN ⊗ 􏽢U3􏼐 􏼑, 􏽢Ψp48 � β2 IN ⊗C1p􏼐 􏼑 IN ⊗Xp􏼐 􏼑,

􏽢Ψp411 � β2β G(2) ⊗ Γ2p􏼐 􏼑 IN ⊗Xp􏼐 􏼑, 􏽢Ψp412 � β2 IN ⊗E1p􏼐 􏼑, 􏽢Ψp413 � IN ⊗Xp􏼐 􏼑 IN ⊗G2( 􏼁,

􏽢Ψp55 � − IN ⊗ 􏽢U4􏼐 􏼑 −
1
ϑ2

IN ⊗ 􏽢U9􏼐 􏼑, 􏽢Ψp66 � − IN ⊗ 􏽢U5􏼐 􏼑 −
1
κ1

IN ⊗U10( 􏼁,

􏽢Ψp77 � − IN ⊗ 􏽢U7􏼐 􏼑 −
1
κ2

IN ⊗U11( 􏼁, 􏽢Ψp88 � − 1 − ς2( 􏼁 IN ⊗ 􏽢U6􏼐 􏼑,

􏽢Ψp99 � − IN ⊗IN( 􏼁, 􏽢Ψp1010 � − IN ⊗IN( 􏼁, 􏽢Ψp1111 � − 1 − ς1( 􏼁 IN ⊗ 􏽢Z􏼐 􏼑,

􏽢Ψp1212 � −c
2
I, 􏽢Ψp1313 � − IN ⊗IN( 􏼁, 􏽢Ψp1414 � − IN ⊗IN( 􏼁,

􏽢χp �
���
θp1

􏽱
IN ⊗Xp􏼐 􏼑

T
, . . . ,

������
θp(p−1)

􏽱
IN ⊗Xp􏼐 􏼑

T
,

������
θp(p+1)

􏽱
IN ⊗Xp􏼐 􏼑

T
, . . . ,

����
θpN

􏽱
IN ⊗Xp􏼐 􏼑

T
􏼔 􏼕,

􏽢Fp � diag IN ⊗X1( 􏼁, . . . , IN ⊗Xp−1􏼐 􏼑, IN ⊗Xp+1􏼐 􏼑, . . . , IN ⊗XN( 􏼁􏽮 􏽯,

(25)
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and the remaining parameters are zero.  en, the feedback
controller gain is given by Kp � YpX−1

p which stabilizes the
error dynamics.

Proof. We consider the following LKF with integral terms
for the synchronization error model (18)

V(t, 􏽢e(t), p) � 􏽘
4

r�1
Vr(t, 􏽢e(t), p), (26)

where

V1(t, 􏽢e(t), p) � 􏽢e
T
(t) IN ⊗Pp􏼐 􏼑􏽢e(t),

V2(t, 􏽢e(t), p) � 􏽚
t

t−ϑ1
􏽢e

T
(t) IN ⊗U2( 􏼁􏽢e(s)ds + 􏽚

t

t−ϑ(t)
􏽢e

T
(t) IN ⊗U3( 􏼁􏽢e(s)ds

+ 􏽚
t

t−ϑ2
􏽢e

T
(t) IN ⊗U4( 􏼁􏽢e(s)ds + 􏽚

t

t−κ1
􏽢e

T
(t) IN ⊗U5( 􏼁􏽢e(s)ds

+ 􏽚
t

t−κ(t)

_􏽢e
T
(s) IN ⊗U6( 􏼁_􏽢e(s)ds + 􏽚

t

t−κ2
􏽢e

T
(t) IN ⊗U7( 􏼁􏽢e(s)ds,

V3(t, 􏽢e(t), p) � 􏽚
t

t−ϑ1
􏽚

t

u

_􏽢e
T
(s) IN ⊗U8( 􏼁_􏽢e(s)dsdu + 􏽚

t

t−ϑ2
􏽚

t

u

_􏽢e
T
(s) IN ⊗U9( 􏼁_􏽢e(s)dsdu

+ 􏽚
t

t−κ1
􏽚

t

u

_􏽢e
T
(s) IN ⊗U10( 􏼁_􏽢e(s)dsdu + 􏽚

t

t−κ2
􏽚

t

u

_􏽢e
T
(s) IN ⊗U11( 􏼁_􏽢e(s)dsdu,

V4(t, 􏽢e(t), p) � ρ􏽚
0

−ρ(t)
􏽚

t

t+u
􏽢e(s) IN ⊗Z( 􏼁􏽢e(s)dsdu.

(27)

We use LV(t, 􏽢e(t), p) to denote the weak infinitesimal
operator of V(t, 􏽢e(t), p) [39], which is defined as

LV(t, 􏽢e(t), p) � lim
Δ⟶0+

1
Δ
E V((t + Δ), 􏽢e(t + Δ), δ(t + Δ))|(t, 􏽢e(t), p) − V(t, 􏽢e(t), p)􏼈 􏼉,

LV(t, 􏽢e(t), p) � 􏽘
4

r�1
LVr(t, 􏽢e(t), p).

(28)

+e derivative and mathematical expectation of (26)
along the trajectories of the error model (18) is

E LV1(t, 􏽢e(t), p)􏼈 􏼉 � E 2􏽢e
T

(t) IN ⊗Pp􏼐 􏼑_􏽢e(t) + 􏽢e
T
(t) 􏽘

N

q�1
IN ⊗Pq􏼐 􏼑􏽢e(t)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

E LV2(t, 􏽢e(t), p)􏼈 􏼉 � E 􏽢e
T
(t) IN ⊗U2( 􏼁 + IN ⊗U3( 􏼁 + IN ⊗U4( 􏼁 + IN ⊗U5( 􏼁 + IN ⊗U7( 􏼁􏼂 􏼃􏽢e(t)􏽮

+ _􏽢e
T
(t) IN ⊗U6( 􏼁_􏽢e(t) + 􏽢e

T
t − ϑ1( 􏼁 IN ⊗U2( 􏼁􏽢e t − ϑ1( 􏼁 − 1 − ς1( 􏼁􏽢e

T
(t − ϑ(t)) IN ⊗U3( 􏼁

× 􏽢e(t − ϑ(t)) − 􏽢e
T

t − ϑ2( 􏼁 IN ⊗U4( 􏼁􏽢e t − ϑ2( 􏼁 − 􏽢e
T

t − κ1( 􏼁 IN ⊗U5( 􏼁􏽢e t − κ1( 􏼁

− 1 − ς2( 􏼁_􏽢e
T
(t − κ(t)) IN ⊗U6( 􏼁_􏽢e(t − κ(t)) − 􏽢e

T
t − κ2( 􏼁 IN ⊗U7( 􏼁􏽢e t − κ2( 􏼁􏼛,

E LV3(t, 􏽢e(t), p)􏼈 􏼉 � E _􏽢e
T
(t) IN ⊗U8( 􏼁 + ϑ2 IN ⊗U9( 􏼁 + κ1 IN ⊗U10( 􏼁 + κ2 IN ⊗U11( 􏼁􏼂 􏼃_􏽢e(t)􏼚
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− 􏽚
t

t−ϑ1

_􏽢e
T
(s) IN ⊗U8( 􏼁_􏽢e(s)ds − 􏽚

t

t−ϑ2

_􏽢e
T
(s) IN ⊗U9( 􏼁_􏽢e(s)ds

− 􏽚
t

t−κ1

_􏽢e
T
(s) IN ⊗U10( 􏼁_􏽢e(s)ds − 􏽚

t

t−κ2

_􏽢e
T
(s) IN ⊗U11( 􏼁_􏽢e(s)ds􏼩,

Ε LV4(t, 􏽢e(t), p)􏼈 􏼉 � ρ2􏽢eT
(t) IN ⊗Z( 􏼁􏽢e(t) − 1 − μ3( 􏼁ρ􏽚

t

t−ρ(t)
􏽢e

T
(s) IN ⊗Z( 􏼁􏽢e(s)ds.

(29)

According to Lemmas 1 and 2, the integral terms in (29)
can be rewritten as

− 􏽚
t

t−ϑ1

_􏽢e
T
(s) IN ⊗U8( 􏼁_􏽢e(s)ds≤ −

1
ϑ1

􏽚
t

t−ϑ1

_􏽢e(s)ds􏼠 􏼡

T

IN ⊗U8( 􏼁 􏽚
t

t−ϑ1

_􏽢e(s)ds􏼠 􏼡,

≤ −
1
ϑ1

􏽢e(t) − 􏽢e t − ϑ1( 􏼁􏼂 􏼃
T
IN ⊗U8( 􏼁 􏽢e(t) − 􏽢e t − ϑ1( 􏼁􏼂 􏼃,

− 􏽚
t

t−ϑ2

_􏽢e
T
(s) IN ⊗U9( 􏼁_􏽢e(s)ds≤ −

1
ϑ2

􏽚
t

t−ϑ2

_􏽢e(s)ds􏼠 􏼡

T

IN ⊗U9( 􏼁 􏽚
t

t−ϑ2

_􏽢e(s)ds􏼠 􏼡,

≤ −
1
ϑ2

􏽢e(t) − 􏽢e t − ϑ2( 􏼁􏼂 􏼃
T
IN ⊗U9( 􏼁 􏽢e(t) − 􏽢e t − ϑ2( 􏼁􏼂 􏼃,

− 􏽚
t

t−κ1

_􏽢e
T
(s) IN ⊗U10( 􏼁_􏽢e(s)ds≤ −

1
κ1

􏽚
t

t−κ1

_􏽢e(s)ds􏼠 􏼡

T

IN ⊗U10( 􏼁 􏽚
t

t−κ1

_􏽢e(s)ds􏼠 􏼡,

≤ −
1
κ1

􏽢e(t) − 􏽢e t − κ1( 􏼁􏼂 􏼃
T
IN ⊗U10( 􏼁 􏽢e(t) − 􏽢e t − κ1( 􏼁􏼂 􏼃,

− 􏽚
t

t−κ2

_􏽢e
T
(s) IN ⊗U11( 􏼁_􏽢e(s)ds≤ −

1
κ2

􏽚
t

t−κ2

_􏽢e(s)ds􏼠 􏼡

T

IN ⊗U11( 􏼁 􏽚
t

t−κ2

_􏽢e(s)ds􏼠 􏼡

≤ −
1
κ2

􏽢e(t) − 􏽢e t − κ2( 􏼁􏼂 􏼃
T
IN ⊗U11( 􏼁 􏽢e(t) − 􏽢e t − κ2( 􏼁􏼂 􏼃.

(30)

Applying Lemma 1 in (29), it follows that

−ρ􏽚
t

t−ρ(t)
􏽢e

T
(s) IN ⊗Z( 􏼁􏽢e(s)ds≤ − 􏽚

t

t−ρ(t)
􏽢e(s)ds􏼠 􏼡

T

IN ⊗Z( 􏼁 􏽚
t

t−ρ(t)
􏽢e(s)ds􏼠 􏼡. (31)

Besides, as per Assumption 1, we can obtain the fol-
lowing inequality:

􏽢e
T
(t) IN ⊗G1( 􏼁 IN ⊗G1( 􏼁

T
􏽢e(t) − H

T
1 (t, 􏽢e(t))H1(t, 􏽢e(t))> 0,

􏽢e
T
(t − ϑ(t)) IN ⊗G2( 􏼁 IN ⊗G2( 􏼁

T
􏽢e(t − ϑ(t)) − H

T
1 (t, 􏽢e(t − ϑ(t)))H1(t, 􏽢e(t − ϑ(t)))> 0.

(32)
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Besides that, for any matrix Mp, p ∈ S with appropriate
dimension and scalars β1, β2 > 0, and taking the mathe-
matical expectation, the following condition holds:

0 � E 2 􏽢e
T
(t) + β1 _􏽢e

T
(t) + β2􏽢e

T
(t − ϑ(t))􏼔 􏼕 IN ⊗Mp􏼐 􏼑 IN ⊗A1p􏼐 􏼑 + IN ⊗D1p􏼐 􏼑 IN ⊗Kp􏼐 􏼑 − IN ⊗D1p􏼐 􏼑λ(t)􏼐􏽨􏼚

× IN ⊗Kp􏼐 􏼑􏼑􏽢e(t) + IN ⊗B1p􏼐 􏼑H1(t, 􏽢e(t)) + I⊗B2p􏼐 􏼑H2(t, 􏽢e(t − ϑ(t))) + I⊗C1p􏼐 􏼑_􏽢e(t − κ(t))

+ (1 − β(t)) G(1) ⊗ Γ1p􏼐 􏼑 +(β − β(t)) G(1) ⊗Γ1p􏼐 􏼑􏼐 􏼑􏽢e(t) + β G(2) ⊗ Γ2p􏼐 􏼑 +(β(t) − β) G(2) ⊗Γ2p􏼐 􏼑􏼐 􏼑

× 􏽚
t

t−ρ(t)
􏽢e(s)ds + IN ⊗E1p􏼐 􏼑v(t) − _􏽢e(t)􏼣􏼩.

(33)

For the performance index, we can obtain

Jp(t) � σ􏽥y
T
(t)􏽥y(t) − 2(1 − σ)c􏽥y

T
(t)v(t) − c

2
v

T
(t)v(t),

t≥ 0.

(34)

Substituting (32) and (33) intoLV(t, 􏽢e(t), p), and from
(29)–(31), it yields that

E LV(t, 􏽢e(t), p)􏼈 􏼉 + Jp(t)≤E ζT
(t) Ψp􏽨 􏽩12×12ζ(t)􏽮 􏽯,

(35)

where

ζ(t) � 􏽢e
T
(t)_􏽢e

T
(t)􏽢e

T
t − ϑ1( 􏼁􏽢e

T
(t − ϑ(t))􏽢e

T
t − ϑ2( 􏼁􏽢e

T
t − κ1( 􏼁􏽢e

T
t − κ2( 􏼁_􏽢e

T
(t − κ(t))􏼔

H
T
1 (t, 􏽢e(t))H

T
2 (t, 􏽢e(t − ϑ(t))) 􏽚

t

t−ρ(t)
􏽢e(s)ds􏼠 􏼡

T

v
T
(t)⎤⎦

T

,

Ψp11 � 􏽘
N

q�1
θpq IN ⊗Pq􏼐 􏼑 + IN ⊗U2( 􏼁 + IN ⊗U4( 􏼁 + IN ⊗U5( 􏼁 + IN ⊗U7( 􏼁 −

1
ϑ1

IN ⊗U8( 􏼁

−
1
ϑ2

IN ⊗U9( 􏼁 −
1
κ1

IN ⊗U10( 􏼁 −
1
κ2

IN ⊗U11( 􏼁 + IN ⊗Mp􏼐 􏼑
T
IN ⊗A1p􏼐 􏼑 + IN ⊗A1p􏼐 􏼑

T

× IN ⊗Mp􏼐 􏼑 + IN ⊗Mp􏼐 􏼑
T
IN ⊗D1p􏼐 􏼑 IN ⊗Kp􏼐 􏼑 + IN ⊗Kp􏼐 􏼑

T
IN ⊗D1p􏼐 􏼑

T
IN ⊗Mp􏼐 􏼑

− IN ⊗Mp􏼐 􏼑
T
IN ⊗D1p􏼐 􏼑λ∗ IN ⊗Kp􏼐 􏼑 − IN ⊗Kp􏼐 􏼑

T
λ

T

∗ IN ⊗D1p􏼐 􏼑
T
IN ⊗Mp􏼐 􏼑

T

+(1 − β) IN ⊗Mp􏼐 􏼑
T
G(1) ⊗Γ1p􏼐 􏼑 +(1 − β) G(1) ⊗Γ1p􏼐 􏼑

T
IN ⊗Mp􏼐 􏼑 + σ IN ⊗A2p􏼐 􏼑

T

× IN ⊗A2p􏼐 􏼑 + IN ⊗G1( 􏼁 IN ⊗G1( 􏼁
T

+ IN ⊗E1( 􏼁 + ρ2 IN ⊗Z( 􏼁,

Ψp12 � IN ⊗Pp􏼐 􏼑 + β1 IN ⊗Mp􏼐 􏼑 IN ⊗A1p􏼐 􏼑
T

+ β1 IN ⊗Kp􏼐 􏼑
T
IN ⊗D1p􏼐 􏼑

T
IN ⊗Mp􏼐 􏼑 − β1 IN ⊗Kp􏼐 􏼑

T

λT

∗ IN ⊗D
T
1p􏼐 􏼑 IN ⊗Mp􏼐 􏼑 − IN ⊗Mp􏼐 􏼑

T
+(1 − β)β1 G(1) ⊗ Γ1p􏼐 􏼑

T
IN ⊗Mp􏼐 􏼑,

Ψp13 �
1
ϑ1

IN ⊗U8( 􏼁,Ψp14 � β2 IN ⊗A1p􏼐 􏼑 IN ⊗Mp􏼐 􏼑
T

+ β2 IN ⊗Kp􏼐 􏼑
T
IN ⊗D1p􏼐 􏼑

T

× IN ⊗Mp􏼐 􏼑 − β1 IN ⊗Kp􏼐 􏼑
T
λ

T

∗ IN ⊗D1p􏼐 􏼑
T
IN ⊗Mp􏼐 􏼑 + β2(1 − β) IN ⊗Mp􏼐 􏼑 G(1) ⊗ Γ1p􏼐 􏼑,

Ψp15 �
1
ϑ2

IN ⊗U9( 􏼁,Ψp16 �
1
κ1

IN ⊗U10( 􏼁,Ψp17 �
1
κ2

IN ⊗U11( 􏼁,Ψp18 � IN ⊗Mp􏼐 􏼑
T
IN ⊗C1p􏼐 􏼑,
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Ψp19 � IN ⊗Mp􏼐 􏼑
T
IN ⊗B1p􏼐 􏼑 + β2 IN ⊗Mp􏼐 􏼑 IN ⊗B1p􏼐 􏼑,Ψp110 � IN ⊗Mp􏼐 􏼑

T
IN ⊗B2p􏼐 􏼑

+ β2 IN ⊗Mp􏼐 􏼑 IN ⊗B2p􏼐 􏼑,Ψp111 � β IN ⊗Mp􏼐 􏼑
T
G(2) ⊗ Γ2p􏼐 􏼑,Ψp112 � −2(1 − σ)c

× IN ⊗A2p􏼐 􏼑
T

+ IN ⊗Mp􏼐 􏼑
T
IN ⊗E1p􏼐 􏼑,Ψp22 � IN ⊗U6( 􏼁 + ϑ1 IN ⊗U8( 􏼁 + ϑ2 IN ⊗U9( 􏼁

+ κ1 IN ⊗U10( 􏼁 + κ2 IN ⊗U11( 􏼁 − β1 IN ⊗Mp􏼐 􏼑
T

− IN ⊗Mp􏼐 􏼑β1,Ψp24 � − IN ⊗Mp􏼐 􏼑
T
β2,

Ψp28 � β1 IN ⊗M
T
p􏼐 􏼑 IN ⊗C1p􏼐 􏼑,Ψp29 � β1 IN ⊗Mp􏼐 􏼑

T
IN ⊗B1p􏼐 􏼑,Ψp210 � β1 I⊗Mp􏼐 􏼑

T
IN ⊗B2p􏼐 􏼑,

Ψp211 � β1β IN ⊗Mp􏼐 􏼑
T
G(2) ⊗ Γ2p􏼐 􏼑 + β1 IN ⊗Mp􏼐 􏼑

T
,Ψp212 � β IN ⊗Mp􏼐 􏼑

T
IN ⊗E1p􏼐 􏼑,

Ψp33 � − IN ⊗U2( 􏼁 −
1
ϑ1

IN ⊗U8( 􏼁,Ψp44 � − 1 − ς1( 􏼁 IN ⊗U3( 􏼁 + IN ⊗G2( 􏼁
T
IN ⊗G2( 􏼁,

Ψp48 � β1 IN ⊗Mp􏼐 􏼑 IN ⊗C1p􏼐 􏼑,Ψp411 � β2 IN ⊗Mp􏼐 􏼑β G(2) ⊗Γ2p􏼐 􏼑,Ψp412 � β2 IN ⊗E1p􏼐 􏼑

× IN ⊗Mp􏼐 􏼑,Ψp55 � − IN ⊗U4( 􏼁 −
1
ϑ2

IN ⊗U9( 􏼁,Ψp66 � − IN ⊗U5( 􏼁 −
1
ϑ2

IN ⊗U10( 􏼁,

Ψp77 � − IN ⊗U7( 􏼁 −
1
ϑ2

IN ⊗U11( 􏼁,Ψp88 � − 1 − ς2( 􏼁 IN ⊗U6( 􏼁,Ψp99 � − IN ⊗IN( 􏼁,

Ψp1010 � − IN ⊗IN( 􏼁,Ψp1111 � − 1 − ς1( 􏼁 IN ⊗Z( 􏼁,Ψp1212 � −c
2
I,

(36)

and the remaining elements of Ψp are zero. Let
(IN ⊗Xp) � (IN ⊗Mp)− 1, and pre- and postmultiply
matrixΨp by diag (IN ⊗􏼈 Xp)(IN ⊗ Xp)(IN ⊗Xp)(IN ⊗
Xp)(IN ⊗Xp)(IN ⊗Xp)

(IN ⊗Xp)(IN ⊗Xp)II(IN ⊗Xp)I}. By using the Schur
complement (Lemma 3), we can obtain matrix 􏽢Ψp in (24).
Now we introduce the following new variables:

IN ⊗Xp􏼐 􏼑
T
IN ⊗Um( 􏼁 IN ⊗Xp􏼐 􏼑 � IN ⊗ 􏽢Um􏼐 􏼑, (m � 2, . . . , 11),

IN ⊗Xp􏼐 􏼑
T
IN ⊗Z( 􏼁 IN ⊗Xp􏼐 􏼑 � IN ⊗ 􏽢Z􏼐 􏼑,

Yp � KpXp.

(37)

+ese combinations are negative definite if the following
conditions hold:

E LV(t, 􏽢e(t), p) + Jp(t)􏽮 􏽯<E ζT
(t) 􏽢Ψpζ(t)􏽮 􏽯< 0. (38)

With zero initial condition, it can be inferred that for any
Tp

E 􏽚
Tp

0
σ􏽥y

T
(t)􏽥y(t) − 2(1 − σ)c􏽥y

T
(t)v(t) − c

2
v

T
(t)v(t)􏽨 􏽩dt􏼨 􏼩≤E 􏽚

Tp

0
LV(t, 􏽢e(t), p) + σ􏽥y

T
(t)􏽥y(t)􏼨

−2(1 − σ)c􏽥y
T
(t)v(t) − c

2
v

T
(t)v(t)􏽩dt􏽯< 0,

(39)

which indicates that

Jp(t) � E 􏽚
Tp

0
σ􏽥y

T
(t)􏽥y(t) − 2(1 − σ)c􏽥y

T
(t)v(t)􏽨 􏽩dt􏼨 􏼩

≤E 􏽚
Tp

0
c
2
v

T
(t)v(t)dt􏼨 􏼩

(40)

holds if Ψ< 0, and it can be obtained by integrating both
sides of (40) that Jp(t)≤ 0 holds, which means that the
mixed H-infinity and passive synchronization of the model
is well achieved according to Definition 2.+is completes the
proof. □

Remark 3. If there are no Markovian jumping parameters,
then model (18) is simplified to
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_􏽢e(t) � IN ⊗A1( 􏼁 + IN ⊗D1( 􏼁 IN ⊗K( 􏼁 − IN ⊗D1( 􏼁λ(t) IN ⊗K( 􏼁( 􏼁􏽢e(t) + IN ⊗B1( 􏼁H1(t, 􏽢e(t))

+ IN ⊗B2( 􏼁H2(t, 􏽢e(t − ϑ(t))) + IN ⊗C1( 􏼁_􏽢e(t − κ(t)) +(1 − β(t)) G(1) ⊗ Γ1􏼐 􏼑􏽢e(t)

+β(t) G(2) ⊗Γ2􏼐 􏼑 􏽚
t

t−ρ(t)
􏽢e(s)ds + IN ⊗E1( 􏼁v(t),

􏽥y(t) � IN ⊗A2( 􏼁􏽢e(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(41)

Corollary 1. Given some constants such as ϑ1, ϑ2, κ1, κ2, ς1,
ς2, μ3, ρ, β1, β2, σ, β ∈ [0, 1], c, λ

∗
and diagonal matrices Γ1p,

Γ2p(p ∈ S), G1, G2, and G(1), G(2) are known constant
matrices, error model (41) satisfies a mixed H-infinity and
passivity performance c> 0 in the sense of Definitions 1 and 2,
if there exist symmetric positive definite matrices X1 > 0,
P1 > 0, Um > 0(m � 2, . . . , 11), Z> 0, and Y1 and M1 are of

appropriate dimension matrices such that the following LMI
holds:

􏽢Ψ � 􏽢Ψ14×14􏼔 􏼕< 0, (42)

where

􏽢Ψ11 � IN ⊗ 􏽢U2􏼐 􏼑 + IN ⊗ 􏽢U4􏼐 􏼑 + IN ⊗ 􏽢U5􏼐 􏼑 + IN ⊗ 􏽢U7􏼐 􏼑 −
1
ϑ1

IN ⊗ 􏽢U8􏼐 􏼑 −
1
ϑ2

IN ⊗ 􏽢U9􏼐 􏼑 −
1
ϑ1

IN ⊗ 􏽢U10􏼐 􏼑

−
1
κ2

IN ⊗ 􏽢U11􏼐 􏼑 + IN ⊗A1( 􏼁 IN ⊗X1( 􏼁 + IN ⊗X1( 􏼁 IN ⊗A1( 􏼁
T

+ IN ⊗D1( 􏼁 IN ⊗Y1( 􏼁 + IN ⊗Y1( 􏼁
T

× IN ⊗D1p􏼐 􏼑
T

− IN ⊗D1( 􏼁λ∗ IN ⊗Y1( 􏼁 − IN ⊗Y1( 􏼁
Tλ

T

∗ IN ⊗D1( 􏼁 +(1 − β) G(1) ⊗ Γ1􏼐 􏼑 IN ⊗X1( 􏼁

+(1 − β) IN ⊗X1( 􏼁
T

G
(1) ⊗Γ1􏼐 􏼑

T
+ ρ2 IN ⊗ 􏽢Z􏼐 􏼑, 􏽢Ψ12 � IN ⊗ 􏽢P1􏼐 􏼑 − IN ⊗X1( 􏼁 + β1 IN ⊗X1( 􏼁

T

× IN ⊗A1( 􏼁
T

+ β1 IN ⊗Y1( 􏼁
T
IN ⊗D1( 􏼁

T
− β1 IN ⊗Y1( 􏼁

Tλ
T

∗ IN ⊗D1( 􏼁
T

+(1 − β)β1 IN ⊗X1( 􏼁

× G(1) ⊗ Γ1􏼐 􏼑
T
, 􏽢Ψ13 �

1
ϑ1

IN ⊗ 􏽢U8􏼐 􏼑, 􏽢Ψ14 � β2 IN ⊗X1( 􏼁
T
IN ⊗A1( 􏼁 + β1 IN ⊗Y1( 􏼁

T
IN ⊗D1( 􏼁

− β2 IN ⊗Y1( 􏼁
TλT

∗ IN ⊗D1( 􏼁
T

+ β2(1 − β) IN ⊗X1( 􏼁 G(1) ⊗ Γ1􏼐 􏼑
T

, 􏽢Ψ15 �
1
ϑ2

IN ⊗ 􏽢U9􏼐 􏼑,

􏽢Ψ16 �
1
κ1

IN ⊗ 􏽢U10􏼐 􏼑, 􏽢Ψ17 �
1
κ2

IN ⊗ 􏽢U11􏼐 􏼑, 􏽢Ψ18 � IN ⊗C1( 􏼁 IN ⊗X1( 􏼁, 􏽢Ψp19 � IN ⊗B1( 􏼁

+ β2 IN ⊗B1( 􏼁, 􏽢Ψ110 � IN ⊗B2( 􏼁 + β2 IN ⊗B2( 􏼁, 􏽢Ψ111 � β G(2) ⊗ Γ2􏼐 􏼑 IN ⊗X1( 􏼁,

􏽢Ψ112 � −2 IN ⊗X1( 􏼁(1 − σ)c IN ⊗A2( 􏼁
T
, 􏽢Ψ 113 � IN ⊗X1( 􏼁 IN ⊗G1( 􏼁, 􏽢Ψ114 � σ IN ⊗Xp􏼐 􏼑 IN ⊗A2p􏼐 􏼑,

􏽢Ψ22 � IN ⊗ 􏽢U6􏼐 􏼑 + ϑ1 IN ⊗ 􏽢U8􏼐 􏼑 + ϑ2 IN ⊗ 􏽢U9􏼐 􏼑 + κ1 IN ⊗ 􏽢U10􏼐 􏼑 + κ2 IN ⊗ 􏽢U11􏼐 􏼑 − IN ⊗X1( 􏼁β1

− β1 IN ⊗X1( 􏼁
T
, 􏽢Ψ24 � −β2 IN ⊗X1( 􏼁, 􏽢Ψ28 � β1 IN ⊗C1( 􏼁 IN ⊗X1( 􏼁, 􏽢Ψ29 � β1 IN ⊗B1( 􏼁,

􏽢Ψ210 � β1 IN ⊗B2( 􏼁, 􏽢Ψ211 � β1 G(2) ⊗Γ2p􏼐 􏼑 IN ⊗X1( 􏼁 + β1 IN ⊗X1( 􏼁, 􏽢Ψ212 � β1 IN ⊗E1( 􏼁,

􏽢Ψ33 � − IN ⊗ 􏽢U2􏼐 􏼑 −
1
ϑ1

IN ⊗ 􏽢U8􏼐 􏼑, 􏽢Ψ44 � − 1 − ς1( 􏼁 IN ⊗ 􏽢U3􏼐 􏼑, 􏽢Ψ48 � β2 IN ⊗C1( 􏼁 IN ⊗X1( 􏼁,

􏽢Ψ411 � β2β G(2) ⊗Γ2􏼐 􏼑 IN ⊗X1( 􏼁, 􏽢Ψ412 � β2 IN ⊗E1( 􏼁, 􏽢Ψ413 � IN ⊗X1( 􏼁 IN ⊗G2( 􏼁,

􏽢Ψ55 � − IN ⊗ 􏽢U4􏼐 􏼑 −
1
ϑ2

IN ⊗ 􏽢U9􏼐 􏼑, 􏽢Ψ66 � − IN ⊗ 􏽢U5􏼐 􏼑 −
1
κ1

IN ⊗U10( 􏼁, 􏽢Ψ77 � − IN ⊗ 􏽢U7􏼐 􏼑

−
1
κ2

IN ⊗U11( 􏼁, 􏽢Ψ88 � − 1 − ς2( 􏼁 IN ⊗ 􏽢U6􏼐 􏼑, 􏽢Ψ99 � − IN ⊗IN( 􏼁, 􏽢Ψ1010 � − IN ⊗IN( 􏼁,

􏽢Ψ1111 � − 1 − ς1( 􏼁 IN ⊗ 􏽢Z􏼐 􏼑, 􏽢Ψ1212 � −c
2
I, 􏽢Ψp1313 � − IN ⊗IN( 􏼁, 􏽢Ψp1414 � − IN ⊗IN( 􏼁.

(43)

 en, the feedback controller gain is given by K � Y1X−1
1 .
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Proof. +e proof is similar to that of +eorem 1 by choosing
S � 1, θpq � 0. Hence, the proof is omitted. □

Remark 4. For the case of β � 0, i.e., without Markovian
jumping, random coupling matrices, distributed coupling
time-varying delays, and external disturbance, model (2)
becomes

_􏽢e(t) � IN ⊗A1( 􏼁 + IN ⊗D1( 􏼁 IN ⊗K( 􏼁 − IN ⊗D1( 􏼁λ(t) IN ⊗K( 􏼁( 􏼁􏽢e(t) + IN ⊗B1( 􏼁H1(t, 􏽢e(t))

+ IN ⊗B2( 􏼁H2(t, 􏽢e(t − ϑ(t))) + IN ⊗C1( 􏼁_􏽢e(t − κ(t)).
(44)

Corollary 2. Given some constants ϑ1, ϑ2, κ1, κ2, ς1, ς2, β1, β2,
λ∗ and diagonal matrices G1 and G2, error model (44) is
quadratically stable, if there exist symmetric positive definite
matrices X1 > 0, 􏽢P1 > 0, 􏽢Um > 0(m � 2, . . . , 11), and Y1 and
M1 are of appropriate dimension matrices such that following
LMI holds:

􏽢Υ � 􏽢Υ11×11􏽨 􏽩< 0, (45)

where

􏽢Υ11 � IN ⊗ 􏽢U2􏼐 􏼑 + IN ⊗ 􏽢U3􏼐 􏼑 + IN ⊗ 􏽢U4􏼐 􏼑 + IN ⊗ 􏽢U5􏼐 􏼑 + IN ⊗ 􏽢U7􏼐 􏼑 −
1
ϑ1

IN ⊗ 􏽢U8􏼐 􏼑 −
1
ϑ2

IN ⊗ 􏽢U9􏼐 􏼑

−
1
κ1

IN ⊗ 􏽢U10􏼐 􏼑 −
1
κ2

IN ⊗ 􏽢U11􏼐 􏼑 + IN ⊗A1( 􏼁 IN ⊗X1( 􏼁 + IN ⊗D1( 􏼁 IN ⊗Y1( 􏼁 + IN ⊗Y1( 􏼁
T

× IN ⊗D1( 􏼁
T

− IN ⊗D1( 􏼁λ∗ IN ⊗Y1( 􏼁 − IN ⊗Y1( 􏼁
Tλ

T

∗ IN ⊗D1( 􏼁
T
, 􏽢Υ12 � IN ⊗ 􏽢P1􏼐 􏼑 − IN ⊗X1( 􏼁,

􏽢Υ13 �
1
ϑ1

IN ⊗ 􏽢U8􏼐 􏼑, 􏽢Υ14 � β2 IN ⊗X1( 􏼁
T
IN ⊗A1( 􏼁

T
+ β2 IN ⊗Y1( 􏼁

T
IN ⊗D1( 􏼁

T
− β2 IN ⊗D1( 􏼁

T

× λ
T

∗ IN ⊗Y1( 􏼁
T
, 􏽢Υ15 �

1
ϑ2

IN ⊗U9( 􏼁, 􏽢Υ16 �
1
κ1

IN ⊗ 􏽢U10􏼐 􏼑, 􏽢Υ18 � IN ⊗C1( 􏼁 IN ⊗X1( 􏼁,

􏽢Υ111 � − IN ⊗X1( 􏼁 IN ⊗G1( 􏼁, 􏽢Υ22 � IN ⊗ 􏽢U6􏼐 􏼑 + IN ⊗ 􏽢U8􏼐 􏼑 + ϑ2 IN ⊗ 􏽢U9􏼐 􏼑 + κ1 IN ⊗ 􏽢U10􏼐 􏼑

+ κ2 IN ⊗ 􏽢U11􏼐 􏼑 − β1 IN ⊗X1( 􏼁, 􏽢Υ24 � −β2 IN ⊗X1( 􏼁, 􏽢Υ28 � β1 IN ⊗C1( 􏼁 IN ⊗X1( 􏼁,

􏽢Υ29 � β1 IN ⊗B1( 􏼁 IN ⊗X1( 􏼁, 􏽢Υ210 � β1 IN ⊗B2( 􏼁 IN ⊗X1( 􏼁, 􏽢Υ33 � IN ⊗ 􏽢U2􏼐 􏼑 −
1
ϑ1

IN ⊗ 􏽢U8􏼐 􏼑,

􏽢Υ44 � − 1 − ς1( 􏼁 IN ⊗ 􏽢U3􏼐 􏼑, 􏽢Υ48 � β2 IN ⊗C1( 􏼁 IN ⊗X1( 􏼁, 􏽢Υ49 � β2 IN ⊗B1( 􏼁 IN ⊗X1( 􏼁,

􏽢Υ410 � β2 IN ⊗B2( 􏼁 IN ⊗X1( 􏼁, 􏽢Υ411 � IN ⊗X1( 􏼁 IN ⊗G2( 􏼁, 􏽢Υ55 � − IN ⊗ 􏽢U4􏼐 􏼑 −
1
ϑ2

IN ⊗ 􏽢U9􏼐 􏼑,

􏽢Υ66 � − IN ⊗ 􏽢U5􏼐 􏼑 −
1
κ1

IN ⊗ 􏽢U10􏼐 􏼑, 􏽢Υ77 � − IN ⊗ 􏽢U7􏼐 􏼑 −
1
κ2

IN ⊗ 􏽢U11􏼐 􏼑, 􏽢Υ88 � − 1 − ς2( 􏼁 IN ⊗ 􏽢U6􏼐 􏼑,

􏽢Υ99 � − IN ⊗IN( 􏼁, 􏽢Υ1010 � − IN ⊗IN( 􏼁, 􏽢Υ1111 � − IN ⊗IN( 􏼁.

(46)

 en, the feedback controller gain is given by K � Y1X−1
1 .

Proof. Consider the following Lyapunov–Krasovskii func-
tional candidate:

V(t, 􏽢e(t)) � 􏽘
3

r1�1
Vr1

(t, 􏽢e(t)), (47)

and V1(t, 􏽢e(t)), V2(t, 􏽢e(t)), and V3(t, 􏽢e(t)) are the same as
defined in (26), and construct
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ΠT
(t) � 􏽢e

T
(t)_􏽢e

T
(t)􏽢e

T
t − ϑ1( 􏼁􏽢e

T
(t − ϑ(t))􏽢e

T
t − ϑ2( 􏼁􏽢e

T
t − κ1( 􏼁􏽢e

T
t − κ2( 􏼁_􏽢e

T
(t − κ(t))􏼔

H
T
1 (t, 􏽢e(t))H

T
1 (t, 􏽢e(t − ϑ(t)))􏽩.

(48)

+e proof of Corollary 2 is similar to that of +eorem 1.
+erefore, it is omitted. □

Remark 5. It is advantage specifying that a short time ago,
many works regarding synchronization of CDNs have been
reported in the literature, for instance, see [7, 40, 41].
Nevertheless, only very few papers have been focused on the
issue of synchronization of NCDNs [42, 43]. It is noticed
that all the abovementioned works on NCDNs have not
considered the influence of sudden changes in parameters or
environment, which can be represented using by Markovian
jump parameters [44–48]. Moreover, so far in the literature,
no work has been reported on H-infinity and passivity
synchronization problem of Markovian jump NCDNs with
distributed random coupling delay. +us, the main con-
tribution of this paper is to fill such a gap through employing
a fault-tolerant control law based on H-infinity and pas-
sivity performance for achieving robust synchronization in
Markovian jump NCDNs with random coupling delay
against distributed time-varying actuator faults, which
makes this work different from the existing works on
Markovian jump NCDNs.

Remark 6. It should be mentioned that +eorem 1 provides
a set of sufficient conditions for mean-square asymptotic
synchronization of the Markov jump NCDNs subject to
time-varying actuator faults and random coupling delay. It is
noted that the proof of +eorem 1 is mainly based on the
Lyapunov–Krasovskii stability theory, wherein the number
of decision variables in the obtained LMI constraints plays

an important role. It is obvious that the computational
complexity increases when the number of decision variables
becomes larger. Moreover, in this paper, we construct the
Lyapunov–Krasovskii functional consisting of double inte-
gral terms. So, the estimation of those integral terms brings
out some difficulties. In order to overcome this, we employ
Jensen’s integral inequality. It should be noted that the
advantage of using Jensen’s integral inequality is that it can
significantly reduce the number of decision variables in the
derivation of the main results. Besides, fortunately, all the
computations in the main results are off-line, and with the
aid of the existing standard convex optimization software,
the proposed LMI conditions can be easily solved.

Remark 7. +eorem 1 develops mixed H-infinity and
passivity performance synchronization of MJNTCDNs with
randomly occurring actuator faults. +eorem 1 makes full
use of the information of the upper bounds of the discrete
and distributed time-varying delays, which also brings us
less conservativeness.

4. Numerical Examples

In this section, two numerical examples are presented to
illustrate the effectiveness of the proposed method to analyze
synchronization with respect to MJNTCDN models.

Example 1. Consider the following MJNTCDNmodel along
with distributed time-varying delays with 3 nodes, mode p �

1, 2 and N � 3.

_􏽢e(t) � IN ⊗A1p􏼐 􏼑 + IN ⊗D1p􏼐 􏼑 IN ⊗Kp􏼐 􏼑 − IN ⊗D1p􏼐 􏼑λ(t) IN ⊗Kp􏼐 􏼑􏼐 􏼑􏽢e(t)

+ IN ⊗B1p􏼐 􏼑H1(t, 􏽢e(t)) + IN ⊗B2p􏼐 􏼑H2(t, 􏽢e(t − ϑ(t))) + IN ⊗C1p􏼐 􏼑_􏽢e(t − κ(t))

+(1 − β(t)) G(1) ⊗ Γ1p􏼐 􏼑􏽢e(t) + β(t) G(2) ⊗ Γ2p􏼐 􏼑 􏽚
t

t−ρ(t)
􏽢e(s)ds + IN ⊗E1p􏼐 􏼑v(t),

􏽥y(t) � IN ⊗A2p􏼐 􏼑􏽢e(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(49)
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where 􏽢e(t) � (􏽢eT
1 (t), 􏽢eT

2 (t))T and the relevant parameters are
given as follows:

Mode 1:

A11 �
−3.9 0.26

0.31 −2.8
􏼢 􏼣,

A21 �
0.13 0.14

0.16 0.13
􏼢 􏼣,

B11 �
0.25 0.75

0.35 0.25
􏼢 􏼣,

B21 �
0.14 0.15

0.45 0.23
􏼢 􏼣,

C11 �
0.0001 0

0 0.0001
􏼢 􏼣,

D11 �
0.5 0.6

0.5 0.6
􏼢 􏼣,

E11 �
0.2 0.1

0.1 0.2
􏼢 􏼣.

(50)

Mode 2:

A12 �
2.5 0

0 2
􏼢 􏼣,

A22 �
0.15 −1.08

0.75 2.019
􏼢 􏼣,

B12 �
−0.1 0.1

−0.1 −0.2
􏼢 􏼣,

B22 �
−0.23 1.02

0.56 1.021
􏼢 􏼣,

C12 �
−0.025 −1.01

2.3 1.75
􏼢 􏼣,

D12 �
−0.025 −1.01

−1.3 1.75
􏼢 􏼣,

E12 �
3 0

0 4
􏼢 􏼣,

(51)

In addition, the inner-coupling matrices of nondelayed
and delayed terms are taken as follows:

Γ11 �
0.3 0

0 0.3
􏼢 􏼣,

Γ21 �
0.5 0

0 0.5
􏼢 􏼣,

Γ12 �
0.8 0

0 0.8
􏼢 􏼣,

Γ22 �
1 0

0 1
􏼢 􏼣.

(52)

+e outer-coupling matrices are assumed to be
g(1)

zj � G(1), g(2)
zj � G(2) with

G(1)
�

−1 0 1

0 −1 1

−1 1 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

G(2)
�

−2 2 0

0 −2 2

2 0 −2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(53)

+e nonlinear function f(t, 􏽢rz(t)) is chosen as

f t, 􏽢rz(t)( 􏼁 �
0.2􏽢rz1(t) − tanh 0.1􏽢rz1(t)( 􏼁

0.1􏽢rz2(t)
􏼢 􏼣. (54)

It can be observed that f(t, 􏽢rz(t)) fulfills Assumption 1
with the following:

G1 �
0.1 0

0 0.1
􏼢 􏼣,

G2 �
0.1 0

0 0.1
􏼢 􏼣.

(55)

+e state and neutral, distributed time-varying delays
satisfy ϑ(t) � 0.5 + 0.5 sin(t), and κ(t) � 0.25 + 0.05 sin(t),
ρ(t) � 0.5 + 0.5 cos(t − 1), respectively.

Here we choose ϑ1 � 0.001, ϑ2 � 1, c � 0.6, β1 � 0.05,
β2 � 0.41, κ1 � 0.001, κ2 � 0.3, ρ � 1, ς1 � 0.01, ς2 � 0.1,
μ3 � 0.5, β � 0.5, σ � 0.3, and λ∗ � 0.9. In addition, the
Markov chain δ(t) � p, t≥ 0􏼈 􏼉 takes value in finite state
space N � 1, 2{ } and the transition probability matrix is
given by

δ(t) �
0.5 0.5

0.2 0.2
􏼢 􏼣. (56)

By using MATLAB LMI Toolbox, we solved LMIs (24)
and obtained the feasible solutions as follows:

Complexity 15



P1 �
65.1265 −34.7055

−34.7055 62.4038
⎡⎣ ⎤⎦,

P2 �
22.9921 −2.4665

−2.4665 16.6365
⎡⎣ ⎤⎦,

U2 �
41.7827 −4.6555

−4.6555 35.9923
⎡⎣ ⎤⎦,

U3 �
387.9186 85.2083

85.2083 736.9597
⎡⎣ ⎤⎦,

U4 �
184.2395 −7.9235

−7.9235 166.1189
⎡⎣ ⎤⎦,

U5 �
41.7827 −4.6555

−4.6555 35.9923
⎡⎣ ⎤⎦,

U6 �
31.7143 −2.0245

−2.0245 28.9686
⎡⎣ ⎤⎦,

U7 �
48.5381 −5.3557

−5.3557 43.9116
⎡⎣ ⎤⎦,

U8 �
0.0918 0.0024

0.0024 0.0915
⎡⎣ ⎤⎦,

U9 �
−69.7901 3.9091

3.9091 −62.5765
⎡⎣ ⎤⎦,

U10 �
0.0918 0.0024

0.0024 0.0915
⎡⎣ ⎤⎦,

U11 �
18.4974 0.2475

0.2475 17.9481
⎡⎣ ⎤⎦,

X1 �
60.0845 −35.8264

−35.8264 55.3508
⎡⎣ ⎤⎦,

X2 �
5.0580 1.0693

1.0693 2.9108
⎡⎣ ⎤⎦,

Y1 � 103
−1.7000 −0.5398

−0.5398 −1.9253
⎡⎣ ⎤⎦,

Y2 � 103
1.6331 3.3046

3.3046 −0.4509
⎡⎣ ⎤⎦,

Z �
96.6356 −11.9607

−11.9607 86.4221
⎡⎣ ⎤⎦.

(57)

We can obtain the following state feedback controller
gains:

K1 � Y1X
−1
1 �

−55.5454 −45.7051

−48.4065 −66.1147
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

K2 � Y2X
−1
2 � 103

0.0899 1.1023

0.7439 −0.4282
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(58)

+us, it can be concluded that model (18) is mixed
H-infinity and passive at performance level c. +e maxi-
mum allowable upper bounds of ϑ2 with different values ϑ1
are given in Table 1.

Example 2. Consider a class of model in the form of (44)
consisting of two-dimensional nodes with the following
coefficient matrices:

A1 �

−0.9 0.26

0.31 −0.8
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

B1 �

0.25 0.75

0.35 0.25
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

B2 �
0.14 0.15

0.45 0.23
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

C1 �

−0.6 0.4

0.5 −0.4
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

D1 �

1.2 1.4

0.8 0.3
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(59)

It can be found that f satisfies Assumption 1 with

G1 �
−0.5 0.2

0 0.95
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

G2 �

−0.3 0.2

0 0.2
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(60)

Based on the above parameters, we use the MATLAB
LMI Toolbox, to solve the LMI in Corollary 2. We obtain the
feasible solutions as follows.+erefore, the concerned model
with time-varying delays is quadratically stable.
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P1 �
−4.4613 −0.4878

−0.4878 −3.8748
􏼢 􏼣,

U2 �
19.5318 0.0775

0.0775 19.3311
􏼢 􏼣,

U3 �
22.8851 0.1539

0.1539 22.6357
􏼢 􏼣,

U4 �
73.0073 0.5419

0.5419 72.4158
􏼢 􏼣,

U5 �
19.5318 0.0775

0.0775 19.3311
􏼢 􏼣,

U6 �
10.2396 0.0042

0.0042 10.3032
􏼢 􏼣,

U7 �
−99.7995 −0.3808

−0.3808 −98.4768
􏼢 􏼣,

U8 �
0.0032 −0.0000

−0.0000 0.0033
􏼢 􏼣,

U9 �
−32.4779 −0.1621

−0.1621 −32.3669
􏼢 􏼣,

U10 �
0.0032 −0.0000

−0.0000 0.0033
􏼢 􏼣,

U11 �
36.7091 0.1316

0.1316 36.2684
􏼢 􏼣,

X1 �
−2.1495 −0.5201

−0.5201 −1.4914
􏼢 􏼣,

Y1 �
1.6994 1.3879

1.3879 0.4728
􏼢 􏼣.

(61)

+e corresponding control gain matrix is given as

K �
−0.6175 −0.7152

−0.6214 −0.1003
􏼢 􏼣. (62)

5. Conclusion

+is article is concerned withmixedH-infinity and passivity
synchronization of MJNTCDNs models with randomly
occurring distributed coupling time-varying delays and
actuator faults. We have designed the fault-tolerant state
feedback controller that is modeled by the Bernoulli random
variable. By utilizing the Lyapunov–Krasovskii functional
approach, the sufficient conditions are ensuring the mixed
H-infinity passive performance for the MJNCDN models

which have been established in terms of LMIs. Two nu-
merical examples are presented to illustrate the effectiveness
of the proposed method. In future, we would investigate the
occurrences of discrete sampled data control be described
using stochastic variables and probability density functions
[49]. Also, it is important to extend our results to analyze
stochastic synchronization of MJNTCDN models with
multiple time-varying delays via impulsive control and
pinning control.
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