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Abstract: This study is relevant to the topic of a robust event-triggered mechanism for the Takagi–Sugeno (T–S) fuzzy system
with successive time-delay (STD) signals and its application, where the uncertainties satisfy the randomly occurring form. Firstly,
an event-triggered communication scheme is introduced, which can adaptively adjust the communication threshold to save
limited communication resource. The primary aim of this study is to model an event-triggered mechanism with STD, which
ensures that the suggested T–S fuzzy system achieves extended dissipative with permissible uncertainties. Secondly, by using
the relaxed integral inequality technique, single and double auxillary function-based integral inequalities to evaluate the
derivative of the designed Lyapunov–Krasovskii functional, quadratically stable condition is established for the delayed fuzzy
system in terms of linear matrix inequalities and analyse the H∞, ℒ2 − ℒ∞, passivity, mixed H∞ and passivity, (Q, S, ℛ)-
dissipativity execution by choosing the weighting matrices can be solved simultaneously in a standard framework based on the
idea of extended dissipative. Finally, simulation studies are given to verify the effectiveness of the derived results, among them
one example was supported by the real-life application of the benchmark problem in the sense of STD signals.

θ
^ frequency bias factor
R speed drop
ΔP^ v generator valve position

ΔP^ m turbine generator mechanical output
Δ f deviation of frequency
Kp proportional gain of the local PI controller
KI integral gain of the local PI controller
T
~

ch turbine time constant
T^

g governor time constant
M̄ moment of inertia of the generator
D̄ generator damping coefficient
ΔPc set point

1 Introduction
In recent years, time-delay has received extensive attention due to
its reasonable applications in numerous practical systems, such as
economic systems, neural networks, networked control systems,
engineering systems, and so on [1–3]. It is acknowledged to be a
significant purpose for the instability and poor execution of the
system. To beat stability analysis issues, different methodologies
are suggested for the time-delay systems in the reference section,
for example the free matrix variables, convex polyhedron method,
and successive time-delay (STD) approach. Meanwhile, it merits
specifying that the STD system was first proposed in [4]. Such a
system might be experienced in numerous real applications, for
example, the networked control system and power system models
[5, 6]. For instance, in organised controlled systems, signals
transmitted starting with one point then onto the next may
encounter two segments of networks, which can probably induce
successive delays, one from the sensor to the controller, and the
other from the controller to the actuator, having distinctive
properties because of variable system transmission conditions.
Next, with the advance of renewable energy approach, the
integration of these techniques and power system is increasing the
interest of research. Owing to the expansive application of an open
communication network, researchers pay close attention to the

stability analysis of STD load frequency control (LFC) system.
Compared with the single time-varying delay approach, event-
triggered communication scheme with this model is under a
stronger background of applications, particularly the LFC system.
Therefore, taking the model with STD components into
consideration is meaningful. In the process of our research on this
subject, we find that there is still much room for further
development of the existing results [7–10]. Recently, the relaxed
and auxillary function based integral inequalities plays an
important role in the stability criteria for time-delay systems [11,
12]. For the parameter uncertainties: as we know, either the
external environment changes or internal disturbance can cause
changes in the system parameters. In the past analysis of the
closed-loop system based on event-triggered mechanism, the
uncertain factors in the system were often ignored, and a simple
deterministic network model was discussed. Although uncertainties
are very small in many cases, it has a great impact on the stability
and performance index of the system. Therefore, it is necessary to
investigation for a non-linear system with uncertainty has been
turned into an incredible issue in STD and many results have been
examined (see [13–15]).

On the other hand, the fuzzy logic theory has been generally
chosen for modelling complex non-linear systems. Among the
different fuzzy logic model, the Takagi–Sugeno (T–S) fuzzy
pattern is famous among researchers because of its amazing
capacity in taking care of non-linear systems, which can be
depicted as a group of linear subsystems with the assistance of IF-
THEN fuzzy rules and fuzzy membership functions [16–18].
Besides, this strategy has turned quite specific and well known for
handling the issue of some difficult non-linear systems. Thus, from
the sense of both theoretical point of view and real-life applications
an enormous amount of results related for T–S fuzzy systems have
been stated in the previous years [19, 20]. Researchers in [21],
improved delay-dependent stability criteria has been studied for
quadratic T–S fuzzy system. In [22], extended dissipative analysis
has been discussed for uncertain T–S fuzzy system with time-
varying delay and randomly occurring gain variations.
Furthermore, in [23], the authors proposed event-triggered reliable
control for T–S fuzzy uncertain systems with weighted based
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inequality. Quite recently in [24], event-triggered control (ETC) of
T–S fuzzy networked system has been studied for distributed delay
method. In many complicated control systems, communication
networks are utilised to exchange information and signals between
components in a distributed system. By combining T–S fuzzy
systems and event-triggered communication scheme, a new
networked T–S fuzzy system will be proposed in this paper, which
is not a simple combination of closed-loop and fuzzy systems. In
this paper, on the basis of previous work in the literature, the
modelled system under a robust event-triggered communication
scheme that determines when and which data should be
transmitted, is described as the T–S fuzzy system with an
successive time delay method.

In any case, not quite the same as the conventional control
systems, networked systems definitely bring new issues, and
difficulties inferable from the inserted communication network [25,
26], and fault approaches [27, 28]. It is amazingly evident to look
at this the fundamental advantages of the event-triggered
mechanism can be finished up as low broadcast frequency via
networks and decrease network utilisation. On the other hand, the
threshold limit of the conventional event-triggered mechanism is
likely ahead of time and has difficulty in adjustment for a variety of
the thought about the system. To beat inadequacy exhibited over,
the considered adaptive event-triggered mechanism in networked
systems is a current research subject (see [29, 30]). Be that as its
way, the considered adaptive law has been introduced through a
simple structure. With this result that adaptive event-triggered
mechanism can be more efficient in decreasing the communication
burden resources. Currently, a variety of issues have been focused
under the adaptive ETC scheme. For example, the problem of
synchronisation control for T–S fuzzy neural networked systems
has been studied in [31]. Based upon the adaptive event-triggered
mechanism, the study of network-based H∞ control for T–S fuzzy
systems have been investigated in [32, 33]. In [34], event-triggered
stabilisation has been addressed for T–S fuzzy systems via
asynchronous premise constraints. In any case, how to design
successive time-varying delay never completely examined in the
previously stated works, particularly in response to event-triggered
T–S fuzzy approach.

Especially, in the physical systems, dissipativity issue is
profoundly connected with the idea of energy dissipation. This
implies that hypothesis has given a basic structure to the control-
based issues on planning in the investigation of linear and non-
linear system models by means of an information yield description
through the energy-related design [35]. Willem's introduced this
idea in 1972 (see [36]), it has been accepted as extraordinary
research from the researchers due to its extensive variety of
practical recognition. For this reason, in the present day, the
thought of dissipativity is approved to be essential and useful tool
for control engineering realisations, for example, mechanical
technology, burning motors, and electromechanical system
modellings (see [37, 38]). Additionally, the dissipativity theory
recommends another outlining execution list through the adaptable
parameters (Q, S, ℛ) distinguished with other performance
indexes, for example, H∞ control and passivity. Therefore, various
specialists have taken interest in the linear matrix inequality (LMI)
structure analysis with the extended-dissipativity based
examination of time-delay systems in the past years. In addition,
designing a system to be extended-dissipativity will enable not
only closed-loop stability but also effective in control strategy via
external noise attenuation. Many previous studies have been
considered on extended-dissipativity issues based on event-
triggered strategy. Researchers in [39], non-linear multi-agent
systems have been studied for a distributed asynchronous event-
triggered mechanism with disturbances. Event-triggered
mechanism and extended dissipative analysis for network control
systems have been discussed in [40]. In [41], the problem of event-
triggered extended dissipative control for switched systems have
been considered under the finite-time stability analysis.
Furthermore, in [42], authors proposed event-triggered dissipative
state estimation for Markov jump neural networks. In any case, no
related work has been a breakthrough in bringing together T–S
fuzzy system investigation for event-triggered mechanism with

STD. In this manner, to meet this request, a noteworthy
commitment of this paper is to fill such a gap by making the main
endeavour to discuss about the extended dissipativity analysis for
T–S fuzzy system, which covers at the same time ℒ2 − ℒ∞, H∞,
passivity, and (Q, S, ℛ)-dissipativity analysis. Consequently, this
incompletion motivates our present examination on this issue.

Motivated by the above discussions, in this paper, the extended
dissipativity for T–S fuzzy system via STD signal is discussed in
terms of the event-triggered mechanism. The existing methods in
[23, 24], are dealt with only event-triggered approach for T–S
fuzzy system. In this paper, we projected STD approach with one
benchmark problem, which further shows the significance of our
research. The main contributions of this paper as follows:

(i) By using suitable Lyapunov–Krasovskii functional (LKF), the
sufficient condition is derived for T–S fuzzy system with STD
through ETC scheme.
(ii) Merge with a more tightly estimation of the LKF derivative,
single auxillary function-based integral inequality (SAFBII),
double auxillary function-based integral inequality (DAFBII), and
relaxed integral inequality (RII) techniques, extended dissipativity
criterion with less conservativeness is determined in terms of
LMIs.
(iii) The ETC is intended to stabilise the considered T–S fuzzy
system. Furthermore, the proposed stability criteria build up the
connection between the STD in system and communication delay
in the controller and the acquired conditions can be converted over
into LMIs, which can be checked by MATLAB LMI toolbox.
(iv) Simulation examples are given to demonstrate the viability and
less conservatism of the developed approaches. In the application
perspective, the obtained theoretical result is validated with the
single-area LFC system.

This paper is organised as follows. Section 2 describes the T–S
fuzzy STD model description and gives a theoretical background.
Extended dissipative criteria for robust event-triggered mechanism
and the constructed controller are summarised in Section 3.
Simulation results, comparison and applications are conducted and
explained in Sections 4–6, respectively to demonstrate the
adequacy and less conservatism of the proposed approaches.
Lastly, conclusion and future directions are given in Section 7.

Notations: A set of fairly standard notations is used in this
paper. ℕ and ℝn means the positive integers and n-dimensional
Euclidean space, respectively. ℝn × m is the arrangement of n × m
real matrices. X > 0 (X ≥ 0) denotes positive definite (semi-
positive definite) matrix X; the superscripts T and −1 means that
the transpose and inverse of a matrix, respectively. ∗ denotes the
elements that are introduced due to corresponding symmetry. I
means the identity matrix of the appropriate dimensions and
diag{…} means the block-diagonal matrix. MAUBs denotes the
maximum allowable upper bounds. Prob{s} defines the probability
of the occurrence s.

2 Preliminaries and problem formulation
Consider the non-linear system as follows:

ṁ(t) = f (m(t), m(t − κ1(t) − κ2(t)), u(t), v(t)), (1)

where m(t) ∈ ℝn represents the state vector, u(t) ∈ ℝl is the control
input, v(t) ∈ ℝq is the disturbance input which belongs to L2[0, ∞).
f ( ⋅ ) denote the non-linear function, κ1(t) and κ2(t) denote two
time-varying delay satisfying

0 ≤ κ1(t) ≤ κ1, 0 ≤ κ2(t) ≤ κ2, κ(t) = κ1(t) + κ2(t)
κ̇1(t) ≤ μ1, κ̇2(t) ≤ μ2, h

~ = κ1 + κ2, μ = μ1 + μ2,
(2)

where κ1, κ2, μ1 and μ2 are non-negative constants. Then, the non-
linearities in system (1) can be expressed in terms of linear
subsystems based on T–S fuzzy IF-THEN rules is as follows:

Plant rule i:

3698 IET Control Theory Appl., 2020, Vol. 14 Iss. 20, pp. 3697-3712
© The Institution of Engineering and Technology 2020



IF h1(t) is Mi1 and h2(t) is Mi2…hp(t) is Mip.
THEN

ṁ(t) = Āim(t) + Ādim(t − κ(t)) + B̄iu(t) + D̄iv(t),

where i = 1, 2, …, r, r denotes the number of IF-THEN rules,
h(t) = [h1(t) h2(t) … hp(t)]T is premise variable,
Mik(i = 1, 2, …, r, k = 1, 2, …, p) is the fuzzy set.
Āi = Ai + α(t)ΔAi(t), Ādi = Adi + ϱ(t)ΔAdi(t), B̄i = Bi + γ(t)ΔBi(t),
D̄i = Di + σ(t)ΔDi(t)
and the appropriate dimension real constant matrices are denoted as
Ai, Adi, Bi, and Di. α(t), ϱ(t), γ(t), and σ(t) are commonly stochastic
variables which are mutually independent Bernoulli-distributed
sequences. The unknown matrices ΔAi(t), ΔAdi(t), ΔBi(t), and
ΔDi(t) are noted as norm-bounded parametric uncertainties to be of
the form:

[ΔAi(t) ΔAdi(t) ΔBi(t) ΔDi(t)] = H1iFi(t)[E1i E2i E3i E4i] (3)

where H1i, E1i, E2i, E3i, and E4i are the constant matrices with proper
dimensions, Fi(t) is unknown real and possibly time-varying
matrices satisfying Fi(t)TFi(t) ≤ I. Supposed that all elements Fi(t)
is Lebesgue measurable, ΔAi(t), ΔAdi(t), ΔBi(t), and ΔDi(t) are said
to admissible if (3) hold. With the combination of product
inference, centre-average defuzzifier and singleton fuzzifier the T–
S fuzzy system (1) is expressed as follows:

ṁ(t) = ∑
i = 1

r
wi(h(t)) Āim(t) + Ādim(t − κ(t))

+B̄iu(t) + D̄iv(t) ,
(4)

where

wi(h(t)) = βi(h(t))
∑i = 1

r βi(h(t))
, βi(h(t)) = ∏

j = 1

p
Mi j(hj(t)),

and Mi j(hj(t)) is the grade membership of hj(t) in Mi j. It is clear
that βi(h(t)) ≥ 0 and ∑i = 1

r βi(h(t)) ≥ 0. Therefore

wi(h(t)) ≥ 0, i = 1, …, r, ∑
i = 1

r
wi(h(t)) = 1. (5)

Networked control systems contain various parts, for example,
sensors, controllers, and actuators associated by means of
communication networks. It is notable that the periodic time-
triggered scheme was broadly utilised in various framework of the
systems, since it is anything but difficult to outline and keep up. Be
that as it may, the time-triggered scheme could build the amount of
the network, and lose the restricted resource of the network for the
logic that it transfer various pointless information over the system.
Along these lines, the consider event-triggered mechanism was
produced to conquer these inadequacies without degrading the
coveted system execution. The structure of the event-triggered
mechanism is that a choice generator is developed to decide, either
to spread the information over the network previously the data are
discharged into the network. All over this paper, the system (1) is
controlled through a network. We expect that the sections (n) and
the estimation error m(t) are gathered into v nodes, so the signals
relating to node l ∈ {1, 2, …, v} can be meant as ml(t) ∈ ℝnl with
n1 + n2 + ⋯ + nv = n . Now, we indicate the lth event triggering
discharged instant by [tkl

l h]kl
∞ and coming immediately tkl + 1

l h of lth
event generator is described by

tkl + 1
l h = tkl

l h + min
l̄ ∈ Z

l̄h sl
T(i^kl

l h)Φ1lsl(i
^
kl

l h) > β
~

l(t)ml
T

× (tkl
l h)Φ2lml(tkl

l h) + δl(t)ml
T(i^kl

l h)Φ2lml(tkl
l h) ,

(6)

where i^kl

l = tKl
l + l

~, sl(i
^
Kl
l h) = ml(i

^
Kl
l h) − ml(tKl

l h), tKl
l h

denotes klth communication instant of the lth event, and
Φi

~
l > 0(i~ = 1, 2) are the generated parameters remain to be

evaluated. The terms β
~

l(t), δl(t) with β
~

l(0) > 0, δl(0) > 0 are the
activity controlled by the following adaptive laws:

β
~̇

l(t) = 1
β
~

l(t)
1

β
~

l(t)
− ρ1l sl

T(i^kl
l h)Φ1lsl(i

^
kl
l h) − λ1lml

T

× (i^kl

l h)Φ2lml(i
^
kl
l h) + λ1lml

T(tkl
l h)Φ2lml(tkl

l h) ,
(7)

δ̇l(t) = 1
δl(t)

1
δl(t)

− ρ2l sl
T(i^kl

l h)Φ1lsl(i
^
kl
l h) − λ2lml

T

× (tkl
l h)Φ2lml(tkl

l h) + λ2lml
T(i^kl

l h)Φ2lml(i
^
kl
l h) ,

(8)

where ρil, λi
~
l(i

~ = 1, 2; l = 1, 2, …, v) are likely positive constants
such that 1/ρ1l < β

~
l(t) ≤ λ2l, 1/ρ2l < δl(t) ≤ λ1l . In addition, we will

exhibit a few indication as follows:

Φ̄i
~ = diag(Φi

~
1, …, Φi

~
v) > 0(i~ = 1, 2), β

~(t) = diag(β
~

1(t), …, β
~

v(t)),
δ(t) = diag(δ1(t), …, δv(t)), χi

~ = diag(λi
~

1In1, …, λi
~
vInv),

Λi
~ = diag(ρi

~
1In1, …, ρi

~
vInv)(i

~ = 1, 2) .
(9)

In this paper, we utilise the event-triggered plan in (6) to minimise
useless data transmission. Therefore, we plan to model the
controller

u(t) = K[m(tk1
1 h) m(tk2

2 h) … m(tkn
n h)]T, t ∈ [tkh, tk + 1h], (10)

where K is the matrix of controller gain and to be resolved later,

tkh = max
l = 1, 2, …, v

tkl
l , tk + 1h = max

l = 1, 2, …, v
tkl + 1
l .

Let lk = tk + 1 − tk, then the following period [tkh, tk + 1h) can be
defined as

[tkh, tk + 1h) = ⋃
i = 0

lk − 1
Φi,

where Φi
~ = [tkh + i

~
h, tkh + i

~
h + h) . Define η2(t) = t − tkh − i

~
h for

t ∈ Φi
~. Therefore, η2(t) can be expressed as

0 ≤ η2(t) ≤ h, t ∈ Φi
~,

η̇2(t) = 1. (11)

Therefore, the threshold error sl(tkh + i
~
h) can be composed as

follows:

ml(tkl
l h) = ml(t − η2(t)) − sl(t − η2(t)), t ∈ Φi

~ .

Denoting sT( ⋅ ) = [s1
T( ⋅ ), …, sv

T( ⋅ )], as
s(t − η2(t)) = col{s1(t − η2(t)), s2(t − η2(t)), …, sv(t − η2(t))}. At that
point, the design controller can be presented as

u(t) = K(m(t − η2(t)) − s(t − η2(t))), t ∈ Φi
~ .

Controller Rule z: IF h1(t) is Mz1 and h2(t) is Mz2 and … and hp(t) is
Mzp,

u(t) = ∑
z = 1

r
wz(h(t))[Kz(m(t − η2(t)) − s(t − η2(t)))] . (12)
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Substituting the above controller into the system (4) generating the
closed-loop system

ṁ(t) = ∑
i = 1

r

∑
z = 1

r
wi(h(t))wz(h(t)) Āim(t) + Ādim(t − κ(t))

+B̄i[Kz(m(t − η2(t)) − s(t − η2(t)))] + D̄iv(t) .
(13)

Besides, the output arrangement of the system (13) is explained as
follows:

y(t) = m(t) + m(t − κ(t)) . (14)

Before presenting our main results, the following assumption,
definitions and instrumental lemmas are introduced to verify the
stability criteria for the closed-loop system.

 
Assumption 1: Matrices Θ1, Θ2, Θ3, and Θ4 fulfil the

accompanying conditions:

(1) Θ1 = Θ1
T ≤ 0, Θ3 = Θ3

T > 0, Θ4 = Θ4
T ≥ 0,

(2) ( ∥ Θ1 ∥ + ∥ Θ2 ∥ ) ⋅ ∥ Θ4 ∥ = 0.

 
Definition 1: [38] The T–S fuzzy system (13) with (14) is said

to be extended dissipative, there exists a scalar ω > 0, and the
given matrices Θ1, Θ2, Θ3, and Θ4 satisfying Assumption 1 such
that for any t f ≥ 0 and all v(t) ∈ L2[0, ∞) the following inequality
holds:

∫
0

t f

J(t) dt ≥ sup
0 ≤ t ≤ t f

yT(t)Θ4y(t) + ω,

where J(t) = yT(t)Θ1y(t) + 2yT(t)Θ2v(t) + vT(t)Θ3v(t) .
 
Definition 2: [38] For system (13), if there exists a scalar ν > 0,

such that the Lyapunov function derivative corresponding with
time t states

V̇(t) ≤ − ν m(t) 2 ,

therefore, system (13) with v(t) = 0 is said to be quadratically
stable.

 
Lemma 1: [15] Given matrices H, E, and F with FTF = I and a

scalar ϵ > 0, the succeeding inequality holds:

HFE + (HFE)T ≤ ϵHHT + ϵ−1ETE .
 
Lemma 2: [11] For block symmetric matrices

Q^
6 = diag{Q6, 3Q6, 5Q6} with Q6 > 0, any matrix S, the following

inequality holds:

Υ(t) ≤ − 1
h χ~T(t) F1

F2

T Q^
6 S

∗ Q^
6

+

h − η2(t)
h U1 0

0 η2(t)
h U2

F1

F2
χ~(t),

χ~(t) = −∫
t − η2(t))

t
u̇T(s)Q6u̇(s) ds − ∫

t − h

t − η2(t)
u̇T(s)Q6u̇(s) ds,

ξ(t) = [uT(t) uT(t − η2(t)) uT(t − h) v1
T(t) v2

T(t) v3
T(t) v4

T(t)]T,
F1 = Λ1, F2 = Λ2,
Λ1 = col[s^1 − s2 s^1 + s^2 − 2s^4 s^1 − s^2 + 6s^4 − 12s^6],
Λ2 = col[s^2 − s^3 s^2 + s^3 − 2s^5 s^2 − s^3 + 6s^5 − 12s^7],
U1 = Q^

6 − SQ^
6
−1

ST, U2 = Q^
6 − STQ^

6
−1

S,

v1(t) = 1
η2(t)∫t − η2(t)

t
uT(s) ds, v2(t) = 1

h − η2(t)∫t − h

t − η2(t)
uT(s) ds,

v3(t) = 1
η2

2(t)∫t − η2(t)

t ∫
s

t
uT(θ) dθ ds,

v4(t) = 1
(h − η2(t))2∫

t − h

t − η2(t)∫
s

t − η2(t)
uT(θ) dθ ds,

s^ j = [0n × ( j − 1)n I 0n × (7 − j)n], j = 1, 2, …, 7.
 
Lemma 3: [12] Let Z > 0 and for given scalars α and β

^
, the

following relation is well defined for any differentiable function u
in [α, β

^] → ℝn.

−∫
α

β^

u̇T(s)Zu̇(s) ds ≤ − 1
β
^ − α

φ1
TZφ1 − 3

β
^ − α

φ2
TZφ2,

−∫
α

β^

u̇T(s)Zu̇(s) ds ≤ − 1
β
^ − α

φ1
TZφ1 − 3

β
^ − α

φ2
TZφ2

− 5
β
^ − α

φ7
TZφ7,

−∫
α

β^∫
λ

β^

u̇T(s)Zu̇(s) ds dλ ≤ − 2φ3
TZφ3 − 4φ4

TZφ4,

−∫
α

β^∫
α

λ
u̇T(s)Zu̇(s) ds dλ ≤ − 2φ5

TZφ5 − 4φ6
TZφ6,

where

φ1 = u(β
^) − u(α), φ2 = u(β

^) + u(α) − 2
β
^ − α∫α

β^

u(s) ds,

φ3 = u(β
^) − 1

β
^ − α∫α

β^

u(s) ds, φ5 = u(α) − 1
β
^ − α∫α

β^

u(s) ds,

φ4 = u(β
^) + 2

β
^ − α∫α

β^

u(s) ds − 6
(β

^ − α)2∫
α

β^∫
λ

β^

u(s) ds dλ,

φ6 = u(α) − 4
β
^ − α∫α

β^

u(s) ds + 6
(β

^ − α)2∫
α

β^∫
λ

β^

u(s) ds dλ,

φ7 = u(β
^) − u(α) − 2

β
^ − α∫α

β^

u(s) ds + 12
(β

^ − α)2∫
α

β^∫
θ

β^

u(s) ds dθ .

The main objective of this paper is summarised in the following
problem 1:

 
Problem 1: For the given T–S fuzzy system (13), to achieve

quadratically stable under the adaptive event-triggered mechanism
through the following objectives:

(1) New LKF with communication delay signals is proposed with
v(t) = 0 to derive the quadratically stable condition of (13).
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(2) The suitable event-triggered strategy, a norm-bounded
parametric uncertainties, and control gain matrix Kz are designed
from the suitable LMIs to ensure the closed-loop system (13) is
extended dissipative, there exists a scalar ω > 0.

The following section provides the solution to Problem 1 for the
extended dissipativity condition.

3 Main results
In this section, we will give the new quadratic stability sufficient
conditions, and develop event-triggered controller to ensure
extended dissipativity criteria for the given T–S fuzzy system (15)
with successive time-varying delay and communication delay
signal.

A. Event-triggered quadratically stable and extended
dissipative analysis for the following nominal system by
considering successive time-varying delays:

ṁ(t) = ∑
i = 1

r

∑
z = 1

r
wi(h(t))wz(h(t)) Aim(t) + Adim(t − κ(t))

+Bi[Kz(m(t − η2(t)) − s(t − η2(t)))] + Div(t) .
(15)

For the sake of simplicity of matrix and vector representation,
el ∈ ℝ21ℕ × ℕ(l = 1, 2, …, 21) are defined as block entry matrices
(such as e3 = [0 0 I 0 0 0

18 times
]T ). The other notations are defined as:

ξ
^T(t) = mT(t) mT(t − κ(t)) mT(t − κ1(t)) mT(t − h

~)
× mT(t − κ1) mT(t − η2(t)) mT(t − h) υ1

T(t) υ2
T(t) υ3

T(t)
× υ4

T(t) sT(t − η2(t)) vT(t) mT(t − κ2(t)) mT(t − κ2)

× ξ
^
1
T(t) ξ

^
2
T(t) ,

ξ
^
1
T(t) = 1

κ2(t)∫t − κ2(t)

t
mT(s) ds 1

κ2 − κ2(t)∫t − κ2

t − κ2(t)
mT(s) ds

× 1
κ2

2(t)∫t − κ2(t)

t ∫
u

t
mT(s) dsdu ,

ξ
^
2
T(t) = 1

(κ2 − κ2(t))2∫
t − κ2

t − κ2(t)∫
u

t − κ2(t)
mT(s) ds du

× 1
κ1
∫

t − κ1

t
mT(s) ds 1

κ1
2∫

t − κ1

t ∫
t + β^

t
mT(s) ds dβ

^ ,

ℏ13 = [I 0 − I 0 0 0
18 times

]T, ℏ23, and ℏ24 follow similarly .

(16)

 
Theorem 1: For a given scalars κ1, κ2, μ1, μ2, h and 0 < ϵ < 1,

matrices Θ1, Θ2, Θ3, and Θ4 satisfying Assumption 2.1, the T–S
fuzzy system (15) with (14) is extended dissipative and
quadratically stable, if there exist matrices
P > 0, Ql > 0, l = 1, 2, 3, 4, R^

1 > 0, R^
2 > 0, S j > 0, j = 1, 2, 3…, 7,

Q6 > 0, Φ̄1 > 0, Φ̄2 > 0, K̄z
and P̄, such that the following conditions are satisfied

Π = ϵP̄ − Θ4 −Θ4

⋆ (1 − ϵ)P̄ − Θ4
> 0,

Ω~ iz =
Ξℓ Σiz

Σiz
T −Ψ^ < 0, ℓ = 1, 2, 3, 4,

(17)

where

Ξ1 = Ξiz − ℏ13κ1
−1R̄2ℏ13

T − ℏ23κ1
−1R̄2ℏ23

T < 0,
Ξ2 = Ξiz − ℏ13κ1

−1R̄2ℏ13
T − ℏ24κ2h

~−2
R̄2ℏ24

T < 0,
Ξ3 = Ξiz − ℏ24κ1h−2R̄2ℏ24

T − ℏ23κ2
−1R̄2ℏ23

T < 0,

Ξ4 = Ξiz − ℏ24h−1R̄2ℏ24
T < 0, Ξiz = ∑

j = 1

5
Θ^ j,

Ψ^ = diag{R̄1 − 2P̄, R̄2 − 2P̄, Q̄6 − 2P̄, S̄4 − 2P̄, S̄5 − 2P̄,
S̄3 − 2P̄, S̄6 − 2P̄},

Σiz = κ1Λiz
T h

~Λiz
T hΛiz

T κ1

2Λiz
T κ1

2Λiz
T κ1Λiz

T h
~

2Λiz
T ,

Λiz
T = [P̄Ai P̄Adi 0 0 0 BiK̄z 0 0 0

5 times
− BiK̄z P̄Di 0 0 0

8 times
]T,

Θ^ 1iz = sym{e1P̄(Aie1
T + Adie2

T + Die13
T) + e1Bi[K̄z(e6 − e12)T]}

−(1 − μ1)e3Q1e3
T + e1(∑

i = 1

4
Qi + S1 + S2)e1

T − e4Q2e4
T

−(1 − μ)e2Q3e2
T − e5Q4e5

T − (1 − μ2)e14S1e14
T − e15S2e15

T ,
Θ^ 2 = −(e1 − e3)κ1

−1R^
2(e1 − e3)T − (e2 − e4)h

~−1
R^

2(e2 − e4)T

−(e2 − e3)κ2
−1R^

2(e2 − e3)T − (e1 − e3)κ1
−1R^

1(e1 − e3)T

−(e3 − e4)κ1
−1R^

1(e3 − e4)T,
Θ^ 3 = (e12 − e6)(In + χ2Λ2)Φ̄2(e12 − e6)T + e6(In + Λ1 χ1)Φ̄2e6

T

−e12(Λ1 + Λ2)Φ̄1e12
T + e1S7e1

T + Υ1
Tℤ1Υ1,

Υ1 = [Υ11
T Υ12

T ]T, Υ11 = [Υ11
1 e1 − e6 + 6e8 − 12e10],

Υ12 = [Υ12
1 e6 − e7 + 6e9 − 12e11], Υ11

1 = [e1 − e6 e1 + e6 − 2e8],
Υ12

1 = [e6 − e7 e6 + e7 − 2e9],

ℤ1 =

2h − η2(t)
h ℤ2 S

∗ h + η2(t)
h ℤ2

, ℤ2 = diag{Q6, 3Q6, 5Q6},

Θ^ 4 = −2(e5 − e20)S4(e5 − e20)T − 2(e1 − e20)S5(e1 − e20)T

−4(e5 − 4e20 + 6e21)S4(e5 − 4e20 + 6e21)T

−4(e1 + 2e20 − 6e21)S4(e1 + 2e20 − 6e21)T − 2(e1 − e16)
× S6(e1 − e16)T − 4(e1 + 2e16 − 6e18)S6(e1 + 2e16 − 6e18)T

−2(e14 − e17)S6(e14 − e17)T − 4(e14 + 2e17 − 6e19)
× S6(e14 + 2e17 − 6e19)T − (e1 − e14)S6(e1 − e14)T

−3(e1 + e14 − 2e16)S6(e1 + e14 − 2e16)T

−5(e1 − e14 − 6e16 + 12e18)S6(e1 − e14 − 6e16 + 12e18)T,
Θ^ 5 = −e1Θ1e1

T + e1Θ1e2
T − e1Θ2e13

T − e2Θ1e2
T

+e2Θ2e13
T − e13Θ3e13

T .

Moreover, if the foregoing condition holds, the desired controller
gain matrix is given by Kz = K̄zP̄

−1, and the scalar ω is defined in
Definition 1 is chosen as ω = − V(0) − ∥ P̄ ∥ sup−r ≤ s ≤ 0 ϕ(s) 2.

 
Proof: Define an LKF as follows:

V(t) = ∑
ℓ = 1

4
Vℓ(t), (18)

where
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V1(t) = mT(t)Pm(t) + ∫
t − κ1(t)

t
mT(α)Q1m(α) dα

+∫
t − h

~

t
mT(α)Q2m(α) dα + ∫

t − κ(t)

t
mT(α)Q3m(α) dα

+∫
t − κ1

t
mT(α)Q4m(α) dα + ∫

t − κ2(t)

t
mT(α)S1m(α) dα

+∫
t − κ2

t
mT(α)S2m(α) dα,

V2(t) = ∫
t − κ1

t ∫
t + θ

t
ṁT(α)R^

1ṁ(α) dα ds

+∫
t − h

~

t ∫
t + θ

t
ṁT(α)R^

2ṁ(α) dα ds

+κ2∫
t − κ2

t ∫
t + θ

t
ṁT(α)S3ṁ(α) dα dθ,

V3(t) = h∫
h

0∫
t + θ

t
ṁT(s)Q6ṁ(s) ds dθ

+∫
t − η(t)

t
mT(s)S7m(s) ds + 1

2 β
~2(t) + 1

2δ2(t),

V4(t) = ∫
−κ1

0∫
−κ1

λ∫
t + β^

t
ṁT(α)S4ṁ(α) ds dβ

^
dλ

+∫
−κ1

0∫
λ

0∫
t + β^

t
ṁT(α)S5ṁ(α) ds dβ

^
dλ

+∫
−h

~

0∫
−θ

0∫
t + u

t
ṁT(α)S6ṁ(α) ds du dθ .

Then, calculating the time derivative of the LKF along the
trajectory of (15) yields

V̇1(t) ≤ 2mT(t)P Aim(t) + Adim(t − κ(t)) + Bi[Kz(m(t − η2(t))
−s(t − η2(t)))] + Div(t) + mT(t)Q1m(t) − (1 − μ1)
× m(t − κ1(t))TQ1m(t − κ1(t)) + mT(t)Q2m(t)
−m(t − h

~)TQ2m(t − h
~) + mT(t)Q3m(t) − (1 − μ)

× m(t − κ(t))TQ3m(t − κ(t)) + mT(t)Q4m(t)
−m(t − κ1)TQ4m(t − κ1) + mT(t)S1m(t)
−(1 − μ2(t))m(t − κ2(t))TS1m(t − κ2(t))
+mT(t)S2m(t) − m(t − κ2)TS2m(t − κ2),

≤ ∑
i = 1

r

∑
z = 1

r
wi(h(t))wz(h(t))ξ^T(t)Θ^ 1izξ

^(t),

V̇2(t) ≤ κ1ṁT(t)R^
1ṁ(t) − ∫

t − κ1

t
ṁT(α)R^

1ṁ(α) dα

+hṁT(t)R^
2ṁ(t) − ∫

t − h

t
ṁT(α)R^

2ṁ(α) dα

+κ2
2ṁT(t)S3ṁ(t) − κ2∫

t − κ2

t
ṁT(α)S3ṁ(α) dα .

(19)

Note that

−∫
t − κ1

t
ṁT(α)R^

1ṁ(α) dα − ∫
t − h

~

t
ṁT(α)R^

2ṁ(α) dα

= − ∫
t − κ1(t)

t
ṁT(α)R^

1ṁ(α) dα − ∫
t − κ1

t − κ1(t)
ṁT(α)R^

1ṁ(α) dα

−∫
t − κ1(t)

t
ṁT(α)R^

2ṁ(α) dα − ∫
t − κ(t)

t − κ1(t)
ṁT(α)R^

2ṁ(α) dα

−∫
t − h

~

t − κ(t)
ṁT(α)R^

2ṁ(α) dα .

(20)

Let ω^ = κ1(t)/κ1 and ω̌ = κ2(t)/κ2. Then

−∫
t − κ1(t)

t
ṁT(α)R^

2ṁ(α) dα = − κ1
−1∫

t − κ1(t)

t
κ1ṁT(α)R^

2ṁ(α) dα

= −κ1
−1∫

t − κ1(t)

t
κ1(t)ṁT(α)R^

2ṁ(α) dα

−κ1
−1∫

t − κ1(t)

t
[κ1 − κ1(t)]ṁT(α)R^

2ṁ(α) dα .

(21)

From (21), we have

−κ1
−1∫

t − κ1(t)

t
[κ1 − κ1(t)]ṁT(α)R^

2ṁ(α) dα

= − (1 − ω^ )∫
t − κ1(t)

t
ṁT(α)R^

2ṁ(α) dα

≤ − (1 − ω^ )κ1
−1∫

t − κ1(t)

t
κ1(t)ṁT(α)R^

2ṁ(α) dα .

(22)

By Jensen's inequality, together with (21) and (22), we get the
following:

−∫
t − κ1(t)

t
ṁT(α)R^

2ṁ(α) dα − ∫
t − κ(t)

t − κ1(t)
ṁT(α)R^

2ṁ(α) dα

≤ ξ
^T(t) − (e1 − e3)[κ1

−1R^
2 + (1 − ω^ )κ1

−1R^
2](e1 − e3)T

−(e2 − e3)[κ2
−1R^

2 + (1 − ω̌)κ2
−1R^

2](e2 − e3)T ξ
^(t),

similarly, the following inequality holds

−∫
t − h

~

t − κ(t)
ṁT(α)R^

2ṁ(α) dα ≤ ξ
^T(t) − (e2 − e4)[h

~−1
R^

2

+ω^ κ1h
~−2 × R^

2 + ω̌κ2h
~−2

R^
2](e2 − e4)T ξ

^(t),

−∫
t − κ1(t)

t
ṁT(α)R^

1ṁ(α) dα − ∫
t − κ1

t − κ1(t)
ṁT(α)R^

1ṁ(α) dα

≤ ξ
^T(t) − (e1 − e3)[κ1

−1R^
1](e1 − e3)T

−(e3 − e4)[κ1
−1R^

1](e3 − e4)T ξ
^(t) .

By using the statement (ii) of Lemma 3, we have

−κ2 ∫
t − κ2

t
ṁT(α)S3ṁ(α) dα = − κ2∫

t − κ2(t)

t
ṁT(α)S3ṁ(α) dα

−κ2∫
t − κ2

t − κ2(t)
ṁT(α)S3ṁ(α) dα

= − ξ
^T(t) (e1 − e14)S3(e1 − e14)T + 3(e1 + e14 − 2e16)S3

× (e1 + e14 − 2e16)T + 5(e1 − e14 − 6e16 + 12e18)S3

× (e1 − e14 − 6e16 + 12e18)T ξ
^(t) − ξ

^T(t) (e14 − e15)S3

× (e14 − e15)T + 3(e14 + e15 − 2e17)S3(e14 + e15 − 2e17)T

+5(e14 − e15 − 6e17 + 12e19)
S3(e14 − e15 − 6e17 + 12e19)T ξ

^(t) .

(23)

Combining (20)–(23), one can obtain

V̇2(t) ≤ ξ
^T(t)Θ^ 2ξ

^(t) + ξ
^T(t) − (1 − ω^ )[(e1 − e3)κ1

−1R^
2

× (e1 − e3)T − ω^ (e2 − e4)κ1h
~−2

R^
2(e2 − e4)T

× − ω̌(e2 − e4) × κ2h
~−2

R^
2(e2 − e4)T

−(1 − ω̌)(e2 − e3) × κ2
−1R^

2(e2 − e3)T ξ
^(t),

(24)
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V̇3(t) ≤ ∑
l = 1

υ
ml

T(tkl
l h)Φ2lml(tkl

l h) + δl(t) − λ1l

β
~

l(t)
ml

T(ikl
l h)

Φ1lml(ikl
l h) + 1

β
~

l(t) − ρ1l
λ1lml

T(tkl
l h)Φ2lml(tkl

l h)

× ml
T(tkl

l h)Φ3lml(tkl
l h) + δl(t) − λ2l

β
~

l(t)
ml

T(ikl
l h)

Φ1lml(ikl
l h) + 1

δl(t) − ρ2l
λ2lml

T(tkl
l h)Φ2lml(tkl

l h)

−ρ1l[sl
T(ikl

l h)Φ1lsl(ikl
l h) − λ1lml

T(tkl
l h)Φ3lml(tkl

l h)]

−ρ2l[sl
T(ikl

l h)Φ1lsl(ikl
l h)λ2lml

T(tkl
l h)Φ2lml(tkl

l h)]

+h2ṁT(t)Q6ṁ(t) − h∫
t − h

t
ṁT(s)Q6ṁ(s) ds

+mT(t)S3m(t),
≤ [s(t − η2(t)) − m(t − η2(t))]T(In + Λ2 χ2)Φ̄2

× [s(t − η2(t)) − m(t − η2(t))] + mT(t − η2(t))
(In + Λ1 χ1)Φ̄2m(t − η2(t)) − sT(t − η2(t))(Λ1 + Λ2)
× Φ̄1s(t − η2(t)) + h2ṁT(t)Q6ṁ(t)

−h∫
t − h

t
ṁT(s)Q6ṁ(s) ds + mT(t)S7m(t) .

(25)

Utilizing Lemma 2 in (25), we get

−h∫
t − h

t
ṁT(s)Q6ṁ(s) ds

= − h ∫
t − η2(t)

t
Q6ṁ(s) ds + ∫

t − h

t − η2(t)
Q6ṁ(s) ds ,

≤ ξ
^T(t)[Υ1

Tℤ1Υ1 + Π]ξ^(t),

where

Q6ṁ(s) = ṁT(s)Q6ṁ(s), Π1 = Υ11
T Sℤ2

−1STΥ11,

Π1 = Υ12
T STℤ2

−1SΥ12, Π = h − η2(t)
h Π1 + η2(t)

h Π2 .

Leading to:

V̇3(t) ≤ ξ
^T(t)Θ^ 3ξ

^(t), (26)

V̇4(t) = ṁT(t)[κ1
2

2 (S4 + S5) + h
~2

2 S6]ṁ(t)

−∫
−κ1

0∫
t − κ1

t + β^

ṁT(s)S4ṁ(s) ds dβ
^

−∫
−κ1

0∫
t + β^

t
ṁT(s)S5ṁ(s) ds dβ

^

−∫
−h

~

0∫
t + θ

t
ṁT(s)S6ṁ(s) ds dθ .

(27)

Using Lemma 3 in (27), one can obtain

−∫
−κ1

0 ∫
t − κ1

t + β^

ṁT(s)S4ṁ(s) ds dβ
^ − ∫

−κ1

0∫
t + β^

t
ṁT(s)S5ṁ(s) ds dβ

^

≤ −ξ
^T(t) 2(e5 − e20)S4(e5 − e20)T + 2(e1 − e20)

S5(e1 − e20)T + 4(e5 − 4e20 + 6e21)
S4(e5 − 4e20 + 6e21)T + 4(e1 + 2e20 − 6e21)
S4(e1 + 2e20 − 6e21)T ξ

^(t),

−∫
−h

~

0 ∫
t + θ

t
ṁT(s)S6ṁ(s) ds dθ = − ∫

t − κ(t)

t ∫
θ

t
ṁT(s)S6ṁ(s) ds dθ

−∫
t − h

~

t − κ(t)∫
θ

t − κ(t)
ṁT(s)S6ṁ(s) ds dθ

−(h~ − κ(t))∫
t − κ(t)

t
ṁT(s)S6ṁ(s) ds,

≤ −ξ
^T(t) 2(e1 − e16)S6(e1 − e16)T + 4(e1 + 2e16 − 6e18)

× S6(e1 + 2e16 − 6e18)T + 2(e14 − e17)S6(e14 − e17)T

+4(e14 + 2e17 − 6e19)S6(e14 + 2e17 − 6e19)T

+(e1 − e14)S6(e1 − e14)T + 3(e1 + e14 − 2e16)S6

× (e1 + e14 − 2e16)T + 5(e1 − e14 − 6e16 + 12e18)S6

× (e1 − e14 − 6e16 + 12e18)T ξ
^(t) .

From (27), one can get

V̇4(t) ≤ ξ
^T(t)Θ^ 4ξ

^(t) . (28)

Combining (19)–(28), we can obtain

V̇(t) − J(t) ≤ ∑
i = 1

r

∑
z = 1

r
wi(h(t))wz(h(t))ξ^T(t) Φ̄ciz − (1 − ω^ )(e1 − e3)

× κ1
−1R^

2(e1 − e3)T − ω^ (e2 − e4)κ1h
~−2

R^
2(e2 − e4)T

−ω̌(e2 − e4)κ2h
~−2

R^
2(e2 − e4)T

−(1 − ω̌)(e2 − e3)κ2
−1R^

2(e2 − e3)T ξ
^(t),

≤ ∑
i = 1

r

∑
z = 1

r
wi(h(t))wz(h(t))ξ^T(t)M(ω^ , ω̌)izξ

^(t),

(29)

where

M(ω^ , ω̌)iz = Φ̄ciz − ω^ ℏ24κ1h−2R^
2ℏ24

T − (1 − ω^ )ℏ13κ1
−1R^

2ℏ13
T

−ω̌ℏ24κ2h−2R^
2ℏ24

T − (1 − ω̌)ℏ23κ2
−1R^

2ℏ23
T

= ω^ [Φ̄ciz − ℏ24κ1h−2R^
2ℏ24

T ] + (1 − ω^ )[Φ̄ciz

−ℏ13κ1
−1R^

2ℏ13
T ] − ω̌ℏ24κ2h−2R^

2ℏ24
T

−(1 − ω̌)ℏ23κ2
−1R^

2ℏ23
T

= ω^ [Φ̄ciz − ℏ24κ1h−2R^
2ℏ24

T − ω̌ℏ24κ2h−2R^
2ℏ24

T

−(1 − ω̌)ℏ23κ2
−1R^

2ℏ23
T ] + (1 − ω^ )[Φ̄ciz

−ℏ13κ1
−1R^

2ℏ13
T − ω̌ℏ24κ2h−2R^

2ℏ24
T

−(1 − ω̌)ℏ23κ2
−1R^

2ℏ23
T ]

= ω^ [ω̌(Φ̄ciz − ℏ24κ2h−2R^
2ℏ24

T ) + (1 − ω̌)(Φ̄ciz

−ℏ24κ2h−2R^
2ℏ24

T − ℏ23κ2
−1R^

2ℏ23
T )]

+(1 − ω^ )[ω̌(Φ̄ciz − ℏ13κ1
−1R^

2ℏ13
T − ℏ24κ2h−2

R^
2ℏ24

T ) + (1 − ω̌)(Φ̄ciz − ℏ13κ1
−1R^

2ℏ13
T

−ℏ23κ2
−1R^

2ℏ23
T )] .

Then, we obtain

IET Control Theory Appl., 2020, Vol. 14 Iss. 20, pp. 3697-3712
© The Institution of Engineering and Technology 2020

3703



∑
i = 1

r

∑
z = 1

r
wi(h(t))wz(h(t)){Φ̄ciz − ℏ13κ1

−1R^
2ℏ13

T

−ℏ23κ1
−1R^

2ℏ23
T } < 0,

∑
i = 1

r

∑
z = 1

r
wi(h(t))wz(h(t)){Φ̄ciz − ℏ13κ1

−1R^
2ℏ13

T

−ℏ24κ2h
~−2

R^
2ℏ24

T } < 0,

∑
i = 1

r

∑
z = 1

r
wi(h(t))wz(h(t)){Φ̄ciz − ℏ24κ1h

~−2
R^

2ℏ24
T

−ℏ23κ2
−1R^

2ℏ23
T } < 0,

∑
i = 1

r

∑
z = 1

r
wi(h(t))wz(h(t)){Φ̄ciz − ℏ24h

~−1
R^

2ℏ24
T } < 0,

(30)

where

Φ̄ciz = Θ^ 1iz + ∑
j = 1

4
Θ^ j + Φdiz

T [κ1R
^

1 + h
~
R^

2 + h2Q6 + κ1
2

2 (S4 + S5)

+κ2
2S3 + h

~2

2 S6]Φdiz .
(31)

Let J = diag{P−1, …, P−1

12 times
, I, P−1, …, P−1

8 times
}, P̄ = P−1,

R̄v = P−1R^
vP−1, v = 1, 2, Q̄ j = P−1QjP−1, ( j = 1, …, 4, 6), S̄n

= P−1SnP−1, (n = 3, 4, 5, 6, 7)
, and

Φdiz = [Ai Adi 0 0 0 BiKz 0 0 0
5 times

− BiKz Di 0 0 0
8 times

].

Pre and post multiplying (30) by J yields

∑
i = 1

r

∑
z = 1

r
wi(h(t))wz(h(t)){Ξ + Σiz Ψ^ −1

Σiz
T − ℏ13κ1

−1R̄2ℏ13
T

−ℏ23κ1
−1R̄2ℏ23

T } < 0,

∑
i = 1

r

∑
z = 1

r
wi(h(t))wz(h(t)){Ξ + Σiz Ψ^ −1

Σiz
T − ℏ13κ1

−1R̄2ℏ13
T

−ℏ24κ2h
~−2

R̄2ℏ24
T } < 0,

∑
i = 1

r

∑
z = 1

r
wi(h(t))wz(h(t)){Ξ + Σiz Ψ^ −1

Σiz
T − ℏ24κ1h

~−2
R̄2ℏ24

T

−ℏ23κ2
−1R̄2ℏ23

T } < 0,

∑
i = 1

r

∑
z = 1

r
wi(h(t))wz(h(t)){Ξ + Σiz Ψ^ −1

Σiz
T − ℏ24h

~−1
R̄2ℏ24

T } < 0,

(32)

where

Ψ^ = diag − R̄1
−1, − R̄2

−1, − Q̄6
−1, − (S̄4 + S̄5)−1,

−S̄3
−1, − S̄6

−1 , Ξ = Θ^ 1iz + ∑
j = 1

4
Θ^ j .

And the remaining terms are referred in Theorem 1. Then by Schur
complement Lemma, we have

Ξ j Σiz

Σiz
T −Ψ^ < 0, j = 1, 2, 3, 4. (33)

Since the term R^
i
−1, Q6

−1, Sn
−1, R̄v = P̄R^

vP̄, Q̄6 = P̄Q6P̄
and S̄n = P̄SnP̄ are both in (33), which is hard to comprehend, in

order to facilitate the model of adaptive event-triggered controller,
we transform R^

v
−1, Q6

−1, Sn
−1 into the following inequality:

−R̄v
−1 ≤ R^

v − 2P̄, − Q6
−1 ≤ Q̄6 − 2P̄, − Sn

−1 ≤ S̄n − 2P̄ . (34)

Then substituting R^
v
−1, Q6

−1, Sn
−1 with Ri

¯ − 2P̄, Q6
¯ − 2P̄, S̄n − 2P̄ in

(33), inequality (17) holds. Meanwhile, we are developed the
extended dissipative condition for the consider T–S fuzzy system.
Based on (17), it is anything but difficult to reach the end that

V̇(t) − J(t) ≤ 0.

After the integration of above inequality from 0 to t gives

∫
0

t
J(θ) dθ ≥ V(t) − V(0) ≥ mT(t)Pm(t) + ω . (35)

The accompanying lines are concentrated to show that the
inequality in Definition 1 is valid, thus, double cases are required,
i.e., ∥ Θ4 ∥= 0, and ∥ Θ4 ∥≠ 0. To begin with, if ∥ Θ4 ∥= 0, at that
point (35) suggests that for any t f ≥ 0

∫
0

t f

J(θ) dθ ≥ mT(t f )Pm(t f ) + ω ≥ ω, (36)

this implies that Definition 1 is true. If ∥ Θ4 ∥≠ 0, as specified in
Assumption 2.1, we can finish up that the matrices Θ1 = 0, Θ2 = 0,
and Θ3 > 0, thus for any t f ≥ t ≥ 0, we have

∫
0

t f

J(θ) dθ ≥ ∫
0

t
J(θ) dθ ≥ mT(t)Pm(t) + ω, (37)

while, if t ≤ κ(t), then it can be verified that

ω + mT(t − κ(t))Pm(t − κ(t))

≤ ω + ∥ P ∥ m(t − κ(t))
2

≤ ω + ∥ P ∥ sup
−h ≤ θ ≤ 0

ϕ(θ)
2

= − V(0) ≤ ∫
0

t f

J(α) dα .

This suggests (37) holds for any t f ≥ t ≥ 0. Thus, as indicated by
(36) and (37), we realise that there exists a scalar 0 < ϵ < 1, such
that

∫
0

t f

J(θ) dθ ≥ ω + ϵmT(t)Pm(t) + (1 − ϵ)mT(t − κ(t))Pm(t − κ(t)) .

Noting the fact that

yT(t)Θ4y(t) = − m(t)
m(t − κ(t))

T
Π m(t)

m(t − κ(t))
+ϵmT(t)Pm(t) + (1 − ϵ)mT(t − κ(t))Pm(t − κ(t)),

for Π > 0, then

yT(t)Θ4y(t) ≤ ϵmT(t)Pm(t) + (1 − ϵ)mT(t − κ(t))Pm(t − κ(t)) .

Obviously, for any t ≥ 0, t f ≥ 0 with t f ≥ t

∫
0

t f

J(θ) dθ ≥ yT(t)Θ4y(t) + ω .

Thus, the inequality in Definition 1 holds for any t f ≥ 0. As per the
above examination, regardless ∥ Θ4 ∥= 0 or ∥ Θ4 ∥≠ 0, system (15)
with (14) is extended dissipative with the effect of Definition 1.

Since LMI (17) < 0, thus there always exists a sufficiently
small scalar ν > 0, such that

V̇(t) − J(t) ≤ − ν ζ(t) 2 ≤ − ν m(t) 2 ,

i.e.,
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V̇(t) ≤ J(t) − ν m(t) 2 .

When considering v(t) = 0, then J(t) = yT(t)Θ1y(t). Noticing that
Θ1 ≤ 0 under Assumption 2.1, it yields that

V̇(t) ≤ − ν m(t) 2 .

This suggests that the consider system (15) is quadratically stable
with the effect of Definition 2. □

 
Remark 1: It ought to be said that Theorem 2 is valid only when

the appropriate control gain matrix K̄z acquired from LMI (17).
Taking note of that the inequality (30) in Theorem 1 is not an LMI
since, it contains non-linearities like products of the control gain
matrix Kz and the matrix P, it has been linearised by a change of
variable K̄z = KzP̄ to convert over the type of LMI (17).

 
Remark 2: In view of the methodology (6), one can check that,

initially, our plan does not only include the information on
triggering the error, yet in addition depends upon the most recent
refreshed data and current sampling one; besides, the triggering
thresholds β

~(t), δ(t) are not fixed constants but two time-varying
functions managed by the adaptive laws in (7) and (8), in which the
triggering error, the effectively transmitted information, and the
current one are totally analysed. Especially β

~(t) or δ(t) is a
constant, the event-triggered condition in (6) can be reduced to the
traditional one.

B. Robust extended dissipative criteria for fuzzy ETC:
With the results of Theorem 1, we establish robust extended

dissipative analysis for T–S fuzzy system with parameter
uncertainties in the outline.

ṁ(t) = ∑
i = 1

r

∑
z = 1

r
wi(h(t))wz(h(t)) Āim(t) + Ādim(t − κ(t))

+B̄i[Kz(m(t − η2(t)) − s(t − η2(t)))] + D̄iv(t) .
(38)

The parameter uncertainties in this paper as stated in (3) occurs
randomly, which was initially presented in [13].

 
Assumption 2: The stochastic variables α, ϱ, γ, and σ are

mutually independent Bernoulli-distributed white sequences taking
the value of zero or one and obey the following probability
distribution laws

Prob{α(t) = 1} = α, Prob{α(t) = 0} = 1 − α
Prob{ϱ(t) = 1} = ϱ, Prob{ϱ(t) = 0} = 1 − ϱ
Prob{γ(t) = 1} = γ, Prob{γ(t) = 0} = 1 − γ
Prob{σ(t) = 1} = σ, Prob{σ(t) = 0} = 1 − σ

where α ∈ [0, 1], ϱ ∈ [0, 1], γ ∈ [0, 1], and σ ∈ [0, 1] are known
constants.

In the view of Theorem 1, the subsequent Theorem can be
obtained for the uncertain T–S fuzzy model:

 
Theorem 2: Assume that Assumption 1 is hold. At that point for

given positive scalars
κ1, κ2, μ1, μ2, h, α, ϱ, γ, σ, and 0 < ϵ < 1, the T–S fuzzy system

(38) is extended dissipative in terms of Definition 1, if there exist
scalar λ > 0 and positive definite matrices
P, Q̄l, l = 1, 2, 3, 4, S̄k, k = 1, 2, 3, …, 7, Q̄6, R̄ j, j = 1, 2, Φ̄1 > 0, Φ̄2

> 0, K̄z
and P̄, such that the following matrix inequalities hold:

Π = ϵP − Θ4 −Θ4

⋆ (1 − ϵ)P − Θ4
> 0,

Ξl Σiz Γd λΓe
T

Σiz
T Ψ 0 0

∗ ∗ −λI 0
∗ ∗ ∗ −λI

< 0, l = 1, 2, 3, 4.
(39)

The remaining elements of Ξl, Σiz and Ψ are the same as in
Theorem 1. Furthermore, if the foregoing condition holds, a gain
matrix is described by Kz = K̄zP̄

−1.
 
Proof: Replace Ai, Adi, Bi, and Di in (17) with

Ai + α(t)ΔAi(t), Adi + ϱ(t)ΔAdi(t), Bi + γ(t)ΔBi(t), and
Di + σ(t)ΔDi(t) mutually. Then, the above close-loop system (38) is
similar to the below-stated condition and we obtain the equivalent
lines in the proof of Theorem 1.

Ω~ iz + ΓdFi(t)Γe + Γe
TFi(t)TΓd

T < 0, (40)

where

Γd = [PH1i 0 … 0
20 times

H1i … H1i
7 times

] and

Γe = [αE1i βE2i 0 0 0 γKzE3i 0 … 0
5 times

− γKzE3i σE4i 0 … 0
15 times

] .

Utilising Lemma 1, a necessary and sufficient condition to fulfil
the inequality (40) and there exists a scalar λ > 0, such that

Ω~ iz + λ−1ΓdΓd
T + λΓe

TΓe . (41)

By applying Schur complement Lemma in (41), we get

Ω~ iz Γd λΓe
T

∗ −λI 0
∗ ∗ −λI

< 0. (42)

Then pre and post multiply (42) by

diag P̄, …, P̄
12 times

, I, P̄, P̄, P̄, P̄, P̄, P̄, P̄, P̄, I, …, I
9 times

 and its
transpose and letting

P̄ = P−1, R̄ j = P̄R^
jP̄, S̄k = P̄SkP̄,

Q̄i = P̄Q f P̄, ( f = 1, 2, 3, 4, 6), ( j = 1, 2), (k = 1, 2, 3, 4, 5, 6, 7),
(43)

it is straightforward to get the inequality (39) by analysing the
above condition. □

 
Remark 3: Definition 1 implies that the new presentation

contains more general solution by set up the weighting matrices Θi,
i = 1, 2, 3, 4. i.e.

(i) If Θ1 = 0, Θ2 = 0, Θ3 = γ~2I, Θ4 = I and ω = 0, then the
expression in (15) equivalent to ℒ2 − ℒ∞ performance.
(ii) If Θ1 = − I, Θ2 = 0, Θ3 = γ~2I, Θ4 = 0 and ω = 0, then the
expression in (15) equivalent to ℋ∞ performance.
(iii) If Θ1 = 0, Θ2 = 0, Θ3 = γ~2I, Θ4 = I and ω = 0, then the
expression in (15) yields passivity performance.
(iv) If Θ1 = Q, Θ2 = S, Θ3 = ℛ − α~I, Θ4 = 0 and ω = 0, then the
expression in (15) promote (Q − S − ℛ) − dissipative
performance.

Thus the extended dissipative performance can provide more
design flexibility by choosing the desired parameters.
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Remark 4: Recently the considered, adaptive event-triggered
scheme (AETS) has attracted a lot of attention and has been widely
used in numerous practical systems, since it is easy to design and
maintain. However, the other ETS like time-triggered schemes
(TTS) etc. may increase the load of the network and waste the
limited resource of the network for the reason that it transmits
numerous unnecessary data over the network. In addition, a lot of
research results have been tackled on the hybrid driven scheme
(TTS and the traditional event-triggered scheme (TETS)) in several
literature, the threshold of TETS has a great influence on the total
number of released data into the network. However, the threshold
of TETS is given in advance and difficult to adapt to the variation
of the considered system. To overcome this issue mentioned above,
we consider the AETM which can be effectively reduce the total
number of released data into the network.

 
Remark 5: Consider the system (15) with absence of T–S fuzzy,

uncertainties (i . e . ΔA = ΔAd = ΔB = ΔD = 0), and there is no
extended dissipative. Moreover, for the general system one has
accomplished a few results in [8, 10], we get

ṁ(t) = Am(t) + Adm(t − κ(t)) + Bu(t) . (44)

As per Theorem 1, the delay-dependent stability of system (44) is
shown in the subsequent Corollary 1.

 
Corollary 1: For a given scalars κ1, κ2, μ1, μ2 and h, the system

(44) is asymptotically stable, if there exist matrices
P > 0, Q̄i > 0, i = 1, 2, 3, 4, R^

1 > 0, R^
2 > 0, S j > 0, j = 1, 2, 3, …,

7, Q̄6 > 0, Φ̄1 > 0, Φ̄2 > 0, K̄
and P̄, such that the following LMI hold:

Ξ j Σ
ΣT Ψ

< 0, j = 1, 2, 3, 4, (45)

and the non-zero elements in Ξ1, Ξ2, Ξ3, Ξ4 can be listed as

Ξ1 = Ξ − ℏ13κ1
−1R̄2ℏ13

T − ℏ23κ1
−1R̄2ℏ23

T ,
Ξ2 = Ξ − ℏ13κ1

−1R̄2ℏ13
T − ℏ24κ2h

~−1
R̄2ℏ24

T ,
Ξ3 = Ξ − ℏ24κ1h

~−2
R̄2ℏ24

T − ℏ23κ2
−1R̄2ℏ23

T ,

Ξ4 = Ξ − ℏ24h
~−1

R̄2ℏ24
T , and Ξ = ∑

j = 1

4
Θ^ j,

and the other elements are the same as in Theorem 1. Additionally,
if the foregoing condition holds, the designed gain matrix is stated
by K = K̄P̄−1.

 
Proof: Define a vector ξ

^T(t) ∈ ℝ20n as follows:

ξ
^T(t) = mT(t) mT(t − κ(t)) mT(t − κ1(t)) mT(t − h

~)
× mT(t − κ1)
× mT(t − η2(t)) mT(t − h)
υ1

T(t) υ2
T(t)

× υ3
T(t) υ4

T(t) sT(t − η2(t)) mT(t − κ2(t))

× mT(t − κ2) ξ
^
1
T(t) ξ

^
2
T(t) .

Choose the LKF and engage same procedure in Theorem 1, then
the system (44) is asymptotically stable. □

 
Remark 6: In Corollary 1, from (44), we consider the

subsequent STD system

ṁ(t) = Am(t) + Adm(t − κ(t)) . (46)

The related result is outlined in the following Corollary 2.
 

Corollary 2: For a given scalars κ1, κ2, μ1, and μ2, the system (46)
is asymptotically stable, if there exist matrices
P > 0, Qi > 0, i = 1, 2, 3, 4, R^

1 > 0, R^
2 > 0, S1 > 0, S2 > 0, S3

> 0, S4 > 0, S5 > 0
 and

S6 > 0, such that the following LMI hold:

Φ j Γ1

∗ Γ2
< 0, j = 1, 2, 3, 4, (47)

where

Φ1 = Φ − ℏ13κ1
−1R̄2ℏ13

T − ℏ23κ1
−1R̄2ℏ23

T ,
Φ2 = Φ − ℏ13κ1

−1R̄2ℏ13
T − ℏ24κ2h

~−2
R̄2ℏ24

T ,
Φ3 = Φ − ℏ24κ1h−2R̄2ℏ24

T − ℏ23κ2
−1R̄2ℏ23

T ,
Φ4 = Φ − ℏ24h−1R̄2ℏ24

T , Φ = Θ^ 1 + Θ^ 2 + Θ^ 4,

Γ1 = [ κ1ΛT h
~ΛT κ1

2ΛT κ1

2ΛT κ1ΛT h
~

2ΛT],

Γ2 = diag{ − R^
1, − R^

2, − S4, − S5, − S3, − S6},

ΛT = [P̄Ai P̄Adi 0 0 0
11 times

]T, Θ^ 1 = sym{e1P̄(Aie1
T + Adie2

T)}

−(1 − μ1)e3Q1e3
T + e1(∑

i = 1

4
Qi + S1 + S2)e1

T

−e4Q2e4
T − (1 − μ)e2Q3e2

T − e5Q4e5
T

−(1 − μ2)e6S1e6
T − e7S2e7

T,
Θ^ 2 = −(e1 − e3)κ1

−1R^
2(e1 − e3)T − (e2 − e4)h

~−1
R^

2

× (e2 − e4)T − (e2 − e3)κ2
−1R^

2(e2 − e3)T − (e1 − e3)
× κ1

−1R^
1(e1 − e3)T − (e3 − e4)κ1

−1R^
1(e3 − e4)T,

Θ^ 4 = −2(e5 − e12)S4(e5 − e12)T − 2(e1 − e12)S5(e1 − e12)T

−4(e5 − 4e12 + 6e13)S4(e5 − 4e12 + 6e13)T

−4(e1 + 2e12 − 6e13)S4(e1 + 2e12 − 6e13)T

−4(e1 + 2e8 − 6e10)S6(e1 + 2e8 − 6e10)T

−2(e6 − e9)S6(e6 − e9)T − 2(e1 − e8)S6(e1 − e8)T

−4(e6 + 2e9 − 6e11)S6(e6 + 2e9 − 6e11)T

−3(e1 + e6 − 2e8)S6(e1 + e6 − 2e8)T

−(e1 − e6)S6(e1 − e6)T − 5(e1 − e6 − 6e8 + 12e10)
× S6(e1 − e6 − 6e8 + 12e10)T, ℏ13 = [I0 − I 0 0 0

10 times
]T,

ℏ23, and ℏ24 follow similarly .

and corresponding terms are described in Theorem 1.
 
Proof: Choose V1(t), V2(t), V4(t) remove V3(t) in (18) and

construct

ξ
^T(t) = mT(t) mT(t − κ(t)) mT(t − κ1(t)) mT(t − h

~)

mT(t − κ1)mT(t − κ2(t)) mT(t − κ2) ξ
^
1
T(t) ξ

^
2
T(t) .

(48)

Utilising the procedures of Theorem 1 and we get the subsequent
results.□

 
Remark 7: In this paper, to tackle stabilisation of T–S fuzzy

system, a fuzzy event-triggered control (FETC) method with
successive time-varying delay (STVD) has been introduced.
Compared with the conventional event-triggered mechanism in the
[21–24], the designed control technique and STVD in this paper
are more general and more practical. It is clear from the below
simulation studies that the modelled controller design method is
more effective.
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Remark 8: It is noteworthy that, in many industrial processes,
the dynamical behaviours are generally complex and non-linear,
and their genuine mathematical models are always difficult to
obtain. How to model the robust event-triggered mechanism for the
T–S fuzzy framework with respect to additive time-varying delay
approach for finding the dissipativity performance has become one
of the primary focus in our research work. More especially, some
remarkable works have been done in the event-triggered
mechanism for T–S fuzzy system by using simple time-varying
delay. In [23], robust event-triggered reliable control for T–S fuzzy
uncertain systems have been studied with weighted based
inequality. Event- triggered control has been designed for T–S
fuzzy networked systems with distributed delay method and
transmission delay in [24] and network-based H∞ control for T–S
fuzzy systems with an adaptive event-triggered communication
scheme has been discussed in [32]. Recently, event-triggered
synchronisation control has been proposed in [31] for the T–S
fuzzy neural networked systems based on simple time-delay
method. The model considered in the present study is more
practical than that proposed by [23, 24, 31, 32], in light of the fact
that they consider usual ETM has been studied with T–S fuzzy
system based on the simple time-varying delay approach, but in
this paper, we consider a new adaptive event-triggered mechanism
for successive time delay method with the combination of
dissipativity performance. In addition, the proposed dissipative
analysis is the relation of applied energy to the system with energy
started in the system, that is why we analyse ETM this issue in our
paper to save the communication resources and have many real-life
application, which is another advantage of our paper. Additionally,
it is mentioned that we utilising (RII, SAFBII, DAFBII) to estimate
the derivative of an LKF such as V̇2(t), V̇4(t), which can induce
tighter information on the successive time delay of the considered
system and can be provided in the numerical example section.

 
Remark 9: Computational complexity will be a fundamental

issue in line with larger LMIs size and more the decision variables.
In our LMIs maximum number of decision variables used in
Theorems 3.1 and 3.2. Moreover, larger the LMIs size yield better
performance. The newly introduced integral techniques used in the
construction of proper LKF to derive the results in Theorems,
which produces tighter bounds than the existing one like the
reciprocally convex approach and so on. Maximum allowable
upper bounds κ2 are less conservative than the existing one in the
literature as seen in Table 1. Also, the relaxation of the derived
results is obtained at the cost of multiple decision variables.
Having, maximum allowable bounds κ2 obtains the efficient result
but to minimise computation complexity burden and time
computation we will be using Finsler's Lemma in our future work
to reduce the number of decision variables.

4 Simulation results
In this part, in view of the conditions acquired in the previous
section, we introduce several simulation studies are represent the
adequacy of the suggested control scheme and the merits of our
methodology.
 

Example 1: Consider the subsequent two rule fuzzy system with
randomly occurring uncertainties:

ṁ(t) = ∑
i = 1

r
wi(h(t)) Āim(t) + Ādim(t − κ(t)) + B̄iu(t) + D̄iv(t) ,(49)

where

A1 = −0.5 0
−1 −0.2 , Ad1 = 0 1

−0.5 1 ,

B1 = 0.1 −0.1
0.2 −0.1 , D1 = 0.04

0.3 ,

A2 = −0.3 0
−1.5 −0.5 , Ad2 = 0 1.5

−0.9 1.5 ,

B2 = 0.2 −0.3
0.4 −1 , D2 = 0.56

−0.25 ,

H11 = 1 0
0 1 , H12 = 0.5 0

0 0.5 ,

Λ1 = Λ2 = diag(2, 2.5), χ1 = χ2 = diag(0.2, 0.3),
E11 = E21 = E31 = E41 = diag{0.1, 0.1},
E12 = E22 = E32 = E42 = diag{0.2, 0.2} .

The membership functions for rules 1 and 2 are
w1(h1(t)) = 1/exp( − 2h1(t)), w2(h1(t)) = 1 − w1(h1(t)). Assume that
α = 0.6, ϱ = 0.7, γ = 0.2, and σ = 0.1. Let us pick the constant
values are κ1 = 0.2, κ2 = 0.25, μ1 = 0.1, and μ2 = 0.15. Then the
corresponding time-delays are taken as
ϵ = 0.5, κ1(t) = 0.1sin t + 0.1, κ2(t) = 0.1 + 0.15cos t with these
parameters using MATLAB LMI toolbox, to solve the LMIs in
Theorem 2 and we establish the subsequent parts of the extended
dissipative conditions for the system (49). Moreover, the extended
dissipative condition contains ℒ2 − ℒ∞ performance, passivity,
H∞ performance, mixed passivity and H∞ performance as well as
(Q − S − ℛ)-dissipativity as special cases. Along these lines,
extended dissipative examination of system (49) is focused here
with the weighting matrices Θ1, Θ2, Θ3, and Θ4.

ℒ2 − ℒ∞ performance: Θ1 = 0, Θ2 = 0, Θ3 = γ~2I, Θ4 = I, and
ω = 0. With the utilisation of the above parameters, then by means
of working out the feasibility problem for the LMIS in Theorem 2
and MATLAB LMI control toolbox, we can obtain the following
controller gain matrix Kz and triggering parameters as:

Φ̄1 = 103 × 1.5628 0.0019
0.0019 1.5793 , Φ̄2 = 4.1190 −0.0028

−0.0028 3.6654 ,

K1 = 0.2630 0.0072
0.0103 0.0422 , K2 = 0.1352 0.0014

0.0142 0.0654 .

under the randomised initial conditions, the numerical
simulation of state trajectories and using the above-mentioned
controller gains the control inputs of the system (49) is shown in
Figs. 1 and 6a, respectively. Noted from Figs. 1 and 6(a), the
responses of the state and control inputs of the system (49) can
really keep stable (converges to zero) and behaves ℒ2 − ℒ∞
performance under the above parameter values, which indicates
that the designed controller is effective. Furthermore, the release
instants and release intervals are depicted in Fig. 7a with
t ∈ (0, 15], which decrease the number of transmissions on the
network significantly. Obviously, it is demonstrated in the
simulation result that the proposed method is feasible and effective.

Table 1 MAUBs κ2 for various values κ1 in Example 2
κ2 1 1.5
Theorem 7 by [10] 5.334 —
Theorem 2 by [8] — 1.1207
Corollary 1 6.0213 1.5712

 

Fig. 1  Phase trajectories based on l2 − l∞ analysis in Example 1
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H∞ performance: Θ1 = − I, Θ2 = 0, Θ3 = γ~2I, Θ4 = 0, and
ω = 0, it can be easily estimated the LMIs stated in Theorem 2, and
the results are

Φ̄1 = 103 × 1.5810 0.0016
0.0016 1.5909 , Φ̄2 = 4.2266 −0.0024

−0.0024 3.7688 ,

K1 = 0.2581 0.0070
0.0100 0.0421 , K2 = 0.3487 0.0032

0.0142 0.0533 .

Simultaneously, relative simulation is drawn to demonstrate the
acquired result from Fig. 2, which describes the corresponding
evolution of curves of the state responses in respect to the role of
control gain matrix, Fig. 6b depicts that control inputs of the
system (49) and exhibits H∞ performance under the known
parameters. In addition, the release instants and release intervals
are depicted in Fig. 7b with t ∈ (0, 20]. Based on the system
disturbance and delay, the system under consideration well behaves
with managed communication resources. Moreover, the calculated

allowable minimum γ~ for different κ2, when
κ1 = 0.2, μ1 = 0.1, μ2 = 0.15 is listed in Table 2.

Passivity performance: Θ1 = 0, Θ2 = I, Θ3 = γ~, Θ4 = 0, and
ω = 0. Then, the unified system examination turns to the passivity
performance. By employing the MATLAB LMI toolbox to verify
the LMIs in Theorem 2, we get the following control gain matrix
and triggered matrices:

Φ̄1 = 103 × 3.1383 0.1427
0.1427 3.9973 , Φ̄2 = 0.7732 −0.0051

−0.0051 0.7843 ,

K1 = 0.1541 0.0164
0.0126 0.0315 , K2 = 0.4511 0.0143

0.0326 0.0431 .

Likewise, the corresponding simulation is illustrated to verify the
obtained consequence from Figs. 3 and 6c. Fig. 3 represents the
corresponding state responses under the random initial conditions
with the distraction v(t). Fig. 6c shows the evolution of the control
inputs which converges to zero and both the figures behaves
passivity performance with the avail parameters. Fig. 7c illustrates
the release instants and intervals of the event-triggered scheme
with t ∈ (0, 30]. All these results demonstrate that the designed
controller and event-triggered mechanism is effective. Moreover,
the calculated allowable minimum γ for different κ2, when
κ1 = 0.2, μ1 = 0.1, μ2 = 0.15 is listed in Table 3 under the passivity
performance.

Mixed H∞ and Passivity performance:
Θ1 = − γ~2α~I, Θ2 = (1 − α~)I, Θ3 = γ~I, Θ4 = 0, and ω = 0. At that
point, the extended dissipativity performance decreases to the
mixed H∞ and passivity performance. By using the MATLAB LMI
toolbox to solve the LMIs in Theorem 2, we get both control gain
matrix and triggered parameters:

Φ̄1 = 0.1738 0.0001
0.0147 0.0310 , Φ̄2 = 2.5928 0.0633

0.0633 2.5953 ,

K1 = 0.0274 0
0 0.6811 , K2 = 0.0854 0.1123

0.1431 0.3267 .

Under the initial conditions, m(0) = [0.3, − 0.7]T, the dynamical
responses of the state trajectories and control input of the system
(49) with the above control gain matrix is demonstrates in Figs. 4
and 6d and shows mixed H∞ and passivity performance under the
stated parameters. Meanwhile, the event-triggered release instants
and the corresponding release intervals are shown in Fig. 7d with
the period t ∈ (0, 50], which reveals that the amount of transmitted
data is reduced obviously. It can obtained that the designed
controller performs well.

(Q − S − ℛ) Dissipativity: Θ1 = Q, Θ2 = S, Θ3 = ℛ − α~I, and
Θ4 = 0 with

Fig. 2  Phase trajectories based on H∞ analysis in Example 1
 

Fig. 3  Evolution of curves via passivity analysis in Example 1
 

Fig. 4  Evolution of curves via mixed H∞ and passivity analysis in
Example 1

 
Table 2 Allowable minimum γ~ for different κ2

κ2 0.2 0.5 0.8 1.0 1.3
γ~min 0.5631 0.4012 0.3682 0.3106 0.2563

 

Fig. 5  Evolution of curves via (Q − S − ℛ) Dissipativity analysis in
Example 1

 
Table 3 Allowable minimum γ~ for different κ2

κ2 0.2 0.5 0.8 1.0 1.3
γ~min 1.6718 1.5321 1.4723 1.2816 1.0981
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Q = −1 0
0 −1 , S = 0.3 0

0.4 0.25 , ℛ = 0.3 0
0 0.3 .

Likewise, by applying the LMIs in Theorem 2, using the above
parameters found feasible, at that point the following triggered
parameters and gain matrix are:

Φ̄1 = 5.0808 0.0741
0.0741 4.5093 , Φ̄2 = 2.4623 0

0 2.1724 ,

K1 = 2.2494 0.0001
0.0002 2.0368 , K2 = 3.2156 0.0248

0.0145 4.1271 ,

and the dissipativity performance is α~ = 0.0072. Simultaneously,
the relative simulation is demonstrated to verify the acquired result
from Fig. 5 and Fig. 6e. Fig. 5 represents the corresponding state
trajectories under the randomised initial condition. In order to
explore the simulation results of the controller input u(t), the initial
condition is taken as [ − 3, 3]T, then the control input for the
dynamical system (49) has been displayed in Fig. 6e. Therefore
from the simulation results, we confirm that the state trajectories
and control input converges to zero. Moreover, the release instants
and release intervals are shown in Fig. 7e. In order to determine, if
the (Q − S − ℛ) dissipativity performance requirement is satisfied,
the period is taken as t ∈ (0, 70], which shows that the required
transmission can save limited network resources. From Figs. 5, 6e
and 7e, one can check the event-triggered mechanism cannot just
mitigate the issue of resource constraints but also make the data in
the transmission process faster and more stable, so the method
proposed in this paper is effective. Essentially, the dissipative
analysis is the connection of applied energy to the framework with
energy stored in the system, that is the reason we investigate this
issue in our paper.

Therefore, from Figs. 1–7 do not only validate the stability
region of the system (49), yet in addition show the superiorities of
our event-triggered mechanism by resorting to release less
transmission data.

5 Comparison example
To exhibit the advantage of our technique, we consider system (44)
with the subsequent parameters:

A = 2 0
0 0.9 , Ad = −1 0

−1 −1 , B = 1 −2
−1.2 0.8 ,

k̇1(t) ≤ 0.1, k̇2(t) ≤ 0.8.

In this paper, κ1 and κ2 represent the delay upper bound of κ1(t) and
κ2(t), respectively. We calculated delay bounds for various cases by
utilising Corollary 1, and the stability criteria in [8, 10], MAUBs
are listed in Table 1. From this Table 1, one can clearly observe
that the strategy and procedures (RII, SAFBII, and DAFBII) of this
paper can give less conservative results than in [8, 10]. Simulation
results are depicted in Figs. 8 and 9 with the initial condition
[ − 5, 5]T and [ − 1, 1]T, we can see that all the state responses
converges to zero as time mutually increases, which explained that
the system is stable. Along these lines, compared with the method
mentioned in [8, 10], the method in this paper provides better
control performance. In addition, compared with the results of the
proposed event-triggered mechanism and the ETS in [29], to show
the advantage of our proposed method. By designing t ∈ (0, 20],
Fig. 10 shows the release instants and release intervals under the
proposed event-triggered mechanism. Obviously, the transmission
trigger times of the two event-triggered mechanisms are listed in
Table 4. One can check that the proposed ETS releases less
transmitted data than those in [29]. As the state of the system
converges to zero, the transmission trigger times is lower than that
by the TTS. Thus, it should be pointed out that the proposed event-
triggered mechanism can more effectively decrease the number of
data transmission during the time intervals.

6 Applications
In this section, single-area load frequency control (SALFC) system
to examine the real-world application problem in the sense of STD
and simulation responses are verify to demonstrate the
performance and less conservativeness of the developed theoretical
results.
 

Example 2: In this example, the proposed delay-dependent
stability criterion is approved on SALFC system is explained to
demonstrate the effectiveness of the designed methodology, and the
notations are listed in Nomenclature section. The maximum delay
bounds provided by the delay-dependent stability criterion
displayed in Corollary 2 for different delay bound of κ1 and κ2 are
provided in Tables 5, 6 and compared the existing result with [5]. 

Fig. 6  Panels (a)-(e) contain the evolution of curves of the control
responses in terms of ℒ2 − ℒ∞, H∞, passivity, mixed H∞ and Passivity
performance, and (Q − S − ℛ) dissipativity analysis in Example 1

 

Fig. 7  Panels (a)–(e) contain the release time and release interval in terms
of ℒ2 − ℒ∞, H∞, passivity, mixed H∞ and Passivity performance, and
(Q − S − ℛ) dissipativity analysis in Example 1
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The passionate model of single-area proportional-integral (PI)
LFC system with two successive time-delay components, appeared
in Fig. 11. Delay-dependent stability analysis and control

configuration are examined by using a single delay method [5, 6].
For simplicity, delay existing at the transmission of control signal
between the control centre and the plant is aggregated with the
delay existing in the transmission of ACE, as shown by an
exponential block e−sκ1(t) and e−sκ2(t) in Fig. 11. Based on LFC, the
mechanical structure of turbine is shown in Fig. 13.

The open-loop system can be communicated as follows:

m^̇ = A^ m^ (t) + B^△Pc(t), (50)

where

m^ (t) =
△ f

△Pm
^

△Pv
^

, A^ =

− D̄
M̄

1
M̄

0

0 − 1
T^

ch

1
T^

ch

− 1
RT^

g
0 − 1

Tg
^

,

B^ = θ
^ 0 0 .

Because of no net tie-line power exchange in the one-area LFC
scheme, the area control error ACE is defined as

ACE = θ
^△ f ,

where θ
^
 is the frequency bias factor. Using ACE as the input of the

load frequency controller, a PI controller is designed as

u(t) = − K^
pACE − K^

I∫ ACE . (51)

Moreover, time-varying delays are represented by κ1(t) and κ2(t),
we have

△Pc(t) = u(t)(t − κ2(t)), ACE(t) = θ
^△ f (t − κ1(t)) . (52)

Define the following new virtual state vectors as
m(t) = [△ f , △Pm

^ , △Pv
^ , ∫ ACE]T. Combining (50)–(52), the

closed-loop model of SALFC system can be defined as follows:

ṁ(t) = Am(t) + Adm(t − κ(t)), (53)

where

m(t) =

△ f

△Pm
^

△Pv
^

∫ ACE

, A =

− D̄
M̄

1
M̄

0 0

0 − 1
T̄ch

1
T̄ch

0

− 1
RT̄g

0 − 1
Tg
¯ 0

θ
^ 0 0 0

,

Ad =

0 0 0 0
0 0 0 0

− K^
pθ

^

T^
g

0 0 − K^
I

Tg
^

0 0 0 0

.

∫ ACE is integration of the area control error. The output y(t) is
only a virtual vector and ACE denotes the practical measurement
output. The parameters of SALFC are displayed in Table 7. Based
on the analysis of system (53) and a similar method of Corollary 2.
The maximum bounds of time-delays of the system obtained by
different methods and can be listed in Tables 5 and 6. From the
tables, most of the results in this paper are less conservative than
the results stated in [5], which shows the effectiveness of the

Fig. 8  For κ1 = 1 and κ2 = 6.0213, the evolution of system (44) in
Corollary 1 with the presence of controller

 

Fig. 9  For κ2 = 1.5712 and κ1 = 1.5, the evolution of system (44) in
Corollary 1 with the presence of controller

 

Fig. 10  Release instant and release interval
 

Table 4 Number of transmission trigger times during time
intervals
Methods/ Time intervals [0, 20]
[29] 51
Corollary 1 29
 

Table 5 MAUBs for κ2 for given different values of κ1

κ1 1.0 1.2 1.5
[5] 4.803 4.603 4.303
Corollary 2 5.413 5.102 4.821

 

Table 6 MAUBs for κ1 for given different values of κ2

κ2 2.0 3.0 4.0
[5] 3.803 2.803 1.503
Corollary 2 4.287 3.715 3.102
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methods presented in this paper. Likewise, the simulation result is
given to check the adequacy of the proposed method. The reply of
LFC scheme provided with a PI controller (K^

P = 0.2 and
K^

I = 0.07) with step load 0.7 s is appeared in Fig. 12 and the
simulation results on the state responses of system (53) are
depicted in Fig. 14, in this connection SALFC has accomplished its

target and the control system is stable, which confirms the
adequacy of the suggested strategy. 

7 Conclusion and future directions
In this paper, we have solved the extended dissipativity problem
for the T–S fuzzy system with randomly occurring uncertainties
and STD components via event-triggered approach. An adaptive
event-triggered procedure has been utilised to additionally reduce
the number of transmissions over the network. By constructing a
proper LKF and handling integral inequality techniques like RII,
SAFBII and DAFBII, STD signals, we have established extended
dissipativity criteria for the considered T–S fuzzy system.
Considering the adaptive event-triggered mechanism, network
transmission delays and LKF approach is developed for the
subsequent T–S fuzzy system to ensure quadratic stability
conditions and derived the controller gains in terms of an
arrangement of LMIs, which can be solved by MATLAB toolbox.
Finally, simulation studies are stated to verify the potency of the
developed technique. Additionally, the proposed work can be also
extended adaptive event-triggered mechanism to the coupled
system with imperfect communication, for example, packet
dropouts and quantisation. We will also focus on the complex
phenomena like the state estimation or filtering problem with
incomplete measurements, Markovian jump systems under
network-induced delays, T–S fuzzy-based piecewise Lyapunov
function, sliding mode fault-tolerant control design for finite-time
approach and adaptive event-triggered with asynchronous
sampling. These research topics make more practical and will be
investigated in our future work.
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